
TUGboat, Volume 16 (1995), No. 2 101

General Delivery

Opening Words

Michel Goossens,
President, TEX Users Group

Electronic Documents

Nowadays the media are buzzing with terms like
the “global village”, “information highways”, the
“web”, “virtual money”, “hypertext”, and in our
daily work, we are confronted more and more with
the rapid developments of new techniques in the field
of electronic publishing. As this issue of TUGboat
will show, LATEX users are not left behind, and can
continue to use their tool of preference for taking
advantage of all these latest possibilities.
Today, the Internet connects more than two

million computers and over twenty million people
worldwide. For the first time humanity, has the ca-
pability of being informed of events at the moment
when they arrive, but thanks to the Internet, you
no longer have to undergo these events passively,
like watching television, but you can go and look
up information anywhere on the tens of thousands
of information servers and form your own opinion.
Moreover, the “Net” is an ideal medium facilitat-
ing research, offering a database of entertainment
possibilities in-town, or during your next trip to a
faraway place. In one word, you are now connected
and, more importantly, you can set up your own
information server for your colleagues, friends, or
other people interested in your activities.

LATEX as a Hypertool

It is this latter point that is of interest when we want
to find ways to optimize our investment in the re-use
of existing documents marked up in LATEX for this
new electronic hyperweb. As explained in the edito-
rial by the guest editor of this issue, Malcolm Clark,
several possibilities exist to transform LATEX input
files, in a more-or-less automatic way, into HTML,
the SGML-based language of the WWW, the pop-
ular and user-friendly interface to the Internet, or
into PDF, an optimized form of PostScript, which
allows hyperlinks.
I thank the various authors, and the develop-

ers of these software packages for their interesting
work that will allow each of us to fully exploit the
advantages of the generic approach of LATEX, with
those of the hypertext language of the Web and the
typographic quality of PDF.

I, of course, also want to acknowledge the work
of Malcolm Clark, who is well-known in the TEX
world, not only because he is a former President of
both UK-TUG, and TUG itself, but for his continu-
ous struggle to make TEX better known as a tool of
excellence for the typographic composition of docu-
ments. He has once more done an perfect job, and I
am sure our readers will find this issue all the more
pleasant and informative to read.

Living up to our Promises

As I promised at TUG’95 in St. Petersburg last
summer, and restated in the two previous issues of
TUGboat, we are now well underway to catch up
the delay in publishing TUGboat. In the near fu-
ture, you will have the pleasure of receiving and en-
joying the TUG’95 Proceedings issue, guest-edited
by Robin Fairbairns, whom I wholeheartedly con-
gratulate upon being the newly elected President of
UK-TUG.
Moreover, the TUGboat Production Team1 is

quite confident that TUGboat 16, 4, the last issue
of 1995, will be sent to the printer before Christmas,
so that you will hopefully receive it in the first half
of January.

Looking forward

I feel it is thus appropriate to have a brief look at the
future, and, apart from the two “standard” and the
Dubna TUG’96 Proceedings of TUGboat next year,
we are also planning to continue to have a guest-
edited theme issue. For 1996 we hope to be able to
offer our readers an overview of how well TEX can
be used to compose “beautiful books” in (almost)
all languages of the world.

⋄ Michel Goossens,

President, TEX Users Group

CERN, CN Division

CH-1211 Geneva 23

Switzerland

Email: goossens@cern.ch

Introduction

Malcolm Clark

Some of the stimulus for collecting the papers in this
volume together comes from a happy coincidence:
both GUTenberg and the UK TEX Users Group had
meetings on this theme on the same day—January
19th, 1995. In the event, we have drawn only three

1 Consisting of Barbara Beeton, Mimi Burbank, Robin

Fairbairns, Sebastian Rahtz, Christina Thiele, and myself,

with Malcolm Clark helping with this issue of TUGboat.

102 TUGboat, Volume 16 (1995), No. 2

papers presented at these meetings and published in
Cahiers Gutenberg [4] and Baskerville [1].
Portability of an electronic document often im-

plies SGML, the Standard Generalized Markup Lan-
guage. As Goossens and Saarela point out, SGML
has been around for many years, and in fact traces
its ancestry back to GML [3] (Generalized Markup
Language), developed by IBM. SGML concentrates
on document content, and has very little to say
about appearance. We can contrast this with TEX
which, in its rawer forms, can be obsessed with the
details of appearance. LATEX provides a convenient
compromise between content (or structure), and the
form ‘on the page’. As Doyle rightly notes, TEX (and
LATEX) are rather unhealthily targeted towards pa-
per. If we really are thinking about electronic doc-
uments and electronic delivery, we should also be
thinking about electronic presentation. This is not
to claim that paper is dead as a medium, but there
are others which are appropriate and may be more
convenient.
Another thread comes through hypertexts: it

is a straightforward concept to develop the notions
of tables of contents, citations, cross-references and
so on, to techniques for navigating through a docu-
ment, and then to ways of relating similar pieces of
content. The notion of hypertext is hardly new: by
1945, Vannevar Bush laid down many of the prin-
ciples which are still current. To many, the World
Wide Web realised Bush’s concepts. In its present
form, the Web depends upon SGML. The particu-
lar instantiation it uses, HTML, owes something to
concepts present in ‘richtext’, which seems remark-
ably similar to texinfo, a TEX-variant. But nothing
which appears in this volume is fundamentally Web-
specific: the documents could be also available from
CD-ROM.
The papers of Doyle and Schwarzkopf demon-

strate that LATEX can be brought into the hypertext
fold, completely independent of HTML, and yet op-
erating happily over the Internet. The Los Alamos
E-print archives are especially interesting, since they
were developed for the same sort of community for
whom the World Wide Web was created.
If you must ensure that your document ‘looks

right’ when displayed on a screen, then one of the
most appropriate vehicles is Adobe’s Acrobat, which
crops up notably in the papers by Haralambous &
Rahtz and Granger. Acrobat (a sort of hyper -Post-
Script) parallels the Web, but fits into the model re-
markably well. It enables any browser to see an elec-
tronic document which has the same ‘look and feel’
whatever device is used to view it. By making some
dynamic font-making capabilities available, Acrobat

can emulate the size and shape of most fonts, ensur-
ing that the perceived document retains the geome-
try it started with. True, it remains an approxima-
tion, but it is a very close one. Added to this, Acro-
bat has hypertext navigation tools built in. A LATEX
document can be created which can be converted
to Acrobat format, complete with highly portable,
non-proprietary, fonts, and the hyperlinks.
Exploring another strategy, Goossens & Saarela

examine how LATEX documents may be converted to
HTML and made available on the Web with the hy-
perlinks they require to exploit the inherent poten-
tial.
And to square the circle, Flynn notes how TEX

and LATEX may be used to translate HTML into
print.
It says much for the original concept of TEX

and LATEX that they appear to fit so well into this
brave new world of distributed, linked, electronic
documents.

References

[1] Baskerville. (Sebastian Rahtz, editor), vol. 5,
no. 2, March 1995.

[2] Vannevar Bush. As we may think. Atlantic
Monthly, vol. 176, pp. 101–108, 1945.

[3] C. F. Goldfarb, E. J. Mosher and T. I. Peterson.
An online system for integrated text processing.
Proceedings of the American Society for Infor-

mation Science, vol. 7, pp. 147–150, 1970.

[4] Cahiers Gutenberg. Diffusion des documents
électroniques: de LATEX à WWW, HTML et Ac-
robat, no. 19, January 1995.

⋄ Malcolm Clark

Computing Services

University of Warwick

Coventry CV4 7AL

U.K.

Email: m.clark@warwick.ac.uk

TUGboat, Volume 16 (1995), No. 2 103

A Practical Introduction to SGML

Michel Goossens and Janne Saarela

Abstract

SGML, the Standard Generalized Markup Language,
deals with the structural markup of electronic
documents. It was made an international standard
by ISO in October 1986. SGML soon became
very popular thanks in particular to its enthusiastic
acceptance in the editing world, by large multi-
national companies, governmental organizations,
and, more recently, by the ubiquity of HTML,
HyperText Markup Language, the source language
of structured documents on WWW. This article
discusses the basic ideas of SGML and looks at a few
interesting tools. It should provide the reader with
a better understanding of the latest developments in
the field of electronic documents in general, and of
SGML/HTML in particular.

1 Why SGML?

Since the late eighties we have witnessed an
ever quickening transition from book publishing
exclusively on paper to various forms of electronic
media. This evolution is merely a reflection of the
fact that the computer and electronics have made
inroads into almost every facet of human activity.
In a world in which one has to deal with an ever-
increasing amount of data, support of the computer
is a particularly welcome alternative for the
preparation of telephone directories, dictionaries, or
law texts—to mention just a few examples. In
such cases it is not only the volume of data that
is important, but also the need for it to be kept
constantly up-to-date.
Once data have been stored in electronic form

one can derive multiple products from a single
source document. For instance, an address list can
be turned into a directory on paper, but it can
also be put on CD-ROM, as a database allowing
interactive or e-mail access on the Internet or to
print a series of labels. Using a set of law texts or a
series of articles on history marked up in SGML, one
can first publish a textbook containing complete law
texts, or a historic encyclopedia, and then provide
regular updates or extract a series of articles on a
given subject; one can also offer a service which may
be consulted or interrogated on Internet, via gopher
or WWW, or develop a hypertext system on CD-
ROM.
All these applications suppose that the infor-

mation is not saved in a format that is only suited

for printing (for example, WYSIWYG), but that its
logical structure is clearly marked.
To recapitulate, the main aims of generic

markup (in SGML) are the following:

• the quality of the source document is improved;

• the document can be used more rationally,
resulting in an improved life-cycle;

• the publishing costs are reduced;

• the information can be easily reused, yielding
an added value to the document (printed,
hypertext, database).

1.1 The origins of SGML

In order to treat documents electronically it is
essential that their logical structure be clearly
marked. On top of that, to ensure that documents
are really interchangeable, one had to develop
a common language to implement this type of
representation.
A big step forward was the publication by ISO

(the International Standards Organization, with its
headquarters in Geneva, Switzerland) in October
1986 of SGML as Standard ISO 8879 (ISO, 1986).
Because SGML had been officially endorsed by
ISO, the Standard was quickly adopted by various
national or international organizations and by the
large software developers. One can thus be fairly
confident that SGML is here to stay and that its
role in electronic publishing will continue to grow.

1.2 Who uses SGML?

With the appearance of new techniques and needs
linked to the constantly increasing importance of
electronic data processing, the traditional way of
exchanging documents has been drastically changed.
Today, SGML has become an ubiquitous tool for
document handling and text processing.
First among the application areas we will

consider in which SGML is at present actively
used is the work of the American Association of
Publishers (AAP). The AAP (see AAP (1989) to
AAP (1989c)) selected three types of documents
in the field of publishing: a book, a series
publication, and an article. For each of these a
document type definition (DTD, see below, especially
Section 4) has been developed. Together, the
AAP and the EPS (European Physical Society)
have proposed a standard method for marking
up scientific documents (especially tables and
mathematical documents). This work forms the
basis of ISO/IEC 12083.
Another application actively developed during

the last few years is the CALS (Computer-aided

TUGboat, Volume 16 (1995), No. 2 104

Acquisition and Logistic Support) initiative of the
US Department of Defense (DoD). This initiative
aims at the replacement of paper documents by
electronic media for the documentation of all arms
systems. The DoD decided that all documentation
must be marked up in SGML, thus also making (the
frequent) revisions a lot easier.
A few other examples of the use of SGML are:1

• the Publications Office of the European Com-
munities (FORMEX);

• the Association of German editors (Börsen-
verein des Deutschen Buchhandels);

• the British Library with “SGML: Guidelines for
editors and publishers” and “SGML: Guidelines
for authors”;

• in France, the Syndicat national de l’édi-
tion and the Cercle de la librairie, two
associations of French publishers, have defined
an application for the French editing world
(Vignaud, 1990);

• the ISO Publishing Department;

• the British Patents Office (HMSO);

• Oxford University Press;

• the Text Encoding Initiative (classic texts and
comments);

• the technical documentation of many major
computer manufacturers or scientific publish-
ers, for instance the Doc-Book or other dedi-
cated DTDs used by IBM, HP, OSF, O’Reilly,
etc.

• many text processing and database applications
have SGML input/output modules (filters), for
example, Frame, Interleaf, Microsoft, Oracle,
Wordperfect;

• McGraw-Hill (Encyclopedia of Science and
Technology);

• the electronics industry (Pinacle), the aero-
space industry and the airlines (Boeing, Airbus,
Rolls Royce, Lufthansa, etc.), the pharmaceu-
tical industry;

• press agencies;

• text editors and tools with direct SGML
interfaces, such as ArborText, EBT (Electronic
Book Technologies), Exoterica, Grif, Softquad;

• and, of course, HTML and WWW!

1 See also the “SGMLWeb Page” at the URL http://www.
sil.org/sgml/sgml.html for more information on who uses
SGML and why.

2 SGML Basic Principles

SGML is a standard method of representing the
information contained in a document independently
of the system used for input, formatting, or output.

SGML uses the principle of logical document
markup, and applies this principle in the form of the
definition of a generalized markup language. SGML
in itself does not define a markup language, but
provides a framework to construct various kinds of
markup languages, in other words SGML is a meta-
language.

2.1 Different types of markup

The “text processing” systems that have found
their way into almost every PC or workstation
nowadays are mostly of the WYSIWYG type,
i.e.,, one specifically chooses the “presentation” or
“formatting” characteristics of the various textual
elements. They can be compared to an earlier
generation of formatting languages, where specific
codes were mixed with the (printable) text of
the document to control the typesetting on the
micro level. For example, line and page breaks,
explicit horizontal or vertical alignments or skips
were frequently used to compose the various pages.
In general these control characters were extremely
application-specific, and it was difficult to treat
sources marked up in one of these systems with
one of the others. On the other hand, this type
of markup does a very good job of defining the
specific physical representation of a document, and
for certain kinds of documents it might be more
convenient for obtaining a given layout, in allowing
precise control of line and page breaks. This
approach makes viewing and printing documents
particularly easy, but re-using the source for other
purposes can be difficult, even impossible.
To successfully prepare a document for use in

multiple ways it is mandatory to clearly describe
its logical structure by eliminating every reference
to a physical representation. This is what is
understood under the term logical or generic
markup. The logical function of all elements of
a document—title, sections, paragraphs, tables,
possibly bibliographic references, or mathematical
equations—as well as the structural relations
between these elements, should be clearly defined.
Figure 1 shows a few examples of marking

up the same text. One clearly sees the difference
between specific markup, where precise instructions
are given to the text formatter for controlling the
layout (for example, the commands \vskip or .sp),

TUGboat, Volume 16 (1995), No. 2 105

Specific markup

TEX

\vfil\eject

\par\noindent

{\bf Chapter 2: Title of Chapter}

\par\vskip\baselineskip

Script

.pa

.bd Chapter 2: Title of Chapter

.sp

Generic or logical markup

LATEX

\chapter{Title of Chapter}

\par

HTML (SGML)

<H1>Title of Chapter</H1>

<P>

Figure 1: Different kinds of markup

and generic markup, where only the logical function
(chapter or beginning of paragraph) is specified.

2.2 Generalized logical markup

The principle of logical markup consists in marking
the structure of a document, and its definition has
two different phases:

1. the definition of a set of “tags” identifying all
elements of a document, and of formal “rules”
expressing the relations between the elements
and its structure (this is the role of the DTD);

2. entering the markup into the source of the
document according to the rules laid out in the
DTD.

Several document instances can belong to the
same document “class”, i.e.,, they are described
by the same Document Type Definition (DTD)—
in other words they have the same logical structure.
As an example let us consider two source texts of an
article (see Figure 2), where the specific structures
look different, but the logical structure is built
according to the same pattern: a title, followed by
one or more sections, each one subdivided into zero
or more subsections, and a bibliography at the end.
We can say that the document instances belong to
the document class “article”.
To describe the formal structure of all docu-

ments of type “article” one has to construct the
DTD of the document class “article”. A DTD is
expressed in a language defined by the SGML Stan-
dard and identifies all the elements that are allowed
in a document belonging to the document class be-

Article A Article B

========= =========

Title Title

Section 1 Section 1

Subsection 1.1 Subsection 1.1

Subsection 1.2 Subsection 1.2

Section 2 Subsection 1.3

Section 3 Section 2

Subsection 3.1 Subsection 2.1

Subsection 3.2 Subsection 2.2

Subsection 3.3

Subsection 3.4

Bibliography Bibliography

Figure 2: Two instances of the same document
class “article”

ing defined (sections, subsections, etc.). The DTD
assigns a name to each such structural element, of-
ten an abbreviation conveying the function of the
element in question (for example, “sec” for a sec-
tion). If needed, the DTD also associates one or
more descriptive attributes to each element, and de-
scribes the relations between elements (for example,
the bibliography always comes at end of the doc-
ument, while sections can, but need not, contain
subsections). Note that the relations between el-
ements do not always have to be hierarchical, for
instance the relation between a section title and a
cross-reference to that title three sections further
down is not a hierarchical type of relation. In gen-
eral, DTDs use element attributes to express these
kinds of cross-link.
Having defined the DTD one can then start

marking up the document source itself (article A
or article B), using the “short” names defined for
each document element. For instance, with “sec”
one forms the tag <sec> for marking the start of a
section and </sec> to mark its end, and similarly
one has <ssec> and </ssec> for subsection, and so
on.

<article>

<tit>An introduction to SGML</tit>

<sec>SGML: the basic principles</sec>

<P> ...

<ssec>Generalized logical markup</ssec>

<P> ...

2.3 A few words about the DTD

If one wants to apply the latest powerful data
processing techniques to electronic documents, using
the information about their structure, one must have
ways to ensure that they are marked up without
mistakes. One must also ensure that the structure of
a document instance is coherent: a document must

TUGboat, Volume 16 (1995), No. 2 106

obey the rules laid out for documents of the given
document class, according to the DTD for that class.
To fulfill all these aims a DTD defines:

• the name of the elements that can be used;

• the contents of each element (Section 4.2.1);

• how often and in what order each element can
occur (Section 4.2.3);

• if the begin or end tag can be omitted
(Section 4.2.2);

• possible attributes and their default values
(Section 4.3);

• the name of the entities that can be used
(Section 4.4).

3 Transmitting the Information Relative
to a Document

The aim of SGML is to represent the information
contained in a document. Already in Section 2.2 we
have explained that SGML operates in two stages to
define the structure of a document:

• a declaration phase;

• a utilization phase, where the document
source is marked up using declared elements,
attributes and entities.

This basic principle is used for the transmission
of all the information related to the document to be
exchanged.
The basic character set is ASCII, as defined

by International Standard ISO/IEC 646. One
can change the character set by changing this
declaration at the beginning of the parsing of the
document, when the SGML declaration associated
to the DTD is read in (see Appendix C on page 131).
A document can contain symbols or characters

that cannot be entered directly on the keyboard,
such as Greek letters or mathematical symbols,
or even illustrations, photos, or parts of another
document. This functionality is implemented
through the use of entity references (see Section 4.4).
The markup system is based on a set of

delimiters, special symbols, and keywords with
special meaning.2 For instance when “sec”
identifies the element “Section”, then in the
document source <sec> is the tag marking the
beginning of a Section, with the delimiters “<”
and “>” indicating, respectively, the tag start and
end. Similarly, the formal structure of the document
(described by the DTD) has its own language defined
by the SGML Standard.
More generally, the SGML Standard does

not define once and for all the structure of a
2 These symbols can also be redefined at the beginning of

the document.

document and all elements that it can contain,
i.e.,, the delimiters and special symbols, but merely
specifies the construction rules they have to follow.
Also, SGML does not fix the markup language,
but offers an abstract syntax, allowing one to
construct particular syntax instances as needed.
The Standard proposes an example syntax, called
the reference concrete syntax, used throughout this
article. We can thus safely state that SGML is a
meta-language.

4 The Structure of a DTD

To better understand how SGML works we propose
to examine a real example of a modern SGML appli-
cation, namely HTML level 2, which corresponds to
the functionality offered by popular HTML viewing
programs, such as Mosaic, Netscape or Lynx. The
complete DTD of HTML2 is shown in Appendix B
starting on page 124. To make it easier to identify
the various parts of the DTD the lines have been
numbered.
Before starting to parse a DTD the SGML

declaration is read in by the parser. For HTML this
declaration is shown in Appendix C on page 131.
It defines the character set, special characters and
option settings used in the DTD and allowed in
the document instance. For instance, in the area
of markup minimization, the parameter OMITTAG
(Line 66) has the value YES, which allows tag
minimization, i.e.,, under certain circumstances
(specified in the DTD) tags can be omitted, as
explained in Section 4.2.2. If, on the other hand,
the value is specified as NO then tag minimization is
disallowed altogether.
The DTD defines all elements, their possible

attributes and the entities associated with a given
document class (HTML2 in our example).
Inside a DTD the start of a declaration is noted

by the sequence “<!” and its termination by ‘>”.
Certain sections of a DTD are identified (marked) by
a keyword to ensure they are handled correctly, or to
(de)activate their contents according to the value of
the keyword (IGNORE or INCLUDE). The notation for
the beginning, respectively the end of such a marked
section is “<![\emph{keyword} [” and “]]>” (see
Lines 37–39, and 303–305).

4.1 Comments

It is always a good idea to include comment lines
inside document sources or DTDs, whose presence
will make them more readable and help in their
future maintenance.
An SGML comment has the form:

<!-- text of the comment -->

TUGboat, Volume 16 (1995), No. 2 107

The comment is delimited by the double hyphen
signs, --, and can span several lines, as seen, for
instance in Lines 1–11 and 28–35.

4.2 The elements

4.2.1 An element declaration

Each element belonging to the logical structure of
a document must be declared. This declaration
specifies the name of the element, as well as,
between parentheses, its content model, i.e.,, which
elements can or must be part of the element in
question.

<!ELEMENT name n m (content model)>

For instance Lines 614 and 616 are equivalent to the
declaration:3

<!ELEMENT HTML O O (HEAD, BODY)>

The part between the element name “HTML” and
the content model “(HEAD, BODY)” describes the
minimization possibilities for the <HTML> tag (see
“Omit tags” below). The present declaration
specifies that an HTML document contains a “HEAD”
followed by a “BODY”. Line 533 and the definition
of the parameter entity on Lines 548–551 specify
further that the document head must contain a
“TITLE” and can contain a few more elements
(ISINDEX, BASE, META, etc.).

4.2.2 Omit tags

It is possible that under certain circumstances one
can infer automatically from the context that an
omitted tag is present. This possibility must be
declared for each element between the element’s
name and its content model in the form of two blank
separated characters, corresponding, respectively, to
the omit tag characteristics of the start and end
tag. There are only two possible values, namely a
hyphen “-” indicating that the tag must be present
(cannot be omitted), and an uppercase letter O “O”
signifying that it may be omitted. For example,
for numbered (OL) and unnumbered (UL) lists and
their elements (LI) one has (from Lines 379 and 411,
resp.):4

<!ELEMENT (OL|UL) - - (LI)+>

<!ELEMENT LI - O %flow>

The two blank-separated hyphens, “- -”, on the
first line specify that one must always use the begin
and end tags for the list declarations (. . .

3 The form used in the DTD at line 616 uses a parameter
entity, see Section 4.4.

4 The meaning of the symbols | and + is explained in
Section 4.2.3, see especially Table 1; the definition of the
parameter entity %flow can be found on Line 313, see also
Section 4.2.3.

symbol description
, all must appear and in the order

indicated (ordered “and”)
& all must appear but any order is allowed

(unordered “and”)
| one and only one can appear (exclusive

“or”)
+ element must appear once or more
? optional element (0 or one)
* element can appear zero times or more

Table 1: Order and choice operators

and . . .) while the “- O” on the second
line indicate that the end tag for the members of a
list (. . .) may be omitted.

4.2.3 The contents model

As already mentioned, the content model uses order
and choice operators (see Table 1 for a list).
We already encountered the operator of choice

(\vbar), which specifies that one of the elements can
be present (but not more than one at a time). Let
us now turn our attention to another example with
a description list (<DL>) as declared on Line 357 as:

<!ELEMENT DL - - (DT*, DD?)+>

This indicates that for a description list the start
tag <DL> and end tag </DL>must always be present,
and that the list can contain one or more occurrences
((...)+) of zero or more <DT> tags (DT*) that can
be followed (,) by at most one <DD> tag (DD?).
An element with multiple members that can

appear in any order is defined on Lines 548–553.
These lines essentially stipulate that an HTML head
can contain, in any order, a title (TITLE), zero or one
<ISINDEX>, <BASE>, and <NEXTID> tags, and zero or
more <META> and <LINK>:

<!ELEMENT HEAD O O (%head.content)>

<!ENTITY % head.content

"TITLE & ISINDEX? & BASE? &

(%head.extra)">

<!ENTITY % head.extra

"NEXTID? & META* & LINK*">

An element can contain other elements, char-
acters, or both (in the latter case one speaks of a
mixed content).
One can specify to the SGML parser the type of

characters that can be used. The following reserved
names are defined for that purpose:

PCDATA parsed character data.
The characters are supposed to have been
treated by the parser and can thus no
longer contain entity references or tags.

