
46 TUGboat, Volume 16 (1995), No. 1

Some METAFONT Techniques

Yannis Haralambous

Abstract

This paper presents a few ideas on how to solve cer-

tain geometrical problems arising very often in charac-

ter design, not directly solvable by METAFONT’s plain

macros. The first part of the paper presents two geomet-

rical problems: the “k problem” and the “x problem”,

their solutions using dichotomy, and a different solution

using path intersections. The latter was proposed earlier

on the net by the author; although geometrically correct,

it does not work in real-world METAFONT practice: a

nice example of METAFONT code . . . to avoid.

The second part of the paper presents two simple

macros for drawing “loose” Bézier curves; in a sense, the

opposite of the tension operator. Finally, the third part

solves a problem stated by Alan Hoenig: how to extract

text and data from a METAFONT run, without using

the log file. This is done in a straightforward manner by

running a Flex-generated preprocessor over the GF file:

the Flex code for this utility is given in appendix B.

−− ∗ −−

1 Two geometrical problems, solved by
iterated calculations

1.1 Description

Suppose you want to design a character ‘K’, as in the
left part of fig. 1. The character should fit inside a
box of width w and height h, and should consist of
three strokes: the vertical stroke z0 −−z0′ , and the
two oblique strokes z1 − −z2 and z1′ − −z2′ . Only
constraint: the point z1l = z1′r should be fixed (for
example, its coordinates can be (0, h

2
)). So, here is

the problem:

Find a stroke z1−−z2 with fixed z1l, y2l, x2r.

0′

0

1′

1

2

2′

1

2

The “k problem” The “x problem”

2

2l

r

2l

2r

Figure 1: The two problems.

This problem is not trivial, because METAFONT
cannot compute pen positions without knowing in

advance the angle of the pen (this stands both for
defining a new pen with command pickup pen and
for defining a simulated pen with command penpos).
Because it arises when designing the letter ‘K’, we
will call this problem the “k problem”.
The next problem is encountered when design-

ing an ‘X’, as in the right part of fig. 1. Suppose
you want to draw this letter. Once again it should
fit inside the box, and should consist of two strokes.
To keep the same notation as in the previous case,
we have only given names to the pen positions con-
cerning the upper right part of the letter. In this
case the constraints are: z1 is fixed (and not z1l as
in the previous case), as well as y2l and x2r. Here
again is the problem which we call the “x problem”:

Find a stroke z1−−z2 with fixed z1, y2l, x2r.
Well understood, in both cases the direction of

the stroke must be perpendicular to the angle of the
pen: all strokes must keep the same width.

1.2 The solutions (which work)

Let’s start with the “k problem”. In fig. 2, the reader
has a closer look at the situation. Point A is fixed,
point B must lie on a fixed horizontal line H, and
C on a fixed vertical line V . The angle ÂBC must
stay orthogonal. Also the length BC of the vector
BC is fixed. METAFONT cannot compute the angle
φ directly, so that it fits to these constraints. But
once we have chosen a point B′, METAFONT can
calculate the corresponding C′ so that AB′⊥B′C′
and B′C′ = BC.

H

V

A

B B′

C′

ϕ
ϕ′

C

Figure 2: A closer look at the “k problem”.

So let’s choose a random point B′ ∈ H, and
find the corresponding C′. If C′ lies on the right of
V then we know that we should move B′ more to
the left, if C′ lies on the left of V then B′ should be
moved more to the right. We will modify the posi-
tion of B′ by a certain step and start again. This
procedure will be iterated until we get close enough
to V . The step will be halved every time: because
of the well-known equality

∑
i≥1

1

2i
= 1 we are sure

that this process of iterations will converge to the

TUGboat, Volume 16 (1995), No. 1 47

correct result. One may argue that the result will
always be approximate; this is true in mathematics
but a useless remark in computer calculations, since
all values are approximate anyway. Once we have a
sufficient precision we stop; the sufficient precision

depends on the implementation and the resolution
of our character. This process is called dichotomy
(from dÐqa = in two pieces, and tèmnw = to cut),
and is usually one of the first exercises in most pro-
gramming languages. The code is shown below.

