
TUGboat, Volume 16 (1995), No. 2 146

HTML& TEX: Making them sweat∗

Peter Flynn

Abstract

HTML is often criticised for its presentation-oriented
conception. But it does contain sufficient structural
information for many everyday purposes and this
has led to its development into a more stable form.
Future platforms for the World Wide Web may sup-
port other applications of SGML, and the present
climate of popularity of the Web is a suitable oppor-
tunity for consolidation of the more stable features.
TEX is pre-eminently stable and provides an ideal
companion for the process of translating HTML into
print.

1 Markup

HTML, a HyperText Markup Language [1], is the
language used to structure text files for use in the
World Wide Web, an Internet-based hypertext and
multimedia distributed information system. HTML

is an application of SGML, the Standard Generalized
Markup Language, ISO 8879 [3]. Contrary to pop-
ular belief, neither SGML nor HTML is new: SGML

gained International Standard status in 1986 and
HTML has been in use since 1989.

SGML is a specification for writing descriptions
of text structure. In itself SGML does not do any-
thing, any more than, say, Kernighan and Ritchie’s
specification of the C language [4] does anything:
users and implementors have to do something with
it. It has been slow to achieve popularity, partly be-
cause writing effective Document Type Descriptions
(DTDs) is a non-trivial task, and partly because soft-
ware to make full use of its facilities has traditionally
been expensive. It was therefore seen as a ‘big busi-
ness only’ solution to text-handling problems until
the popularisation of HTML owing to increased use
of the World Wide Web. Since 1992 the software
position has also improved considerably—an exten-
sive list of tools is maintained by Steve Pepper at
UIO [6].

2 The World Wide Web

WWW (W3 or just ‘the Web’) is a client-server ap-
plication on the Internet. Users’ clients (‘browsers’)
request files from servers which are run by informa-
tion providers, and display them using the HTML

markup embedded in the text to render the for-
matting. Some of the markup can provide file-

∗ This paper is based on one published in Baskerville, vol.
5, no. 2, March 1995

names for the retrieval of graphics as illustrations,
or act as anchor-points for links to other documents,
which can be further text, or graphics, sound or
motion video. This latter capability gives the Web
a hypertext and multimedia dimension, and allows
crosslinking of files almost anywhere on the Internet.

Because the HTML files are plain text with
embedded plain text markup, in traditional SGML

manner, they are immediately portable between ar-
bitrary makes and models of computer or operating
system, making the Web one of the first genuinely
portable, multiplatform applications of its kind.

2.1 HTML Markup

An example of simple markup and an appropriate
rendering is illustrated in Figure 1. The conventions
of SGML’s Reference Concrete Syntax [3] are used,
so markup ‘tags’ are enclosed in angle brackets (less-
than and greater-than signs), in pairs surrounding
the text to which they refer, with the end-tag being
preceded by a slash or solidus immediately after its
opening angle bracket.

The rendering is left almost entirely to the
user’s client program, as there are almost no facili-
ties within HTML for the expression of appearance
apart from a minimal indication of font change (ital-
ics, boldface and typewriter-type). Indeed, most re-
cent browsers allow the user arbitrary control over
which fonts, sizes and colours should be used to in-
stantiate the tagged elements of text.

2.2 Implementation

HTML was devised by non-SGML-experts who saw
it as an ideal mechanism for implementing plain-
text portability while preserving sufficient structural
information for online rendering: one of the classi-
cal reasons for adopting SGML. It is now becoming
standardised by an IETF (Internet Engineering Task
Force) Working Group who have produced a draft
specification in the form of a formal DTD [1]. Be-
cause of the need to allow this specification to model
existing ‘legacy’ documents (most of which would
be regarded as fragments rather than document in-
stances), as well as provide for more robust usage,
the current DTD has two modes: a non-rigorous
‘deprecated’ mode for describing the legacy and a
‘recommended’ mode for creating and maintaining
files in conventional form.

HTML is sufficient for minimal documents, pro-
viding the structural and visual features shown in
Figure 2. A future version (3.0) is being developed
by the IETF Working Group, which will allow the
description of mathematics, tables and some addi-
tional visual- and content-oriented features.

TUGboat, Volume 16 (1995), No. 2 147

<html>

<head>

<title>Fleet Street Eats</title>

</head>

<body>

<h1>Where to eat in Fleet Street</h1>

<p>There are many restaurants in the City, from

fast-food joints to <i>haute cuisine</i>.</p>

...

Document title: Fleet Street Eats

Where to eat in Fleet Street

There are many restaurants in the City, from fast-food joints to haute cuisine.
. . .

Figure 1: Example of HTML markup and possible rendering

Structural
html document type
head document header
title document title
base root address for incomplete

hypertext references
meta specification of mapped

headers
link relationship of document to

outside world
isindex specifies a processable

document which can take an
argument

body contains all the text
h1...h6 six levels of section heading
p paragraph
pre preformatted text
blockquote block quotations
address addresses
ol ordered lists
li list item

ul unordered lists
li list item

menu menu lists
li list item

dir directory lists
li list item

dl definition lists
dt definition list term
dd definition list description

Descriptive
a hypertext link anchor-point
cite citations
code computer code
em emphasis
kbd keyboard input
samp sample of input
strong strong emphasis
var program variable

Form-fill
form contains a form
textarea free-text entry
input input field (text, checkbox,

radio button, etc.)
select drop-down menu
option menu item

Visual
b bold type
br forced line-break
hr horizontal rule
i italics
tt typewriter type
img illustrations

Obsolete
listing use pre

xmp use pre

plaintext use pre

nextid editing control
dfn definition of term

Figure 2: Markup available in HTML 2.0 (indentation implies the item must occur within the domain of
its [non-indented] parent)

TUGboat, Volume 16 (1995), No. 2 148

Despite the forthcoming improvements, HTML

is likely to be joined in the Web by other DTDs.
One well-known SGML software house already has
a prototype browser which can handle instances of
arbitrary DTDs, given sufficient formatting infor-
mation. This would make it possible to use the
Web for transmission and display of documents us-
ing other SGML applications such as CALS (US
Military), DocBook (O’Reilly/Davenport), the TEI

(Text Encoding Initiative) and corporation-specific
DTDs (such as those of Elsevier).

The next version of the DTD, HTML3, contains
specifications for mathematics, tables and some ad-
ditional elements for content-descriptive material, as
well as a few extra visual keys such as an ALIGN

attribute for positional specification. Most of this
work is being implemented on a test basis in the
Arena browser (Unix/X only at the moment) at
CERN.

Although Web browsers can reference files by
any of several methods (HTTP, the Web’s ‘native’
protocol; FTP; Telnet; Gopher; WAIS; and others)
by using the URL (Uniform Resource Locator: a
form of file address on the Internet), the most pow-
erful tool lies at the server end: the ability of servers
to execute scripts, provided their output is HTML.
A trivial example is shown in Figure 3, which re-
turns the date and time.

Such a script can contain arbitrary processing,
including the invocation of command-line programs
and the passing of arguments. Data can be gath-
ered from the user either with the <isindex> tag
in the header, which causes a single-line data-entry
field to appear, or with the more complex <form> el-
ement with scrollable text boxes, checkboxes, radio
buttons and menus. In this manner, complete front-
ends can be manufactured to drive data-retrieval en-
gines of any kind, provided that they operate from
the command line, and that the script returns their
output in HTML. The user (and the browser) re-
main unaware that the result has been generated
dynamically.

2.3 Presentation

HTML is criticised for being ‘presentation-oriented’,
but as can be seen from Figure 2, the overwhelm-
ing majority of the markup is structural or content-
descriptive. However, this does not prevent the
naive or sophisticated author from using or abus-
ing the markup in attempts to coerce browsers into
displaying a specific visual instantiation, primarily
because none of the browsers (with the partial ex-
ceptions of Arena and w3-mode for GNU Emacs) per-
forms any form of validation parsing, and will thus

display any random assemblage of tags masquerad-
ing as HTML. This behaviour has misled even some
eminent authorities to dismiss HTML as ‘not being
SGML’.