TUGboat, Volume 16 (1995), No. 2 108

For instance, on Line 557 an HTML title is
defined as:

<!ELEMENT TITLE - - (#PCDATA)>

RCDATA replaceable character data.
The parser can expect to find only
characters or entity references, i.e.,, (begin
and end) tags are forbidden.

CDATA character data.
No further processing is needed by the
SGML parser (nevertheless, the data might
be processed by another program, for
instance PostScript). A telephone number
in a letterhead could be declared thus:

<!ELEMENT TEL CDATA>

ANY The element can contain data of type
PCDATA or any other element defined in the
DTD.

EMPTY The element has an empty content. It
can, however, be qualified by possible
attributes (see Section 4.3). An example
of this is the tag and its attributes
as defined on Lines 233–240.

Certain elements can be used anywhere in the
document source. In this case it is convenient to
declare them as included in the element document.
More generally, an element can be contained in
the content model of another element and can be
part of any of the element’s constituents. In this
case the syntax +(...) is used. Similarly, one can
exclude certain elements from the element being
defined by using the syntax -(...). For instance,
the electronic HTML form is defined on Line 457 as
follows:

<!ELEMENT FORM - - %body.content

-(FORM) +(INPUT|SELECT|TEXTAREA)>

This states that the <FORM> element can contain ev-
erything specified by the %body.content parameter
entity (Lines 430, 267, 146, and 309–311). Moreover,
all these elements can contain, at any level the tags
<INPUT>, <SELECT>, or <TEXTAREA>. On the other
hand, forms are not recursive, since the <FORM> tag
cannot itself contain (-(FORM)).

4.3 Attributes

All possible attributes of all elements in a DTD must
be explicitly declared in the same DTD. For reasons
of clarity and convenience, attribute declarations
normally immediately follow the declaration of the
element they refer to.
An attribute declaration consists of:

• the name of the element(s) that it refers to;

• the name of the attribute;

keyword value of attribute
CDATA textual data (any characters)
ENTITY(IES) general entity name(s)
ID an SGML element identifier
IDREF(S) value(s) of element identifier

reference(s)
NAME(S) SGML name(s)
NMTOKEN(S) nominal lexical token(s)
NOTATION notation name
NUMBER(S) number(s)
NUTOKEN(S) numeric lexical token(s)

Table 2: Keywords for attribute types

• either the attribute type, specified as one of
the keywords shown in Table 2, or, between
parentheses, the list of values the attribute can
take;

• a default value (one of the possible values
specified between quotes, or one of the keywords
shown in Table 3).

An attribute declaration thus takes the follow-
ing form:

<!ATTLIST element_name

attribute_1 (values) "default"

attribute_2 (values) "default"

... >

For instance, the list declaration (<DL>) (Lines
357–362) defines an attribute “compact” to indicate
that the members of a list should be typeset more
densely.

<!ATTLIST DL COMPACT (COMPACT) #IMPLIED

This declaration specifies that the only possible
value is COMPACT and that the system (the parser)
will provide a default value (#IMPLIED, see Table 3).
One might also wish to specify numeric

information, for instance, the <PRE> tag (Lines 317–
320) has an attribute to specify the width of the
line:

<!ATTLIST PRE WIDTH NUMBER #implied

The attribute type is an “(integer) number”
(keyword: NUMBER) and if no value is specified then
the parser will supply a default (#implied).
As a last example let us once more look at

the element (image) and its attributes (Lines
234–240), whose definitions correspond essentially
to the following declaration:

<!ATTLIST IMG

SRC %URI; #REQUIRED

ALT CDATA #IMPLIED

ALIGN (top|middle|bottom) #IMPLIED

ISMAP (ISMAP) #IMPLIED

....

TUGboat, Volume 16 (1995), No. 2 109

keyword description
#FIXED The attribute has a fixed value

and can take only that value.
#REQUIRED The value is mandatory and must

be specified by the use.
#CURRENT If no value is specified, then the

default value will be the the last
specified value.

#CONREF The value will be used for
cross-references.

#IMPLIED If no value is specified, the parser
will assign a value.

Table 3: Keywords for attribute default values

The first line references the parameter entity
%URI (see Lines 73–84) that defines a Uniform
Resource Identifier. This attribute is mandatory
(#REQUIRED). The other attributes are optional and
have a system-defined default value (#IMPLIED). In
the case of the alignment attribute (ALIGN) a choice
of any of three values is possible.

4.4 Entities

Entities can be used for the following purposes:

• The definitions of abbreviated notations to ease
repetitive text strings (general entities); for
example,

<!ENTITY TUG "\TeX{} Users Group">

• The definition of notations to input special
characters, accents or symbols (general charac-
ter entities). An example of character entities
can be found on Lines 102–105;

<!ENTITY amp CDATA "&"

-- "&" (ampersand) -->

ISO has defined several standard character
entity sets, for instance, for national characters
(see Appendix E on page 134), graphical
symbols, mathematics, etc.

• The inclusion of external files (external enti-
ties).

• The definition of variables in a DTD (parameter
entities).

It is important to note that, contrary to element
and attribute names, which are case-insensitive and
can be specified in upper, lower, or mixed case,
entity names are case-sensitive, and one must take
care to specify them precisely as they are defined.
General entities are declared in the DTD. An

entity declaration first specifies a symbolic name
for the entity, followed by its contents. The latter

can contain tags, entity references, etc., that will be
interpreted when the entity is expanded.
To refer to an entity one makes use of an entity

reference, which takes the form:

&entity_name;

For example, if one wants to use the entity
“TUG” defined above, one should type in the
document source the string of characters &TUG; and
the parser replaces this by the string “TEX Users
Group”.
The data associated with an entity can be in

another (external) file (external entity). This kind of
entity can be used to include in the source document
being parsed a table or figure (or any kind of data)
that was prepared with another application. Instead
of including the complete contents of the file in the
declaration, one merely specifies the name of the
file where the data is stored. The filename must
be preceded by the keyword "SYSTEM", for example,
for the unix operating system one might have a
declaration of the form:

<!ENTITY article SYSTEM

"/usr/goossens/tug/sgmlart.sgml">

Inside a DTD one frequently uses parameter
entities that allow one to considerably increase the
modularity of the definition of the various elements
defined in the DTD. Simple examples are Lines 89,
91, and 175;

<!ENTITY % heading "H1|H2|H3|H4|H5|H6">

<!ENTITY % list " UL | OL | DIR | MENU " >

<!ENTITY % text "#PCDATA | A | IMG | BR">

These entities are used, for instance, on Lines 212,
267, 430.

<!ELEMENT (%heading) - - (%text;)+>

4.5 Other DTDs

In order to get a better idea of what DTDs for more
complex documents look like, we shall briefly discuss
HTML3, Doc-Book and ISO/IEC 12083.

4.5.1 HTML3

As it name indicates, HTML3 is a successor to the
present HTML Standard (also known as HTML2,
and discussed in detail in the previous sections).
HTML35 builds upon HTML2 and provides full
backwards compatibility. Tables have been one
of the most requested features; HTML3 proposes
a rather simple table model that is suitable for
rendering on a very wide range of output devices,
including braille and speech synthesizers.

5 See URL http://www.hpl.hp.co.uk/people/dsr/html/
CoverPage.html.

TUGboat, Volume 16 (1995), No. 2 110

Inline figures are available and provide for
client-side handling of ‘hot zones’ whilst cleanly
catering for non-graphical browsers. Text can flow
around figures and full flow control for starting new
elements is possible.
Mathematics support for equations and formu-

lae in HTML3 mainly uses TEX’s box paradigm. The
implementation uses a simple markup scheme, that
is still powerful enough to cope with the range of
mathematics created in common word processing
packages. Filters from TEX and other word process-
ing systems will allow one to easily convert existing
sources into HTML3.
As HTML is most often used to present

information on-screen, it is important to allow some
positioning control for the various elements in a
document. Therefore, HTML3 includes support
for customized lists, fine positioning control with
entities like \&emspace;, horizontal tabs, and
alignment of headers and paragraph text.
As well as this, many other often-requested

features have been included, most notably a style-
sheet mechanism, which counters the temptation
to continually add more presentation features by
giving the user almost full control over document
rendering, and taking into account the user’s
preferences (window size, resource limitations such
as availability of fonts).
The HTML3.0 Internet draft specification is

being developed by the IETF (Internet Engineering
Task Force) taking into account the following
guidelines:

• interoperability and openness;

• simplicity and scalability;

• platform independence;

• content, not presentation markup;

• support for cascaded style sheets, non-visual
media, and different ways of creating HTML.

To illustrate the use of this DTD one can look at
the table and mathematics parts of the HTML3 DTD
(see Appendix F on page 135) and at the markup
examples and generated output (Figures 3 and 4).

4.5.2 DocBook

The DocBook DTD6 defines structural SGML
markup for computer documentation and technical
books. It is supported by the Davenport Group,
an association of software documentation producers
established to promote the interchange and delivery
of computer documentation using SGML and other
relevant standards.

6 See URL ftp://ftp.ora.com/pub/davenport/docbook/
fullguide.sgm.

The primary goal in developing the DTD was to
filter existing software documentation into SGML.
It describes the structures the the Davenport group
and other producers and consumers of software
documentation have encountered in processing large
bodies of documentation. The Doc-BookDTD uses a
book model for the documents. A book is composed
of book elements such as Prefaces, Chapters,
Appendices, and Glossaries. Five section levels are
available and these may contain paragraphs, lists,
index entries, cross references and links.
The DTD also leaves room for localizations.

The user of the DTD is free to give own content
models for appendixes, chapters, equations, indexes,
etc.

4.5.3 The AAP effort and ISO/IEC 12083

The American Association of Publishers (AAP) has
been working since the publication of the SGML
Standard in 1986 on promoting SGML as an elec-
tronic standard for manuscript preparation. This
document, developed over several years as the “AAP
Standard,” was later promoted to by the Electronic
Publishing Special Interest Group (EPSIG) and the
AAP as “the Electronic Manuscript Standard,” and
is now a NISO (National Information Standards Or-
ganization) publication. The AAP/EPSIG applica-
tion is SGML-conforming, and provides a suggested
tag set for authors and publishers. It defines the
format syntax of the application of SGML publica-
tion of books and journals. The Standard achieves
two goals. First, it establishes an agreed way to
identify and tag parts of an electronic manuscript so
that computers can distinguish between these parts.
Second, it provides a logical way to represent spe-
cial characters, symbols, and tabular material, using
only the ASCII character set found on a standard
American keyboard.
For several years the AAP and the EPS

(European Physical Society) have been working
on a standard method for marking up scientific
documents. There work has been the basis
for International Standard ISO/IEC 12083, the
successor to the AAP/EPSIG Standard, and four
DTDs have been distributed by EPSIG as the “ISO”
DTDs.7

This DTD has a basic book structure consisting
of chapters, sections and subsections down to six
levels. The mathematics part is, however, of some
interest since it can be compared to HTML3.

7 They can be found at the URL http://www.sil.org/
sgml/gen-apps.html\#iso12083DTDs.

TUGboat, Volume 16 (1995), No. 2 111

<TABLE BORDER>
<TR> <TD>R1 C1</TD><TD>R1 C2</TD><TD>R1 C3</TD>
</TR>
<TR> <TD>R2 C1</TD><TD>R2 C2</TD><TD>R2 C3</TD>
</TR>
</TABLE>

<TABLE BORDER>
<TR> <TD ROWSPAN=2>R12 C1</TD>

<TD>R1 C2</TD><TD>R1 C3</TD>
</TR>
<TR> <TD>R2 C2</TD><TD>R2 C3</TD>
</TR>
<TR> <TD>R3 C1</TD><TD COLSPAN=2>R3 C23</TD>
</TR>
</TABLE>

<TABLE BORDER>
<TR> <TH COLSPAN=2>Head 1-2</TH>

<TH COLSPAN=2>Head 3-4</TH>
</TR>
<TR> <TH>Head 1</TH><TH>Head 2</TH>

<TH>Head 3</TH><TH>Head 4</TH>
</TR>
<TR> <TD>R3 C1</TD><TD>R3 C2</TD>

<TD>R3 C3</TD><TD>R3 C4</TD>
</TR>
<TR> <TD>R4 C1</TD><TD>R4 C2</TD>

<TD>R4 C3</TD><TD>R4 C4</TD>
</TR>
</TABLE>
<P>
<TABLE BORDER>
<TR> <TH COLSPAN=2 ROWSPAN=2></TH>

<TH COLSPAN=2>Background</TH>
</TR>
<TR> <TH>Blue</TH><TH>Yellow</TH>
</TR>
<TR> <TH ROWSPAN=2>Text</TH>

<TH>Red</TH><TD>fair</TD><TD>good</TD>
</TR>
<TR> <TH>Green</TH><TD>bad</TD><TD>good</TD>
</TR>
</TABLE>

Figure 3: HTML3 example of tables (source and result with the Mosaic browser)

<!DOCTYPE html PUBLIC
"-//IETF//DTD HTML 3.0//EN//">

<HTML>
<TITLE>A Math Sampler</TITLE>
<BODY>
<H1>Formulae by examples</H1>
<MATH>x^Iy^J

z^K 
<BOX>(<LEFT>1 + u<OVER>v<RIGHT>)</BOX>

</MATH>
<P><MATH><BOX>[<LEFT>x + y<RIGHT>]</BOX> 

<BOX>(<LEFT>a<RIGHT>]</BOX> 
<BOX>||<LEFT>b<RIGHT>||</BOX></MATH>

<P><MATH>int_a^b
<BOX>f(x)<over>1+x</BOX> 

sin ( x²+1) dt</MATH>
<P><MATH>
<box>dσ<over>dε</box>
=<box>2πZr₀²m

<over>β²(E-m)</box>
[<box>(γ-1)²

<over>γ²</box>
+<box>1<over>ε</box>]

</MATH>
</BODY>
</HTML>

Figure 4: HTML3 example of simple mathematics (source and result with the arena browser)

TUGboat, Volume 16 (1995), No. 2 112

The ISO/IEC 12083 table model

The ISO 12083 table model consists of the following
elements (see Figure 5 for the relevant part of the
DTD):

<table> the table element;

<np> number;

<title> title;

<tbody> table body;

<head> head;

<tsubhead> table subhead;

<row> row;

<tstub> table stub;

<cell> cell.

This table model does not support spanning
rows or columns. It does, however, support subhead
elements that can be used to give more granularity
to the table contents. An example of a marked-up
table is shown below.

<table>

<no>1<title>Capitals in Europe

<tbody>

<row><cell>Helsinki<cell>Finland

<row><cell>Rome<cell>Italy

<row><cell>Bern<cell>Switzerland

</table>

Only the simple table model discussed above is part
of the basic ISO/IEC 12083 DTD as distributed.
There also exists a complex table model (AAP,
1989b) that allows the user to treat more complex
tabular material.

The ISO/IEC 12083 mathematics model

The mathematics model in ISO/IEC 12083 consists
of the following element categories:

character transformations
<bold>, <italic>, <sansser>,
<typewrit>, <smallcap>, <roman>;

fractions
<fraction>, <num>, <den>;

superiors, inferiors
<sup>, <inf>;

embellishments
<top>, <middle>, <bottom>;

fences, boxes, overlines and underlines
<mark>, <fence>, <post>, <box>,
<overline>, <undrline>;

roots
<radical>, <radix>, <radicand>;

arrays
<array>, <arrayrow>, <arraycol>,
<arraycel>;

spacing
<hspace>, <vspace>, <break>, <markref>;

formulas
<formula>, <dformula>, <dformgrp>.

The model has basically the same elements as
the HTML3 model, but is more visual. Emphasis
is on creating fences at the right places inside a
formula, whereas the HTML3 model uses <left>
and <right> elements. A simple example is:

<formula>

S = ∑<inf>n=1</inf>¹⁰

<fraction>

<num>1</num>

<den>

<radical>3<radix>n</radical>

</den>

</fraction>

</formula>

The complete DTD is shown in Appendix G on
page 139, which shows the file math.dtd that is part
of the ISO/IEC 12083 DTD set.

5 SGML Editors

Several solutions exist to enter SGML or HTML
markup into a document, but an editor that is
SGML-aware is probably the best solution. Several
(mostly commercial) products exist (see Karney
(1995a), Karney (1995b), and Ores (1995)), but in
the remaining part of this section we shall have a
look at a public domain solution based on the Emacs
editor with the psgml application and on the Grif-
based Symposia editor.

5.1 Emacs and psgml

Amajor mode for editing SGML documents, psgml,8

works with the latest versions of GNU Emacs. It
includes a simple SGML parser and accepts any
DTD. It offers several menus and commands
for inserting tags with only the contextually valid
tags, identification of structural errors, editing
of attribute values in a separate window with
information about types and defaults, and structure-
based editing.
Figure 6 shows the first HTML test example,

to be discussed later (see example test1.html in
Section 6.2.1). Both the psgml mode and the
nsgmls program, discussed below, use a catalog
file whose structure is defined by the SGML Open
consortium to locate the SGML declarations and
DTDs (see Appendix D on page 133). Thanks to
the name of the DTD declared on the <!DOCTYPE>
declaration and that catalog file, psgml loads the

8 The psgml home page is at the URL http://www.
lysator.liu.se/projects/about_psgml.html.

TUGboat, Volume 16 (1995), No. 2 113

<!-- +++ -->

<!-- Tables -->

<!-- +++ -->

<!ELEMENT table - - (no?, title?, tbody) -(%i.float;) >

<!ELEMENT tbody - O (head*, tsubhead*, row*) >

<!ELEMENT row - O (tstub?, cell*) >

<!ELEMENT tsubhead - O %m.ph; >

<!ELEMENT (tstub|cell) - O %m.pseq; >

Figure 5: Part of the ISO 12083 DTD relating to simple tables

HTML2 DTD into memory and can then handle
the HTML source file. In the Figure, all the
elements that can occur at the position of the
pointer are shown. Figure 7 shows the more
important key combinations for quickly calling
some functions. For instance, the sequence C-c
C-t (sgml-list-valid-tags) was used to obtain
the list in the lower part of Figure 6. As a
last technical (but important) detail, in order to
function properly, two variables should be defined
in the psgml initialization file psgml.el, namely
sgml-system-path, a list of directories used to
look for system identifiers, and sgml-public-map,
a mapping from public identifiers to file names.9

5.2 Symposia

At the Third International WorldWide Web Confer-
ence “Technology, Tools and Applications”,10 which
took place in Darmstadt, Germany, from 10–13
April 1995, Vincent Quint and collaborators dis-
cussed their authoring environment for SGML texts
in general, and HTML on WWW in particular.11

Their approach is based on the Grif editor, which
can work with any DTD. They announced that a
version with the HTML3 DTD will be made available
freely under the name of Symposia. Grif (and Sym-
posia) allow the user to enter text in a WYSIWYG
way, but entered elements are validated against the
DTD. An example is given in Figure 8, which shows
us to be in insert mode in the first column on the first
row of the table, where we input the word “text”,
whilst Figure 9 shows the generated SGML(HTML)
source, hidden from the user, but available for any
kind of treatment that one would like to do on the
document.

9 See the documentation coming with psgml for more
details.
10 An overview of the papers is at the URL http://www.

igd.fhg.de/www/www95/papers/.
11 Their paper is available at the URL http://www.igd.

fhg.de/www/www95/papers/84/EditHTML.html.

6 SGML Utilities

As SGML is now actively used in many applications
in the field of document production (see Section 1.2
and Karney (1995b)) several commercial and
publicly available solutions are now available to
increase the productivity, user-friendliness, and ease
of using SGML systems. This section reviews a few
of the more interesting publicly available tools.

6.1 Validating an SGML document with
nsgmls

It is often important and useful to be able to validate
an SGML (and hence HTML) document. This can,
for instance, be achieved with the publicly available
SGML parser nsgmls, which is part of SP,12 a system
developed by James Clark (jjc@jclark.com) and
a successor to his older sgmls,13 or by arcsgml,
written by Charles Goldfarb (Goldfarb, considered
by many to be the father of SGML, is also the
author of “The SGML Handbook” (Goldfarb, 1990)
describing the SGML Standard in great detail, a
reference work that every serious SGML user should
possess).
The nsgmls parser can be called with the

syntax:

nsgmls [-deglprsuvx] [-alinktype]

[-ffile] [-iname] [-mfile]

[-tfile] [-wwarning_type]

[filename...]

12
SP is available at the URL http://www.jclark.com/

sp.html. For more information about other publicly available
SGML software, have a look at the the public SGML software
list at the URL http://www.sil.org/sgml/publicSW.html.
More generally, on the SGML Web Page at http://www.sil.
org/sgml/sgml.html one finds entry points to all the above,
plus many examples of DTDs, more information about SGML,
Hytime, DSSSL, etc.
13 smgls is written in highly portable C code, whilst

nsgmls is C++ with extensive template use, which limits
the portability and makes the installation of the latter
somewhat more complicated. Also the executable module of
sgmls is about half the size of the one of nsgmls. See the
comments of Nelson Beebe at the URL http://www.math.
utah.edu/~beebe/sp-notes.html for the current situation
with implementing nsgmls on several architectures.

TUGboat, Volume 16 (1995), No. 2 114

Figure 8: Inserting text in an SGML document with Symposia

Figure 9: SGML source of the document shown in Figure 8

TUGboat, Volume 16 (1995), No. 2 115

Figure 6: Emacs in psgml mode

ESC C-SPC sgml-mark-element

ESC TAB sgml-complete

ESC C-t sgml-transpose-element

ESC C-h sgml-mark-current-element

ESC C-@ sgml-mark-element

ESC C-k sgml-kill-element

ESC C-u sgml-backward-up-element

ESC C-d sgml-down-element

ESC C-b sgml-backward-element

ESC C-f sgml-forward-element

ESC C-e sgml-end-of-element

ESC C-a sgml-beginning-of-element

C-c C-u Prefix Command

C-c RET sgml-split-element

C-c C-f Prefix Command

C-c C-w sgml-what-element

C-c C-v sgml-validate

C-c C-t sgml-list-valid-tags

C-c C-s sgml-unfold-line

C-c C-r sgml-tag-region

C-c C-q sgml-fill-element

C-c C-p sgml-parse-prolog

C-c C-o sgml-next-trouble-spot

C-c C-n sgml-up-element

C-c C-l sgml-show-or-clear-log

C-c C-k sgml-kill-markup

C-c C-e sgml-insert-element

C-c C-d sgml-next-data-field

C-c C-c sgml-show-context

C-c C-a sgml-edit-attributes

C-c = sgml-change-element-name

C-c < sgml-insert-tag

C-c / sgml-insert-end-tag

C-c - sgml-untag-element

C-c # sgml-make-character-reference

Figure 7: Emacs key-bindings with psgml

nsgmls needs at least four files to run:

• the catalog file, which describes how the SGML
file’s <!DOCTYPE> declaration is mapped to a
filename (see below);

• the SGML declaration, defining the character
set used by subsequent files, and the sizes of
various internal limits, such as the permitted
length of identifiers, as well as what features
of SGML are used, such as tag minimization
(see the start of Section 4 on page 106 and
Appendix C on page 131);

• the DTD for the document type;

• an SGML or HTML document instance.

6.2 The <!DOCTYPE> declaration

The <!DOCTYPE> declaration has three parameters,
as shown in the following example.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

The first parameter specifies the name of the
document class according to which the document
instance (the user’s source file) is marked up.
The second parameter is either SYSTEM or PUBLIC.
With the SYSTEM keyword the next parameter
contains the filename of the DTD, but since actual
filenames are system-dependent, this syntax should
be discouraged in favour of the PUBLIC keyword.
In this case, the whereabouts of the DTD are
defined via an external entity reference. The SGML
Standard does not itself define how the mapping
between this entity reference and an external file is
defined, but SGML Open has proposed the format of
a catalog file in which those mappings are specified.
A few examples are shown below.

PUBLIC "-//IETF//DTD HTML//EN"

/usr/goossens/sgml/dtds/html.dtd

PUBLIC "ISO 12083:1994//DTD Math//EN"

/usr/joe/dtds/math.dtd

PUBLIC "-//IETF//ENTITIES Latin 1//EN"

/use/joe/sgml/dtds/iso-lat1.sgm

The first string following the keyword PUBLIC is
called a “public identifier”, a name which is intended
to be meaningful across systems and different
user environments. Formally a public identifier is
composed of several fields, separated by a double
solidus, “//”. The first part is an “owner identifier”
(the first and third entries have a hyphen, -,
meaning that these identifiers were not formally
registered, and the organization who created the file
was the IETF (the Internet Engineering Task Force);
the second entry carries an ISO owner identifier.
The second part of the public identifier (following
the double solidus), is called the “text identifier”.