def solve k problem(suffix $, $$, $$$)(expr pen width, first try) =
pair z zero; z zero = z$;
numeric x one, y one, x two;
y one = y$$; x one = first try; x two = x$$$;
numeric theta, n; n := 1;
forever:

clearxy; z$ = z zero; z$$ = (x one, y one);
theta := angle(z$$ − z$); pos$$.1(pen width , theta − 90);
if y$ > y$$:
z$$.1r

else:
z$$.1l

fi = z$$;
x one := x one
if x$$.1r > x two: −
else: +
fi abs(first try − x$)/(2 ∗∗ n);
exitif ((abs(x$$.1r − x two) < 0.1) or (n > 13)); n := n+ 1;

endfor
pos$$$(pwidth , theta − 90); z$$$r = z$$.1r;
enddef ;

This procedure expects that you feed it with:
(a) the suffixes of points z1l, z2l and z2r, (b) the
width of the pen, (c) a hint on the first choice for
x2l. It usually works fine when your hint is sim-
ply the x-coordinate of z2r. Theoretically it can go
wrong if the x-projection of z1l−−z1r is bigger than
the first step of the iteration process. But this can
hardly ever happen.
The iteration is stopped either (a) when the dis-

tance of z2r to V is less than a tenth of a pixel, or
(b) if n = 14, because the next step would produce
a denominator 215 = 32,768, which is too big for
(usual) METAFONT. Experience shows that with 8
steps one is usually done—again, all depends on the
resolution.
Let’s consider the second problem now. As the

reader can see in fig. 3, only the position of point A
differs. Nevertheless, this makes a big difference for
METAFONT: in the previous problem, once we had
chosen B′ we could immediately calculate the posi-
tion of C′. This is not the case here: all we know is
that if D′ is the middle of B′C′, then AD′⊥B′C′.
So we need a different technique already to calcu-
late the location of C′ for each step of the iterating
process. This will be done again by iteration.

A

B B′

B′′

B′′′

D′

C′
C

∆′
θ

C

Figure 3: A closer look to the “x problem”.

But first let’s consider two geometrical facts
which we are going to use.

Fact 1. Let C be a circle, centered at O, and
P a point outside the circle. For every line
∆, going through P and intersecting the cir-
cle at pointsX andX ′, the product of lengths
PX ·PX ′ is constant. In particular, if PT is
a tangent to the circle going through P , then

PT
2
= PX · PX ′.

48 TUGboat, Volume 16 (1995), No. 1

As the reader can see on fig. 4, it follows from
the previous fact that if ∆′ is the line going through
P and O, and intersecting the circle at Y and Y ′,

then PT =
√
PY · PY ′.

P

T

X

Y

X′

Y′O

A

B C
a

b

c

θ

Fact 1. Fact 2.

Figure 4: Two facts from elementary Euclidean
geometry.

The second fact is even more trivial:

Fact 2. Let ABC be an orthogonal trian-
gle; the right angle shall be ÂBC; let’s call
ĈAB = θ, and a, b, c the lengths of faces op-
posite to points A,B,C. Then θ = arccos(c

b
).

Let’s return to our problem (see fig. 3). D′ is
on a circle C centered at B′, of radius 1

2
BC (half the

width of the stroke, since B′D′ = D′C′). Also we
know that AD′⊥B′C′ ⇒ AD′⊥B′C′ ⇒ AD′ is tan-
gent to circle C. Let’s draw the line∆, going through
points A and B′. It will intersect C at points B′′ and
B′′′. FromFact 1 we know thatAB′′·AB′′′ = AD′2.
So we do not yet have D′ itself, but the length of
AD′.

Let’s apply now Fact 2 to the orthogonal tri-
angle AD′B′. We obtain: θ = arccos(AD′/AB′).
Once we have the angle and the length of AD′, we
have point D′, and we are done for this step of the
iterating process. The remainder of the solution is
similar to that of the “k problem”: we are moving
B′ around until C′ is close enough to line V .
Let’s try to implement this solution in META-

FONT. Fact 1 can be implemented easily: of course
one should avoid multiplying two lengths (because
of a possible overflow error), but there should be no
problem if we take the square root of each length
first (for purists: lengths are always positive!). So

instead of AD′
2
= AB′′ · AB′′′ = we will formulate

the equation as AD′ =
√
AB′′ ·

√
AB′′′.