Therefore a conflict exists between the SGML

purist on the one side, who decries any attempt at
encoding visual appearance; and the uninformed au-
thor on the other, who has been unintentionally mis-
led into thinking that HTML and the Web constitute
some kind of glorified networked DTP system.

The purists are few in number but eloquently
vocal: however, in general, they acknowledge that
visual keys can be included if they are carefully
coded. A perceived requirement to allow an au-
thor to recommend the centering of an element is
thus achieved in HTML3 by the align="center"

attribute, rather than the unnecessary <center> el-
ement proposed by the authors of Netscape.

The demands of the author are at their most
marked in the approach of publishers and market-
ing users, who have been accustomed for the last 550
years to exert absolute control over the final appear-
ance of their text. But the Web is not paper, and the
freedoms and constraints of the Press do not apply:
it is as much a new medium as radio or television.
For such an author to insist that she must be able
to control the final display to the same extent as on
paper is as pointless as insisting that a viewer with
a black-and-white television must be able to see the
colours in a commercial.

The paradigm has been established that the
browser controls the appearance, using the markup
as guidelines. There is indeed no reason at all why
attributes could not be added so that an author
could write

<h1 color=green font=LucidaBrightBoldItalic

size=24 shading=50>

but the user of Lynx or WWW (two popular text-only
browsers for terminal screens) would still only see
the heading in fixed-width typewriter characters.
The habit of insisting that everyone ‘must’ see a par-
ticular typographic instantiation is an unfortunate
result of a misinterpretation of the objective of the
Web: to deliver information in a compact, portable
and arbitrarily reprocessable form.

But publishers accustomed to paper, insistent
on ‘keeping control’, have of course an entirely valid
point, one with which the present author has great
sympathy. Why should a carefully-prepared docu-
ment be made a hames of by a typographically illit-
erate user who has set <h2> to display as 44pt Punk
Bold in diagonal purple and green stripes?

TUGboat, Volume 16 (1995), No. 2 149

#! /bin/sh

echo Content-type: text/html

echo

cat <<EOH

<html><head><title>Date and time</title></head><body><p>It is now

EOH

date

cat <<EOT

</p></body></html>

EOT

Figure 3: Example of a Unix shell script to return the date and time as an HTML file

The solution probably lies in the implementa-
tion of style sheets, perhaps along the lines of those
discussed by the authors of Arena [5]. They would in
any case only be recommendations: not every user
has a CD-ROM of Adobe or Monotype fonts. In any
event, if 100% control is essential, as in the display
of typographic examples, all graphical browsers can
be configured to spawn a window to display a Post-
Script file, although the download time may be a
strong disincentive.

It is entirely possible that the control of content
will ultimately prove a more attractive option than
the control of appearance.

3 Publishing with HTML

Setting aside the unresolved questions of display,
there are more pressing business problems about
publishing on the Web.

The authentication of users can be addressed at
several levels, from simple non-authoritative checks
using identd, to the more complex username-and-
password systems employed on some Web pages.
From the user’s end, the authentication of the data
being accessed is equally important. The openness
of the Internet in its raw form allows ‘spoofing’ in
both directions, so the emergence of protocols to
provide checks is to be welcomed.

The security of network-accessible texts from
break-ins remains a concern to anyone providing
high-value merchandise, and Web text is in this
sense no different from any other computer data.
Normal precautions must therefore be taken to pre-
vent theft through other channels (such as remote
login), as distinct from theft perpetrated by falsifi-
cation of Web access.

There is a need for robust solutions to charging
and billing for usage, and the secure transmission of
financial data, including credit card numbers, digital

signatures, and perhaps even EFT transactions. The
Secure HTTP (SHTTP) mechanism being marketed
by MCom and others is becoming popular as a way
of achieving some of this, but the Internet must shed
some of its image of lax controls and sloppy house-
keeping if it is to achieve sufficient ‘respectability’ to
attract the business of those who are not networking
specialists.

The handling of copyright and the intellectual
property of electronic texts remains, as ever, an un-
solved problem. While copyright law can be used
to provide a remedy for breach, the difficulty lies in
preventing the breach occurring in the first place.
The reason is that (as with other electronic mat-
erial), copying and reproduction is fast, cheap and
easy, once the material is in the hands of the cus-
tomer. While a supplier may use SHTTP to protect
the details of the transaction, once a print file has
been sent to someone, the supplier retains no con-
trol whatsoever over its use, reuse and abuse. Copies
could be sent to dozens of others, or printed many
times, in the space of minutes.

3.1 Printing from HTML

The demand for printed copies of Web material is
surprisingly high. Although in some cases it is rem-
iniscent of those people who insist on printing their
email, it is undeniable that there is a serious require-
ment for good quality print from Web documents.

Existing solutions to printing SGML text are
usually application-specific, embedded in SGML ed-
itors or DTP systems, but there are also some more
generic packages:

• Format by Thomas Gordon (LATEX)

• HTMLtoPS by Jan K̊arrman (PostScript)

• SGML2TeX and WebSet by Peter Flynn
(TEX/LATEX)

• SimSim by Jonathan Fine (TEX)

TUGboat, Volume 16 (1995), No. 2 150

The use of TEX systems for most of these seems to
indicate that the similarity of markup concepts has
not gone unnoticed by practitioners. The author’s
own contributions are experimental, but WebSet is
planned as an interactive Web service, to be intro-
duced in the summer of 1995. Emailing a URL to the
point of service will cause it to be retrieved, type-
set, and the output returned to the user by email
in PostScript form. As a form of email browser, the
control of appearance may lie in the hands of the
user, but suggestions for how to implement this are
currently being sought [2].

3.2 Problems

Implementing a professional level of typesetting
from HTML raises some interesting questions:

• most HTML files are invalid

• most HTML authors don’t understand SGML

• most HTML authors couldn’t care less

• most World Wide Web users couldn’t care less

The handling of missing, damaged or abused tags in
a gracious manner is not a feature of most SGML

parsers. At the best, a typesetter-browser can only
be expected to report to the user that a file is invalid,
and while it may be displayed by browsers which
do not make any claim to typographic quality, an
attempt to make a respectable print job of an invalid
file is unlikely to succeed.

4 Development

The future of the World Wide Web and HTML is
uncertain. While development continues, and while
new users are anxious to start surfing the net, the
existing designs and implementations will suffice. In
the longer term, a coalescing of services is likely to
occur, but for this to happen, a number of changes
need to take place:

• The Web will start to make use of other DTDs,
as outlined above. Any file containing a docu-
ment type declaration (i.e., <!doctype...>) at
the beginning could cause a browser to retrieve
the DTD specified, along with a style sheet, and
work much as any SGML-conformant DTP sys-
tem would.

• Browsers will become pickier, able to offer bet-
ter services at the expense of rejecting invalid
or badly broken files. Arena already perfoms a
form of consistency check on the HTML code of
files, and displays ‘Bad HTML’ in the top corner
when an offender is spotted.

• Users will become pickier, demanding better re-
sponse from the browser, better response from
the server, and better facilities from both. As

users become more educated about the use of
SGML, developers will no longer be able to hide
the deficiencies of products under the cover of
technical detail.

• This presupposes more user education, which
is inevitable in a developing technology. One
hundred years ago, motor cars appeared on the
roads, but few passengers in them understood
the use of the levers and rods which controlled
them. With some minor exceptions, it is now
expected that a driver knows that turning the
wheel clockwise turns the car to the right, and
vice versa. It will not take us that long to per-
ceive the innards of HTML, but it can only be
done by training and education.

• At some stage, investment is always needed.
Many companies have invested substantial sums
into the development of Internet resources, and
those that have done so with forethought and
planning deserve to reap a rich reward. It is
a long-term investment, more akin to a part-
nership, but support is always needed by those
who undertake the developments, especially as
much of it is done in personal time and at per-
sonal expense.

There is still some way to go before we achieve the
ease of use of the telephone or the radio, but the path
is becoming easier with each new development.

References

[1] Berners-Lee T. & Connolly D. HyperText
Markup Language Specification — 2.0, Internet
Draft, IETF Working Group on HTML, Decem-
ber 1994.