TUGboat, Volume 16 (1995), No. 2 116

The first word indicates the “public text class”
(for example, DTD and ENTITIES), and is followed
by the “public text description” (HTML, Latin 1,
etc.), then, optionally, after another double solidus
one finds the “public text language”, a code from
ISO Standard 639 (ISO (1988)—EN, for English in
our case), and this can be followed by a “display
version”, if needed.
The final element is the filename associated

with the public identifier specified in the second
field.

6.2.1 HTML examples

It is not our intention to describe the various options
of this program in detail, but we shall limit ourselves
to showing, with the help of a few simple examples,
how this interesting tool can be used.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML 2.0//EN">

<HTML>

<!-- This is document test1.html -->

<HEAD>

<TITLE>Document test1.html</TITLE>

</HEAD>

<!-- Beginning of body of document -->

<BODY>

<DL>

<DT>term 1<DD>data 1

<DT>term 2<DD>data 2

<DT>term 3

<DT>term 4<DD>data 4<DD>data 4 bis

</DL>

á

</BODY>

</HTML>

Presenting this document to nsgmls one obtains
the following output in the “Element Structure
Information Set” (ESIS) format.

> nsgmls -m catalog sgml.decl test1.html

#SDA

AVERSION CDATA -//IETF//DTD HTML 2.0//EN

ASDAFORM CDATA Book

(HTML

(HEAD

ASDAFORM CDATA Ti

(TITLE

-Document test1.html

)TITLE

)HEAD

(BODY

ACOMPACT IMPLIED

ASDAFORM CDATA List

ASDAPREF CDATA Definition List:

(DL

ASDAFORM CDATA Term

(DT

-term 1

)DT

ASDAFORM CDATA LItem

(DD

-data 1\n

)DD

ASDAFORM CDATA Term

(DT

-term 2

)DT

ASDAFORM CDATA LItem

(DD

-data 2\n

)DD

ASDAFORM CDATA Term

(DT

-term 3\n

)DT

ASDAFORM CDATA Term

(DT

-term 4

)DT

ASDAFORM CDATA LItem

(DD

-data 4

)DD

ASDAFORM CDATA LItem

(DD

-data 4 bis

)DD

)DL

-\n\|[aacute]\|

)BODY

)HTML

C

As it should, nsgmls parses this program without
problems, and shows the different elements it
encounters in ESIS format. The meaning of the most
common output commands generated by nsgmls is
as follows.

\\ a \;

\n a record end ;

\| brackets internal SDATA entities;

\nnn character whose octal code is nnn;

(gi start of element whose generic identifier is
gi, attributes for this element are specified
with A commands;

)gi end of element whose generic identifier is
gi;

-data data;

&name reference to external data entity name;

Aname val next element has an attribute name
with specifier and value val (see Tables 2
and 3)

TUGboat, Volume 16 (1995), No. 2 117

#text application information (can only occur
once);

C signals that the document was a conforming
document. It will always be the last
command output.

For incorrect documents nsgmls shows an error:

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

<HTML>

<BODY>

<P>text inside a paragraph

</BODY>

</HTML>

If we present this document to nsgmls (placing the
HTML DTD shown in the appendix at the beginning
of the file) one obtains:

> nsgmls -m catalog sgml.decl test2.html

test2.html:4:6:E: \

element ‘BODY’ not allowed here

test2.html:7:7:E: \

end tag for ‘HTML’ which is not finished

#SDA

AVERSION CDATA -//IETF//DTD HTML 2.0//EN

ASDAFORM CDATA Book

(HTML

(BODY

-

ASDAFORM CDATA Para

(P

-text inside a paragraph

)P

)BODY

)HTML

Note that nsgmls indicates at the fourth line that a
<BODY> tag cannot be used at that particular point
(since no mandatory <HEAD> element—Line 614
of the DTD—was specified). Then, after reading
the last (seventh) line containing the </HTML>
tag, nsgmls complains that the HTML document
(enclosed inside <HTML> tags) is not yet finished.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

<HTML>

<HEAD>

<TITLE>title</TITLE>

</HEAD>

<BODY>

</BODY>

</HTML>

Those only interested in checking the syntax of a
document can run nsgmls with the -s option, so
that it will only print the error messages, as with
the incorrect HTML file above.

> nsgmls -s -m catalog sgml.decl test3.html

test3.html:8:4:E: \

element ‘LI’ not allowed here

nsgmls does not complain until Line 8, where an
isolated list member is found. As this is not
correct according to the DTD, nsgmls signals its
disagreement by stating that the tag is not
allowed at that point (Lines 379 and 394 of the DTD
state that list member elements of type can
only be used in lists of type , , <MENU>,
and <DIR>).

6.3 Prettyprinting

Nelson Beebe (beebe@math.utah.edu) has devel-
oped a program htmlpty,14 written in the lex and
C languages, to prettyprint HTML files. Its calling
sequence is:

htmlpty [-options] [file(s)]

where the more interesting options are:

-f filename name output file in comment ban-
ner;

-h display usage summary;

-i nnn set indentation to nnn spaces per
level;

-n no comment banner;

-w nnn set output line width to nnn.

The program was run on file test1.html with the
result shown below.

> html-pretty -i2 -n test1.html

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

<HTML>

<!-- This is document doc1.sgm -->

<HEAD>

<TITLE>

Document test HTML

</TITLE>

</HEAD>

<!-- Beginning of body of document -->

<BODY>

<DL>

<DT>

term 1

</DT>

<DD>

data 1

</DD>

<DT>

term 2

</DT>

<DD>

data 2

</DD>

14 It is at URL ftp://ftp.math.utah.edu/pub/misc/

htmlpty-x.yy.trz (choose the latest version x.yz offered).

TUGboat, Volume 16 (1995), No. 2 118

<DT>

term 3

</DT>

<DT>

term 4

</DT>

<DD>

data 4

</DD>

<DD>

data 4 bis

</DD>

</DL>

á

</BODY>

</HTML>

The program html-pretty applies heuristics to
detect, and often correct, common HTML errors.
It can turn a pure ASCII file into a syntactically-
valid HTML file that may then only require a small
amount of additional markup to indicate required
line breaks.

6.4 SGML document analysis tools

Earl Hook (ehood@convex.com) has developed a set
of tools perlSGML,15 based on the perl language.
They permit the analysis of SGML documents or
DTDs.

dtd2html produces an HTML document starting
from an SGML DTD that permits an
easy hypertext navigation through the
given DTD;

dtddiff compares two DTDs and shows possi-
ble differences;

dtdtree shows visually the hierarchical tree
structure characterizing the relations
between the various elements of a
DTD;

stripsgml strips a text from its SGML markup,
and attempts to translate entity refer-
ences by standard ASCII characters.

Let us first look at the dtdtree utility.
When treating the HTML2 DTD, one obtains
a visual representation that is very useful for
understanding the relations that exist between
the various HTML elements. For each element
one explicitly sees the elements it can contain.
Three points “...” indicate that the contents of
the element has been shown previously. Lines
containing entries between brackets signal a list
of elements that can be included in—(I) and
(Ia)—or are excluded from—(X) and (Xa)—the

15 This system can be found at the URL ftp://ftp.uci.
edu/pub/dtd2html.

Figure 11: Hypertext description of the elements
of a DTD (HTML2) as presented by the HTML
browser mosaic

content model of the element. Figure 10 shows
in four columns the (condensed) output generated
by the dtdtree program when treating the HTML2
DTD. For more clarity most of the repeated blocks
have been eliminated and replaced by the string
*\vbar**\vbar**\vbar at the beginning of a line
and a few lines have been cut to make them fit
(marked with *** at the end of the line).

6.4.1 Documenting a DTD

To document a DTD (and hence a particular
SGML language instance) one can use the dtd2html
utility, which generates, starting from the DTD
in question and a file describing all document
elements, a hypertext representation (in HTML) of
all SGML language elements present in the DTD.
This representation makes it easier for users of an
SGML-based documentation system to obtain the
information relating to an element they need for
marking up their document. For example, in the
case of HTML2, Figure 11 shows the representation
as viewed by the HTML browser mosaic.

TUGboat, Volume 16 (1995), No. 2 119

HTML

|

|_body

| |

| |_#PCDATA

| |_a

| | | (X): a

| | |

| | |_#PCDATA

| | |_b ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_em ...

| | |_h1 ...

| | |_h2 ...

| | |_h3 ...

| | |_h4 ...

| | |_h5 ...

| | |_h6 ...

| | |_i ...

| | |_img ...

| | |_kbd ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_var ...

| |

| |_address

| | |

| | |_#PCDATA

| | |_a ...

| | |_b ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_em ...

| | |_i ...

| | |_img ...

| | |_kbd ...

| | |_p ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_var ...

| |

| |_b

| | |

*|**|**| Like address

| |

| |_blockquote

| | |

| | |_#PCDATA

| | |_a ...

| | |_address ...

| | |_b ...

| | |_blockquote ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_dir ...

| | |_dl ...

| | |_em ...

| | |_form ...

| | |_h1 ...

| | |_h2 ...

| | |_h3 ...

| | |_h4 ...

| | |_h5 ...

| | |_h6 ...

| | |_hr ...

| | |_i ...

| | |_img ...

| | |_isindex ...

| | |_kbd ...

| | |_listing ...

| | |_menu ...

| | |_ol ...

| | |_p ...

| | |_pre ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_ul ...

| | |_var ...

| | |_xmp ...

| |

| |_br

| | |

| | |_EMPTY

| |

| |_cite

| | |

*|**|**| Like address

| |

| |_code

| | |

*|**|**| Like address

| |

| |_dir

| | | (X): ***

| | |

| | |_li

| | | (Xa): ***

| | |

*|**|*****| Like dd

| |

| |_dl

| | |

| | |_dd

| | | |

| | | |_#PCDATA

| | | |_a ...

| | | |_b ...

| | | |_blockquote ...

| | | |_br ...

| | | |_cite ...

| | | |_code ...

| | | |_dir ...

| | | |_dl ...

| | | |_em ...

| | | |_form ...

| | | |_i ...

| | | |_img ...

| | | |_isindex ...

| | | |_kbd ...

| | | |_listing ...

| | | |_menu ...

| | | |_ol ...

| | | |_p ...

| | | |_pre ...

| | | |_samp ...

| | | |_strong ...

| | | |_tt ...

| | | |_ul ...

| | | |_var ...

| | | |_xmp ...

| | |

| | |_dt

| | |

| | |_#PCDATA

| | |_a ...

| | |_b ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_em ...

| | |_i ...

| | |_img ...

| | |_kbd ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_var ...

| |

| |_em

| | |

*|**|**| Like h1

| |

| |_form

| | | (I): ***

| | | (X): form

| | |

| | |_#PCDATA

| | |_a ...

| | |_address ...

| | |_b ...

| | |_blockquote ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_dir ...

| | |_dl ...

| | |_em ...

| | |_h1 ...

| | |_h2 ...

| | |_h3 ...

| | |_h4 ...

| | |_h5 ...

| | |_h6 ...

| | |_hr ...

| | |_i ...

| | |_img ...

| | |_input

| | | | (Ia): ***

| | | | (Xa): form

| | | |

| | | |_EMPTY

| | |

| | |_isindex ...

| | |_kbd ...

| | |_listing ...

| | |_menu ...

| | |_ol ...

| | |_p ...

| | |_pre ...

| | |_samp ...

| | |_select

| | | | (Ia): ***

| | | | (Xa): form

| | | |

| | | |_option

| | | | (Ia): ***

| | | | (Xa): form

| | | |

| | | |_#PCDATA

| | |

| | |_strong ...

| | |_textarea

| | | | (Ia): ***

| | | | (Xa): form

| | | |

| | | |_#PCDATA

| | |

| | |_tt ...

| | |_ul ...

| | |_var ...

| | |_xmp ...

| |

| |_h1

| | |

| | |_#PCDATA

| | |_a ...

| | |_b ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_em ...

| | |_i ...

| | |_img ...

| | |_kbd ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_var ...

| |

| |_h2 to h6

| |

| | |

*|**|**| Like h1

| |

| |_hr

| | |

| | |_EMPTY

| |

| |_i

| | |

*|**|**| Like h1

| |

| |_img

| | |

| | |_EMPTY

| |

| |_isindex

| | |

| | |_EMPTY

| |

| |_kbd

| | |

*|**|**| Like h1

| |

| |_listing

| | |

| | |_CDATA

| |

| |_menu

| | | (X): ***

| | |

| | |_li ...

| |

| |_ol

| | |

| | |_li ...

| |

| |_p

| | |

*|**|**| Like h1

| |

| |_pre

| | |

| | |_#PCDATA

| | |_a ...

| | |_b ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_em ...

| | |_hr ...

| | |_i ...

| | |_kbd ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_var ...

| |

| |_samp

| | |

*|**|**| Like h1

| |

| |_strong

| | |

*|**|**| Like h1

| |

| |_tt

| | |

*|**|**| Like h1

| |

| |_ul

| | |

| | |_li ...

| |

| |_var

| | |

*|**|**| Like h1

| |

| |_xmp

| |

| |_CDATA

|

|_head

| |

| |_base

| | |

| | |_EMPTY

| |

| |_isindex ...

| |_link

| | |

| | |_EMPTY

| |

| |_meta

| | |

| | |_EMPTY

| |

| |_nextid

| | |

| | |_EMPTY

| |

| |_title

| |

| |_#PCDATA

|

|_plaintext

|

|_CDATA

Figure 10: Output of the dtdtree program for the HTML2 DTD

TUGboat, Volume 16 (1995), No. 2 120

6.5 Searching and index entries

A search engine using regular expressions is available
for use with the HTML2 DTD16 (Figure 12), as well
as an index containing more than 1100 words and
phrases17 (Figure 13).

6.5.1 Checking an HTML document

For those who do not have sgmls or nsgmls installed
there exists a set of programs htmlchek,18 including
heuristic checkers for common style and grammar
violations. The programs, available in both perl
and awk versions, check the syntax of HTML2 and
HTML3 files for a number of possible errors; they can
perform local link cross-reference verification, and
generate a rudimentary reference-dependency map.

htmlchek checks an HTML file for errors,
and gives warnings about possible
problems;

makemenu makes a simple menu for HTML files,
based on each file’s <TITLE> tag;
it can also make a simple table of
contents based on the <H1>–<H6>
heading tags;

xtraclnk.pl perl procedure to extract links and
anchors from HTML files and to
isolate text contained inside the <A>
and <TITLE> elements;

dehtml removes all HTML markup from a
document; is useful for spell checking;

entify replaces 8-bit Latin-1 input by the
corresponding 7-bit-safe entity refer-
ences;

The syntax to use these programs is typically:
awk -f htmlchek.awk [opts] infile > outfile

perl htmlchek.pl [opts] infile > outfile

As an example we ran these scripts on the test files
of section 6.2.1 with the results shown below, which
are consistent with those obtained previously.
> perl dehtml.pl test1.html

Document test HTML

term 1data 1

term 2data 2

term 3

term 4data 4data 4 bis

> awk -f htmlchek.awk test2.html

Diagnostics for file "test2.html":

<body> without preceding <head>...</head>

Warning! at line 4 of file "test2.html"

16 http://hopf.math.nwu.edu/html2.0/dosearch.html.
17 http://hopf.math.nwu.edu/html2.0/docindex.html.
18 The documentation is at the URL http://uts.cc.

utexas.edu/~churchh/htmlchek.html and the tar file at
ftp://ftp.cs.buffalo.edu/pub/htmlchek/.

Figure 12: Searching the HTML2 DTD

Figure 13: Index entries for the HTML2 DTD

TUGboat, Volume 16 (1995), No. 2 121

No <H1> in <body>...</body>

Warning! at line 6 of file "test2.html"

<HEAD> not used in document

Warning! at END of file "test2.html"

<TITLE> not used in document

ERROR! at END of file "test2.html"

Tag P occurred

Tag HTML occurred

Tag BODY occurred

Tag !DOCTYPE occurred

> perl htmlchek.pl test3.html

Diagnostics for file "test3.html":

 outside of list

ERROR! at line 8 of file "test3.html"

No <H1> in <body>...</body>

Warning! at line 9 of file "test3.html"

Tag !DOCTYPE occurred

Tag BODY occurred

Tag HEAD occurred

Tag HTML occurred

Tag LI occurred

Tag TITLE occurred

7 DTD Transformations

The logical markup of SGML documents makes it
possible to transform the markup associated to a
DTD into that of another. When translating the
markup one has to take into consideration the fact
that between some elements a one-to-one mapping
may not exist, but that a many-to-one, and one-
to-many correspondence has to be considered. It
should also be noted that the tools used for this
purpose need to be sophisticated, since a normal
grammar tool, such as ya, is not suitable for parsing
SGML documents.

7.1 sgmls.pl

A translator skeleton, sgmls.pl, is included with
the nsgmls distribution. This perl script reads the
ESIS output of nsgmls and provides a set of routines
that can be used for calling user-specified translation
routines of each element.

7.2 SGMLS.pm and sgmlspl

David Megginson (University of Ottawa, Canada,
dmeggins@aix1.uottawa.ca) has developed a more
object-oriented approach for the translations, also
based on the ESIS output of nsgmls and calling
event-routines for each element found in the
input stream. This package includes a default
configuration for translating documents marked up
according to the Doc-BookDTD into HTML or LATEX
markup.
The sp parser provides an application level

interface to SGML document handling. The core
of sp uses C++ and provides a solid class library
for parsing SGML documents. The parsing of an

SGML document causes events and the user can
write handlers to translate them in the appropriate
way.

7.3 Conversion from Doc-Book to HTML3

The translation program generates events for each
primitive in the source document and these events
are handled by calling a corresponding routine.
These routines then produce the corresponding
HTML/LATEX output. Thanks to its object-oriented
flavour the overall architecture provides solid ground
for DTD translations. The following listing gives
an idea of how the conversion is implemented. In
the example below two elements are translated into
LATEX. When a tag is found that can be translated,
the corresponding string is produced.

Program listings appear in verbatim

sgml(’<PROGRAMLISTING>’,

"\n\\begin{verbatim}\n");

sgml(’</PROGRAMLISTING>’,

"\n\\end{verbatim}}\n");

Class names appear in typewriter.

sgml(’<CLASSNAME>’, "{\\ttfamily ");

sgml(’</CLASSNAME>’, "}");

This example is extremely simple since the
mappings are basically one-to-one. In the more
general case, when a document element can be used
inside different elements, the substitution is not
just a string, but a procedure call, which allows,
for instance, backtracking to cope with context-
dependent conversion rules that take into account
the current context. For instance, the code below
shows how, when reaching the <TITLE> end tag, the
title information is handled differently, according to
whether it occurred inside an article header, section
or table element.

sgml(’<TITLE>’,

sub { push_output ’string’; });

sgml(’</TITLE>’, sub {

my $element = shift;

my $data = pop_output;

if ($element->in(ARTHEADER)) {

$title = $data;

} elsif ($element->in(SECT1) ||

$element->in(IMPORTANT)) {

output "\n\n\\section{$data}\n";

output "\\label{$id}\n" if $id;

output "\n";

} elsif ($element->in(TABLE)) {

output "\\caption{$data}\n";

output "\\label{$id}\n" if $id;

output "\n";

TUGboat, Volume 16 (1995), No. 2 122

DocBook DTD sgmls
ESIS

representation
Translator

Configuration file

HTML3 DTD

Figure 14: Schematic overview of the Doc-Book to HTML conversion process

} else {

die "No TITLE allowed in "

. $element->parent->name . "\n";

}

});

A conversion example of an extract from the
Doc-Book DTD manual is given in Appendix H on
page 143. It shows part of the original Doc-Book
document markup, how it is presented in the ESIS
format, and finally its translation into HTML3.
Figure 14 shows the principle of the translation
process.

7.4 Commercial solutions

Several companies provide commercial solutions for
doing do the translations: Exoterica, AIS, EBT
(Electronic Book Technologies) and Avalanche to
mention a few.

8 Other Standards in the Area of
Electronic Documents

SGML is part of a vast project conceived by
the International Standards Organization (ISO) to
develop a model to describe the complete process
of creating, exchanging, editing and viewing or
printing of electronic documents. This model
consists of several standards, some already adopted,
others still under discussion (see Goossens and van
Herwijnen (1992) and Goossens and van Herwijnen
(1992a)).

SGML (Standard Generalized Markup
Language)

ISO 8879, the Standard described in this article,
is concerned with the creation and editing of doc-
uments. A complementary standard is ISO 9069
(ISO, 1988a), SDIF, for “SGML Document Inter-
change Format”. ISO/IEC 10744, the Hytime Stan-
dard, presents a formalism for the representation
of hypermedia documents. The Hytime language
(Goldfarb (1991), ISO (1992)) allows the descrip-

tions of situations that are time dependent (for ex-
ample CD-I).

DSSSL (Document Style Semantics and
Specification Language)

International Standard ISO/IEC 10179 (ISO,
1995a), was adopted at the beginning of 1995. It
presents a framework to express the concepts and
actions necessary for transforming a structurally
marked up document into its final physical form.
Although this Standard is primarily targeted at
document handling, it can also define other layouts,
such as those needed for use with databases.19

SPDL (Standard Page Description
Language)

International Standard ISO/IEC 10180 (ISO, 1995)
defines a formalism for the description of documents
in their final, completely typeset, unrevisable
form.20 The structure of the language and its syntax
strongly resemble the PostScript language, which is
not surprising since PostScript has become the de
facto standard page description language.

Fonts

To exchange documents one must also define a
font standard. ISO/IEC 9541 (ISO, 1991) describes
a method for naming and grouping glyphs or
glyph collections independently of a particular font
language (such as PostScript or Truetype).

Acknowledgments

We sincerely thank Nelson Beebe (Utah University,
beebe@math.utah.edu) for several interesting e-
mail discussions and for his detailed reading of
the compuscript. His suggestions and hints have
without doubt substantially improved the quality of
the text. We also want to acknowledge the help of
Steven Kennedy (CERN) who proofread the article.

19 More on DSSSL by James Clark is available at the URL
http://www.jclark.com/dsssl/.
20 More on SPDL can be found at the URL http://www.

st.rim.or.jp/~uda/spdl/spdl.html.

TUGboat, Volume 16 (1995), No. 2 123

References

Association of American Publishers, Electronic
Manuscript Series. Reference Manual on Elec-
tronic Manuscript Preparation and Markup
(Version 2). Association of American Publish-
ers, EPSIG, Dublin, OH, USA, 1989.

Association of American Publishers, Electronic
Manuscript Series. Author’s Guide to Electronic
Manuscript Preparation and Markup (Version
2). Association of American Publishers, EPSIG,
Dublin, OH, USA, 1989.

Association of American Publishers, Electronic
Manuscript Series. Markup of tabular material
(Version 2). Association of American Publishers,
EPSIG, Dublin, OH, USA, 1989.

Association of American Publishers, Electronic
Manuscript Series. Markup of mathematical
formulas (Version 2). Association of American
Publishers, EPSIG, Dublin, OH, USA, 1989.

Goldfarb, Charles F. HyTime: A standard for struc-
tured hypermedia interchange. IEEE Computer,
pages 81–84, August 1991.

Goldfarb, Charles F. The SGML Handbook. Oxford
University Press, 1990.

Goossens, Michel and Eric van Herwijnen. Introduc-
tion à SGML, DSSSL et SPDL. Cahiers GUTen-
berg, 12, pages 37–56, December 1991.

Goossens, Michel and Eric van Herwijnen. Scientific
Text Processing. International Journal of Mod-
ern Physics C, vol. 3(3), pages 479–546, June
1992.

van Herwijnen, Eric. Practical SGML (Second
Edition). Wolters-Kluwer Academic Publishers,
Boston, 1994.

International Organization or Standardization. In-
formation processing — Text and office sys-
tems — Standard Generalized Markup Language
(SGML). ISO 8879:1986(E), ISO Geneva, 1986.

International Organization for Standardization,
Code for the presentation of names of languages.
ISO 639:1988 (E/F), ISO Geneva, 1988.

International Organization for Standardization, In-
formation processing — SGML support facilities
— SGML Document Interchange Format (SDIF).
ISO 9069:1988, ISO Geneva, 1988.

International Organization for Standardization. In-
formation Technology — Font information in-
terchange (three parts). ISO/IEC 9541-1,2,3, ISO
Geneva, 1991 and 1993.

International Organization for Standardization. In-
formation Technology — Hypermedia/Time-
based Structuring Language (Hytime). ISO/IEC
10744:1992, ISO Geneva, 1992.

International Organization for Standardization. In-
formation Technology — Text Communication
— Standard Page Description Language (SPDL).
ISO/IEC 10180, ISO Geneva, 1995.

International Organization for Standardization. In-
formation processing — Text and office sys-
tems — Document Style Semantics and Specifi-
cation Language (DSSSL). ISO/IEC 10179.2, ISO
Geneva, 1995.