Fact 2 is a little harder to implement. As a
matter of fact, the reader may have noticed that
although METAFONT provides exponential and log-
arithmic functions, there are no inverse trigonomet-
ric functions. What should be done? Unfortunately,
METAFONT offers no complex calculus so that for-
mulas such as cos(x) = 1

2
(exi + e−xi) could be ap-

plied; power series cannot be used either because our
candidates for angles are not necessarily in a neigh-
borhood of 0; using an external program to make
this calculation would be highly unorthodox. Let’s
use dichotomy once again!
Here is the code for a arccosd procedure in

METAFONT:

def arccosd(expr ttt) =
if ttt > 1:
message(”error: arccosd argument > 1!!??”); stop;

else: numeric a ;
numeric test , nnn, prev ; test := 45; nnn := 1;
prev := cosd(test);
forever:
nnn := nnn + 1;
if cosd(test) < ttt:
test := test − (90/(2 ∗∗ nnn))

else:
test := test + (90/(2 ∗∗ nnn))

fi;
exitif ((abs(test − prev) < 0.01) or (nnn > 14));
prev := test ;

endfor
fia := test ; enddef ;

The above procedure requires as argument a
number ttt ∈]0, 1[. It stores the result in the nu-
meric variable a_. The first try is always π

4
. Since

we want to solve a specific problem (the “x prob-

lem”), one must consider arccosd for only the first
quadrant: solutions will always be in the range]
0, π
2

[
. One can easily generalize the code to work

in different ranges. In particular it would be nice to

TUGboat, Volume 16 (1995), No. 1 49

modify the code to allow us getting results in the
complex domain for ttt ∈]−∞, 0[∪]1,∞[but the
author can hardly see the utility of these for META-
FONT. . .
Let us now have a look at the solution of the “x

problem”, as it is shown below.
A word of explanation concerning the pen posi-

tion $$ is perhaps necessary. This is a quick way to

obtain the intersection of line ∆′ (fig. 3) and circle
C: the pen $$ lies on ∆′ and points $$r and $$l are
at the right distance from point $$. As we shall see
in the following section this method yields results
that are accurate enough for our purpose.
The same idea has been used to explicitly de-

fine point $$.1: by taking pen position $, the right
edge of the pen is on point D′ of the figure.

def solve x problem(suffix $, $$, $$$)(expr pen width, first try) =
pair z zero; z zero = z$;
numeric x one, y one, x two;
y one = y$$; x one = first try; x two = x$$$;
numeric theta, n, phi , tangent length; n := 1;
forever:
clearxy; z$ = z zero; z$$ = (x one, y one);
theta := angle(z$$ − z$);
pos$$(pen width , theta);
tangent length := sqrt(length(z$$l − z$)) ∗ sqrt(length(z$$r − z$));
arccosd(tangent length/ length(z$$ − z$)); phi := theta − a ;
pos$(2tangent length, phi); z$$.1r = z$r + (z$r − z$$); z$$.1l = z$$;
x one := x one
if x$$.1r > x two: −
else: +
fi
abs(first try − x$)/(2 ∗∗ n);
exitif ((abs(x$$.1r − x two) < 0.1) or (n > 13)); n := n+ 1;

endfor
z$$$l = z$$.1l; z$$$r = z$$.1r; z$$$ = 0.5[z$$$l, z$$$r];
enddef ;

The entries for this procedure are the same as
for solve_k_problem. Again the problem is solved in
the specific case of the right and upper part of letter
‘X’; for the other possible cases, one should either
change the code (straightforward but tedious), or
use symmetry arguments.

1.3 A solution which doesn’t work, and
why

The author must confess that the first time he had
to solve the “x problem” was during a METAFONT
tutorial at the Royal Holloway College (UK) [this
shows how badly the tutorial was prepared. . .mea
culpa]. On the spot I could find no solution, yet on
my way back across the Channel on the ship I found
the code shown below. I am convinced that people
taking the tunnel nowadays write betterMETAFONT
code!
Let C be a circle, centered at B′ and of radius

1

2
BC, as in fig. 5. The intersection of ∆′ and C gives
us points B′′ and B′′′. From Fact 1, we obtain the
length of AD′. Now, D′ is at a known distance from

A, and upon circle C. Take a circle C′, centered at
point A and of radius AD′. The (right) intersection
of circles C and C′ is the desired point D′.