[2] Flynn P. Typographers’ Inn, TEX and TUG
News, 4, 1, March 1995.

[3] Goldfarb C. The SGML Handbook, OUP, 1990,
ISBN 0-19-853737-9.

[4] Kernighan B.W. & Ritchie D.M. The C Pro-
gramming Language, Prentice-Hall, 1978.

[5] Lie H. et al. HTML Style sheets, http://www.w3.
org/hypertext/WWW/Style/

[6] Pepper S. The Whirlwind Guide: SGML

tools and vendors, ftp://ftp.ifi.uio.no/

pub/SGML/SGML-Tools/SGML-Tools.txt

� Peter Flynn
Computer Centre
University College
Cork, Ireland
Email: pflynn@curia.ucc.ie

TUGboat, Volume 16 (1995), No. 2 151

The Inside Story of Life at Wiley with
SGML, LATEX and Acrobat∗

Geeti Granger

1 Introduction

John Wiley & Sons is a scientific, technical and
medical publisher. It is an independent, American
family-owned company that was established in 1807,
with subsidiaries in Europe, Canada, Australia and
Singapore. The European subsidiary opened in Lon-
don in 1960 and moved to Chichester in 1967 (if
folklore is to be believed this was so that the then
Managing Director could more easily pursue his love
of sailing!).

We publish books, including looseleaf and en-
cyclopaedias, and journals, and most recently elec-
tronic versions of some of our printed products. In
the future the electronic component of our publish-
ing programme is bound to include products that
are only available electronically.

2 Setting the Scene

To the topic in hand—Portable Documents: Acro-
bat, SGML and TEX. Our association with TEX
dates back to 1984 when we made the significant
decision to install an in-house system for text edit-
ing and composition. It was the only software avail-
able that wasn’t proprietary, which stood a chance
of coping with the complex mathematical material
we had to set.

As a company we have monitored the progress
of SGML since 1985, but have only recently used it
in earnest. Our first project is a 5000 page ency-
clopaedia about Inorganic Chemistry. We rarely get
the opportunity to dip our toes in the water—it’s
straight in at the deep-end! Having said this, we do
have a set of generic codes that has been used for a
number of years, and everyone is well aware of the
principles involved and the value of this approach to
coding data.

Adobe Acrobat was launched in June 1993. Our
experience of this software dates back a little further
than this, because of our links with Professor David
Brailsford and the Electronic Publishing Research
Group at the University of Nottingham, and their
work on the CAJUN (CD-ROM Acrobat Journals Us-
ing Networks) project, which we jointly sponsored
with Chapman & Hall.

∗ This paper is based on one published in Baskerville vol.
5, no. 2, March 1995.

3 Complementary not Competitive

The first thing to make clear is that SGML, TEX
and Acrobat do not compete with each other in
any way. SGML is a method of tagging data in a
system-independent way. TEX is one possible way of
preparing this data for presentation on paper, while
Acrobat is software capable of delivering data elec-
tronically for viewing on screen, or for committing
to paper.

From our point of view the fundamental re-
quirement for:

• capturing data

• processing data (text and graphics)

• delivering data (paper/disk/CD/Internet)

is to remain system independent for as long as pos-
sible.

SGML, TEX and Acrobat achieve this in their
part of the whole process. PostScript provides the
link that completes the chain.

4 SGML in Practice

To describe our experience with SGML I will use
the Encyclopedia of Inorganic Chemistry as a case
study. This encyclopaedia is an 8 volume set made
up of 5000 large-format, double-column pages (more
than 3 million words). The data consists of ap-
proximately 250 articles interspersed with 750 defi-
nitions and 750 cross-reference entries. The text was
marked-up and captured using SGML, validated and
preprocessed for typesetting. The floating elements
(all 2300 figures, 8000 equations, 2000 structures,
1100 schemes and 900 tables) were prepared elec-
tronically and delivered as encapsulated PostScript
files. Some 150 halftones, about a third of which are
colour, complete the data set!

Despite the complex nature of this project, or
maybe because of it, we were convinced that using
SGML was the right approach. We had to be very
sure because this decision presented us with many
additional difficulties. Different considerations had
to be made at all stages of the production process.
(Manufacturing remained untouched.)

Once we had established the probable require-
ment for an electronic version, there was the need
to justify the use of SGML because of:

• the extra cost involved in data capture

• the different working practices that had to be
established

• the project management overhead

• the need to find new suppliers, and the risks
that this involved for such a large, high profile
project.

TUGboat, Volume 16 (1995), No. 2 152

4.1 Production Considerations

This project had an external Managing Editor to
commission and receive contributions before it be-
came a live project. Once contributions started to
arrive it very quickly became apparent that a project
management team was needed if this project was to
succeed. The initial steps had to be ones of project
analysis, determining data flow, deciding who was
responsible for what, and ensuring that a progress
reporting system was established. It certainly semed
like a military operation at times.

Having made the decision to go with SGML and
to ensure that all components were captured elec-
tronically we had to find a set of new suppliers.
None of our regular suppliers could meet our speci-
fications. Locating potential suppliers was the first
hurdle, and then assessing their suitability was the
next. Having done this we then had to draw them
all together to establish who did what, and who was
responsible for what. It had to be a team effort from
start to finish and regular progress meetings involv-
ing representatives of all parties was the key to an
ultimately successful project.

4.2 Problems Encountered

One of the first considerations was how on earth
do we name the files? To ensure portability we set
ourselves the restriction of the eight plus three DOS

convention. It took some time but we achieved it
in the end so you can now identify from the file
name the type of text entry, the type of graphics
and whether it is single or double column or land-
scape, and its sequential placement within its type.
When you consider the number of files involved, this
was no mean feat.

Designing the DTD without all the material
available is not the best way to start, but needs
must. It meant that some amendments had to be
made as the project progressed but none of them
proved to be too significant.

Choosing Adobe typefaces, to avoid problems
later on, meant that some compromises had to be
made. Many people feel that the Adobe version of
Times is not as elegant as some other versions of the
typeface.

Also the quality of the typesetting, hyphenation
and justification, interword spacing and overall page
make-up is not as high as that normally achieved by
a dedicated chemistry typesetter.

In addition to the above, we found a bug in
Adobe Illustrator! Because the EPS files were be-
ing incorporated electronically the accuracy of the
bounding-box coordinates was crucial. To cut a long

story short they weren’t accurate. We spent quite
some time establishing the cause of the problem and
then had to have a program written to resolve it.

This is not an exhaustive list but I think it will
give you a feel for the practical issues involved. Hav-
ing shared all this with you I should add that all of
us involved in the original recommendations remain
convinced that it was the right approach. In fact we
are now processing two more projects in the same
way!

5 LATEX in Practice

We have done far too many projects in TEX (many
in Plain, but a growing number in LATEX) to select
one as a case study. What I can do is very readily
identify the production issues involved in using this
software in a commercial environment.

5.1 Steps in the Process

Establishing ourselves as a forward-thinking, pro-
gressive company by developing in-house expertise
has brought with it certain pressures. In the early
days, not only did we have to learn how to use TEX,
we also had to make it achieve typesetting standards
expected of more sophisticated systems. Our col-
leagues could not see why they should accept lower
standards from us—after all they were paying us (we
operate a recharge system so that it doesn’t distort
the project costing when compared with externally
processed projects).

Next came the requests for us to supply style
files. Authors knew we used the same software as
they did, and wanted to prepare their submission so
it looked like the finished product. Some wanted to
produce camera-ready copy. In principle this would
seem a sensible idea; in fact our commissioning edi-
tors, especially those who handle a number of CRC

projects, thought it was a brilliant idea. It would
save them an immense amount of time and hassle.

Now, preparing style files for in-house use is one
thing; preparing them for use by others is something
else again. We have to work within strict time and
cost constraints, and there are many occasions (dare
I admit it?) when we have to resort to, shall we say,
less than the most sophisticated way of achieving
the required visual result!