Karney, James “SGML and HTML TagMasters.” PC
Magazine, 14 (3), pages 144–162, 1995.

Karney, James “SGML: It’s Still à la Carte.” PC
Magazine, 14 (3), pages 168–171, 1995.

Ores, Pauline. “Hypertext Publishing — Edit
Trial.” PC Magazine, 14 (3), pages 132–143,
1995.

Vignaud, Dominique. L’édition structurée des docu-
ments. Éditions du Cercle de la Librairie, Paris,
1990.

⋄ Michel Goossens and Janne

Saarela

CERN, CN Division, CH-1211

Geneva 23, Switzerland

Email: goossens@cern.ch and

saarela@cern.ch

TUGboat, Volume 16 (1995), No. 2 124

Appendices

B The DTD of the HTML2 Language
1 <!-- html.dtd
2

3 Document Type Definition for the HyperText Markup Language
4 (HTML DTD)
5

6 $Id: html.dtd,v 1.25 1995/03/29 18:53:13 connolly Exp $
7

8 Author: Daniel W. Connolly <connolly@w3.org>
9 See Also: html.decl, html-0.dtd, html-1.dtd
10 http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html
11 -->
12

13 <!ENTITY % HTML.Version
14 "-//IETF//DTD HTML 2.0//EN"
15

16 -- Typical usage:
17

18 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
19 <html>
20 ...
21 </html>
22 --
23 >
24

25

26 <!--============ Feature Test Entities ========================-->
27

28 <!ENTITY % HTML.Recommended "IGNORE"
29 -- Certain features of the language are necessary for
30 compatibility with widespread usage, but they may
31 compromise the structural integrity of a document.
32 This feature test entity enables a more prescriptive
33 document type definition that eliminates
34 those features.
35 -->
36

37 <![%HTML.Recommended [
38 <!ENTITY % HTML.Deprecated "IGNORE">
39]]>
40

41 <!ENTITY % HTML.Deprecated "INCLUDE"
42 -- Certain features of the language are necessary for
43 compatibility with earlier versions of the specification,
44 but they tend to be used an implemented inconsistently,
45 and their use is deprecated. This feature test entity
46 enables a document type definition that eliminates
47 these features.
48 -->
49

50 <!ENTITY % HTML.Highlighting "INCLUDE"
51 -- Use this feature test entity to validate that a
52 document uses no highlighting tags, which may be
53 ignored on minimal implementations.
54 -->
55

56 <!ENTITY % HTML.Forms "INCLUDE"
57 -- Use this feature test entity to validate that a document
58 contains no forms, which may not be supported in minimal
59 implementations
60 -->
61

62 <!--============== Imported Names ==============================-->
63

64 <!ENTITY % Content-Type "CDATA"
65 -- meaning an internet media type
66 (aka MIME content type, as per RFC1521)
67 -->
68

69 <!ENTITY % HTTP-Method "GET | POST"
70 -- as per HTTP specification, in progress
71 -->
72

73 <!ENTITY % URI "CDATA"
74 -- The term URI means a CDATA attribute
75 whose value is a Uniform Resource Identifier,
76 as defined by
77 "Universal Resource Identifiers" by Tim Berners-Lee

TUGboat, Volume 16 (1995), No. 2 125

78 aka RFC 1630
79

80 Note that CDATA attributes are limited by the LITLEN
81 capacity (1024 in the current version of html.decl),
82 so that URIs in HTML have a bounded length.
83

84 -->
85

86

87 <!--========= DTD "Macros" =====================-->
88

89 <!ENTITY % heading "H1|H2|H3|H4|H5|H6">
90

91 <!ENTITY % list " UL | OL | DIR | MENU " >
92

93

94 <!--======= Character mnemonic entities =================-->
95

96

97 <!ENTITY % ISOlat1 PUBLIC
98 "-//IETF//ENTITIES Added Latin 1 for HTML//EN" "iso-lat1.gml">
99

100 %ISOlat1;
101

102 <!ENTITY amp CDATA "&" -- ampersand -->
103 <!ENTITY gt CDATA ">" -- greater than -->
104 <!ENTITY lt CDATA "<" -- less than -->
105 <!ENTITY quot CDATA """ -- double quote -->
106

107

108 <!--========= SGML Document Access (SDA) Parameter Entities =====-->
109

110 <!-- HTML 2.0 contains SGML Document Access (SDA) fixed attributes
111 in support of easy transformation to the International Committee
112 for Accessible Document Design (ICADD) DTD
113 "-//EC-USA-CDA/ICADD//DTD ICADD22//EN".
114 ICADD applications are designed to support usable access to
115 structured information by print-impaired individuals through
116 Braille, large print and voice synthesis. For more information on
117 SDA & ICADD:
118 - ISO 12083:1993, Annex A.8, Facilities for Braille,
119 large print and computer voice
120 - ICADD ListServ
121 <ICADD%ASUACAD.BITNET@ARIZVM1.ccit.arizona.edu>
122 - Usenet news group bit.listserv.easi
123 - Recording for the Blind, +1 800 221 4792
124 -->
125

126 <!ENTITY % SDAFORM "SDAFORM CDATA #FIXED"
127 -- one to one mapping -->
128 <!ENTITY % SDARULE "SDARULE CDATA #FIXED"
129 -- context-sensitive mapping -->
130 <!ENTITY % SDAPREF "SDAPREF CDATA #FIXED"
131 -- generated text prefix -->
132 <!ENTITY % SDASUFF "SDASUFF CDATA #FIXED"
133 -- generated text suffix -->
134 <!ENTITY % SDASUSP "SDASUSP NAME #FIXED"
135 -- suspend transform process -->
136

137

138 <!--========== Text Markup =====================-->
139

140 <![%HTML.Highlighting [
141

142 <!ENTITY % font " TT | B | I ">
143

144 <!ENTITY % phrase "EM | STRONG | CODE | SAMP | KBD | VAR | CITE ">
145

146 <!ENTITY % text "#PCDATA | A | IMG | BR | %phrase | %font">
147

148 <!ELEMENT (%font;|%phrase) - - (%text)*>
149 <!ATTLIST (TT | CODE | SAMP | KBD | VAR)
150 %SDAFORM; "Lit"
151 >
152 <!ATTLIST (B | STRONG)
153 %SDAFORM; "B"
154 >
155 <!ATTLIST (I | EM | CITE)
156 %SDAFORM; "It"
157 >

TUGboat, Volume 16 (1995), No. 2 126

158

159 <!-- <TT> Typewriter text -->
160 <!-- Bold text -->
161 <!-- <I> Italic text -->
162

163 <!-- Emphasized phrase -->
164 <!-- Strong emphais -->
165 <!-- <CODE> Source code phrase -->
166 <!-- <SAMP> Sample text or characters -->
167 <!-- <KBD> Keyboard phrase, e.g. user input -->
168 <!-- <VAR> Variable phrase or substituable -->
169 <!-- <CITE> Name or title of cited work -->
170

171 <!ENTITY % pre.content "#PCDATA | A | HR | BR | %font | %phrase">
172

173]]>
174

175 <!ENTITY % text "#PCDATA | A | IMG | BR">
176

177 <!ELEMENT BR - O EMPTY>
178 <!ATTLIST BR
179 %SDAPREF; "&#RE;"
180 >
181

182 <!--
 Line break -->
183

184

185 <!--========= Link Markup ======================-->
186

187 <![%HTML.Recommended [
188 <!ENTITY % linkName "ID">
189]]>
190

191 <!ENTITY % linkName "CDATA">
192

193 <!ENTITY % linkType "NAME"
194 -- a list of these will be specified at a later date -->
195

196 <!ENTITY % linkExtraAttributes
197 "REL %linkType #IMPLIED
198 REV %linkType #IMPLIED
199 URN CDATA #IMPLIED
200 TITLE CDATA #IMPLIED
201 METHODS NAMES #IMPLIED
202 ">
203

204 <![%HTML.Recommended [
205 <!ENTITY % A.content "(%text)*"
206 -- <H1>Heading</H1>
207 is preferred to
208 <H1>Heading</H1>
209 -->
210]]>
211

212 <!ENTITY % A.content "(%heading|%text)*">
213

214 <!ELEMENT A - - %A.content -(A)>
215 <!ATTLIST A
216 HREF %URI #IMPLIED
217 NAME %linkName #IMPLIED
218 %linkExtraAttributes;
219 %SDAPREF; "<Anchor: #AttList>"
220 >
221 <!-- <A> Anchor; source/destination of link -->
222 <!-- Name of this anchor -->
223 <!-- Address of link destination -->
224 <!-- Permanent address of destination -->
225 <!-- Relationship to destination -->
226 <!-- Relationship of destination to this -->
227 <!-- Title of destination (advisory) -->
228 <!-- Operations on destination (advisory) -->
229

230

231 <!--========== Images ==========================-->
232

233 <!ELEMENT IMG - O EMPTY>
234 <!ATTLIST IMG
235 SRC %URI; #REQUIRED
236 ALT CDATA #IMPLIED
237 ALIGN (top|middle|bottom) #IMPLIED

TUGboat, Volume 16 (1995), No. 2 127

238 ISMAP (ISMAP) #IMPLIED
239 %SDAPREF; "<Fig><?SDATrans Img: #AttList>#AttVal(Alt)</Fig>"
240 >
241

242 <!-- Image; icon, glyph or illustration -->
243 <!-- Address of image object -->
244 <!-- Textual alternative -->
245 <!-- Position relative to text -->
246 <!-- Each pixel can be a link -->
247

248 <!--========== Paragraphs=======================-->
249

250 <!ELEMENT P - O (%text)*>
251 <!ATTLIST P
252 %SDAFORM; "Para"
253 >
254

255 <!-- <P> Paragraph -->
256

257

258 <!--========== Headings, Titles, Sections ===============-->
259

260 <!ELEMENT HR - O EMPTY>
261 <!ATTLIST HR
262 %SDAPREF; "&#RE;&#RE;"
263 >
264

265 <!-- <HR> Horizontal rule -->
266

267 <!ELEMENT (%heading) - - (%text;)*>
268 <!ATTLIST H1
269 %SDAFORM; "H1"
270 >
271 <!ATTLIST H2
272 %SDAFORM; "H2"
273 >
274 <!ATTLIST H3
275 %SDAFORM; "H3"
276 >
277 <!ATTLIST H4
278 %SDAFORM; "H4"
279 >
280 <!ATTLIST H5
281 %SDAFORM; "H5"
282 >
283 <!ATTLIST H6
284 %SDAFORM; "H6"
285 >
286

287 <!-- <H1> Heading, level 1 -->
288 <!-- <H2> Heading, level 2 -->
289 <!-- <H3> Heading, level 3 -->
290 <!-- <H4> Heading, level 4 -->
291 <!-- <H5> Heading, level 5 -->
292 <!-- <H6> Heading, level 6 -->
293

294

295 <!--========== Text Flows ======================-->
296

297 <![%HTML.Forms [
298 <!ENTITY % block.forms "BLOCKQUOTE | FORM | ISINDEX">
299]]>
300

301 <!ENTITY % block.forms "BLOCKQUOTE">
302

303 <![%HTML.Deprecated [
304 <!ENTITY % preformatted "PRE | XMP | LISTING">
305]]>
306

307 <!ENTITY % preformatted "PRE">
308

309 <!ENTITY % block "P | %list | DL
310 | %preformatted
311 | %block.forms">
312

313 <!ENTITY % flow "(%text|%block)*">
314

315 <!ENTITY % pre.content "#PCDATA | A | HR | BR">
316 <!ELEMENT PRE - - (%pre.content)*>
317 <!ATTLIST PRE

TUGboat, Volume 16 (1995), No. 2 128

318 WIDTH NUMBER #implied
319 %SDAFORM; "Lit"
320 >
321

322 <!-- <PRE> Preformatted text -->
323 <!-- <PRE WIDTH=...> Maximum characters per line -->
324

325 <![%HTML.Deprecated [
326

327 <!ENTITY % literal "CDATA"
328 -- historical, non-conforming parsing mode where
329 the only markup signal is the end tag
330 in full
331 -->
332

333 <!ELEMENT (XMP|LISTING) - - %literal>
334 <!ATTLIST XMP
335 %SDAFORM; "Lit"
336 %SDAPREF; "Example:&#RE;"
337 >
338 <!ATTLIST LISTING
339 %SDAFORM; "Lit"
340 %SDAPREF; "Listing:&#RE;"
341 >
342

343 <!-- <XMP> Example section -->
344 <!-- <LISTING> Computer listing -->
345

346 <!ELEMENT PLAINTEXT - O %literal>
347 <!-- <PLAINTEXT> Plain text passage -->
348

349 <!ATTLIST PLAINTEXT
350 %SDAFORM; "Lit"
351 >
352]]>
353

354

355 <!--========== Lists ==================-->
356

357 <!ELEMENT DL - - (DT | DD)+>
358 <!ATTLIST DL
359 COMPACT (COMPACT) #IMPLIED
360 %SDAFORM; "List"
361 %SDAPREF; "Definition List:"
362 >
363

364 <!ELEMENT DT - O (%text)*>
365 <!ATTLIST DT
366 %SDAFORM; "Term"
367 >
368

369 <!ELEMENT DD - O %flow>
370 <!ATTLIST DD
371 %SDAFORM; "LItem"
372 >
373

374 <!-- <DL> Definition list, or glossary -->
375 <!-- <DL COMPACT> Compact style list -->
376 <!-- <DT> Term in definition list -->
377 <!-- <DD> Definition of term -->
378

379 <!ELEMENT (OL|UL) - - (LI)+>
380 <!ATTLIST OL
381 COMPACT (COMPACT) #IMPLIED
382 %SDAFORM; "List"
383 >
384 <!ATTLIST UL
385 COMPACT (COMPACT) #IMPLIED
386 %SDAFORM; "List"
387 >
388 <!-- Unordered list -->
389 <!-- <UL COMPACT> Compact list style -->
390 <!-- Ordered, or numbered list -->
391 <!-- <OL COMPACT> Compact list style -->
392

393

394 <!ELEMENT (DIR|MENU) - - (LI)+ -(%block)>
395 <!ATTLIST DIR
396 COMPACT (COMPACT) #IMPLIED
397 %SDAFORM; "List"

TUGboat, Volume 16 (1995), No. 2 129

398 %SDAPREF; "<LHead>Directory</LHead>"
399 >
400 <!ATTLIST MENU
401 COMPACT (COMPACT) #IMPLIED
402 %SDAFORM; "List"
403 %SDAPREF; "<LHead>Menu</LHead>"
404 >
405

406 <!-- <DIR> Directory list -->
407 <!-- <DIR COMPACT> Compact list style -->
408 <!-- <MENU> Menu list -->
409 <!-- <MENU COMPACT> Compact list style -->
410

411 <!ELEMENT LI - O %flow>
412 <!ATTLIST LI
413 %SDAFORM; "LItem"
414 >
415

416 <!-- List item -->
417

418 <!--========== Document Body ===================-->
419

420 <![%HTML.Recommended [
421 <!ENTITY % body.content "(%heading|%block|HR|ADDRESS|IMG)*"
422 -- <h1>Heading</h1>
423 <p>Text ...
424 is preferred to
425 <h1>Heading</h1>
426 Text ...
427 -->
428]]>
429

430 <!ENTITY % body.content "(%heading | %text | %block |
431 HR | ADDRESS)*">
432

433 <!ELEMENT BODY O O %body.content>
434

435 <!-- <BODY> Document body -->
436

437 <!ELEMENT BLOCKQUOTE - - %body.content>
438 <!ATTLIST BLOCKQUOTE
439 %SDAFORM; "BQ"
440 >
441

442 <!-- <BLOCKQUOTE> Quoted passage -->
443

444 <!ELEMENT ADDRESS - - (%text|P)*>
445 <!ATTLIST ADDRESS
446 %SDAFORM; "Lit"
447 %SDAPREF; "Address:&#RE;"
448 >
449

450 <!-- <ADDRESS> Address, signature, or byline -->
451

452

453 <!--======= Forms ====================-->
454

455 <![%HTML.Forms [
456

457 <!ELEMENT FORM - - %body.content -(FORM) +(INPUT|SELECT|TEXTAREA)>
458 <!ATTLIST FORM
459 ACTION %URI #IMPLIED
460 METHOD (%HTTP-Method) GET
461 ENCTYPE %Content-Type; "application/x-www-form-urlencoded"
462 %SDAPREF; "<Para>Form:</Para>"
463 %SDASUFF; "<Para>Form End.</Para>"
464 >
465

466 <!-- <FORM> Fill-out or data-entry form -->
467 <!-- <FORM ACTION="..."> Address for completed form -->
468 <!-- <FORM METHOD=...> Method of submitting form -->
469 <!-- <FORM ENCTYPE="..."> Representation of form data -->
470

471 <!ENTITY % InputType "(TEXT | PASSWORD | CHECKBOX |
472 RADIO | SUBMIT | RESET |
473 IMAGE | HIDDEN)">
474 <!ELEMENT INPUT - O EMPTY>
475 <!ATTLIST INPUT
476 TYPE %InputType TEXT
477 NAME CDATA #IMPLIED

TUGboat, Volume 16 (1995), No. 2 130

478 VALUE CDATA #IMPLIED
479 SRC %URI #IMPLIED
480 CHECKED (CHECKED) #IMPLIED
481 SIZE CDATA #IMPLIED
482 MAXLENGTH NUMBER #IMPLIED
483 ALIGN (top|middle|bottom) #IMPLIED
484 %SDAPREF; "Input: "
485 >
486

487 <!-- <INPUT> Form input datum -->
488 <!-- <INPUT TYPE=...> Type of input interaction -->
489 <!-- <INPUT NAME=...> Name of form datum -->
490 <!-- <INPUT VALUE="..."> Default/initial/selected value -->
491 <!-- <INPUT SRC="..."> Address of image -->
492 <!-- <INPUT CHECKED> Initial state is "on" -->
493 <!-- <INPUT SIZE=...> Field size hint -->
494 <!-- <INPUT MAXLENGTH=...> Data length maximum -->
495 <!-- <INPUT ALIGN=...> Image alignment -->
496

497 <!ELEMENT SELECT - - (OPTION+) -(INPUT|SELECT|TEXTAREA)>
498 <!ATTLIST SELECT
499 NAME CDATA #REQUIRED
500 SIZE NUMBER #IMPLIED
501 MULTIPLE (MULTIPLE) #IMPLIED
502 %SDAFORM; "List"
503 %SDAPREF;
504 "<LHead>Select #AttVal(Multiple)</LHead>"
505 >
506

507 <!-- <SELECT> Selection of option(s) -->
508 <!-- <SELECT NAME=...> Name of form datum -->
509 <!-- <SELECT SIZE=...> Options displayed at a time -->
510 <!-- <SELECT MULTIPLE> Multiple selections allowed -->
511

512 <!ELEMENT OPTION - O (#PCDATA)*>
513 <!ATTLIST OPTION
514 SELECTED (SELECTED) #IMPLIED
515 VALUE CDATA #IMPLIED
516 %SDAFORM; "LItem"
517 %SDAPREF;
518 "Option: #AttVal(Value) #AttVal(Selected)"
519 >
520

521 <!-- <OPTION> A selection option -->
522 <!-- <OPTION SELECTED> Initial state -->
523 <!-- <OPTION VALUE="..."> Form datum value for this option-->
524

525 <!ELEMENT TEXTAREA - - (#PCDATA)* -(INPUT|SELECT|TEXTAREA)>
526 <!ATTLIST TEXTAREA
527 NAME CDATA #REQUIRED
528 ROWS NUMBER #REQUIRED
529 COLS NUMBER #REQUIRED
530 %SDAFORM; "Para"
531 %SDAPREF; "Input Text -- #AttVal(Name): "
532 >
533

534 <!-- <TEXTAREA> An area for text input -->
535 <!-- <TEXTAREA NAME=...> Name of form datum -->
536 <!-- <TEXTAREA ROWS=...> Height of area -->
537 <!-- <TEXTAREA COLS=...> Width of area -->
538

539]]>
540

541

542 <!--======= Document Head ======================-->
543

544 <![%HTML.Recommended [
545 <!ENTITY % head.extra "META* & LINK*">
546]]>
547

548 <!ENTITY % head.extra "NEXTID? & META* & LINK*">
549

550 <!ENTITY % head.content "TITLE & ISINDEX? & BASE? &
551 (%head.extra)">
552

553 <!ELEMENT HEAD O O (%head.content)>
554

555 <!-- <HEAD> Document head -->
556

557 <!ELEMENT TITLE - - (#PCDATA)*>

TUGboat, Volume 16 (1995), No. 2 131

558 <!ATTLIST TITLE
559 %SDAFORM; "Ti" >
560

561 <!-- <TITLE> Title of document -->
562

563 <!ELEMENT LINK - O EMPTY>
564 <!ATTLIST LINK
565 HREF %URI #REQUIRED
566 %linkExtraAttributes;
567 %SDAPREF; "Linked to : #AttVal (TITLE) (URN) (HREF)>" >
568

569 <!-- <LINK> Link from this document -->
570 <!-- <LINK HREF="..."> Address of link destination -->
571 <!-- <LINK URN="..."> Lasting name of destination -->
572 <!-- <LINK REL=...> Relationship to destination -->
573 <!-- <LINK REV=...> Relationship of destination to this -->
574 <!-- <LINK TITLE="..."> Title of destination (advisory) -->
575 <!-- <LINK METHODS="..."> Operations allowed (advisory) -->
576

577 <!ELEMENT ISINDEX - O EMPTY>
578 <!ATTLIST ISINDEX
579 %SDAPREF;
580 "<Para>[Document is indexed/searchable.]</Para>">
581

582 <!-- <ISINDEX> Document is a searchable index -->
583

584 <!ELEMENT BASE - O EMPTY>
585 <!ATTLIST BASE
586 HREF %URI; #REQUIRED >
587

588 <!-- <BASE> Base context document -->
589 <!-- <BASE HREF="..."> Address for this document -->
590

591 <!ELEMENT NEXTID - O EMPTY>
592 <!ATTLIST NEXTID
593 N %linkName #REQUIRED >
594

595 <!-- <NEXTID> Next ID to use for link name -->
596 <!-- <NEXTID N=...> Next ID to use for link name -->
597

598 <!ELEMENT META - O EMPTY>
599 <!ATTLIST META
600 HTTP-EQUIV NAME #IMPLIED
601 NAME NAME #IMPLIED
602 CONTENT CDATA #REQUIRED >
603

604 <!-- <META> Generic Metainformation -->
605 <!-- <META HTTP-EQUIV=...> HTTP response header name -->
606 <!-- <META NAME=...> Metainformation name -->
607 <!-- <META CONTENT="..."> Associated information -->
608

609 <!--======= Document Structure =================-->
610

611 <![%HTML.Deprecated [
612 <!ENTITY % html.content "HEAD, BODY, PLAINTEXT?">
613]]>
614 <!ENTITY % html.content "HEAD, BODY">
615

616 <!ELEMENT HTML O O (%html.content)>
617 <!ENTITY % version.attr "VERSION CDATA #FIXED ’%HTML.Version;’">
618

619 <!ATTLIST HTML
620 %version.attr;
621 %SDAFORM; "Book"
622 >
623

624 <!-- <HTML> HTML Document -->

C The HTML2 SGML Declaration
1 <!SGML "ISO 8879:1986"
2 --
3 SGML Declaration for HyperText Markup Language (HTML).
4

TUGboat, Volume 16 (1995), No. 2 132

5 --
6

7 CHARSET
8 BASESET "ISO 646:1983//CHARSET
9 International Reference Version
10 (IRV)//ESC 2/5 4/0"
11 DESCSET 0 9 UNUSED
12 9 2 9
13 11 2 UNUSED
14 13 1 13
15 14 18 UNUSED
16 32 95 32
17 127 1 UNUSED
18 BASESET "ISO Registration Number 100//CHARSET
19 ECMA-94 Right Part of
20 Latin Alphabet Nr. 1//ESC 2/13 4/1"
21

22 DESCSET 128 32 UNUSED
23 160 96 32
24

25 CAPACITY SGMLREF
26 TOTALCAP 150000
27 GRPCAP 150000
28

29 SCOPE DOCUMENT
30 SYNTAX
31 SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 127
33 BASESET "ISO 646:1983//CHARSET
34 International Reference Version
35 (IRV)//ESC 2/5 4/0"
36 DESCSET 0 128 0
37 FUNCTION
38 RE 13
39 RS 10
40 SPACE 32
41 TAB SEPCHAR 9
42

43

44 NAMING LCNMSTRT ""
45 UCNMSTRT ""
46 LCNMCHAR ".-"
47 UCNMCHAR ".-"
48 NAMECASE GENERAL YES
49 ENTITY NO
50 DELIM GENERAL SGMLREF
51 SHORTREF SGMLREF
52 NAMES SGMLREF
53 QUANTITY SGMLREF
54 ATTSPLEN 2100
55 LITLEN 1024
56 NAMELEN 72 -- somewhat arbitrary; taken from
57 internet line length conventions --
58 PILEN 1024
59 TAGLEN 2100
60 GRPGTCNT 150
61 GRPCNT 64
62