A

B′

B′′

B′′′

D′

C′

C

C′

∆′
θ

Figure 5: A solution of the “x problem” which
doesn’t work in METAFONT.

This method is mathematically correct—but if
you try it out you will get extremely bad results.

50 TUGboat, Volume 16 (1995), No. 1

The problem is that when we define a path, META-
FONT does not consider it as an abstract curve, but
as a set of pixels. When we ask for the intersection
of two paths, we obtain the pixel which is the closest
to the (theoretical) intersection of the paths. In the
solution sketched above, the intersection of the two
circles is taken as an abstract point, and its coor-
dinates are used for calculations. The result is of
course completely deformed.

2 Loosening Bézier curves

Bézier curves are quite beautiful, and METAFONT
allows us to obtain them even out of only partial
information: for example, one can ask for “a curve
leaving point A following a vertical direction and ar-
riving at point B following a horizontal direction”.
There is an infinite number of Bézier curves with ex-
actly these features; METAFONT will choose one of
them, out of hard-wired criteria. Most of the time,
METAFONT’s choice is exactly what you need; but it
may also happen that you want to keep some other
curve in the same set. There are two operators al-
lowing us to do this:

1. tension, which allows us to get tense curves;

2. controls, by which we can explicitly determine
the control points of our Bézier curve.

One can use tension quite intuitively: for a
value of 1, the path remains unchanged; for higher
values the path gets more and more tense. On the
other hand, the operator controls gives us absolute
control of the curve—but this is certainly not intu-
itive; maybe Leonardo da Vinci was smart enough
to be able to guess the control point coordinates of
Joconda’s smile, but the rest of us would probably
be unable to do it.
So it happened that the author often needed

“loose” Bézier curves, and was unable to obtain
them; unfortunately, tension doesn’t work with val-
ues less than .75. (In fact, the METAFONTbook
does not mention what the lower bound of the ten-
sion parameter is; however, repeated tries by the
author have shown that the value .75 still works,
while .75− ǫ produces an error message.) With the
following code, one can get arbitrarily loose Bézier
curves:

def npush(expr p, coef) =
hide(pair firstpt , firstcpt , secondcpt , secondpt ; firstcpt =
postcontrol 0 of p; secondcpt = precontrol 1 of p; firstpt = point 0 of p; secondpt
= point 1 of p; pair intersectpt , newfirstcpt , newsecondcpt ;
intersectpt − firstpt = whatever ∗ (firstcpt − firstpt);
intersectpt − secondpt = whatever ∗ (secondcpt − secondpt);
newfirstcpt = coef [firstcpt , intersectpt]; newsecondcpt = coef [secondcpt , intersectpt];)
firstpt . . controls newfirstcpt and newsecondcpt . . secondpt
enddef ;

The macro npush takes two arguments: the
path we want to loosen, and a numerical coefficient.
For value 0 of this coefficient, the path remains
unchanged. What happens when we increase this
value? Let’s consider the intersection point of the
two Bézier tangents (the tangent at curve beginning
and end). We know that control points always lie
on these two tangents. For values between 0 and 1
of the coefficient, the control points travel between
their original positions and the intersection point.
For value 1 both control points are identified with

the intersection point. For values higher than 1 they
continue their travel outside of the Bézier triangle.
In Appendix A the reader can see the effects of

the npush macro applied uniformly to all paths of a
circle, with values of the coefficient going from −5
to 5.
As the reader has surely already noticed, this

macro doesn’t work when the tangents are parallel
(because there is no Bézier triangle in that case).
A second macro, with a slightly different approach
covers all possible cases:

def mpush(expr p, lcoef , rcoef) =
hide(pair firstpt , firstcpt , secondcpt , secondpt ; firstcpt =
postcontrol 0 of p; secondcpt = precontrol 1 of p; firstpt = point 0 of p; secondpt
= point 1 of p; pair newfirstcpt , newsecondcpt ;
newfirstcpt − firstpt = lcoef ∗ (firstcpt − firstpt);
newsecondcpt − secondpt = rcoef ∗ (secondcpt − secondpt);)
firstpt . . controls newfirstcpt and newsecondcpt . . secondpt
enddef ;

TUGboat, Volume 16 (1995), No. 1 51

This macro has three arguments: the path
which we will modify, and two numerical coefficients,
corresponding to the transformation at curve begin-
ning and at curve end. This time we multiply the
distance of the first control point from curve begin-
ning by the first coefficient, and that of the second
control point from curve end by the second coeffi-
cient. Hence, in this case, value 1 for both coef-
ficients will leave the path unchanged. For values
higher than 1 the path will “swell”, while for values
tending to 0 it will become more and more tense.
These two macros may not be as reliable as

primitive METAFONT operators, but they produce
easily predictable results and are suitable for fine-
tuning of character parts.