When I have attended courses on TEX and have
asked about writing style files the answer has often
been along the lines of ‘leave it to the professionals’.
(I should say it’s usually people who make their liv-
ing in this way who give this response.) This may
be fine if a) you can find and afford the professional;
b) you don’t need to support the file when it is in
general use. In our experience the first is difficult

TUGboat, Volume 16 (1995), No. 2 153

to do and the second is an impossibility. The need
to support style files cannot be ignored; once they
have been provided, no matter on what pre-agreed
conditions, queries will arise. It can be very time-
consuming, as often queries are not restricted to the
style file, but relate to the sytem being used. It
can also take a while to establish the context of the
query, resolve it and respond. To meet the expecta-
tion that we will support, customise at short notice,
resolve technical issues, and communicate via e-mail
(preferably responding within the hour) can be dif-
ficult, given the level of human resource available.

Once you’ve got over this initial stage, the prac-
tical issues involved in accepting LATEX submissions
can be many. Delivery is the first. Now that we have
the ability to receive data electronically our authors
cannot understand why we hesitate, and why we
still insist on hard copy. Experience tells us that,
without hard copy, it is difficult to be sure we have
received the final version, and discovering this af-
ter a project has been processed is very costly, both
in time and money. Any submission that circum-
vents a stage in the current administration process
may drop through a hole and end up taking more
time, rather than less, to reach publication. Con-
sideration is being given to this issue, and there is
no doubt that in the future electronic delivery will
be an acceptable method of submission, but in the
meantime everyone has to be patient.

Copy-editing remains a conventional process in
the main, although experiments are taking place
with copy-editing on disk. This issue is not re-
stricted to LATEX projects, but the rate of progress is
dictated by the ability of our freelance copy-editors
to provide this service.

Once you move on to the processing stage the
first thing you have to do is find a supplier who is
capable of actually processing in this software. This
is easier said than done, because it is not considered
to be cost-effective by most of our regular suppliers.
However, as a result of our persistent requests, some
can now provide this service, so we don’t have to
process all such submissions in-house.

From our own experience we know that produc-
ing page proofs is not always straightforward. Over
the years we have struggled with amending style files
to achieve the correct layout and controlling page
make-up. Now that authors are submitting graph-
ics on disk, as well as the text, we are faced with
another set of problems. Portability of graphic for-
mats is even more difficult to achieve. I think the
number of answers to the question ‘When is a Post-
Script file (or EPS file) not a portable PostScript
file?’ must be infinite. Even when the content of the

file itself is OK, you can still be faced with problems
in achieving the required size and position on the
page.

Despite all these disadvantages our lives would
not be the same without LATEX, and when compared
with processing in other software it can be a real joy!
Our archive of projects coded in a form of TEX will
be far easier to reuse than those processed in other
software.

6 Acrobat at Arm’s Length

Although we haven’t used Acrobat on a live project
in-house yet, we have been closely involved with the
development of the EPodd CD. The CAJUN project
has been running for well over a year and during
this time the complete archive of volumes 1–6 has
been converted to PDF, annotated to add pdfmarks
and generally massaged into a suitable format for
delivery on CD.

As always, the work involved in such a project is
more than anticipated at the outset, but it has been
an invaluable learning exercise. Being involved in
the beta-testing of the software helps you appreci-
ate just how much development work is required for
a new piece of software, and although it currently
has its limitations the future looks good. Version 2,
which (at the time of writing) is due for release any
day now, is much improved, and it is rewarding to
see that many of the comments put forward by mem-
bers of the team have been incorporated.

We are experimenting with small projects in-
house to give us a deeper understanding of the prac-
tical advantages and limitations of Acrobat. It is
easy to get caught up in the euphoria and hype that
accompanies the release of a new product, and to
overlook the day-to-day difficulties its rapid adop-
tion might bring. Having said this, there is no doubt
that it will have a place in our publishing proce-
dures, and may be used in the production cycle for
journal articles. Provided that the general adminis-
tration can cope with the deviation from the norm,
supplying author proofs in this way has its attrac-
tions. The fact that readers are now freely available
and the PDF file can be read on any of the three
main platforms is a real boon.

The use of Acrobat for delivering existing print
products in an electronic form is one worth consider-
ing, especially now that it is possible to integrate it
with project-specific software and the security issue
has been addressed.

From an inter-company point of view the per-
ceived use of Acrobat for distributing internal doc-
uments could again have its attractions. For this to
be a real possibility it must be recognised that the

TUGboat, Volume 16 (1995), No. 2 154

use of such procedures is not an innate skill, and so
the appropriate level of training and support must
be available if it is to be successful.

7 Conclusion

The comments I have made and the case study I
have described may leave you with a somewhat neg-
ative feeling. I wonder if I have emphasised the prob-
lems and not balanced these by identifying the plus
points. To put this into context I should say that
details of the advantages of any particular approach
are usually more readily available, so I have tried to
capture a more down-to-earth view.

In reality I am very enthusiastic about the use
of SGML, TEX and Acrobat, but am also well aware
of what their use in a productive environment can
mean. I believe, as do several of my colleagues, that
portability of documents is crucial to our ability to
deliver data efficiently in a variety of forms, whether
this be page-based, highly structured databases or
tagged ASCII files. To this end we must be flexible
in our approach, and must not be afraid of mak-
ing investments now that may not bear fruit until
some time in the future. This can be a very unnerv-
ing decision to make, and for one I am glad it isn’t
ultimately mine. While I can extol the virtues of a
purist’s technical approach, obtain the relevant costs
and assess the schedule implications, I do not have
the entrepreneurial skills required to know when a
project is commercially viable (or worth taking a
risk on). It is at this point I take my hat off to our
commissioning editors, who have the responsibility
for turning these experiments into profit for us to
reinvest in the next Big Thing!

� Geeti Granger
John Wiley & Sons Ltd
Baffins Lane
West Sussex
Chichester PO19 1YB, UK
Email: granger@wiley.co.uk

The Los Alamos E-print Archives:∗

HyperTEX in Action

Mark D. Doyle

Abstract

The Los Alamos E-print Archives houses more than
25,000 research papers in about 25 fields of physics
and mathematics, with the vast majority written in
TEX. This paper describes HyperTEX and how it
is transforming the archives from a loose conglom-
eration of independent papers into a single, large
hyperlinked database available via the World Wide
Web.

1 Los Alamos E-print Archives

The Los Alamos E-print Archives were created in
1991 by Paul Ginsparg. In the beginning there was
a single archive dedicated to High Energy Physics
Theory, but now it has grown into a collection of
over 25 archives, each dedicated to a fairly narrow
field in physics, mathematics, economics, or com-
putation and linguistics. The archives contain over
25,000 papers, with over 90% submitted as TEX
source (for some archives, including the largest, the
figure is over 99%). The rest of the papers are
submitted as PostScript, and almost all of that is
generated by TEX/dvips. We expect that Adobe’s
Portable Document Format (PDF) will start to ap-
pear over the next year.

We have recently implemented an auto-TEXing
script that processes over 90% of the TEX source
into PostScript (failures are due to careless submit-
ters who don’t bother checking that their source
was transmitted correctly via email or who didn’t
supply all of the necessary style/macro files). Soon
TEX-ability will become a criterion for accepting a
paper onto the archives (it is already an effective
“referee”, correlating well with the scientific quality
of the work).

The archives are accessible via electronic mail
(arch-ive@xxx.lanl.gov, where arch-ive is one
of the archive names, e.g. hep-th), anonymous ftp
(ftp://xxx.lanl.gov/), and the World Wide Web
(http://xxx.lanl.gov/). Submission always in-
volves email because most WWW browsers do not
yet allow files to be sent even though the HTTP

protocol includes this capability. WWW usage
has grown exponentially and our server gets about

∗ Supported by the U.S. National Science Foundation un-
der Agreement No. 9413208 (1st March 1995 to 28th February
1998).

TUGboat, Volume 16 (1995), No. 2 155

20,000 hits per day now (see http://xxx.lanl.

gov/cgi-bin/show_weekly_graph). Another mea-
sure of the vitality of the archives was noticed when
we put the auto-TEXing script on-line in June, 1995:
fully one third of the papers were accessed during
that month. Furthermore, in some fields (High En-
ergy Physics for example), the archives have effec-
tively replaced the traditional print journals as the
primary means of accessing new research.