63 FEATURES
64 MINIMIZE
65 DATATAG NO
66 OMITTAG YES
67 RANK NO
68 SHORTTAG YES
69 LINK
70 SIMPLE NO
71 IMPLICIT NO
72 EXPLICIT NO
73 OTHER
74 CONCUR NO
75 SUBDOC NO
76 FORMAL YES
77 APPINFO "SDA" -- conforming SGML Document Access application
78 --
79 >
80 <!--
81 $Id: html.decl,v 1.14 1995/02/10 22:20:05 connolly Exp $
82

83 Author: Daniel W. Connolly <connolly@hal.com>
84

TUGboat, Volume 16 (1995), No. 2 133

85 See also: http://www.hal.com/%7Econnolly/html-spec
86 http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html
87 -->

D The SGML Open HTML Catalog File

SGML Open is an industry consortium dedicated to encouraging the adoption of SGML as a standard for
document and data interchange. It proposes a standard way for mapping entity and other external references
in a DTD to file names via a “catalog” file. Below is an example of such a catalog file for HTML.
1 -- catalog: SGML Open style entity catalog for HTML --
2 -- $Id: catalog,v 1.2 1994/11/30 23:45:18 connolly Exp $ --
3

4 -- Ways to refer to Level 2: most general to most specific --
5 PUBLIC "-//IETF//DTD HTML//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html.dtd
6 PUBLIC "-//IETF//DTD HTML 2.0//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html.dtd
7 PUBLIC "-//IETF//DTD HTML Level 2//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html.dtd
8 PUBLIC "-//IETF//DTD HTML 2.0 Level 2//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html.dtd
9

10 -- Ways to refer to Level 1: most general to most specific --
11 PUBLIC "-//IETF//DTD HTML Level 1//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-1.dtd
12 PUBLIC "-//IETF//DTD HTML 2.0 Level 1//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-1.dtd
13

14 -- Ways to refer to Level 0: most general to most specific --
15 PUBLIC "-//IETF//DTD HTML Level 0//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-0.dtd
16 PUBLIC "-//IETF//DTD HTML 2.0 Level 0//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-0.dtd
17

18

19 -- Ways to refer to Strict Level 2: most general to most specific --
20 PUBLIC "-//IETF//DTD HTML Strict//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-s.dtd
21 PUBLIC "-//IETF//DTD HTML 2.0 Strict//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-s.dtd
22 PUBLIC "-//IETF//DTD HTML Strict Level 2//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-s.dtd
23 PUBLIC "-//IETF//DTD HTML 2.0 Strict Level 2//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-s.dtd
24

25 -- Ways to refer to Strict Level 1: most general to most specific --
26 PUBLIC "-//IETF//DTD HTML Strict Level 1//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-1s.dtd
27 PUBLIC "-//IETF//DTD HTML 2.0 Strict Level 1//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-1s.dtd
28

29 -- Ways to refer to Strict Level 0: most general to most specific --
30 PUBLIC "-//IETF//DTD HTML Strict Level 0//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-0s.dtd
31 PUBLIC "-//IETF//DTD HTML 2.0 Strict Level 0//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-0s.dtd
32

33 -- PUBLIC entity sets --
34 PUBLIC "ISO 8879-1986//ENTITIES Added Latin 1//EN//HTML" /afs/cern.ch/user/j/jsaarela/sgml/dtds/iso-lat1.gml
35 PUBLIC "-//IETF//ENTITIES Added Latin 1 for HTML//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/iso-lat1.gml
36 PUBLIC "-//IETF//ENTITIES icons for HTML//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/htmlicons.gml
37 PUBLIC "-//IETF//ENTITIES Math and Greek for HTML//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/iso-grk1.gml
38

39 -- HTML3 --
40 PUBLIC "-//IETF//DTD HTML 3.0//EN//" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html3.dtd
41

42 -- ISO 12083 --
43 PUBLIC "ISO 12083:1994//DTD Mathematics//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/math.dtd
44 PUBLIC "-//ISO 12083:1994//DTD Mathematics//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/math.dtd
45 PUBLIC "ISO 12083:1994//DTD Book//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/book.dtd
46 PUBLIC "-//ISO 12083:1994//DTD Book//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/book.dtd
47

48 -- DocBook DTD --
49 PUBLIC "-//HaL and O’Reilly//DTD DocBook//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/docbook.2.2.1.dtd
50

51 -- General --
52 PUBLIC "ISO 8879:1986//ENTITIES Publishing//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/iso-pub.gml
53 PUBLIC "ISO 8879:1986//ENTITIES Numeric and Special Graphic//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/iso-num.gml
54

55 SGMLDECL "/afs/cern.ch/user/j/jsaarela/sgml/dtds/html3.decl"

TUGboat, Volume 16 (1995), No. 2 134

E The ISO-Latin1 Entity Set

To have an idea of how character entity sets are defined in practice, below is shown the file corresponding
to Latin1 (standard ISO/IEC 8859-1), available as SGML public entity set ISOlat1 with ISO 8879.
1 <!-- (C) International Organization for Standardization 1986
2 Permission to copy in any form is granted for use with
3 conforming SGML systems and applications as defined in
4 ISO 8879, provided this notice is included in all copies.
5 -->
6 <!-- Character entity set. Typical invocation:
7 <!ENTITY % ISOlat1 PUBLIC
8 "ISO 8879-1986//ENTITIES Added Latin 1//EN">
9 %ISOlat1;
10 -->
11 <!ENTITY aacute SDATA "[aacute]"--=small a, acute accent-->
12 <!ENTITY Aacute SDATA "[Aacute]"--=capital A, acute accent-->
13 <!ENTITY acirc SDATA "[acirc]"--=small a, circumflex accent-->
14 <!ENTITY Acirc SDATA "[Acirc]"--=capital A, circumflex accent-->
15 <!ENTITY agrave SDATA "[agrave]"--=small a, grave accent-->
16 <!ENTITY Agrave SDATA "[Agrave]"--=capital A, grave accent-->
17 <!ENTITY aring SDATA "[aring]"--=small a, ring-->
18 <!ENTITY Aring SDATA "[Aring]"--=capital A, ring-->
19 <!ENTITY atilde SDATA "[atilde]"--=small a, tilde-->
20 <!ENTITY Atilde SDATA "[Atilde]"--=capital A, tilde-->
21 <!ENTITY auml SDATA "[auml]"--=small a, dieresis or umlaut mark-->
22 <!ENTITY Auml SDATA "[Auml]"--=capital A, dieresis or umlaut mark-->
23 <!ENTITY aelig SDATA "[aelig]"--=small ae diphthong (ligature)-->
24 <!ENTITY AElig SDATA "[AElig]"--=capital AE diphthong (ligature)-->
25 <!ENTITY ccedil SDATA "[ccedil]"--=small c, cedilla-->
26 <!ENTITY Ccedil SDATA "[Ccedil]"--=capital C, cedilla-->
27 <!ENTITY eth SDATA "[eth]"--=small eth, Icelandic-->
28 <!ENTITY ETH SDATA "[ETH]"--=capital Eth, Icelandic-->
29 <!ENTITY eacute SDATA "[eacute]"--=small e, acute accent-->
30 <!ENTITY Eacute SDATA "[Eacute]"--=capital E, acute accent-->
31 <!ENTITY ecirc SDATA "[ecirc]"--=small e, circumflex accent-->
32 <!ENTITY Ecirc SDATA "[Ecirc]"--=capital E, circumflex accent-->
33 <!ENTITY egrave SDATA "[egrave]"--=small e, grave accent-->
34 <!ENTITY Egrave SDATA "[Egrave]"--=capital E, grave accent-->
35 <!ENTITY euml SDATA "[euml]"--=small e, dieresis or umlaut mark-->
36 <!ENTITY Euml SDATA "[Euml]"--=capital E, dieresis or umlaut mark-->
37 <!ENTITY iacute SDATA "[iacute]"--=small i, acute accent-->
38 <!ENTITY Iacute SDATA "[Iacute]"--=capital I, acute accent-->
39 <!ENTITY icirc SDATA "[icirc]"--=small i, circumflex accent-->
40 <!ENTITY Icirc SDATA "[Icirc]"--=capital I, circumflex accent-->
41 <!ENTITY igrave SDATA "[igrave]"--=small i, grave accent-->
42 <!ENTITY Igrave SDATA "[Igrave]"--=capital I, grave accent-->
43 <!ENTITY iuml SDATA "[iuml]"--=small i, dieresis or umlaut mark-->
44 <!ENTITY Iuml SDATA "[Iuml]"--=capital I, dieresis or umlaut mark-->
45 <!ENTITY ntilde SDATA "[ntilde]"--=small n, tilde-->
46 <!ENTITY Ntilde SDATA "[Ntilde]"--=capital N, tilde-->
47 <!ENTITY oacute SDATA "[oacute]"--=small o, acute accent-->
48 <!ENTITY Oacute SDATA "[Oacute]"--=capital O, acute accent-->
49 <!ENTITY ocirc SDATA "[ocirc]"--=small o, circumflex accent-->
50 <!ENTITY Ocirc SDATA "[Ocirc]"--=capital O, circumflex accent-->
51 <!ENTITY ograve SDATA "[ograve]"--=small o, grave accent-->
52 <!ENTITY Ograve SDATA "[Ograve]"--=capital O, grave accent-->
53 <!ENTITY oslash SDATA "[oslash]"--=small o, slash-->
54 <!ENTITY Oslash SDATA "[Oslash]"--=capital O, slash-->
55 <!ENTITY otilde SDATA "[otilde]"--=small o, tilde-->
56 <!ENTITY Otilde SDATA "[Otilde]"--=capital O, tilde-->
57 <!ENTITY ouml SDATA "[ouml]"--=small o, dieresis or umlaut mark-->
58 <!ENTITY Ouml SDATA "[Ouml]"--=capital O, dieresis or umlaut mark-->
59 <!ENTITY szlig SDATA "[szlig]"--=small sharp s, German (sz ligature)-->
60 <!ENTITY thorn SDATA "[thorn]"--=small thorn, Icelandic-->
61 <!ENTITY THORN SDATA "[THORN]"--=capital THORN, Icelandic-->
62 <!ENTITY uacute SDATA "[uacute]"--=small u, acute accent-->
63 <!ENTITY Uacute SDATA "[Uacute]"--=capital U, acute accent-->
64 <!ENTITY ucirc SDATA "[ucirc]"--=small u, circumflex accent-->
65 <!ENTITY Ucirc SDATA "[Ucirc]"--=capital U, circumflex accent-->
66 <!ENTITY ugrave SDATA "[ugrave]"--=small u, grave accent-->
67 <!ENTITY Ugrave SDATA "[Ugrave]"--=capital U, grave accent-->
68 <!ENTITY uuml SDATA "[uuml]"--=small u, dieresis or umlaut mark-->
69 <!ENTITY Uuml SDATA "[Uuml]"--=capital U, dieresis or umlaut mark-->
70 <!ENTITY yacute SDATA "[yacute]"--=small y, acute accent-->
71 <!ENTITY Yacute SDATA "[Yacute]"--=capital Y, acute accent-->
72 <!ENTITY yuml SDATA "[yuml]"--=small y, dieresis or umlaut mark-->
73

TUGboat, Volume 16 (1995), No. 2 135

F The HTML3 DTD—Tables and Mathematics Parts

This appendix shows those parts of the HTML3 DTD that relate to tables and mathematics.
1 <!--======================= Captions ======================================-->
2

3 <!ELEMENT CAPTION - - (%text;)+ -- table or figure caption -->
4 <!ATTLIST CAPTION
5 %attrs;
6 align (top|bottom|left|right) #IMPLIED
7 >
8 <!--======================= Tables ==-->
9

10 <!--
11 Tables and figures can be aligned in several ways:
12

13 bleedleft flush left with the left (window) border
14 left flush left with the left text margin
15 center centered (text flow is disabled for this mode)
16 right flush right with the right text margin
17 bleedright flush right with the right (window) border
18 justify when applicable the table/figure should stretch
19 to fill space between the text margins
20

21 Note: text will flow around the table or figure if the browser
22 judges there is enough room and the alignment is not centered
23 or justified. The table or figure may itself be part of the
24 text flow around some earlier figure. You can in this case use
25 the clear or needs attributes to move the new table or figure
26 down the page beyond the obstructing earlier figure. Similarly,
27 you can use the clear or needs attributes with other elements
28 such as headers and lists to move them further down the page.
29 -->
30

31 <!ENTITY % block.align
32 "align (bleedleft|left|center|right|bleedright|justify) center">
33

34 <!--
35 The HTML 3.0 table model has been chosen for its simplicity
36 and the ease in writing filters from common DTP packages.
37

38 By default the table is automatically sized according to the
39 cell contents and the current window size. Specifying the columns
40 widths using the colspec attribute allows browsers to start
41 displaying the table without having to wait for last row.
42

43 The colspec attribute is a list of column widths and alignment
44 specifications. The columns are listed from left to right with
45 a capital letter followed by a number, e.g. COLSPEC="L20 C8 L40".
46 The letter is L for left, C for center, R for right alignment of
47 cell contents. J is for justification, when feasible, otherwise
48 this is treated in the same way as L for left alignment.
49 Column entries are delimited by one or more space characters.
50

51 The number specifies the width in em’s, pixels or as a
52 fractional value of the table width, as according to the
53 associated units attribute. This approach is more compact
54 than used with most SGML table models and chosen to simplify
55 hand entry. The width attribute allows you to specify the
56 width of the table in pixels, em units or as a percentage
57 of the space between the current left and right margins.
58

59 To assist with rendering to speech, row and column headers
60 can be given short names using the AXIS attribute. The AXES
61 attribute is used to explicitly specify the row and column
62 names for use with each cell. Otherwise browsers can follow
63 up columns and left along rows (right for some languages)
64 to find the corresponding header cells.
65

66 Table content model: Braille limits the width of tables,
67 placing severe limits on column widths. User agents need
68 to render big cells by moving the content to a note placed
69 before the table. The cell is then rendered as a link to
70 the corresponding note.
71

72 To assist with formatting tables to paged media, authors
73 can differentiate leading and trailing rows that are to
74 be duplicated when splitting tables across page boundaries.
75 The recommended way is to subclass rows with the CLASS attribute
76 For example: <TR CLASS=Header>, <TR CLASS=Footer> are used for
77 header and footer rows. Paged browsers insert footer rows at

TUGboat, Volume 16 (1995), No. 2 136

78 the bottom of the current page and header rows at the top of
79 the new page, followed by the remaining body rows.
80 -->
81

82 <!ELEMENT TABLE - - (CAPTION?, TR*) -- mixed headers and data -->
83 <!ATTLIST TABLE
84 %attrs;
85 %needs; -- for control of text flow --
86 border (border) #IMPLIED -- draw borders --
87 colspec CDATA #IMPLIED -- column widths and alignment --
88 units (em|pixels|relative) em -- units for column widths --
89 width NUMBER #IMPLIED -- absolute or percentage width --
90 %block.align; -- horizontal alignment --
91 nowrap (nowrap) #IMPLIED -- don’t wrap words --
92 >
93

94 <!ENTITY % cell "TH | TD">
95 <!ENTITY % vertical.align "top|middle|bottom|baseline">
96

97 <!--
98 Browsers should tolerate an omission of the first <TR>
99 tag as it is implied by the context. Missing trailing
100 <TR>s implied by rowspans should be ignored.
101

102 The alignment attributes act as defaults for rows
103 overriding the colspec attribute and being in turn
104 overridden by alignment attributes on cell elements.
105 Use valign=baseline when you want to ensure that text
106 in different cells on the same row is aligned on the
107 same baseline regardless of fonts. It only applies
108 when the cells contain a single line of text.
109 -->
110

111 <!ELEMENT TR - O (%cell)* -- row container -->
112 <!ATTLIST TR
113 %attrs;
114 align (left|center|right|justify) #IMPLIED
115 valign (%vertical.align) top -- vertical alignment --
116 nowrap (nowrap) #IMPLIED -- don’t wrap words --
117 >
118

119 <!--
120 Note that table cells can include nested tables.
121 Missing cells are considered to be empty, while
122 missing rows should be ignored, i.e. if a cell
123 spans a row and there are no further TR elements
124 then the implied row should be ignored.
125 -->
126

127 <!ELEMENT (%cell) - O %body.content>
128 <!ATTLIST (%cell)
129 %attrs;
130 colspan NUMBER 1 -- columns spanned --
131 rowspan NUMBER 1 -- rows spanned --
132 align (left|center|right|justify) #IMPLIED
133 valign (%vertical.align) top -- vertical alignment --
134 nowrap (nowrap) #IMPLIED -- don’t wrap words --
135 axis CDATA #IMPLIED -- axis name, defaults to element content --
136 axes CDATA #IMPLIED -- comma separated list of axis names --
137 >
138

139 <!--================ Entities for math symbols ============================-->
140

141 <!-- ISO subset chosen for use with the widely available Adobe math font -->
142

143 <!ENTITY % HTMLmath PUBLIC
144 "-//IETF//ENTITIES Math and Greek for HTML//EN">
145 %HTMLmath;
146

147 <!--======================== Math ==-->
148

149 <!-- Use     etc for greater control of spacing. -->
150

151 <!-- Subscripts and Superscripts
152

153 <SUB> and <SUP> are used for subscripts and superscripts.
154

155 i j
156 X ⁱY^j is X Y
157

TUGboat, Volume 16 (1995), No. 2 137

158 i.e. the space following the X disambiguates the binding.
159 The align attribute can be used for horizontal alignment,
160 e.g. to explicitly place an index above an element:
161 i
162 Xⁱ produces X
163

164 Short references are defined for superscripts, subscripts and boxes
165 to save typing when manually editing HTML math, e.g.
166

167 x^2^ is mapped to x²
168 y_z_ is mapped to y_z
169 {a+b} is mapped to <box>a + b</box>
170

171 Note that these only apply within the MATH element and can’t be
172 used in normal text!
173 -->
174 <!ENTITY REF1 STARTTAG "SUP">
175 <!ENTITY REF2 ENDTAG "SUP">
176 <!ENTITY REF3 STARTTAG "SUB">
177 <!ENTITY REF4 ENDTAG "SUB">
178 <!ENTITY REF5 STARTTAG "BOX">
179 <!ENTITY REF6 ENDTAG "BOX">
180

181 <!USEMAP MAP1 MATH>
182 <!USEMAP MAP2 SUP>
183 <!USEMAP MAP3 SUB>
184 <!USEMAP MAP4 BOX>
185

186 <!SHORTREF MAP1 "^" REF1
187 "_" REF3
188 "{" REF5 >
189

190 <!SHORTREF MAP2 "^" REF2
191 "_" REF3
192 "{" REF5 >
193

194 <!SHORTREF MAP3 "_" REF4
195 "^" REF1
196 "{" REF5 >
197

198 <!SHORTREF MAP4 "}" REF6
199 "^" REF1
200 "_" REF3
201 "{" REF5 >
202

203 <!--
204 The inclusion of %math and exclusion of %notmath is used here
205 to alter the content model for the B, SUB and SUP elements,
206 to limit them to formulae rather than general text elements.
207 -->
208

209 <!ENTITY % mathvec "VEC|BAR|DOT|DDOT|HAT|TILDE" -- common accents -->
210 <!ENTITY % mathface "B|T|BT" -- control of font face -->
211 <!ENTITY % math "BOX|ABOVE|BELOW|%mathvec|ROOT|SQRT|ARRAY|SUB|SUP|%mathface">
212 <!ENTITY % formula "#PCDATA|%math">
213

214 <!ELEMENT MATH - - (#PCDATA)* -(%notmath) +(%math)>
215 <!ATTLIST MATH
216 id ID #IMPLIED
217 model CDATA #IMPLIED>
218

219 <!-- The BOX element acts as brackets. Delimiters are optional and
220 stretch to match the height of the box. The OVER element is used
221 when you want a line between numerator and denominator. This line
222 is suppressed with the alternative ATOP element. CHOOSE acts like
223 ATOP but adds enclosing round brackets as a convenience for binomial
224 coefficients. Note the use of { and } as shorthand for <BOX> and
225 </BOX> respectively:
226

227 1 + X
228 {1 + X<OVER>Y} is _______
229 Y
230

231 a + b
232 {a + b<ATOP>c - d} is
233 c - d
234

235 The delimiters are represented using the LEFT and RIGHT
236 elements as in:
237

TUGboat, Volume 16 (1995), No. 2 138

238 {[<LEFT>x + y<RIGHT>]} is [x + y]
239 {(<LEFT>a<RIGHT>]} is (a]
240 {||<LEFT>a<RIGHT>||} is || a ||
241

242 Use { and } for "{" and "}" respectively as
243 these symbols are used as shorthand for BOX, e.g.
244

245 {{<LEFT>a+b<RIGHT>}} is {a+b}
246

247 You can stretch definite integrals to match the integrand, e.g.
248

249 {∫_a^b<LEFT>{f(x)<over>1+x} dx}
250

251 b
252 / f(x)
253 | ----- dx
254 / 1 + x
255 a
256

257 Note the complex content model for BOX is a work around
258 for the absence of support for infix operators in SGML.
259

260 You can get oversize delimiters with the SIZE attribute,
261 for example <BOX SIZE=large>(<LEFT>...<RIGHT>)</BOX>
262

263 Note that the names of common functions are recognized
264 by the parser without the need to use "&" and ";" around
265 them, e.g. int, sum, sin, cos, tan, ...
266 -->
267

268 <!ELEMENT BOX - - ((%formula)*, (LEFT, (%formula)*)?,
269 ((OVER|ATOP|CHOOSE), (%formula)*)?,
270 (RIGHT, (%formula)*)?)>
271 <!ATTLIST BOX
272 size (normal|medium|large|huge) normal -- oversize delims -->
273

274 <!ELEMENT (OVER|ATOP|CHOOSE|LEFT|RIGHT) - O EMPTY>
275

276 <!-- Horizontal line drawn ABOVE contents
277 The symbol attribute allows authors to supply
278 an entity name for an accent, arrow symbol etc.
279 Generalisation of LaTeX’s overline command.
280 -->
281

282 <!ELEMENT ABOVE - - (%formula)+>
283 <!ATTLIST ABOVE symbol ENTITY #IMPLIED>
284

285 <!-- Horizontal line drawn BELOW contents
286 The symbol attribute allows authors to
287 supply an entity name for an arrow symbol etc.
288 Generalisation of LaTeX’s underline command.
289 -->
290

291 <!ELEMENT BELOW - - (%formula)+>
292 <!ATTLIST BELOW symbol ENTITY #IMPLIED>
293

294 <!-- Convenience tags for common accents:
295 vec, bar, dot, ddot, hat and tilde
296 -->
297

298 <!ELEMENT (%mathvec) - - (%formula)+>
299

300 <!--
301 T and BT are used to designate terms which should
302 be rendered in an upright font (& bold face for BT)
303 -->
304

305 <!ELEMENT (T|BT) - - (%formula)+>
306 <!ATTLIST (T|BT) class NAMES #IMPLIED>
307

308 <!-- Roots e.g. <ROOT>3<OF>1+x</ROOT> -->
309

310 <!ELEMENT ROOT - - ((%formula)+, OF, (%formula)+)>
311 <!ELEMENT OF - O (%formula)* -- what the root applies to -->
312

313 <!ELEMENT SQRT - - (%formula)* -- square root convenience tag -->
314

315 <!-- LaTeX like arrays. The COLDEF attribute specifies
316 a single capital letter for each column determining
317 how the column should be aligned, e.g. coldef="CCC"

TUGboat, Volume 16 (1995), No. 2 139

318

319 "L" left
320 "C" center
321 "R" right
322

323 An optional separator letter can occur between columns
324 and should be one of + - or =, e.g. "C+C+C+C=C".
325 Whitespace within coldef is ignored. By default, the
326 columns are all centered.
327

328 The ALIGN attribute alters the vertical position of the
329 array as compared with preceding and following expressions.
330

331 Use LDELIM and RDELIM attributes for delimiter entities.
332 When the LABELS attribute is present, the array is
333 displayed with the first row and the first column as
334 labels displaced from the other elements. In this case,
335 the first element of the first row should normally be
336 left blank.
337

338 Use &vdots; &cdots; and &ddots; for vertical, horizontal
339 and diagonal ellipsis dots. Use &dotfill; to fill an array
340 cell with horizontal dots (e.g. for a full row).
341 Note &ldots; places the dots on the baseline, while &cdots;
342 places them higher up.
343 -->
344

345 <!ELEMENT ARRAY - - (ROW)+>
346 <!ATTLIST ARRAY
347 align (top|middle|bottom) middle -- vertical alignment --
348 coldef CDATA #IMPLIED -- column alignment and separator --
349 ldelim NAMES #IMPLIED -- stretchy left delimiter --
350 rdelim NAMES #IMPLIED -- stretchy right delimiter --
351 labels (labels) #IMPLIED -- TeX’s \bordermatrix style -->
352