3 Getting text and numeric data out of a
font

In his extremely interesting paper on communica-
tion between TEX and METAFONT [1], Alan Hoenig
states that “. . .METAFONT’s file handling abilities
are greatly crippled when compared to TEX. Other

than font pixel files, font metric files, and log files,

METAFONT cannot write files. . .” To remedy that
situation, we present GFtoTXT, a small utility for
reading text (and any other information) out of GF
files produced by METAFONT. As a matter of fact,
METAFONT has a special command, just like TEX,
but until now, no DVI driver was able to use it (as
a possible use, one could very well imagine Post-
Script color instructions embedded in the GF files,
taken over by the PK files and translated into real
PostScript commands by the DVI driver).
GFtoTXT is written in Flex, a UNIX-originated

lexical analyzer, under GNU copyleft. Flex allows
the generation of highly reliable C code out of sim-

ple pattern matching, using regular expressions and
states. The Flex code of GFtoTXT is very short; the
reader can find it in Appendix B. To obtain an exe-
cutable, (a) run this code through Flex, with the -8
option—Flex will produce a C file called lex.yy.c
(or LEX_YY.C on Messy-DOS systems); (b) compile
it using your favourite C compiler. The Flex code
as well as executables can be found on ftp.ens.fr,
in pub/tex/yannis/gftotxt.
How does it work? There is one convention

which must be followed: every string which we want
to extract from the METAFONT run must start with
the character #. This precaution is necessary be-
cause METAFONT itself sends several strings to the
GF file by using internal special commands.
These will be ignored by GFtoTXT. Hence, to ob-

tain the string “Hello world!” in our output file (let’s
call it output.txt), we will include the command

special(”#Hello world!”);

in the METAFONT code of our file (let’s call it
input.mf). GFtoTXT reads from the standard in-
put flow and writes to the standard output flow, so
we only need to redirect these; here is the necessary
command line:

GFtoTXT < input.mf > output.txt

GFtoTXT allows three additional conventions in
METAFONT strings: (a) \n will produce a carriage
return in the output file, and (b) \x followed by a
two-digit (lowercase) hexadecimal number between
00 and ff will produce the corresponding 8-bit
character in the output file, (c) \X followed by a
four-digit (lowercase) hexadecimal number between
0000 and ffff will produce the corresponding 16-
bit character in the output file. Convention (a) is
useful for “formatting” the output file, for example

special(”#(CHAR C A“n (HEIGHT R ”& decimal h& ”)“n (WIDTH R ”& decimal w & ”)“n”);

will produce

(CHAR C A

(HEIGHT R 99.99976)

(WIDTH R 129.99683)

Convention (b) is useful for inserting 8-bit char-
acters (or characters in the range "00–"1f) into the
output file. Finally, convention (c) can be useful to
those of us who use unicode encoding: wouldn’t it
be nice to have METAFONT say to us ♥S+ �gapÀ♥?
the necessary code would be

special(”#“X2665“X03a3“X0027“X0020“X1f00“X03b3“X03b1“X03c0“X1ff6“X2665”);

4 Bottom line

The different METAFONT techniques presented in
this paper are certainly not programmed in the most
elegant way; the author needed them for specific
purposes, and stopped testing and refining when-

ever the specific problem was solved. It is not the
goal of this paper to provide the reader with pow-
erful new tools, but rather to stimulate him/her in
creating his/her own, and to go beyond the plain
and cm base macros. In all three examples, the ba-
sic idea was very simple: iterate calculations until a

52 TUGboat, Volume 16 (1995), No. 1

sufficiently precise approximation is obtained, mod-
ify a path by manipulating the control points in the
background, read the GF file by something else than
GFtoPK or GFtoDVI. By writing down and sharing
such ideas we can make out of METAFONT an even
friendlier and more productive font design tool. To
discuss METAFONT relative issues, but also font de-
sign in general (and why PostScript and TrueType
are less efficient than METAfonts), join the META-
FONT e-mail discussion list! The address of the list
on the Internet is:

metafont@ens.fr

You can subscribe by sending the following subscrip-
tion message to listserv@ens.fr:

SUBSCRIBE METAFONT Your name and institution

References

[1] Hoenig, A. When TEX and METAFONT talk:
Typesetting on curved paths and other special

effects, pp. 549–553, TUGboat 12 (4), 1991

⋄ Yannis Haralambous

187, rue Nationale, 59800 Lille,

France.