The use of the World Wide Web has greatly en-
hanced the accessibility of the archives and we have
actively developed HyperTEX to further enhance the
on-screen reading of the papers. HyperTEX creates
hypertext documents and, with the proper viewers,
allows links to other documents via a World Wide
Web Uniform Resource Locator (URL).

2 HyperTEX

On-screen reading of information is greatly en-
hanced by hypertext functionality. For instance,
a paper with mathematics has the equations num-
bered sequentially and the reader is often referred to
another equation via its number. Hypertext func-
tionality allows the reader to use the mouse to click
on the numbered equation reference and either jump
back to the referenced equation or display it sepa-
rately in a new window. Similarly, clicking on a
citation to a reference listed in the bibliography
should bring up the bibliographic entry, and if the
entry refers to another paper on the archives, say,
then clicking on it should bring up the abstract of
that paper in your World Wide Web browser.

So how do we produce something with hyper-
text functionality from over 25,000 TEX papers?

This question came to the forefront for Paul
Ginsparg in the late fall of 1993 when he saw a
demo of Adobe’s newly introduced Portable Doc-
ument Format and their Acrobat PDF viewer. The
sample was 150 pages of TEX-produced lecture notes
by Ginsparg that were distilled into PDF. During
the demo it was demonstrated that hyperlinks could
be added so that the table of contents would be
linked to the proper sections. And here is the re-
action:

“. . . horrifying to contemplate armies of peo-
ple adding hyperlink overlays “by hand” after
the fact, especially when much of the contex-
tual structure is already present in the TEX
source, only to be lost in the conversion to
dvi and then e.g. to PostScript.”

Were the typesetters displaced by TEX destined to
become hyperlinkers?

Any solution to the problem of converting TEX
into hypertext should satisfy at least these three cri-
teria:

• Take advantage of contextual information al-
ready implicit in TEX documents

• Provide interoperability with the World Wide
Web

• Maintain the high quality of TEX’s output

By contextual information, I mean the information
implicitly present in the association of a label with
an object and the subsequent use of this label as a
way of referring to that object. Examples of this are
the way that TEX handles equation numbering and
citations.

One possible solution which has attracted in-
terest is to convert TEX/LATEX into HTML, the hy-
pertext markup language used by the WWW. Then
one would read a paper directly in a WWW browser.
However, for material with a lot of mathematical
content, this conversion fails to meet the third cri-
terion above.

HyperTEX provides a better solution. The cen-
tral idea is to export the contextual information into
the dvi file via TEX’s \special command. To do
this we modify the basic macros for equation num-
bering, citations, footnotes, tables of contents, in-
dices, etc., to output appropriate \special’s. This
was first done by Tanmoy Bhattacharya for the stan-
dard LATEX styles and some of the physics styles like
RevTeX. Paul Ginsparg also modified his plain TEX
harvmac macros into lanlmac providing complete Hy-
perTEX functionality.

Having the contextual information in the dvi

file doesn’t do much good if there isn’t a way to
take advantage of it. dvi previewers need to be
modified, as well as dvi drivers. Arthur Smith mod-
ified xdvi into xhdvi giving the first Hyperdvi pre-
viewer. With the help of Tanmoy Bhattacharya, I
modified Tom Rokicki’s dvips into dvihps. Initially
the goal was to produce PostScript that would be
distillable into PDF by the Adobe Distiller. This
was accomplished using the Distiller built-in com-
mand /pdfmark. However, it was quickly realized
that this new “HyperPostScript” could be an end
unto itself. The need for a format like HyperPost-
Script was necessitated by the fact that Adobe has
been slow to provide things like WWW access from
their readers. Tanmoy then hacked ghostview into
a HyperPostScript viewer that communicates with
WWW viewers.

The upshot of this is that TEX can be trans-
formed into hypertext in three different, parallel for-
mats: Hyperdvi, HyperPostScript, and PDF. The

TUGboat, Volume 16 (1995), No. 2 156

first two are finding uses because everything is pub-
lic domain and we are free to enhance the tools as
necessary. On the other hand, PDF is currently pro-
duced only via Adobe’s commercial Distiller and one
is limited by whatever functionality Adobe chooses
to provide. Still, it would seem that ultimately PDF

will be the dominant endpoint for HyperTEX source
since PDF viewers are now widely available, and
Adobe continues to enhance the PDF standard so
that things like WWW access are becoming well-
integrated.

HyperTEX has quite a few positive features.
First, it preserves all of the contextual information
present in the TEX source. There is no need for com-
plex conversions of pre-existing TEX files into HTML,
and no need to wait for a future version of HTML

with good support for mathematics. TEX’s high
quality output is retained, and the printed version is
unchanged (HyperPostScript is designed so that it
can be rendered by any PostScript interpreter). By
modifying macro packages in a way that preserves
the keywords, HyperTEX allows the creation of hy-
pertext with little or no effort by the author. In
fact, it is completely backward-compatible, and can
be applied retroactively to TEX documents already
in existence. In most cases, a single line addition
converts TEX into HyperTEX.

For the E-print Archives, this means that we
can turn old papers into hypertext. Even better,
since our Hyperdvi and HyperPostScript viewers can
communicate with WWW browsers, we can auto-
matically translate references to other papers on the
archives into URLs for the referenced paper through
a simple substitution in the TEX source as we pro-
cess it. Providing the archive reference (for exam-
ple, hep-th/9201076) for a cited paper has become
increasingly popular and as this practice grows, an
increasing fraction of the archive becomes woven to-
gether into a single large hyperlinked database.

Since HyperTEX does not depend on authors
modifying their source, it has few drawbacks: one
problem is that Hyperdvi and HyperPostScript
viewers are not available on all platforms. This
is partially offset by the fact that the platforms
without active viewer development are the same
platforms where PDF is quickly becoming a domi-
nant format for document exchange. HyperTEX is
not a universal solution for producing hypertext.
Hypertext is often not linear and with TEX being so
“papyrocentric”, it is not easy to see how to apply it
to general hypertext. Still, HyperTEX fills its niche
very well and has turned out to be quite useful.

\special{html:}{1.}{

\special{html:}

\special{html:}{1.}{

\special{html:}

\href{http://xxx.lanl.gov}{This http URL}

Figure 1: HyperTEX

3 HyperTEX in a Nutshell

The following is meant to be a brief overview of
how HyperTEX works and how the contextual in-
formation is passed along. Most of the following
is taken from the HyperTEX FAQ maintained by
Arthur Smith (ftp://snorri.chem.washington.
edu/hypertex/).

HyperTEX adds five new \special commands:

\special{html:}

\special{html:}

\special{html:}

\special{html:}

\special{html:<base href = "hrefstring">}

to which a reference can be made. This is used,
for instance, to turn an equation’s number into an
anchor. The ‘href ’ \special then allows a refence
to be made to an anchor established by the ‘name’
\special. But it is also more general than that be-
cause you can put use an URL as the ‘hrefstring’
and this will be interpreted as something to pass
off to a WWW browser. The third \special is for
ending the others, and is used to delineate the text
associated to a ‘name’ or ‘href ’ that should appear
on the page. The fourth \special is for including
images, but none of the viewers or drivers currently
deal with it. The final \special is for making ref-
erences to other documents easier. It allows you to
change the ‘base URL’ to which all following ‘href ’
\special’s should be considered relative (the de-
fault is that a relative ‘href ’ refers to an item in the
current document).

A convention for naming links within docu-
ments has also been given so that it is easier to refer
to items in other documents:

Page 5 is at doc.dvi#page.5
Section 2 is at doc.dvi#section.2
Equation 3 is at doc.dvi#equation.3
Reference 11 is at doc.dvi#reference.11

The items in the righthand column are those which
would appear in place of the ‘hrefstring’ in an ‘href’
\special.

Now let’s take a quick look at how the contex-
tual information is represented and passed along in
the various formats. First we consider HyperTEX

TUGboat, Volume 16 (1995), No. 2 157

HPSdict begin

/TargetAnchors

605 dict dup begin

...

(section.1) [5 [72 706 83 718] 792] def

...

end targetdump-hook def

...