353 <!ELEMENT ROW - O (ITEM)*>
354 <!ELEMENT ITEM - O (%formula)*>
355 <!ATTLIST ITEM
356 align CDATA #IMPLIED -- override coldef alignment --
357 colspan NUMBER 1 -- merge columns as per TABLE --
358 rowspan NUMBER 1 -- merge rows as per TABLE -->

G The ISO/IEC 12083 Mathematics DTD

This appendix shows the mathematics DTD math.dtd of the ISO/IEC 12083 DTD.
1 <!-- This is the ISO12083:1994 document type definition for Mathematics -->
2

3 <!-- Copyright: (C) International Organization for Standardization 1994.
4 Permission to copy in any form is granted for use with conforming SGML
5 systems and applications as defined in ISO 8879:1986, provided this notice
6 is included in all copies. -->
7

8 <!-- === -->
9 <!-- PUBLIC DOCUMENT TYPE DEFINITION SUBSET -->
10 <!-- === -->
11

12 <!--
13 This DTD is included by the Book and Article DTDs of ISO12083:1994.
14 As it is a separate entity it may also be included by other DTDs.
15

16 Since there is no consensus on how to describe the semantics of formulas,
17 it only describes their presentational or visual structure. Since, however,
18 there is a strong need for such description (especially within the
19 print-disabled community), it is recommended that the following
20 declaration be added where there is a requirement for a consistent,
21 standardized mechanism to carry semantic meanings for the SGML
22 elements declared throughout this part of this International Standard:
23

24 <!ENTITY % SDAMAP "SDAMAP NAME #IMPLIED" >
25

26 and that the attribute represented by %SDAMAP; be made available for
27 all elements which may require a semantic association, or, in the simpler
28 case, be added to all elements in this DTD. -->

TUGboat, Volume 16 (1995), No. 2 140

29

30

31

32 <!-- === -->
33 <!-- Parameter entities describing the possible contents of formulas. -->
34 <!-- === -->
35

36 <!ENTITY % p.trans "bold|italic|sansser|typewrit|smallcap|roman"
37 -- character transformations -->
38 <!ENTITY % m.math "fraction|subform|sup|inf|top|bottom|middle|fence|mark|
39 post|box|overline|undrline|radical|array|hspace|vspace|break|markref|
40 #PCDATA" -- mathematical formula elements -->
41

42

43

44 <!-- === -->
45 <!-- Accessible Document and other Parameter Entities
46 If this DTD is not imbedded by a ISO12083:1994 Book or Article,
47 the comment delimiters should be removed. -->
48 <!-- === -->
49

50 <!--ENTITY % SDAFORM "SDAFORM CDATA #FIXED" -->
51 <!--ENTITY % SDARULE "SDARULE CDATA #FIXED" -->
52 <!--ENTITY % SDAPREF "SDAPREF CDATA #FIXED" -->
53 <!--ENTITY % SDASUFF "SDASUFF CDATA #FIXED" -->
54 <!--ENTITY % SDASUSP "SDASUSP NAME #FIXED" -->
55

56

57

58 <!-- === -->
59 <!-- This entity is for an attribute to indicate which alphabet is
60 used in the element (formula, dformula). You may change this to
61 a notation attribute, where the notation could describe a
62 keyboard mapping. Please modify the set as necessary.
63 If this DTD is not imbedded by a ISO12083:1994 Book or Article,
64 the comment delimiters should be removed. -->
65 <!-- === -->
66

67 <!-- ENTITY % a.types "(latin|greek|cyrillic|hebrew|kanji) latin" -->
68

69

70 <!-- === -->
71 <!-- character transformations -->
72 <!-- === -->
73

74 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
75 <!ELEMENT bold - - (%p.trans;|#PCDATA)* -- bold -->
76 <!ELEMENT italic - - (%p.trans;|#PCDATA)* -- italic -->
77 <!ELEMENT sansser - - (%p.trans;|#PCDATA)* -- sans serif -->
78 <!ELEMENT typewrit - - (%p.trans;|#PCDATA)* -- typewriter -->
79 <!ELEMENT smallcap - - (%p.trans;|#PCDATA)* -- small caps -->
80 <!ELEMENT roman - - (%p.trans;|#PCDATA)* -- roman -->
81

82

83 <!-- === -->
84 <!-- Fractions -->
85 <!-- === -->
86

87 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
88 <!ELEMENT fraction - - (num, den) -- fraction -->
89 <!ELEMENT num - - (%p.trans;|%m.math;)* -- numerator -->
90 <!ELEMENT den - - (%p.trans;|%m.math;)* -- denominator -->
91 <!-- ELEMENT NAME VALUE DEFAULT -->
92 <!ATTLIST fraction shape (built|case) #IMPLIED
93 align (left|center|right)
94 center
95 style (single|double|triple|dash|dot|bold|blank|none)
96 single >
97

98

99

100 <!-- === -->
101 <!-- Superiors, inferiors, accents, over and under -->
102 <!-- === -->
103

104 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
105 <!ELEMENT sup - - (%p.trans;|%m.math;)* -- superior -->
106 <!ELEMENT inf - - (%p.trans;|%m.math;)* -- inferior -->
107 <!-- ELEMENT NAME VALUE DEFAULT -->
108 <!ATTLIST sup location (pre|post) post

TUGboat, Volume 16 (1995), No. 2 141

109 arrange (compact|stagger)
110 compact >
111 <!ATTLIST inf location (pre|post) post
112 arrange (compact|stagger) compact >
113

114

115 <!-- === -->
116 <!-- Embellishments -->
117 <!-- === -->
118

119 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
120 <!ELEMENT top - - (%p.trans;|%m.math;)*
121 -- top embellishment -->
122 <!ELEMENT middle - - (%p.trans;|%m.math;)*
123 -- middle, or "through" -->
124 <!ELEMENT bottom - - (%p.trans;|%m.math;)*
125 -- bottom embellishment -->
126 <!-- ELEMENT NAME VALUE DEFAULT -->
127 <!ATTLIST top align (left|center|right)
128 center
129 sizeid ID #IMPLIED
130 -- to pass on the height -->
131 <!ATTLIST middle align (left|center|right)
132 center
133 sizeid ID #IMPLIED
134 -- to pass on the height -->
135 <!ATTLIST bottom align (left|center|right)
136 center
137 sizeid ID #IMPLIED
138 -- to pass on the height -->
139

140

141 <!-- The subform element is defined later -->
142

143

144

145 <!-- === -->
146 <!-- Fences, boxes, overlines and underlines -->
147 <!-- === -->
148

149 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
150 <!ELEMENT mark - O EMPTY >
151 <!ELEMENT fence - - (%p.trans;|%m.math;)* -- fence -->
152 <!ELEMENT post - O EMPTY -- post -->
153 <!ELEMENT box - - (%p.trans;|%m.math;)* -- box -->
154 <!ELEMENT overline - - (%p.trans;|%m.math;)* -- overline -->
155 <!ELEMENT undrline - - (%p.trans;|%m.math;)* -- underline -->
156 <!-- ELEMENT NAME VALUE DEFAULT -->
157 <!ATTLIST mark id ID #REQUIRED >
158 <!ATTLIST fence lpost CDATA "|" -- left post --
159 rpost CDATA "|" -- right post --
160 style (single|double|triple|dash|dot|bold|blank|none)
161 single
162 sizeid ID #IMPLIED
163 -- to pass on the height --
164 sizeref IDREF #IMPLIED
165 -- to pick up a height -->
166 <!ATTLIST post post CDATA "|"
167 style (single|double|triple|dash|dot|bold|blank|none)
168 single
169 sizeid ID #IMPLIED
170 -- to pass on the height --
171 sizeref IDREF #IMPLIED
172 -- to pick up a height -->
173 <!ATTLIST box style (single|double|triple|dash|dot|bold|blank|none)
174 single >
175 <!ATTLIST overline type CDATA "-" -- embellishment type --
176 style (single|double|triple|dash|dot|bold|blank|none)
177 single
178 start IDREF #IMPLIED
179 end IDREF #IMPLIED >
180

181 <!ATTLIST undrline type CDATA "_" -- embellishment
182 type --
183 style (single|double|triple|dash|dot|bold|blank|none)
184 single
185 start IDREF #IMPLIED
186 end IDREF #IMPLIED >
187

188

TUGboat, Volume 16 (1995), No. 2 142

189 <!-- === -->
190 <!-- Labelled arrows -->
191 <!-- === -->
192

193 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
194 <!ELEMENT subform - - (%p.trans;|%m.math;)* -- base element -->
195 <!-- ELEMENT NAME VALUE DEFAULT -->
196 <!ATTLIST subform sizeid ID #IMPLIED
197 -- to pass on a width, or
198 a height --
199 sizeref IDREF #IMPLIED
200 -- to pick up a width -->
201

202

203 <!-- === -->
204 <!-- Roots -->
205 <!-- === -->
206

207 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
208 <!ELEMENT radical - - (radix?, radicand) -- root or radical -->
209 <!ELEMENT radix - - (%p.trans;|%m.math;)* -- radix -->
210 <!ELEMENT radicand O O (%p.trans;|%m.math;)* -- radicand -->
211

212

213 <!-- === -->
214 <!-- Arrays -->
215 <!-- === -->
216

217 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
218 <!ELEMENT array - - (arrayrow+|arraycol+) -- array -->
219 <!ELEMENT arrayrow - O (arraycel+) -- array row -->
220 <!ELEMENT arraycol - O (arraycel+) -- array column -->
221 <!ELEMENT arraycel - O (%p.trans;|%m.math;)* -- array cell -->
222

223 <!-- ELEMENT NAME VALUE DEFAULT -->
224 <!ATTLIST array rowalign NMTOKENS #IMPLIED -- row alignment --
225 colalign NMTOKENS #IMPLIED -- column
226 alignment --
227 rowsep NMTOKENS #IMPLIED -- row separators --
228 colsep NMTOKENS #IMPLIED -- column
229 separators -->
230

231

232 <!-- === -->
233 <!-- Spacing -->
234 <!-- === -->
235

236 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
237 <!ELEMENT hspace - O EMPTY -- horizontal spacing -->
238 <!ELEMENT vspace - O EMPTY -- vertical spacing -->
239 <!ELEMENT break - O EMPTY -- turn line, break -->
240 <!ELEMENT markref - O EMPTY -- hmark reference -->
241

242 <!-- ELEMENT NAME VALUE DEFAULT -->
243 <!ATTLIST hspace space CDATA "1 mm"
244 -- units as required -->
245 <!ATTLIST vspace space CDATA "1 mm"
246 -- units as required -->
247 <!ATTLIST markref refid IDREF #REQUIRED
248 direct (hor|ver) hor
249 -- horizontal or vertical -->
250

251

252 <!-- === -->
253 <!-- the formula elements -->
254 <!-- === -->
255

256 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
257 <!ELEMENT formula - - (%p.trans;|%m.math;)*
258 -- in-line formula -->
259 <!ELEMENT dformula - - (%p.trans;|%m.math;)*
260 -- display formula -->
261 <!ELEMENT dformgrp - - (formula|dformula)+
262 -- display-formula group -->
263

264 <!-- ELEMENT NAME VALUE DEFAULT -->
265 <!ATTLIST formula id ID #IMPLIED
266 alphabet %a.types;
267 -- %SDAPREF; "<?SDATRANS>Inline formula" --
268 -- %SDASUSP; "SUSPEND" --

TUGboat, Volume 16 (1995), No. 2 143

269 >
270 <!ATTLIST dformula id ID #IMPLIED
271 num CDATA #IMPLIED
272 align (left|center|right)
273 center
274 alphabet %a.types;
275 -- %SDAPREF; "<?SDATRANS>Display formula" --
276 -- %SDASUSP; "SUSPEND" --
277 >
278 <!ATTLIST dformgrp id ID #IMPLIED
279 num CDATA #IMPLIED
280 align (left|center|right)
281 center
282 -- %SDAPREF; "<?SDATRANS>Display formula group" --
283

284 >

H Example of a Conversion of the DocBook DTD to HTML3

H.1 The original document marked up in the Doc-Book DTD

The listing below is part of the manual describing the Doc-Book DTD and is tagged according to that same
Doc-Book DTD (V2.2.1).
<sect1><title>How to Get the DocBook \DTD{} Online</title>

<para>

You can find the DocBook \DTD{} and its documentation online in

the Davenport archive (<filename>/pub/davenport/docbook</filename>)

at <filename>ftp.ora.com</filename> (198.112.208.13).

</para>

<para>

This sample session shows how to retrieve the DTD and its documentation:

<screen>

<!-- could mark up the prompt in next line with computeroutput -->

<systemitem class="prompt">%</><userinput>ftp ftp.ora.com</>

<computeroutput>Connected to amber.ora.com.</>

<computeroutput>220 amber FTP server (Version wu-2.4(1) Fri Apr 15 14:14:30 EDT 1994) ready.</>

<computeroutput>Name (ftp.ora.com:terry): </><userinput>anonymous</>

<computeroutput>331 Guest login ok, send your complete e-mail address as password.</>

<computeroutput>Password: </><lineannotation>← type e-mail address</>

<systemitem class="prompt">ftp></><userinput>cd pub/davenport/docbook</>

</screen>

The DocBook DTD and related \ASCII\ files are in a file named

<filename>docbook.N.shar</>, where <emphasis>N</>

is the current revision number:

<screen>

<systemitem class="prompt">ftp></><userinput>get docbook.2.2.1.shar</>

</screen>

Most of these files also exist separately and may be ftp’d individually.

</para>

<para>

The <command>get</> command will put this \ASCII\ shar file

on your system. You must later unpack it on your system:

<screen>

<userinput>sh docbook.2.2.1.shar</>

</screen>

</para>

TUGboat, Volume 16 (1995), No. 2 144

H.2 ESIS representation of the source document

The following is the ESIS representation of the same document produced by nsgmls.

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ALABEL IMPLIED

ARENDERAS IMPLIED

(SECT1

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

APAGENUM IMPLIED

(TITLE

-How to Get the DocBook DTD

Online

)TITLE

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(PARA

-You can find the DocBook DTD

and its documentation \nonline

in the Davenport archive \n(

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

-/pub/davenport/docbook

)FILENAME

-) at \n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

-ftp.ora.com

)FILENAME

- (198.112.208.13).

)PARA

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(PARA

-This sample session shows how

to retrieve the DTD\nand its

documentation:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

sline ends and leading white

space must be preserved in

output

NLINESPECIFIC

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-%

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-ftp ftp.ora.com

)USERINPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Connected to amber.ora.com.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-220 amber FTP server (Version

wu-2.4(1) Fri Apr 15 14:14:30

EDT 1994) ready.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Name (ftp.ora.com:terry):

)COMPUTEROUTPUT

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-anonymous

)USERINPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-331 Guest login ok, send your

complete e-mail address as

password.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Password:

)COMPUTEROUTPUT

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(LINEANNOTATION

-\|[larr]\| type e-mail

address

)LINEANNOTATION

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-ftp\|[gt]\|

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-cd pub/davenport/docbook

)USERINPUT

)SCREEN

-\nThe DocBook DTD and related

ASCII files are in\na file

named

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

-docbook.N.shar

)FILENAME

-, where

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(EMPHASIS

-N

)EMPHASIS

-\nis the current revision

number:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-ftp\|[gt]\|

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-get docbook.2.2.1.shar

)USERINPUT

)SCREEN

-\nMost of these files\nalso

exist separately and may be

ftp’d individually.

)PARA

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

TUGboat, Volume 16 (1995), No. 2 145

(PARA

-The

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMMAND

-get

)COMMAND

- command will put this ASCII

shar \nfile on your system.

You must later unpack \nit on

your system:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-sh docbook.2.2.1.shar

)USERINPUT

)SCREEN

)PARA

H.3 HTML3 output

The following presents the final HTML3 output resulting from the translation process.
<HTML>

<HEAD>

<TITLE>How to Get the DocBook DTD Online</TITLE>

</HEAD>

<BODY>

<H1>How to Get the DocBook DTD Online</H1>

You can find the DocBook DTD and its documentation online in the

Davenport archive (/pub/davenport/docbook) at ftp.ora.com

(198.112.208.13).<P>This sample session shows how to retrieve

the DTD and its documentation:

<pre>

%<i>ftp ftp.ora.com</i>

Connected to amber.ora.com.

220 amber FTP server (Version wu-2.4(1) Fri Apr 15 14:14:30 EDT 1994) ready.

Name (ftp.ora.com:terry): <i>anonymous</i>

331 Guest login ok, send your complete e-mail address as password.

Password: type e-mail address

ftp><i>cd pub/davenport/docbook</i>

</pre>

The DocBook DTD and related ASCII files are in a file named docbook.N.shar,

where N is the current revision number:

<pre>

ftp><i>get docbook.2.2.1.shar</i>

</pre>

Most of these files also exist separately and may be ftp’d individually.

<P>

The get command will put this ASCII shar file on your system.

You must later unpack it on your system:

<pre>

<i>sh docbook.2.2.1.shar</i>

</pre>

</BODY>

</HTML>

TUGboat, Volume 16 (1995), No. 2 146

HTML& TEX: Making them sweat
∗

Peter Flynn

Abstract

HTML is often criticised for its presentation-oriented
conception. But it does contain sufficient structural
information for many everyday purposes and this
has led to its development into a more stable form.
Future platforms for the World Wide Web may sup-
port other applications of SGML, and the present
climate of popularity of the Web is a suitable oppor-
tunity for consolidation of the more stable features.
TEX is pre-eminently stable and provides an ideal
companion for the process of translating HTML into
print.

1 Markup

HTML, a HyperText Markup Language [1], is the
language used to structure text files for use in the
World Wide Web, an Internet-based hypertext and
multimedia distributed information system. HTML
is an application of SGML, the Standard Generalized
Markup Language, ISO 8879 [3]. Contrary to pop-
ular belief, neither SGML nor HTML is new: SGML
gained International Standard status in 1986 and
HTML has been in use since 1989.

SGML is a specification for writing descriptions
of text structure. In itself SGML does not do any-
thing, any more than, say, Kernighan and Ritchie’s
specification of the C language [4] does anything:
users and implementors have to do something with
it. It has been slow to achieve popularity, partly be-
cause writing effective Document Type Descriptions
(DTDs) is a non-trivial task, and partly because soft-
ware to make full use of its facilities has traditionally
been expensive. It was therefore seen as a ‘big busi-
ness only’ solution to text-handling problems until
the popularisation of HTML owing to increased use
of the World Wide Web. Since 1992 the software
position has also improved considerably—an exten-
sive list of tools is maintained by Steve Pepper at
UIO [6].

2 The World Wide Web

WWW (W3 or just ‘the Web’) is a client-server ap-
plication on the Internet. Users’ clients (‘browsers’)
request files from servers which are run by informa-
tion providers, and display them using the HTML
markup embedded in the text to render the for-
matting. Some of the markup can provide file-

∗ This paper is based on one published in Baskerville, vol.
5, no. 2, March 1995

names for the retrieval of graphics as illustrations,
or act as anchor-points for links to other documents,
which can be further text, or graphics, sound or
motion video. This latter capability gives the Web
a hypertext and multimedia dimension, and allows
crosslinking of files almost anywhere on the Internet.
Because the HTML files are plain text with

embedded plain text markup, in traditional SGML
manner, they are immediately portable between ar-
bitrary makes and models of computer or operating
system, making the Web one of the first genuinely
portable, multiplatform applications of its kind.

2.1 HTML Markup

An example of simple markup and an appropriate
rendering is illustrated in Figure 1. The conventions
of SGML’s Reference Concrete Syntax [3] are used,
so markup ‘tags’ are enclosed in angle brackets (less-
than and greater-than signs), in pairs surrounding
the text to which they refer, with the end-tag being
preceded by a slash or solidus immediately after its
opening angle bracket.
The rendering is left almost entirely to the

user’s client program, as there are almost no facili-
ties within HTML for the expression of appearance
apart from a minimal indication of font change (ital-
ics, boldface and typewriter-type). Indeed, most re-
cent browsers allow the user arbitrary control over
which fonts, sizes and colours should be used to in-
stantiate the tagged elements of text.

2.2 Implementation

HTML was devised by non-SGML-experts who saw
it as an ideal mechanism for implementing plain-
text portability while preserving sufficient structural
information for online rendering: one of the classi-
cal reasons for adopting SGML. It is now becoming
standardised by an IETF (Internet Engineering Task
Force) Working Group who have produced a draft
specification in the form of a formal DTD [1]. Be-
cause of the need to allow this specification to model
existing ‘legacy’ documents (most of which would
be regarded as fragments rather than document in-
stances), as well as provide for more robust usage,
the current DTD has two modes: a non-rigorous
‘deprecated’ mode for describing the legacy and a
‘recommended’ mode for creating and maintaining
files in conventional form.

HTML is sufficient for minimal documents, pro-
viding the structural and visual features shown in
Figure 2. A future version (3.0) is being developed
by the IETF Working Group, which will allow the
description of mathematics, tables and some addi-
tional visual- and content-oriented features.

TUGboat, Volume 16 (1995), No. 2 147

<html>

<head>

<title>Fleet Street Eats</title>

</head>

<body>

<h1>Where to eat in Fleet Street</h1>

<p>There are many restaurants in the City, from

fast-food joints to <i>haute cuisine</i>.</p>

...

Document title: Fleet Street Eats

Where to eat in Fleet Street

There are many restaurants in the City, from fast-food joints to haute cuisine.
. . .

Figure 1: Example of HTML markup and possible rendering

Structural

html document type
head document header
title document title
base root address for incomplete

hypertext references
meta specification of mapped

headers
link relationship of document to

outside world
isindex specifies a processable

document which can take an
argument

body contains all the text
h1...h6 six levels of section heading
p paragraph
pre preformatted text
blockquote block quotations
address addresses
ol ordered lists
li list item
ul unordered lists
li list item
menu menu lists
li list item
dir directory lists
li list item
dl definition lists
dt definition list term
dd definition list description

Descriptive

a hypertext link anchor-point
cite citations
code computer code
em emphasis
kbd keyboard input
samp sample of input
strong strong emphasis
var program variable

Form-fill

form contains a form
textarea free-text entry
input input field (text, checkbox,

radio button, etc.)
select drop-down menu
option menu item

Visual

b bold type
br forced line-break
hr horizontal rule
i italics
tt typewriter type
img illustrations

Obsolete

listing use pre
xmp use pre
plaintext use pre
nextid editing control
dfn definition of term

Figure 2: Markup available in HTML 2.0 (indentation implies the item must occur within the domain of
its [non-indented] parent)

TUGboat, Volume 16 (1995), No. 2 148

Despite the forthcoming improvements, HTML
is likely to be joined in the Web by other DTDs.
One well-known SGML software house already has
a prototype browser which can handle instances of
arbitrary DTDs, given sufficient formatting infor-
mation. This would make it possible to use the
Web for transmission and display of documents us-
ing other SGML applications such as CALS (US
Military), DocBook (O’Reilly/Davenport), the TEI
(Text Encoding Initiative) and corporation-specific
DTDs (such as those of Elsevier).
The next version of the DTD, HTML3, contains

specifications for mathematics, tables and some ad-
ditional elements for content-descriptive material, as
well as a few extra visual keys such as an ALIGN
attribute for positional specification. Most of this
work is being implemented on a test basis in the
Arena browser (Unix/X only at the moment) at
CERN.
Although Web browsers can reference files by

any of several methods (HTTP, the Web’s ‘native’
protocol; FTP; Telnet; Gopher; WAIS; and others)
by using the URL (Uniform Resource Locator: a
form of file address on the Internet), the most pow-
erful tool lies at the server end: the ability of servers
to execute scripts, provided their output is HTML.
A trivial example is shown in Figure 3, which re-
turns the date and time.
Such a script can contain arbitrary processing,

including the invocation of command-line programs
and the passing of arguments. Data can be gath-
ered from the user either with the <isindex> tag
in the header, which causes a single-line data-entry
field to appear, or with the more complex <form> el-
ement with scrollable text boxes, checkboxes, radio
buttons and menus. In this manner, complete front-
ends can be manufactured to drive data-retrieval en-
gines of any kind, provided that they operate from
the command line, and that the script returns their
output in HTML. The user (and the browser) re-
main unaware that the result has been generated
dynamically.