Email: haralambous@

univ-lille1.fr

A Transforming a circle through npush

(' & % $
coef = −5 coef = −4 coef = −3 coef = −2.5 coef = −2

! � � �
coef = −1.5 coef = −1.3 coef = −1 coef = −0.8 coef = −0.6

� � � � 	
coef = −0.5 coef = −0.4 coef = −0.3 coef = −0.2 coef = −0.1

 � � �
coef = 0 coef = 0.1 coef = 0.2 coef = 0.3 coef = 0.4

� � � � �
coef = 0.5 coef = 0.6 coef = 0.8 coef = 1 coef = 1.3

� � � � �
coef = 1.5 coef = 2 coef = 2.5 coef = 3 coef = 5

TUGboat, Volume 16 (1995), No. 1 53

B The Flex code of GFtoTXT

%{
#define HEXA(A,B) (yytext[(A)]>=’a’? yytext[(A)]-’a’+10 : \

yytext[(A)]-’0’)*16 + (yytext[(B)]>=’a’? yytext[(B)]-’a’+10 : yytext[(B)]-’0’)
long int length_special = 0L; int we_need_it = 0, pre_length = 0;

%}

%x READ_SPECIAL

%x READ_PRE

%%

([\x00-\x3F\x45\x46\x4A-\xEE\xF4\xF8-\xFF])|([\x40\x47].)|([\x41\x48]..) ;

([\x42\x49]...)|(\x43.{24})|(\x44.....) ;

\xEF.# { BEGIN READ_SPECIAL; length_special = yytext[1] - 1L; we_need_it=1; }

\xEF. { BEGIN READ_SPECIAL; length_special = yytext[1]; we_need_it=0; }

\xF0..# { BEGIN READ_SPECIAL; length_special = (yytext[1] * 256L) + yytext[2] - 1L;

we_need_it=1; }

\xF0.. { BEGIN READ_SPECIAL; length_special = (yytext[1] * 256L) + yytext[2];

we_need_it=0; }

\xF1...# { BEGIN READ_SPECIAL; length_special = (((yytext[1] * 256L) +
yytext[2]) * 256L) + yytext[3] - 1L; we_need_it=1; }

\xF1... { BEGIN READ_SPECIAL; length_special = (((yytext[1] * 256L) + yytext[2])
* 256L) + yytext[3]; we_need_it=0; }

\xF2....# { BEGIN READ_SPECIAL;
length_special = (((((yytext[1] * 256L) + yytext[2]) * 256L) + yytext[3]) * 256L)

+ yytext[4] - 1L; we_need_it=1; }

\xF2.... { BEGIN READ_SPECIAL;

length_special = (((((yytext[1] * 256L) + yytext[2]) * 256L) + yytext[3]) * 256L)
+ yytext[4]; we_need_it=0; }

<READ_SPECIAL>. { length_special--; if (we_need_it==1) printf("%c",yytext[0]);
if (length_special==0L) BEGIN 0; }

<READ_SPECIAL>\\x.. { length_special-=4;
if (we_need_it==1) printf("%c",HEXA(2,3)); if (length_special==0L) BEGIN 0; }

<READ_SPECIAL>\\X.... { length_special-=6; if (we_need_it==1)

printf("%c%c",HEXA(2,3),HEXA(4,5)); if (length_special==0L) BEGIN 0; }

<READ_SPECIAL>\\n { length_special-=2; if (we_need_it==1) printf("\n");

if (length_special==0L) BEGIN 0; }

(\xF3....)|(\xF5.{17})|(\xF6.{10}) ;

\xF7.. { pre_length = yytext[2]; BEGIN READ_PRE; }

<READ_PRE>. { pre_length--; if (pre_length == 0) BEGIN 0; }

.|\n ;

%%

main()

{
yylex();

}