(#section.1) [[72 627 81 639]

[1 1 1 [3 3]] [0 0 1]] pdfm

Figure 2: HyperPostScript

itself. The example (Figure 1) shows how a section
heading might be made into an anchor that is linked
to the section number (1 in this case). Only the ‘1.’
is printed on the page. Both the name special

and an href \special that might refer back to it
are shown in a raw form without macros. Nor-
mally a command like \section would just put in
the proper information transparently. Also shown
is how an external reference can be handled by a
macro \href that hides the \specials. The URL is
given in the first set of braces, the text that appears
on the page appears in the second set. The infor-
mation in the \special commands is just stamped
into the dvi file at the proper place, as can be seen
here:

html:\2531.\357html:

Passing the dvi file through dvihps produces
HyperPostScript, as shown in Figure 2. While this
might look complicated, it is quite straightforward.
The first few lines create a dictionary that stores
all of the anchors created by the name \specials.
In this case, the dictionary has 605 anchors (it is
from Ginsparg’s 150 pages of lecture notes written
with harvmac in 1988 and turned into HyperTEX by
changing from the harvac macros to lanlmac). Some-
where in the dictionary there appears the line asso-
ciated with the name \special for section 1. The
information that follows it is an array giving the
page number on which the anchor appears, the coor-
dinates of the rectangle in which the text associated
with it appears, and a number that can be passed to
the Distiller so that the PDF viewer zooms to a re-
gion of the page containing the anchor (in this case,
792 means zoom to the top portion of the page).
Later in the HyperPostScript there is a reference
created by the href \special. Note the hash mark
that distinguishes this as a link. The array that fol-
lows contains the information needed to highlight
the link as something clickable: the rectangle con-

1040 0 obj <<

/Type /Annot /Subtype /Link

/Rect [72 627 81 639]

/Dest [23 0 R /FitH 792]

/T (#section.1)

/C [0 0 1]

/Border [1 1 1 [3 3]] >> endobj

Figure 3: PDF

taining the text associated with the link, an array
given the type of border to draw (in this a dashed
box), and the color to use for the box (blue). Then
there is the pdfm operator.

All of the magic of HyperPostScript is con-
tained in the definition of the pdfm operator which
is contained in the header file hps.pro that is em-
bedded in the prologue of the HyperPostScript file.
In particular, the operator is smart enough to just
get rid of all of this if the file is being interpreted
by an ordinary PostScript interpreter. Otherwise,
it tries to figure out the version of the PDF Dis-
tiller being used and then it transforms the infor-
mation for the link into the format needed for that
version of the Distiller and incorporates it into a
proper pdfmark (part of the information is here and
part is in the /TargetAnchors dictionary entry for
section 1). HyperPostScript viewers can also define
the pdfm operator for their own use.

Looking at the PDF version of the same infor-
mation should make this clearer. A PDF file con-
sists of “objects” that are written in a slimmed down
PostScript. In particular, there is an object for each
hypertext link and there is an object (number 1040)
for the link in our earlier example. The interpre-
tation of Figure 3 is straightforward. We have an
object that is an annotation, specifically a link. The
box for it appears in the rectangle shown, the title
or name of the link is section.1, the box should be
blue (/C is color), and the border should be dashed.
The only thing that isn’t immediately obvious is the
destination. 23 0 R means that the destination is
object 23 (which in this case would be page 5). The
/FitH means that the viewer should zoom so that
the page’s horizontal width is expanded to the size
of the viewer’s window, and the 792 means scroll so
that the coordinate 792 is at the top of the viewer’s
window. In this case, 792 means the top of the page
(72 PostScript units per inch × 11 inch page height).

The key point is that almost all of the informa-
tion from the TEX file is there. The main deficiency
of the PDF compared to the other formats is that
the destination is only a page number and where on

TUGboat, Volume 16 (1995), No. 2 158

Macro Packages:

hyperbasics.tex Basic set of macros for imple-
mentation of the HyperTEX \special’s (Tan-
moy Bhattacharya)

lanlmac.tex Plain TEX macro package (Paul Gins-
parg)

hyperlatex.tex Variety of .hty files for different
LATEX styles are available. Note that this does
not work with LATEX2ε because it uses un-
documented LATEX internals. (Tanmoy Bhat-
tacharya)

hyperref.dtx Completely new, but compatible,
implementation for LATEX2ε (Sebastian Rahtz
and Yannis Haralambous)

hyper.dtx Similar to hyperlatex, but for LATEX2ε
(Michael Mehlich)

Hyperdvi Previewers:

xhdvi Extension of xdvi for X-Windows (Arthur
Smith)

HyperTeXview Extension of Tom Rokicki’s
TeXview for NeXTSTEP (Mark Doyle, based
on early version by Dmitri Linde)

DirectTeX A full Macintosh implementation by
Wilfried Ricken which supports HyperTEX

Hyperdvi to HyperPostScript:

dvihps Extension of Tom Rokicki’s dvips to pro-
duce HyperPostScript Distillable into hyper-
linked PDF (Mark Doyle, with assistance by
Tanmoy Bhattacharya)

ghostview Hacked version of GhostView to sup-
port HyperPostScript (Tanmoy Bhattacharya)

Figure 4: Current HyperTEX Tools

that page to zoom. The name of the target and its
precise location on the page have been lost. Adobe
has recently extended the PDF standard to include
named destinations, so it is likely that dvihps and
the hps.pro will be updated to present the informa-
tion in a different but equivalent manner. Various
features of the PDF could also be configurable. Ex-
amples would be the color of the box or how to zoom
to the anchor, and newer versions of dvihps and the
HyperTEX macros will allow this.

4 The Future of HyperTEX

Before giving some future directions, it would be
useful to summarize the HyperTEX tools that are al-
ready out there (see Figure 4 for a list; all are public
domain and can be found on the net; pointers will be
given at the end of this article). There is still plenty

of work to be done. The macros, while quite usable,
can always use improvement. There are some funda-
mental problems that need to be handled in a better
way (notably line breaks, page breaks, and footnotes
breaking across pages). The footnote problem is the
trickiest and work is being done by the dvi stan-
dards TEX Working Group to provide a standard
way of handling this situation (the use of color in
TEX has similar problems). The viewers can also
use improvement, and support is still needed for the
‘image’ \special and the ‘base’ URL \special.

Now that Adobe finally is coming out with sup-
port for URLs, hps.pro needs to be enhanced to
output the information in a way that the Adobe Dis-
tiller can use it. The conversion from Hyperdvi to
PDF could also stand some improvement. Right now
dvihps doesn’t give any options for color, images, or
other PDF features like bookmarks, etc. None of this
is particularly difficult. There are still a few sticky
points having to do with TEX and Adobe’s Distiller.
In particular, the Distiller (as of 2.0 anyway) opti-
mizes away ‘blanks’ (character code 32) which are
really glyphs in TEX fonts (e.g. the Greek letter
ψ). There are workarounds for this problem though.
Perhaps the most ambitious solution to these prob-
lems would be to write a real dvi to PDF converter
that completely bypasses the Adobe Distiller. This
is rather difficult, but it would free us from having to
use the Distiller which is the only commercial prod-
uct in the whole chain. In the meantime, enhance-
ments to HyperPostScript viewers could obviate the
need to go all the way to PDF.

5 Conclusion

For such a simple idea, HyperTEX works amaz-
ingly well. It makes the on-screen reading of TEX
documents easier and allows TEX to interact with
the World Wide Web. All of this while preserv-
ing the superior formatting and typesetting of TEX.
PDF generation gives good results and can be com-
pletely automated. Finally, HyperTEX has turned
the Los Alamos E-print Archives into a hyperlinked
database of over 25,000 papers.

Acknowledgments

I would like to thank Tanmoy Bhattacharya and
Paul Ginsparg for helpful discussions regarding all
aspects of HyperTEX.