2.3 Presentation

HTML is criticised for being ‘presentation-oriented’,
but as can be seen from Figure 2, the overwhelm-
ing majority of the markup is structural or content-
descriptive. However, this does not prevent the
naive or sophisticated author from using or abus-
ing the markup in attempts to coerce browsers into
displaying a specific visual instantiation, primarily
because none of the browsers (with the partial ex-
ceptions of Arena and w3-mode for GNU Emacs) per-
forms any form of validation parsing, and will thus

display any random assemblage of tags masquerad-
ing as HTML. This behaviour has misled even some
eminent authorities to dismiss HTML as ‘not being
SGML’.
Therefore a conflict exists between the SGML

purist on the one side, who decries any attempt at
encoding visual appearance; and the uninformed au-
thor on the other, who has been unintentionally mis-
led into thinking that HTML and the Web constitute
some kind of glorified networked DTP system.
The purists are few in number but eloquently

vocal: however, in general, they acknowledge that
visual keys can be included if they are carefully
coded. A perceived requirement to allow an au-
thor to recommend the centering of an element is
thus achieved in HTML3 by the align="center"
attribute, rather than the unnecessary <center> el-
ement proposed by the authors of Netscape.
The demands of the author are at their most

marked in the approach of publishers and market-
ing users, who have been accustomed for the last 550
years to exert absolute control over the final appear-
ance of their text. But the Web is not paper, and the
freedoms and constraints of the Press do not apply:
it is as much a new medium as radio or television.
For such an author to insist that she must be able
to control the final display to the same extent as on
paper is as pointless as insisting that a viewer with
a black-and-white television must be able to see the
colours in a commercial.
The paradigm has been established that the

browser controls the appearance, using the markup
as guidelines. There is indeed no reason at all why
attributes could not be added so that an author
could write

<h1 color=green font=LucidaBrightBoldItalic

size=24 shading=50>

but the user of Lynx or WWW (two popular text-only
browsers for terminal screens) would still only see
the heading in fixed-width typewriter characters.
The habit of insisting that everyone ‘must’ see a par-
ticular typographic instantiation is an unfortunate
result of a misinterpretation of the objective of the
Web: to deliver information in a compact, portable
and arbitrarily reprocessable form.
But publishers accustomed to paper, insistent

on ‘keeping control’, have of course an entirely valid
point, one with which the present author has great
sympathy. Why should a carefully-prepared docu-
ment be made a hames of by a typographically illit-
erate user who has set <h2> to display as 44pt Punk
Bold in diagonal purple and green stripes?

TUGboat, Volume 16 (1995), No. 2 149

#! /bin/sh

echo Content-type: text/html

echo

cat <<EOH

<html><head><title>Date and time</title></head><body><p>It is now

EOH

date

cat <<EOT

</p></body></html>

EOT

Figure 3: Example of a Unix shell script to return the date and time as an HTML file

The solution probably lies in the implementa-
tion of style sheets, perhaps along the lines of those
discussed by the authors of Arena [5]. They would in
any case only be recommendations: not every user
has a CD-ROM of Adobe or Monotype fonts. In any
event, if 100% control is essential, as in the display
of typographic examples, all graphical browsers can
be configured to spawn a window to display a Post-
Script file, although the download time may be a
strong disincentive.
It is entirely possible that the control of content

will ultimately prove a more attractive option than
the control of appearance.

3 Publishing with HTML

Setting aside the unresolved questions of display,
there are more pressing business problems about
publishing on the Web.
The authentication of users can be addressed at

several levels, from simple non-authoritative checks
using identd, to the more complex username-and-
password systems employed on some Web pages.
From the user’s end, the authentication of the data
being accessed is equally important. The openness
of the Internet in its raw form allows ‘spoofing’ in
both directions, so the emergence of protocols to
provide checks is to be welcomed.
The security of network-accessible texts from

break-ins remains a concern to anyone providing
high-value merchandise, and Web text is in this
sense no different from any other computer data.
Normal precautions must therefore be taken to pre-
vent theft through other channels (such as remote
login), as distinct from theft perpetrated by falsifi-
cation of Web access.
There is a need for robust solutions to charging

and billing for usage, and the secure transmission of
financial data, including credit card numbers, digital

signatures, and perhaps even EFT transactions. The
Secure HTTP (SHTTP) mechanism being marketed
by MCom and others is becoming popular as a way
of achieving some of this, but the Internet must shed
some of its image of lax controls and sloppy house-
keeping if it is to achieve sufficient ‘respectability’ to
attract the business of those who are not networking
specialists.
The handling of copyright and the intellectual

property of electronic texts remains, as ever, an un-
solved problem. While copyright law can be used
to provide a remedy for breach, the difficulty lies in
preventing the breach occurring in the first place.
The reason is that (as with other electronic mat-
erial), copying and reproduction is fast, cheap and
easy, once the material is in the hands of the cus-
tomer. While a supplier may use SHTTP to protect
the details of the transaction, once a print file has
been sent to someone, the supplier retains no con-
trol whatsoever over its use, reuse and abuse. Copies
could be sent to dozens of others, or printed many
times, in the space of minutes.

3.1 Printing from HTML

The demand for printed copies of Web material is
surprisingly high. Although in some cases it is rem-
iniscent of those people who insist on printing their
email, it is undeniable that there is a serious require-
ment for good quality print from Web documents.
Existing solutions to printing SGML text are

usually application-specific, embedded in SGML ed-
itors or DTP systems, but there are also some more
generic packages:

• Format by Thomas Gordon (LATEX)

• HTMLtoPS by Jan K̊arrman (PostScript)

• SGML2TeX and WebSet by Peter Flynn
(TEX/LATEX)

• SimSim by Jonathan Fine (TEX)

TUGboat, Volume 16 (1995), No. 2 150

The use of TEX systems for most of these seems to
indicate that the similarity of markup concepts has
not gone unnoticed by practitioners. The author’s
own contributions are experimental, but WebSet is
planned as an interactive Web service, to be intro-
duced in the summer of 1995. Emailing a URL to the
point of service will cause it to be retrieved, type-
set, and the output returned to the user by email
in PostScript form. As a form of email browser, the
control of appearance may lie in the hands of the
user, but suggestions for how to implement this are
currently being sought [2].

3.2 Problems

Implementing a professional level of typesetting
from HTML raises some interesting questions:

• most HTML files are invalid

• most HTML authors don’t understand SGML

• most HTML authors couldn’t care less

• most World Wide Web users couldn’t care less

The handling of missing, damaged or abused tags in
a gracious manner is not a feature of most SGML
parsers. At the best, a typesetter-browser can only
be expected to report to the user that a file is invalid,
and while it may be displayed by browsers which
do not make any claim to typographic quality, an
attempt to make a respectable print job of an invalid
file is unlikely to succeed.

4 Development

The future of the World Wide Web and HTML is
uncertain. While development continues, and while
new users are anxious to start surfing the net, the
existing designs and implementations will suffice. In
the longer term, a coalescing of services is likely to
occur, but for this to happen, a number of changes
need to take place:

• The Web will start to make use of other DTDs,
as outlined above. Any file containing a docu-
ment type declaration (i.e., <!doctype...>) at
the beginning could cause a browser to retrieve
the DTD specified, along with a style sheet, and
work much as any SGML-conformant DTP sys-
tem would.

• Browsers will become pickier, able to offer bet-
ter services at the expense of rejecting invalid
or badly broken files. Arena already perfoms a
form of consistency check on the HTML code of
files, and displays ‘Bad HTML’ in the top corner
when an offender is spotted.

• Users will become pickier, demanding better re-
sponse from the browser, better response from
the server, and better facilities from both. As

users become more educated about the use of
SGML, developers will no longer be able to hide
the deficiencies of products under the cover of
technical detail.

• This presupposes more user education, which
is inevitable in a developing technology. One
hundred years ago, motor cars appeared on the
roads, but few passengers in them understood
the use of the levers and rods which controlled
them. With some minor exceptions, it is now
expected that a driver knows that turning the
wheel clockwise turns the car to the right, and
vice versa. It will not take us that long to per-
ceive the innards of HTML, but it can only be
done by training and education.

• At some stage, investment is always needed.
Many companies have invested substantial sums
into the development of Internet resources, and
those that have done so with forethought and
planning deserve to reap a rich reward. It is
a long-term investment, more akin to a part-
nership, but support is always needed by those
who undertake the developments, especially as
much of it is done in personal time and at per-
sonal expense.

There is still some way to go before we achieve the
ease of use of the telephone or the radio, but the path
is becoming easier with each new development.

References

[1] Berners-Lee T. & Connolly D. HyperText
Markup Language Specification—2.0, Internet
Draft, IETF Working Group on HTML, Decem-
ber 1994.

[2] Flynn P. Typographers’ Inn, TEX and TUG
News, 4, 1, March 1995.

[3] Goldfarb C. The SGML Handbook, OUP, 1990,
ISBN 0-19-853737-9.

[4] Kernighan B.W. & Ritchie D.M. The C Pro-
gramming Language, Prentice-Hall, 1978.

[5] Lie H. et al. HTML Style sheets, http://www.w3.
org/hypertext/WWW/Style/

[6] Pepper S. The Whirlwind Guide: SGML

tools and vendors, ftp://ftp.ifi.uio.no/
pub/SGML/SGML-Tools/SGML-Tools.txt

⋄ Peter Flynn

Computer Centre

University College

Cork, Ireland

Email: pflynn@curia.ucc.ie

TUGboat, Volume 16 (1995), No. 2 151

The Inside Story of Life at Wiley with

SGML, LATEX and Acrobat
∗

Geeti Granger

1 Introduction

John Wiley & Sons is a scientific, technical and
medical publisher. It is an independent, American
family-owned company that was established in 1807,
with subsidiaries in Europe, Canada, Australia and
Singapore. The European subsidiary opened in Lon-
don in 1960 and moved to Chichester in 1967 (if
folklore is to be believed this was so that the then
Managing Director could more easily pursue his love
of sailing!).
We publish books, including looseleaf and en-

cyclopaedias, and journals, and most recently elec-
tronic versions of some of our printed products. In
the future the electronic component of our publish-
ing programme is bound to include products that
are only available electronically.

2 Setting the Scene

To the topic in hand—Portable Documents: Acro-
bat, SGML and TEX. Our association with TEX
dates back to 1984 when we made the significant
decision to install an in-house system for text edit-
ing and composition. It was the only software avail-
able that wasn’t proprietary, which stood a chance
of coping with the complex mathematical material
we had to set.
As a company we have monitored the progress

of SGML since 1985, but have only recently used it
in earnest. Our first project is a 5000 page ency-
clopaedia about Inorganic Chemistry. We rarely get
the opportunity to dip our toes in the water—it’s
straight in at the deep-end! Having said this, we do
have a set of generic codes that has been used for a
number of years, and everyone is well aware of the
principles involved and the value of this approach to
coding data.
Adobe Acrobat was launched in June 1993. Our

experience of this software dates back a little further
than this, because of our links with Professor David
Brailsford and the Electronic Publishing Research
Group at the University of Nottingham, and their
work on the CAJUN (CD-ROM Acrobat Journals Us-
ing Networks) project, which we jointly sponsored
with Chapman & Hall.

∗ This paper is based on one published in Baskerville vol.
5, no. 2, March 1995.

3 Complementary not Competitive

The first thing to make clear is that SGML, TEX
and Acrobat do not compete with each other in
any way. SGML is a method of tagging data in a
system-independent way. TEX is one possible way of
preparing this data for presentation on paper, while
Acrobat is software capable of delivering data elec-
tronically for viewing on screen, or for committing
to paper.
From our point of view the fundamental re-

quirement for:

• capturing data

• processing data (text and graphics)

• delivering data (paper/disk/CD/Internet)

is to remain system independent for as long as pos-
sible.

SGML, TEX and Acrobat achieve this in their
part of the whole process. PostScript provides the
link that completes the chain.

4 SGML in Practice

To describe our experience with SGML I will use
the Encyclopedia of Inorganic Chemistry as a case
study. This encyclopaedia is an 8 volume set made
up of 5000 large-format, double-column pages (more
than 3 million words). The data consists of ap-
proximately 250 articles interspersed with 750 defi-
nitions and 750 cross-reference entries. The text was
marked-up and captured using SGML, validated and
preprocessed for typesetting. The floating elements
(all 2300 figures, 8000 equations, 2000 structures,
1100 schemes and 900 tables) were prepared elec-
tronically and delivered as encapsulated PostScript
files. Some 150 halftones, about a third of which are
colour, complete the data set!
Despite the complex nature of this project, or

maybe because of it, we were convinced that using
SGML was the right approach. We had to be very
sure because this decision presented us with many
additional difficulties. Different considerations had
to be made at all stages of the production process.
(Manufacturing remained untouched.)
Once we had established the probable require-

ment for an electronic version, there was the need
to justify the use of SGML because of:

• the extra cost involved in data capture

• the different working practices that had to be
established

• the project management overhead

• the need to find new suppliers, and the risks
that this involved for such a large, high profile
project.

TUGboat, Volume 16 (1995), No. 2 152

4.1 Production Considerations

This project had an external Managing Editor to
commission and receive contributions before it be-
came a live project. Once contributions started to
arrive it very quickly became apparent that a project
management team was needed if this project was to
succeed. The initial steps had to be ones of project
analysis, determining data flow, deciding who was
responsible for what, and ensuring that a progress
reporting system was established. It certainly semed
like a military operation at times.
Having made the decision to go with SGML and

to ensure that all components were captured elec-
tronically we had to find a set of new suppliers.
None of our regular suppliers could meet our speci-
fications. Locating potential suppliers was the first
hurdle, and then assessing their suitability was the
next. Having done this we then had to draw them
all together to establish who did what, and who was
responsible for what. It had to be a team effort from
start to finish and regular progress meetings involv-
ing representatives of all parties was the key to an
ultimately successful project.

4.2 Problems Encountered

One of the first considerations was how on earth
do we name the files? To ensure portability we set
ourselves the restriction of the eight plus three DOS
convention. It took some time but we achieved it
in the end so you can now identify from the file
name the type of text entry, the type of graphics
and whether it is single or double column or land-
scape, and its sequential placement within its type.
When you consider the number of files involved, this
was no mean feat.
Designing the DTD without all the material

available is not the best way to start, but needs
must. It meant that some amendments had to be
made as the project progressed but none of them
proved to be too significant.
Choosing Adobe typefaces, to avoid problems

later on, meant that some compromises had to be
made. Many people feel that the Adobe version of
Times is not as elegant as some other versions of the
typeface.
Also the quality of the typesetting, hyphenation

and justification, interword spacing and overall page
make-up is not as high as that normally achieved by
a dedicated chemistry typesetter.
In addition to the above, we found a bug in

Adobe Illustrator! Because the EPS files were be-
ing incorporated electronically the accuracy of the
bounding-box coordinates was crucial. To cut a long

story short they weren’t accurate. We spent quite
some time establishing the cause of the problem and
then had to have a program written to resolve it.
This is not an exhaustive list but I think it will

give you a feel for the practical issues involved. Hav-
ing shared all this with you I should add that all of
us involved in the original recommendations remain
convinced that it was the right approach. In fact we
are now processing two more projects in the same
way!

5 LATEX in Practice

We have done far too many projects in TEX (many
in Plain, but a growing number in LATEX) to select
one as a case study. What I can do is very readily
identify the production issues involved in using this
software in a commercial environment.

5.1 Steps in the Process

Establishing ourselves as a forward-thinking, pro-
gressive company by developing in-house expertise
has brought with it certain pressures. In the early
days, not only did we have to learn how to use TEX,
we also had to make it achieve typesetting standards
expected of more sophisticated systems. Our col-
leagues could not see why they should accept lower
standards from us—after all they were paying us (we
operate a recharge system so that it doesn’t distort
the project costing when compared with externally
processed projects).
Next came the requests for us to supply style

files. Authors knew we used the same software as
they did, and wanted to prepare their submission so
it looked like the finished product. Some wanted to
produce camera-ready copy. In principle this would
seem a sensible idea; in fact our commissioning edi-
tors, especially those who handle a number of CRC
projects, thought it was a brilliant idea. It would
save them an immense amount of time and hassle.
Now, preparing style files for in-house use is one

thing; preparing them for use by others is something
else again. We have to work within strict time and
cost constraints, and there are many occasions (dare
I admit it?) when we have to resort to, shall we say,
less than the most sophisticated way of achieving
the required visual result!
When I have attended courses on TEX and have

asked about writing style files the answer has often
been along the lines of ‘leave it to the professionals’.
(I should say it’s usually people who make their liv-
ing in this way who give this response.) This may
be fine if a) you can find and afford the professional;
b) you don’t need to support the file when it is in
general use. In our experience the first is difficult

TUGboat, Volume 16 (1995), No. 2 153

to do and the second is an impossibility. The need
to support style files cannot be ignored; once they
have been provided, no matter on what pre-agreed
conditions, queries will arise. It can be very time-
consuming, as often queries are not restricted to the
style file, but relate to the sytem being used. It
can also take a while to establish the context of the
query, resolve it and respond. To meet the expecta-
tion that we will support, customise at short notice,
resolve technical issues, and communicate via e-mail
(preferably responding within the hour) can be dif-
ficult, given the level of human resource available.
Once you’ve got over this initial stage, the prac-

tical issues involved in accepting LATEX submissions
can be many. Delivery is the first. Now that we have
the ability to receive data electronically our authors
cannot understand why we hesitate, and why we
still insist on hard copy. Experience tells us that,
without hard copy, it is difficult to be sure we have
received the final version, and discovering this af-
ter a project has been processed is very costly, both
in time and money. Any submission that circum-
vents a stage in the current administration process
may drop through a hole and end up taking more
time, rather than less, to reach publication. Con-
sideration is being given to this issue, and there is
no doubt that in the future electronic delivery will
be an acceptable method of submission, but in the
meantime everyone has to be patient.
Copy-editing remains a conventional process in

the main, although experiments are taking place
with copy-editing on disk. This issue is not re-
stricted to LATEX projects, but the rate of progress is
dictated by the ability of our freelance copy-editors
to provide this service.
Once you move on to the processing stage the

first thing you have to do is find a supplier who is
capable of actually processing in this software. This
is easier said than done, because it is not considered
to be cost-effective by most of our regular suppliers.
However, as a result of our persistent requests, some
can now provide this service, so we don’t have to
process all such submissions in-house.
From our own experience we know that produc-

ing page proofs is not always straightforward. Over
the years we have struggled with amending style files
to achieve the correct layout and controlling page
make-up. Now that authors are submitting graph-
ics on disk, as well as the text, we are faced with
another set of problems. Portability of graphic for-
mats is even more difficult to achieve. I think the
number of answers to the question ‘When is a Post-
Script file (or EPS file) not a portable PostScript
file?’ must be infinite. Even when the content of the

file itself is OK, you can still be faced with problems
in achieving the required size and position on the
page.
Despite all these disadvantages our lives would

not be the same without LATEX, and when compared
with processing in other software it can be a real joy!
Our archive of projects coded in a form of TEX will
be far easier to reuse than those processed in other
software.

6 Acrobat at Arm’s Length

Although we haven’t used Acrobat on a live project
in-house yet, we have been closely involved with the
development of the EPodd CD. The CAJUN project
has been running for well over a year and during
this time the complete archive of volumes 1–6 has
been converted to PDF, annotated to add pdfmarks
and generally massaged into a suitable format for
delivery on CD.
As always, the work involved in such a project is

more than anticipated at the outset, but it has been
an invaluable learning exercise. Being involved in
the beta-testing of the software helps you appreci-
ate just how much development work is required for
a new piece of software, and although it currently
has its limitations the future looks good. Version 2,
which (at the time of writing) is due for release any
day now, is much improved, and it is rewarding to
see that many of the comments put forward by mem-
bers of the team have been incorporated.
We are experimenting with small projects in-

house to give us a deeper understanding of the prac-
tical advantages and limitations of Acrobat. It is
easy to get caught up in the euphoria and hype that
accompanies the release of a new product, and to
overlook the day-to-day difficulties its rapid adop-
tion might bring. Having said this, there is no doubt
that it will have a place in our publishing proce-
dures, and may be used in the production cycle for
journal articles. Provided that the general adminis-
tration can cope with the deviation from the norm,
supplying author proofs in this way has its attrac-
tions. The fact that readers are now freely available
and the PDF file can be read on any of the three
main platforms is a real boon.
The use of Acrobat for delivering existing print

products in an electronic form is one worth consider-
ing, especially now that it is possible to integrate it
with project-specific software and the security issue
has been addressed.
From an inter-company point of view the per-

ceived use of Acrobat for distributing internal doc-
uments could again have its attractions. For this to
be a real possibility it must be recognised that the

TUGboat, Volume 16 (1995), No. 2 154

use of such procedures is not an innate skill, and so
the appropriate level of training and support must
be available if it is to be successful.

7 Conclusion

The comments I have made and the case study I
have described may leave you with a somewhat neg-
ative feeling. I wonder if I have emphasised the prob-
lems and not balanced these by identifying the plus
points. To put this into context I should say that
details of the advantages of any particular approach
are usually more readily available, so I have tried to
capture a more down-to-earth view.
In reality I am very enthusiastic about the use

of SGML, TEX and Acrobat, but am also well aware
of what their use in a productive environment can
mean. I believe, as do several of my colleagues, that
portability of documents is crucial to our ability to
deliver data efficiently in a variety of forms, whether
this be page-based, highly structured databases or
tagged ASCII files. To this end we must be flexible
in our approach, and must not be afraid of mak-
ing investments now that may not bear fruit until
some time in the future. This can be a very unnerv-
ing decision to make, and for one I am glad it isn’t
ultimately mine. While I can extol the virtues of a
purist’s technical approach, obtain the relevant costs
and assess the schedule implications, I do not have
the entrepreneurial skills required to know when a
project is commercially viable (or worth taking a
risk on). It is at this point I take my hat off to our
commissioning editors, who have the responsibility
for turning these experiments into profit for us to
reinvest in the next Big Thing!

⋄ Geeti Granger

John Wiley & Sons Ltd

Baffins Lane

West Sussex

Chichester PO19 1YB, UK

Email: granger@wiley.co.uk

The Los Alamos E-print Archives:∗

HyperTEX in Action

Mark D. Doyle

Abstract

The Los Alamos E-print Archives houses more than
25,000 research papers in about 25 fields of physics
and mathematics, with the vast majority written in
TEX. This paper describes HyperTEX and how it
is transforming the archives from a loose conglom-
eration of independent papers into a single, large
hyperlinked database available via the World Wide
Web.

1 Los Alamos E-print Archives

The Los Alamos E-print Archives were created in
1991 by Paul Ginsparg. In the beginning there was
a single archive dedicated to High Energy Physics
Theory, but now it has grown into a collection of
over 25 archives, each dedicated to a fairly narrow
field in physics, mathematics, economics, or com-
putation and linguistics. The archives contain over
25,000 papers, with over 90% submitted as TEX
source (for some archives, including the largest, the
figure is over 99%). The rest of the papers are
submitted as PostScript, and almost all of that is
generated by TEX/dvips. We expect that Adobe’s
Portable Document Format (PDF) will start to ap-
pear over the next year.
We have recently implemented an auto-TEXing

script that processes over 90% of the TEX source
into PostScript (failures are due to careless submit-
ters who don’t bother checking that their source
was transmitted correctly via email or who didn’t
supply all of the necessary style/macro files). Soon
TEX-ability will become a criterion for accepting a
paper onto the archives (it is already an effective
“referee”, correlating well with the scientific quality
of the work).
The archives are accessible via electronic mail

(arch-ive@xxx.lanl.gov, where arch-ive is one
of the archive names, e.g. hep-th), anonymous ftp
(ftp://xxx.lanl.gov/), and the World Wide Web
(http://xxx.lanl.gov/). Submission always in-
volves email because most WWW browsers do not
yet allow files to be sent even though the HTTP
protocol includes this capability. WWW usage
has grown exponentially and our server gets about

∗ Supported by the U.S. National Science Foundation un-
der Agreement No. 9413208 (1st March 1995 to 28th February
1998).

TUGboat, Volume 16 (1995), No. 2 155

20,000 hits per day now (see http://xxx.lanl.
gov/cgi-bin/show_weekly_graph). Another mea-
sure of the vitality of the archives was noticed when
we put the auto-TEXing script on-line in June, 1995:
fully one third of the papers were accessed during
that month. Furthermore, in some fields (High En-
ergy Physics for example), the archives have effec-
tively replaced the traditional print journals as the
primary means of accessing new research.
The use of the World Wide Web has greatly en-

hanced the accessibility of the archives and we have
actively developed HyperTEX to further enhance the
on-screen reading of the papers. HyperTEX creates
hypertext documents and, with the proper viewers,
allows links to other documents via a World Wide
Web Uniform Resource Locator (URL).

