
496 TUGboat, Volume 15 (1994), No. 4

LATEX

To reset or not to reset

Johannes Braams

Abstract

This article describes two possible implementations
of a \@removefromreset macro that can be used
to remove a counter from the reset list of another
counter.

1 Introduction

When writing a document class it is sometimes nec-
essary to instruct LATEX that a certain counter has
to be reset when another counter gets a new value.
This is the case when one wants to number equa-
tions within sections. For this purpose LATEX has
the internal command \@addtoreset.

Lately people have requested to do the oppo-
site; when they use a document class that has set
equation numbering to be within sections they want
to be able to number the equations consecutively
throughout the document. For this one would need
the command \@removefromreset, but that com-
mand is not available in LATEX.

2 The reset list

When a LATEX counter is defined using the command
\newcounter a number of data structures are set
up that belong to that counter. Say we allocate a
counter foo with the command

\newcounter{foo}

Then among other things the command \thefoo is
defined which is used to represent the value of the
counter in printed text. One of the other things that
are set up is the ‘reset list’. This reset list is a list
of counters that are to be reset when the counter
foo receives a new value with one of the commands
\stepcounter or \refstepcounter. The reset list
for the counter foo is stored in the macro \cl@foo.

Before we can start to think about the imple-
mentation of \@removefromreset, we have to know
what kind of data structure is used to store a reset
list. When we look up the definition of \@addtoreset
to find out how it works we find the following piece
of code:

\def\@addtoreset#1#2{%

\expandafter\@cons

\csname cl@#2\endcsname {{#1}}}

This tells us that \@addtoreset is a command that
has two arguments, the first of which is the name of

a counter to be added to the reset list of the second
argument. This is done using the command \@cons,
so to find out more about the data structure we have
to keep digging. Notice that the name of the counter
to add to the reset list is passed to \@cons inside an
extra pair of braces!.

Searching for the definition of \@cons reveals:

\def\@cons#1#2{%

\begingroup

\let\@elt\relax

\xdef#1{#1\@elt #2}

\endgroup}

This shows us that the reset list is a list of counter
names, separated by the command \@elt. So the
expansion of \cl@foo could look like:

\cl@foo -> \@elt {bar}\@elt {baz}\@elt {cnt}

So, when the command \stepcounter{foo} is exe-
cuted the counters bar, baz and cnt are all reset (get
the value 0).

3 Removing an element from the reset list,

the idea

Now that we know what the data structure looks
like we can start to think about how to remove an
element from the list. The essential piece of infor-
mation we have learned from our search is that each

counter name in the reset list is preceded by the
command \@elt.

So the way to the solution to our problem is
obvious. We have to give the command \@elt a new
definition. What should it do? The first thing that
comes to mind is that it should compare the name
following it with some other name. When those two
names are the same we have found the name of the
counter to be removed from the list. But how to do
that? A solution for this is to build up a new reset
list while processing the existing list. If we do that
we simply do not include the counter to be removed
in the new reset list.

4 Removing an element from the reset list,

the implementation

Now that we know the basic idea of how to solve
the problem we can start the implementation. I will
show two possible implementations.

4.1 First implementation

We are going to define the command \@removefromreset.
It will have two arguments. The first argument
is the name of the counter to remove; the second
argument is the name of the counter whose reset
list has to be changed.

\def\@removefromreset#1#2{%



TUGboat, Volume 15 (1994), No. 4 497

The first thing to do is to start a group and store
the name of the counter to remove from the reset
list in a command.

\begingroup

\def\toremove{#1}%

Then we save a copy of the current reset list. We
do this because we shouldn’t overwrite it while re-
building a new version.

\expandafter\let\expandafter\old@cl

\csname cl@#2\endcsname

In order to rebuild the reset list from scratch, we
empty it.

\expandafter\let\csname cl@#2\endcsname

\empty

Now we are set up to process the elements of the
reset list, except for the proper definition of \@elt.
Remember that \@elt will be defined by the exe-
cution of \@removefromreset so we have to double
the # marks for the argument of \@elt.

\def\@elt##1{%

First we store the argument of \@elt in a command
in order to be able to use \ifx later on for the com-
parison.

\def\found{##1}%

Now we can compare the name of the counter to
remove from the list with the name we have just
found.

\ifx\toremove\found

If they are the same we do nothing, thereby effec-
tively removing it from the list. If they are different
we use \@addtoreset to build up the new reset list.

\else

\@addtoreset{##1}{#2}%

\fi}%

Now we have defined \@elt so we can simply execute
the reset list. This will execute all the occurrences
of \@elt that are in the list.

\old@cl

All that is left to do now is to close the group so
that TEX forgets about any temporary definitions
we made. Notice that the new reset list was built
using \@addtoreset which uses global definitions
inside.

\endgroup}

4.2 Second implementation

A slightly different approach is taken in the following
implementation of \@removefromreset.

\def\@removefromreset#1#2{%

\begingroup

This time we use a token register to temporarily
store the new reset list that is to be built up.

\toksdef\newlist8\newlist{}

Again we store the first argument in a control se-
quence for future use in the \ifx test.

\def\toremove{#1}%

Again we use \@elt to check whether the following
list-element is the one we are looking for.

\def\@elt##1{%

Store the list element in a control sequence

\def\found{##1}

and compare it with the one to remove.

\ifx\found\toremove

\else

If it was not the one we are looking for, add the cur-
rent list element to the new copy of the list, stored
in token register \newlist.

\expandafter\newlist\expandafter{%

\the\newlist\@elt{##1}}

\fi}

Now we can simply execute the reset list which will
execute all the occurrences of \@elt that are in the
list.

\csname cl@#2\endcsname

Finally, we have to remember to copy the contents
of \newlist to the original reset list.

\expandafter\xdef\csname cl@#2\endcsname

{\the\newlist}

\endgroup}

� Johannes Braams

PTT Research

St. Paulusstraat 4

2264 XZ Leidschendam

The Netherlands