HyperTEX Resources

• On the Web drop in on http://xxx.lanl.gov/

hypertex/

• FTP locations:

ftp://xxx.lanl.gov/pub/hypertex/

TUGboat, Volume 16 (1995), No. 2 159

ftp://gita.lanl.gov/people/tanmoy

ftp://gita.lanl.gov/people/doyle

ftp://snorri.chem.washington.edu/pub/

hypertex/

ftp://ftp.shsu.edu/ and other CTAN sites

• Listserver and mailing lists maintained by Arthur
Smith, majordomo@snorri.chem.washington.
edu (requests go in body of message)

Announcements: subscribe hypertex-announce
Developers: subscribe hypertex-dev
Email archive: by email request to listserver

� Mark D. Doyle
Los Alamos National Laboratory
University of California
Los Alamos, New Mexico
Email: doyle@mmm.lanl.gov

The Hyperlatex Story

Otfried Schwarzkopf

Abstract

Hyperlatex is a little package that allows you to use a
LATEX-like language to prepare documents in HTML,
and, at the same time, to produce a neatly printed
document from your input. It is possible to use ar-
bitrary LATEX commands for the typesetting of the
printed output by including them in the input file.

About two years ago my drawing editor Ipe1

was getting sufficiently complex to merit a real man-
ual instead of a simple readme file. Of course, Ipe
should be able to show its manual on-line, but on
the other hand I also wanted to be able to print a
well-formatted manual on paper. My first attempt
at this used the latexinfo system to write the man-
ual, so I was able to print it nicely and to have the
on-line version as an info file. However, info files
are simply text files, and it is impossible to include
figures in the on-line manual. Quite a shortcoming
when you are trying to write a manual for a figure
editor! The second problem was that the first Ipe

1 Ipe is an attempt to fully integrate LATEX text with Post-
Script drawing information. Ipe stores files in a format that is
at the same time a legal PostScript and a legal LATEX file, and
the drawing editor runs LATEX in the background to determine
the size of text objects.

users were Emacs-illiterate, and they found it very
hard to cope with the info reader.2

At that time HTML and HTML-readers like Mo-
saic became widely used. These readers solved both
problems — an HTML document can include figures,
and HTML readers are basically designed to be fool-
proof (how else could one explain the success of the
World Wide Web?). So, as the next step, I used the
LaTeX2HTML converter. I was now able to write the
manual in plain LATEX (unadorned with the special
commands that latexinfo required), and LaTeX2HTML

would turn it into a set of HTML files.
But I soon found that I had a hard time mak-

ing LaTeX2HTML generate the kind of HTML that I
wanted. This was no flaw with LaTeX2HTML, but
with the general approach of converting from LATEX.
In my eyes, conversion is not a solution to HTML

authoring. A well written HTML document must
differ from a printed copy in a number of rather sub-
tle ways. I doubt that these differences can be rec-
ognized mechanically, and I believe that converted
LATEX can never be as readable as a document writ-
ten in HTML.

This is most prominent in the formulation of
cross references in a document. A LATEX converter
can turn the reference into a hyperlink, but it will
have to keep the text the same. If we wrote “More
details can be found in the classical analysis by
Harakiri [8]”, then the converter may turn “[8]” into
a hyperlink to the bibliography in the HTML doc-
ument. In handwritten HTML, however, we would
probably leave out the “[8]” altogether, and make
the name “Harakiri” a hyperlink.

The same holds for references to sections and
pages. The Ipe manual says “This parameter can
be set in the configuration panel (Section 11.1)”.
A converted document would have the “11.1” as
a hyperlink. Much nicer HTML is to write “This
parameter can be set in the configuration panel”,
with “configuration panel” a hyperlink to the sec-
tion that describes it. If the printed copy reads
“We will study this more closely on page 42,” then
a converter must turn the “42” into a symbol that
is a hyperlink to the text that appears on page 42.
What we would really like to write is “We will study
this more closely later,” with “later” a hyperlink —
after all, it makes no sense to even allude to page
numbers in an HTML document.

The Ipe manual also says “Such a file is at the
same time a legal Encapsulated Postscript file and a
legal LATEX file — see Section 13.” In the HTML copy

2 That’s where the alt.religion.emacs.haters pun in
the Hyperlatex manual comes from.

TUGboat, Volume 16 (1995), No. 2 160

the “Such a file” is a hyperlink to Section 13, and
there’s no need for the “—see Section 13” anymore.

There are also differences between LATEX copy
and HTML copy that have to do with the fact
that HTML is still a somewhat enhanced text for-
mat. Many LATEX concepts are hard to represent in
HTML.

For instance, how do you present a mathemat-
ical expression like xi or a2 + b2 = c2 in HTML?
LaTeX2HTML converts these to little bitmaps. That
is quite sophisticated, but is it the best represen-
tation? I don’t think so. With current technology,
bitmaps eat too much transmission time, and they
only look good when the resolution of the browser
is nearly the same as the resolution at which the
bitmap has been created, which is not a realistic
assumption.

Isn’t there an easier way? If xi is the ith ele-
ment of an array, then I would write it as x[i] in
HTML. If it’s a variable in a program, I’d probably
write xi. In another context, I might want to write
x i. To write Pythagoras’ theorem, I might simply
use a^2 + b^2 = c^2, or maybe a*a + b*b = c*c.
To express “For any ε > 0 there is a δ > 0 such that
for |x−x0| < δ we have |f(x)−f(x0)| < ε” in HTML,
I would write “For any eps > 0 there is a delta > 0
such that for |x-x0| < delta we have |f(x)-f(x0)| <

eps.”
Of course a converter could be told to translate

ε to eps. But the best representation in HTML very
often depends on the context, and is beyond the
reach of any (non-human) converter.

So I ended up not using LaTeX2HTML; but La-

TeX2HTML is a good general converter and I had and
have no ambition to improve on that.3

Instead, I turned back to the lisp macros from
the latexinfo package and changed them to gener-
ate HTML output instead of info files. Of course
this was intended to be a hack, and never meant for
wide use. . . How could I know that I would end up
by having to write a short manual for Hyperlatex it-
self, and would even be invited to write a TUGboat
article about it?

Although I still keep getting Email messages
saying “Hey, your Hyperlatex converter is rubbish.
It fell over immediately when I tried to convert this
LATEX file!”, Hyperlatex was not intended to be a
general LATEX-to-HTML converter — for the reasons
explained above.

3 And before anybody accuses me of being unfair — yes,
all the differences described above can be achieved using the
texonly and htmlonly environments of LaTeX2HTML, and its
macros for making cross references. But I soon found this too
cumbersome.

The idea of Hyperlatex is to make it possible
to write a document that will look like a flawless
LATEX document when printed and like a handwrit-
ten HTML document when viewed with an HTML

browser. In this it completely follows the philosophy
of latexinfo (and texinfo). Like latexinfo, it defines
its own input format — the Hyperlatex markup lan-
guage — and provides two converters to turn a doc-
ument written in Hyperlatex markup into a dvi file
or a set of HTML documents. If you have written a
document sample.tex in Hyperlatex markup,4 you
simply run LATEX on your file to generate a dvi file,
which you can print as usual.

On the other hand, you can type

hyperlatex sample.tex

to generate a set of HTML files, probably called
sample.html, sample 1.html, sample 2.html and
so on. (The command hyperlatex is a simple shell
script that calls GNU Emacs in batch mode and runs
the Emacs lisp macros that implement the conversion
to HTML. It is also possible to call these macros di-
rectly from inside Emacs.)

Obviously, this approach has the disadvantage
that you have to learn a “new” language to gen-
erate HTML files. However, the mental effort for
this is quite limited. The Hyperlatex markup lan-
guage is simply a well-defined subset of LATEX that
has been extended with commands to create hyper-
links, to control the conversion to HTML, and to
add concepts of HTML such as horizontal rules and
embedded images. Furthermore, you can use Hyper-
latex perfectly well without knowing anything about
HTML markup.

The fact that Hyperlatex defines only a restrict-
ed subset of LATEX does not mean that you have to
restrict yourself in what you can do in the printed
copy. Hyperlatex provides many commands that al-
low you to include arbitrary LATEX commands (in-
cluding commands from any package that you would
like to use) which will be processed to create your
printed output, but which will be ignored in the
HTML document. However, you do have to spec-
ify that explicitly. Whenever Hyperlatex encounters
a LATEX command outside its restricted subset, it
will complain bitterly.

The rationale behind this is that when you
are writing your document, you should keep both
the printed document and the HTML output in
mind. Whenever you want to use a LATEX com-
mand with no defined HTML equivalent, you are

4 Yes, I do use the extension .tex for my Hyperlatex files,
sharing it with TEX and LATEX. The Hyperlatex format is
much more similar to LATEX than LATEX is to TEX, so this
seems justified.

TUGboat, Volume 16 (1995), No. 2 161

thus forced to specify this equivalent. For instance,
if you have marked a logical separation between
paragraphs with a LATEX \bigskip command (not
in Hyperlatex’s restricted set of commands, since
there is no HTML equivalent), then Hyperlatex will
complain, since very probably you would also want
to mark this separation in the HTML output. So
you would have to write

\texonly{\bigskip}

\htmlrule

to imply that the separation will be a \bigskip

in the printed version and a horizontal rule in the
HTML-version. Even better, you could define a com-
mand \separate in the preamble and give it a dif-
ferent meaning in dvi and HTML output. If you be-
lieve that \bigskip should always be ignored in the
HTML version, then you can state so in the preamble
as follows.

\W\newcommand{\bigskip}{}

The \W command, introduced later, ensures this re-
definition apples only to the HTML version. This
philosophy implies that in general an existing LATEX
file will not make it through Hyperlatex. In many
cases, however, it will be sufficient to go through the
file once, adding the necessary markup that speci-
fies how Hyperlatex should treat the unknown com-
mands.

The LaTeX2HTML converter will convert any en-
vironment for which it does not have a built-in trans-
lation to HTML to a bitmap. This option exists in
Hyperlatex as well, but again you have to explicitly
ask for it by enclosing the unknown environment in
a GIF environment.

Unlike LaTeX2HTML, Hyperlatex does not create
a temporary LATEX file with the GIF environments.
In fact, the GIF-making is mostly implemented in
TEX! The hyperlatex.sty package defines the gif

environment as follows if the flag for GIF-making is
set.

\def\gif{\setbox\@gifbox=\vbox\bgroup}

\def\endgif{\egroup\shipout

\copy\@gifbox\unvbox\@gifbox}

This means that the contents of the gif environment
is put in a box which is shipped out on a separate
page of the dvi file without disturbing LATEX too
much. Later, a shell script extracts the extra pages
from the dvi file using dvips and turns them into
bitmaps using ghostscript. The shell script itself is
created by the LATEX run.

Hyperlatex implements most LATEX commands
that have a clear HTML analog, such as sectioning,
font styles and sizes, displays and quotations, lists,
accents (well, the ones defined in HTML), verba-

tim text, and there’s even a weak implementation
of tabular. I tried to be faithful to the spirit of
LATEX when adding new commands. latexinfo had
some commands with non-LATEX syntax, but those
all had to go. I also changed the parser such that
it much more closely mimics TEX’s parsing. One
of the basic rules is that the meaning of no LATEX
command has been changed.

Hyperlatex provides a number of different ways
of treating parts of your document differently in
LATEX and HTML mode. The two simple commands
\texonly and \htmlonly ignore their argument if in
the wrong mode. The command \texorhtml takes
two arguments of which only one is evaluated. The
two environments iftex and ifhtml are convenient
to ignore larger chunks of input in one mode. Fi-
nally, you can prefix a single line with \T or \W, so
that you could write

We are now in

\T \LaTeX-mode.

\W Html-mode.

Hyperlinks are created with the commands \link

and \label: \link{anchor}{label} typesets the
text anchor and makes it an active hyperlink to the
label label in the HTML document. To also create
a reference in the printed document, you will need
to use \ref or \pageref. This is facilitated by the
optional argument of \link.

\link{anchor}[printed reference]{label}

The LATEX output of this command will contain the
anchor and the printed reference, while the HTML

output will only show the anchor as a hyperlink to
the position marked with the label. So you can write

This parameter can be set in the

\link{configuration panel}%

[~(Section~\ref{con-panel})]{con-panel}.

The starred version \link* suppresses the anchor in
the printed version, so that we can write

We will see

\link*{later}[in Section~\ref{sl}]{sl}

how this is done.

It is common to cross-reference by using \ref{label}
or \pageref{label} inside the optional argument,
where label is the label set by the link command. In
that case the reference can be abbreviated as \Ref

or \Pageref (with capitals). These definitions are
already active when the optional arguments are ex-
panded, so we can write the example above as

This parameter can be set in the

\link{configuration panel}%

[~(Section~\Ref)]{con-panel}.

TUGboat, Volume 16 (1995), No. 2 162

This even works when we need the \Ref command
outside, but after the \link command, as for in-
stance in

\link{Such a file}{\Ipe-file} is at

the same time ... a legal \LaTeX{}

file\texonly{---see Section~\Ref}.

References to external resources are made in ex-
actly the same way, using the \xlink command, and
references to the bibliography work using the same
principle.

To facilitate typing short pieces of mathematics,
Hyperlatex has a \math command whose argument
is read in math mode in the printed version. In the
HTML version, it is simply left untreated, so you can
write \math{x_i} to get x i in the HTML document.
You could also use the optional argument, and writ-
ing \math[\code{x[i]}]{x_i} will give you x[i]

in the HTML version. The Pythagorean example can
by written as either \math{a^2 + b^2 = c^2}, or
as \math[a*a + b*b = c*c]{a^2 + b^2 = c^2}.

The most important shortcomings in Hyperla-
tex 1.3 are: there are no footnotes; \newcommand

and \newenvironment can only be used without ar-
guments; and there is no support for the new <fig>,
<table>, and <math> tags of HTML3 (which are al-
ready supported by some browsers). Also, there are
a few idiosyncrasies that still stem from Hyperla-
tex’s origin in latexinfo. The most important of these
is the treatment of special characters. While LATEX
has ten of these, latexinfo has only three, namely
\, {, and }. latexinfo is mainly used for software
documentation, where one often has to use these
characters without their special meaning, and since
there is no math mode in info files, most of them
are useless anyway. In the first version of Hyperla-
tex, I had only added the unbreakable space ~, so
there were four special characters. Since my main
use was to write the Ipe manual, I found it conve-
nient that I didn’t even have to escape the % sign,
for instance. However, it soon turned out that most
other Hyperlatex users found this more confusing
than convenient, and in Hyperlatex 1.1 the percent
sign became a comment. And now that HTML3 de-
clares a <math> tag, I find that it is time to return
all 10 special characters to their special status, and
this is going to be realized in Hyperlatex 1.4. That
means that the $ sign can now be used to enclose
math mode material, that & can be used as a sep-
arator in formulas, and # for parameters for new
commands. I hope that this will make it easier for
new Hyperlatex users.

A problem is the growing number of HTML di-
alects. By users’ request, I had added the font size-

changing command when the Web browser Netscape
became available. Some other Netscapeisms can be
used using optional arguments (which simply gen-
erate raw HTML attributes). I also changed the
center environment to use Netscape’s <center> tag
(it used to be the same as quotation). It’s getting
more messy all the time, and Hyperlatex 1.4, which
I’m testing right now, will have a \htmllevel com-
mand to set the type of HTML that will be generated
(HTML2, Netscape, or HTML3).

When HTML3 is selected, then Hyperlatex 1.4
will generate <math> tags for math mode material.
It will also translate LATEX’s figure and table en-
vironment to <fig> tags, and will have a fuller im-
plementation of tabular using <table>.

Hyperlatex 1.4 will also have footnotes, and
commands and environments with arguments, and
I hope that this will make Hyperlatex users even
happier.

More information about Hyperlatex is avail-
able on the Web at http://hobak.postech.ac.kr/
~otfried/html/hyperlatex.html or http://www.
cs.ruu.nl/~otfried/html/hyperlatex.html

You may find Hyperlatex 1.4 already there by
the time this article appears.

� Otfried Schwarzkopf
Dept. of Computer Science
Postech
San 31, Hyoja-Dong
Pohang 790-784, South Korea
Email: otfried@vision.postech.

ac.kr