2 HyperTEX

On-screen reading of information is greatly en-
hanced by hypertext functionality. For instance,
a paper with mathematics has the equations num-
bered sequentially and the reader is often referred to
another equation via its number. Hypertext func-
tionality allows the reader to use the mouse to click
on the numbered equation reference and either jump
back to the referenced equation or display it sepa-
rately in a new window. Similarly, clicking on a
citation to a reference listed in the bibliography
should bring up the bibliographic entry, and if the
entry refers to another paper on the archives, say,
then clicking on it should bring up the abstract of
that paper in your World Wide Web browser.
So how do we produce something with hyper-

text functionality from over 25,000 TEX papers?
This question came to the forefront for Paul

Ginsparg in the late fall of 1993 when he saw a
demo of Adobe’s newly introduced Portable Doc-
ument Format and their Acrobat PDF viewer. The
sample was 150 pages of TEX-produced lecture notes
by Ginsparg that were distilled into PDF. During
the demo it was demonstrated that hyperlinks could
be added so that the table of contents would be
linked to the proper sections. And here is the re-
action:

“. . . horrifying to contemplate armies of peo-
ple adding hyperlink overlays “by hand” after
the fact, especially when much of the contex-
tual structure is already present in the TEX
source, only to be lost in the conversion to
dvi and then e.g. to PostScript.”

Were the typesetters displaced by TEX destined to
become hyperlinkers?

Any solution to the problem of converting TEX
into hypertext should satisfy at least these three cri-
teria:

• Take advantage of contextual information al-
ready implicit in TEX documents

• Provide interoperability with the World Wide
Web

• Maintain the high quality of TEX’s output

By contextual information, I mean the information
implicitly present in the association of a label with
an object and the subsequent use of this label as a
way of referring to that object. Examples of this are
the way that TEX handles equation numbering and
citations.
One possible solution which has attracted in-

terest is to convert TEX/LATEX into HTML, the hy-
pertext markup language used by the WWW. Then
one would read a paper directly in aWWW browser.
However, for material with a lot of mathematical
content, this conversion fails to meet the third cri-
terion above.
HyperTEX provides a better solution. The cen-

tral idea is to export the contextual information into
the dvi file via TEX’s \special command. To do
this we modify the basic macros for equation num-
bering, citations, footnotes, tables of contents, in-
dices, etc., to output appropriate \special’s. This
was first done by Tanmoy Bhattacharya for the stan-
dard LATEX styles and some of the physics styles like
RevTeX. Paul Ginsparg also modified his plain TEX
harvmacmacros into lanlmac providing complete Hy-
perTEX functionality.
Having the contextual information in the dvi

file doesn’t do much good if there isn’t a way to
take advantage of it. dvi previewers need to be
modified, as well as dvi drivers. Arthur Smith mod-
ified xdvi into xhdvi giving the first Hyperdvi pre-
viewer. With the help of Tanmoy Bhattacharya, I
modified Tom Rokicki’s dvips into dvihps. Initially
the goal was to produce PostScript that would be
distillable into PDF by the Adobe Distiller. This
was accomplished using the Distiller built-in com-
mand /pdfmark. However, it was quickly realized
that this new “HyperPostScript” could be an end
unto itself. The need for a format like HyperPost-
Script was necessitated by the fact that Adobe has
been slow to provide things like WWW access from
their readers. Tanmoy then hacked ghostview into
a HyperPostScript viewer that communicates with
WWW viewers.
The upshot of this is that TEX can be trans-

formed into hypertext in three different, parallel for-
mats: Hyperdvi, HyperPostScript, and PDF. The

TUGboat, Volume 16 (1995), No. 2 156

first two are finding uses because everything is pub-
lic domain and we are free to enhance the tools as
necessary. On the other hand, PDF is currently pro-
duced only via Adobe’s commercial Distiller and one
is limited by whatever functionality Adobe chooses
to provide. Still, it would seem that ultimately PDF
will be the dominant endpoint for HyperTEX source
since PDF viewers are now widely available, and
Adobe continues to enhance the PDF standard so
that things like WWW access are becoming well-
integrated.
HyperTEX has quite a few positive features.

First, it preserves all of the contextual information
present in the TEX source. There is no need for com-
plex conversions of pre-existing TEX files into HTML,
and no need to wait for a future version of HTML
with good support for mathematics. TEX’s high
quality output is retained, and the printed version is
unchanged (HyperPostScript is designed so that it
can be rendered by any PostScript interpreter). By
modifying macro packages in a way that preserves
the keywords, HyperTEX allows the creation of hy-
pertext with little or no effort by the author. In
fact, it is completely backward-compatible, and can
be applied retroactively to TEX documents already
in existence. In most cases, a single line addition
converts TEX into HyperTEX.
For the E-print Archives, this means that we

can turn old papers into hypertext. Even better,
since our Hyperdvi and HyperPostScript viewers can
communicate with WWW browsers, we can auto-
matically translate references to other papers on the
archives into URLs for the referenced paper through
a simple substitution in the TEX source as we pro-
cess it. Providing the archive reference (for exam-
ple, hep-th/9201076) for a cited paper has become
increasingly popular and as this practice grows, an
increasing fraction of the archive becomes woven to-
gether into a single large hyperlinked database.
Since HyperTEX does not depend on authors

modifying their source, it has few drawbacks: one
problem is that Hyperdvi and HyperPostScript
viewers are not available on all platforms. This
is partially offset by the fact that the platforms
without active viewer development are the same
platforms where PDF is quickly becoming a domi-
nant format for document exchange. HyperTEX is
not a universal solution for producing hypertext.
Hypertext is often not linear and with TEX being so
“papyrocentric”, it is not easy to see how to apply it
to general hypertext. Still, HyperTEX fills its niche
very well and has turned out to be quite useful.

\special{html:}{1.}{

\special{html:}

\special{html:}{1.}{

\special{html:}

\href{http://xxx.lanl.gov}{This http URL}

Figure 1: HyperTEX

3 HyperTEX in a Nutshell

The following is meant to be a brief overview of
how HyperTEX works and how the contextual in-
formation is passed along. Most of the following
is taken from the HyperTEX FAQ maintained by
Arthur Smith (ftp://snorri.chem.washington.
edu/hypertex/).
HyperTEX adds five new \special commands:

\special{html:}

\special{html:}

\special{html:}

\special{html:}

\special{html:<base href = "hrefstring">}

to which a reference can be made. This is used,
for instance, to turn an equation’s number into an
anchor. The ‘href ’ \special then allows a refence
to be made to an anchor established by the ‘name’
\special. But it is also more general than that be-
cause you can put use an URL as the ‘hrefstring’
and this will be interpreted as something to pass
off to a WWW browser. The third \special is for
ending the others, and is used to delineate the text
associated to a ‘name’ or ‘href ’ that should appear
on the page. The fourth \special is for including
images, but none of the viewers or drivers currently
deal with it. The final \special is for making ref-
erences to other documents easier. It allows you to
change the ‘base URL’ to which all following ‘href ’
\special’s should be considered relative (the de-
fault is that a relative ‘href ’ refers to an item in the
current document).
A convention for naming links within docu-

ments has also been given so that it is easier to refer
to items in other documents:

Page 5 is at doc.dvi#page.5
Section 2 is at doc.dvi#section.2
Equation 3 is at doc.dvi#equation.3
Reference 11 is at doc.dvi#reference.11

The items in the righthand column are those which
would appear in place of the ‘hrefstring’ in an ‘href’
\special.
Now let’s take a quick look at how the contex-

tual information is represented and passed along in
the various formats. First we consider HyperTEX

TUGboat, Volume 16 (1995), No. 2 157

HPSdict begin

/TargetAnchors

605 dict dup begin

...

(section.1) [5 [72 706 83 718] 792] def

...

end targetdump-hook def

...

(#section.1) [[72 627 81 639]

[1 1 1 [3 3]] [0 0 1]] pdfm

Figure 2: HyperPostScript

itself. The example (Figure 1) shows how a section
heading might be made into an anchor that is linked
to the section number (1 in this case). Only the ‘1.’
is printed on the page. Both the name special
and an href \special that might refer back to it
are shown in a raw form without macros. Nor-
mally a command like \section would just put in
the proper information transparently. Also shown
is how an external reference can be handled by a
macro \href that hides the \specials. The URL is
given in the first set of braces, the text that appears
on the page appears in the second set. The infor-
mation in the \special commands is just stamped
into the dvi file at the proper place, as can be seen
here:

html:\2531.\357html:

Passing the dvi file through dvihps produces
HyperPostScript, as shown in Figure 2. While this
might look complicated, it is quite straightforward.
The first few lines create a dictionary that stores
all of the anchors created by the name \specials.
In this case, the dictionary has 605 anchors (it is
from Ginsparg’s 150 pages of lecture notes written
with harvmac in 1988 and turned into HyperTEX by
changing from the harvac macros to lanlmac). Some-
where in the dictionary there appears the line asso-
ciated with the name \special for section 1. The
information that follows it is an array giving the
page number on which the anchor appears, the coor-
dinates of the rectangle in which the text associated
with it appears, and a number that can be passed to
the Distiller so that the PDF viewer zooms to a re-
gion of the page containing the anchor (in this case,
792 means zoom to the top portion of the page).
Later in the HyperPostScript there is a reference
created by the href \special. Note the hash mark
that distinguishes this as a link. The array that fol-
lows contains the information needed to highlight
the link as something clickable: the rectangle con-

1040 0 obj <<

/Type /Annot /Subtype /Link

/Rect [72 627 81 639]

/Dest [23 0 R /FitH 792]

/T (#section.1)

/C [0 0 1]

/Border [1 1 1 [3 3]] >> endobj

Figure 3: PDF

taining the text associated with the link, an array
given the type of border to draw (in this a dashed
box), and the color to use for the box (blue). Then
there is the pdfm operator.
All of the magic of HyperPostScript is con-

tained in the definition of the pdfm operator which
is contained in the header file hps.pro that is em-
bedded in the prologue of the HyperPostScript file.
In particular, the operator is smart enough to just
get rid of all of this if the file is being interpreted
by an ordinary PostScript interpreter. Otherwise,
it tries to figure out the version of the PDF Dis-
tiller being used and then it transforms the infor-
mation for the link into the format needed for that
version of the Distiller and incorporates it into a
proper pdfmark (part of the information is here and
part is in the /TargetAnchors dictionary entry for
section 1). HyperPostScript viewers can also define
the pdfm operator for their own use.
Looking at the PDF version of the same infor-

mation should make this clearer. A PDF file con-
sists of “objects” that are written in a slimmed down
PostScript. In particular, there is an object for each
hypertext link and there is an object (number 1040)
for the link in our earlier example. The interpre-
tation of Figure 3 is straightforward. We have an
object that is an annotation, specifically a link. The
box for it appears in the rectangle shown, the title
or name of the link is section.1, the box should be
blue (/C is color), and the border should be dashed.
The only thing that isn’t immediately obvious is the
destination. 23 0 R means that the destination is
object 23 (which in this case would be page 5). The
/FitH means that the viewer should zoom so that
the page’s horizontal width is expanded to the size
of the viewer’s window, and the 792 means scroll so
that the coordinate 792 is at the top of the viewer’s
window. In this case, 792 means the top of the page
(72 PostScript units per inch × 11 inch page height).
The key point is that almost all of the informa-

tion from the TEX file is there. The main deficiency
of the PDF compared to the other formats is that
the destination is only a page number and where on

TUGboat, Volume 16 (1995), No. 2 158

Macro Packages:

hyperbasics.tex Basic set of macros for imple-
mentation of the HyperTEX \special’s (Tan-
moy Bhattacharya)

lanlmac.tex Plain TEX macro package (Paul Gins-
parg)

hyperlatex.tex Variety of .hty files for different
LATEX styles are available. Note that this does
not work with LATEX2ε because it uses un-
documented LATEX internals. (Tanmoy Bhat-
tacharya)

hyperref.dtx Completely new, but compatible,
implementation for LATEX2ε (Sebastian Rahtz
and Yannis Haralambous)

hyper.dtx Similar to hyperlatex, but for LATEX2ε
(Michael Mehlich)

Hyperdvi Previewers:

xhdvi Extension of xdvi for X-Windows (Arthur
Smith)

HyperTeXview Extension of Tom Rokicki’s
TeXview for NeXTSTEP (Mark Doyle, based
on early version by Dmitri Linde)

DirectTeX A full Macintosh implementation by
Wilfried Ricken which supports HyperTEX

Hyperdvi to HyperPostScript:

dvihps Extension of Tom Rokicki’s dvips to pro-
duce HyperPostScript Distillable into hyper-
linked PDF (Mark Doyle, with assistance by
Tanmoy Bhattacharya)

ghostview Hacked version of GhostView to sup-
port HyperPostScript (Tanmoy Bhattacharya)

Figure 4: Current HyperTEX Tools

that page to zoom. The name of the target and its
precise location on the page have been lost. Adobe
has recently extended the PDF standard to include
named destinations, so it is likely that dvihps and
the hps.pro will be updated to present the informa-
tion in a different but equivalent manner. Various
features of the PDF could also be configurable. Ex-
amples would be the color of the box or how to zoom
to the anchor, and newer versions of dvihps and the
HyperTEX macros will allow this.

4 The Future of HyperTEX

Before giving some future directions, it would be
useful to summarize the HyperTEX tools that are al-
ready out there (see Figure 4 for a list; all are public
domain and can be found on the net; pointers will be
given at the end of this article). There is still plenty

of work to be done. The macros, while quite usable,
can always use improvement. There are some funda-
mental problems that need to be handled in a better
way (notably line breaks, page breaks, and footnotes
breaking across pages). The footnote problem is the
trickiest and work is being done by the dvi stan-
dards TEX Working Group to provide a standard
way of handling this situation (the use of color in
TEX has similar problems). The viewers can also
use improvement, and support is still needed for the
‘image’ \special and the ‘base’ URL \special.
Now that Adobe finally is coming out with sup-

port for URLs, hps.pro needs to be enhanced to
output the information in a way that the Adobe Dis-
tiller can use it. The conversion from Hyperdvi to
PDF could also stand some improvement. Right now
dvihps doesn’t give any options for color, images, or
other PDF features like bookmarks, etc. None of this
is particularly difficult. There are still a few sticky
points having to do with TEX and Adobe’s Distiller.
In particular, the Distiller (as of 2.0 anyway) opti-
mizes away ‘blanks’ (character code 32) which are
really glyphs in TEX fonts (e.g. the Greek letter
ψ). There are workarounds for this problem though.
Perhaps the most ambitious solution to these prob-
lems would be to write a real dvi to PDF converter
that completely bypasses the Adobe Distiller. This
is rather difficult, but it would free us from having to
use the Distiller which is the only commercial prod-
uct in the whole chain. In the meantime, enhance-
ments to HyperPostScript viewers could obviate the
need to go all the way to PDF.

5 Conclusion

For such a simple idea, HyperTEX works amaz-
ingly well. It makes the on-screen reading of TEX
documents easier and allows TEX to interact with
the World Wide Web. All of this while preserv-
ing the superior formatting and typesetting of TEX.
PDF generation gives good results and can be com-
pletely automated. Finally, HyperTEX has turned
the Los Alamos E-print Archives into a hyperlinked
database of over 25,000 papers.

Acknowledgments

I would like to thank Tanmoy Bhattacharya and
Paul Ginsparg for helpful discussions regarding all
aspects of HyperTEX.

HyperTEX Resources

• On the Web drop in on http://xxx.lanl.gov/
hypertex/

• FTP locations:

ftp://xxx.lanl.gov/pub/hypertex/

TUGboat, Volume 16 (1995), No. 2 159

ftp://gita.lanl.gov/people/tanmoy

ftp://gita.lanl.gov/people/doyle

ftp://snorri.chem.washington.edu/pub/

hypertex/

ftp://ftp.shsu.edu/ and other CTAN sites

• Listserver and mailing lists maintained by Arthur
Smith, majordomo@snorri.chem.washington.
edu (requests go in body of message)

Announcements: subscribe hypertex-announce
Developers: subscribe hypertex-dev
Email archive: by email request to listserver

⋄ Mark D. Doyle

Los Alamos National Laboratory

University of California

Los Alamos, New Mexico

Email: doyle@mmm.lanl.gov

The Hyperlatex Story

Otfried Schwarzkopf

Abstract

Hyperlatex is a little package that allows you to use a
LATEX-like language to prepare documents in HTML,
and, at the same time, to produce a neatly printed
document from your input. It is possible to use ar-
bitrary LATEX commands for the typesetting of the
printed output by including them in the input file.
About two years ago my drawing editor Ipe1

was getting sufficiently complex to merit a real man-
ual instead of a simple readme file. Of course, Ipe
should be able to show its manual on-line, but on
the other hand I also wanted to be able to print a
well-formatted manual on paper. My first attempt
at this used the latexinfo system to write the man-
ual, so I was able to print it nicely and to have the
on-line version as an info file. However, info files
are simply text files, and it is impossible to include
figures in the on-line manual. Quite a shortcoming
when you are trying to write a manual for a figure
editor! The second problem was that the first Ipe

1 Ipe is an attempt to fully integrate LATEX text with Post-
Script drawing information. Ipe stores files in a format that is
at the same time a legal PostScript and a legal LATEX file, and
the drawing editor runs LATEX in the background to determine
the size of text objects.

users were Emacs-illiterate, and they found it very
hard to cope with the info reader.2

At that time HTML and HTML-readers likeMo-
saic became widely used. These readers solved both
problems—an HTML document can include figures,
and HTML readers are basically designed to be fool-
proof (how else could one explain the success of the
World Wide Web?). So, as the next step, I used the
LaTeX2HTML converter. I was now able to write the
manual in plain LATEX (unadorned with the special
commands that latexinfo required), and LaTeX2HTML
would turn it into a set of HTML files.
But I soon found that I had a hard time mak-

ing LaTeX2HTML generate the kind of HTML that I
wanted. This was no flaw with LaTeX2HTML, but
with the general approach of converting from LATEX.
In my eyes, conversion is not a solution to HTML
authoring. A well written HTML document must
differ from a printed copy in a number of rather sub-
tle ways. I doubt that these differences can be rec-
ognized mechanically, and I believe that converted
LATEX can never be as readable as a document writ-
ten in HTML.
This is most prominent in the formulation of

cross references in a document. A LATEX converter
can turn the reference into a hyperlink, but it will
have to keep the text the same. If we wrote “More
details can be found in the classical analysis by
Harakiri [8]”, then the converter may turn “[8]” into
a hyperlink to the bibliography in the HTML doc-
ument. In handwritten HTML, however, we would
probably leave out the “[8]” altogether, and make
the name “Harakiri” a hyperlink.
The same holds for references to sections and

pages. The Ipe manual says “This parameter can
be set in the configuration panel (Section 11.1)”.
A converted document would have the “11.1” as
a hyperlink. Much nicer HTML is to write “This
parameter can be set in the configuration panel”,
with “configuration panel” a hyperlink to the sec-
tion that describes it. If the printed copy reads
“We will study this more closely on page 42,” then
a converter must turn the “42” into a symbol that
is a hyperlink to the text that appears on page 42.
What we would really like to write is “We will study
this more closely later,” with “later” a hyperlink—
after all, it makes no sense to even allude to page
numbers in an HTML document.
The Ipe manual also says “Such a file is at the

same time a legal Encapsulated Postscript file and a
legal LATEX file—see Section 13.” In the HTML copy

2 That’s where the alt.religion.emacs.haters pun in
the Hyperlatex manual comes from.

TUGboat, Volume 16 (1995), No. 2 160

the “Such a file” is a hyperlink to Section 13, and
there’s no need for the “—see Section 13” anymore.
There are also differences between LATEX copy

and HTML copy that have to do with the fact
that HTML is still a somewhat enhanced text for-
mat. Many LATEX concepts are hard to represent in
HTML.
For instance, how do you present a mathemat-

ical expression like xi or a
2 + b2 = c2 in HTML?

LaTeX2HTML converts these to little bitmaps. That
is quite sophisticated, but is it the best represen-
tation? I don’t think so. With current technology,
bitmaps eat too much transmission time, and they
only look good when the resolution of the browser
is nearly the same as the resolution at which the
bitmap has been created, which is not a realistic
assumption.
Isn’t there an easier way? If xi is the ith ele-

ment of an array, then I would write it as x[i] in
HTML. If it’s a variable in a program, I’d probably
write xi. In another context, I might want to write
x i. To write Pythagoras’ theorem, I might simply
use a^2 + b^2 = c^2, or maybe a*a + b*b = c*c.
To express “For any ε > 0 there is a δ > 0 such that
for |x−x0| < δ we have |f(x)−f(x0)| < ε” in HTML,
I would write “For any eps > 0 there is a delta > 0
such that for |x-x0| < delta we have |f(x)-f(x0)| <
eps.”
Of course a converter could be told to translate

ε to eps. But the best representation in HTML very
often depends on the context, and is beyond the
reach of any (non-human) converter.
So I ended up not using LaTeX2HTML; but La-

TeX2HTML is a good general converter and I had and
have no ambition to improve on that.3

Instead, I turned back to the lisp macros from
the latexinfo package and changed them to gener-
ate HTML output instead of info files. Of course
this was intended to be a hack, and never meant for
wide use. . . How could I know that I would end up
by having to write a short manual for Hyperlatex it-
self, and would even be invited to write a TUGboat
article about it?
Although I still keep getting Email messages

saying “Hey, your Hyperlatex converter is rubbish.
It fell over immediately when I tried to convert this
LATEX file!”, Hyperlatex was not intended to be a
general LATEX-to-HTML converter— for the reasons
explained above.

3 And before anybody accuses me of being unfair—yes,
all the differences described above can be achieved using the
texonly and htmlonly environments of LaTeX2HTML, and its
macros for making cross references. But I soon found this too
cumbersome.

The idea of Hyperlatex is to make it possible
to write a document that will look like a flawless
LATEX document when printed and like a handwrit-
ten HTML document when viewed with an HTML
browser. In this it completely follows the philosophy
of latexinfo (and texinfo). Like latexinfo, it defines
its own input format—the Hyperlatex markup lan-
guage—and provides two converters to turn a doc-
ument written in Hyperlatex markup into a dvi file
or a set of HTML documents. If you have written a
document sample.tex in Hyperlatex markup,4 you
simply run LATEX on your file to generate a dvi file,
which you can print as usual.
On the other hand, you can type

hyperlatex sample.tex

to generate a set of HTML files, probably called
sample.html, sample 1.html, sample 2.html and
so on. (The command hyperlatex is a simple shell
script that calls GNU Emacs in batch mode and runs
the Emacs lispmacros that implement the conversion
to HTML. It is also possible to call these macros di-
rectly from inside Emacs.)
Obviously, this approach has the disadvantage

that you have to learn a “new” language to gen-
erate HTML files. However, the mental effort for
this is quite limited. The Hyperlatex markup lan-
guage is simply a well-defined subset of LATEX that
has been extended with commands to create hyper-
links, to control the conversion to HTML, and to
add concepts of HTML such as horizontal rules and
embedded images. Furthermore, you can use Hyper-
latex perfectly well without knowing anything about
HTML markup.
The fact that Hyperlatex defines only a restrict-

ed subset of LATEX does not mean that you have to
restrict yourself in what you can do in the printed
copy. Hyperlatex provides many commands that al-
low you to include arbitrary LATEX commands (in-
cluding commands from any package that you would
like to use) which will be processed to create your
printed output, but which will be ignored in the
HTML document. However, you do have to spec-
ify that explicitly. Whenever Hyperlatex encounters
a LATEX command outside its restricted subset, it
will complain bitterly.
The rationale behind this is that when you

are writing your document, you should keep both
the printed document and the HTML output in
mind. Whenever you want to use a LATEX com-
mand with no defined HTML equivalent, you are

4 Yes, I do use the extension .tex for my Hyperlatex files,
sharing it with TEX and LATEX. The Hyperlatex format is
much more similar to LATEX than LATEX is to TEX, so this
seems justified.

TUGboat, Volume 16 (1995), No. 2 161

thus forced to specify this equivalent. For instance,
if you have marked a logical separation between
paragraphs with a LATEX \bigskip command (not
in Hyperlatex’s restricted set of commands, since
there is no HTML equivalent), then Hyperlatex will
complain, since very probably you would also want
to mark this separation in the HTML output. So
you would have to write

\texonly{\bigskip}

\htmlrule

to imply that the separation will be a \bigskip
in the printed version and a horizontal rule in the
HTML-version. Even better, you could define a com-
mand \separate in the preamble and give it a dif-
ferent meaning in dvi and HTML output. If you be-
lieve that \bigskip should always be ignored in the
HTML version, then you can state so in the preamble
as follows.

\W\newcommand{\bigskip}{}

The \W command, introduced later, ensures this re-
definition apples only to the HTML version. This
philosophy implies that in general an existing LATEX
file will not make it through Hyperlatex. In many
cases, however, it will be sufficient to go through the
file once, adding the necessary markup that speci-
fies how Hyperlatex should treat the unknown com-
mands.
The LaTeX2HTML converter will convert any en-

vironment for which it does not have a built-in trans-
lation to HTML to a bitmap. This option exists in
Hyperlatex as well, but again you have to explicitly
ask for it by enclosing the unknown environment in
a GIF environment.
Unlike LaTeX2HTML, Hyperlatex does not create

a temporary LATEX file with the GIF environments.
In fact, the GIF-making is mostly implemented in
TEX! The hyperlatex.sty package defines the gif
environment as follows if the flag for GIF-making is
set.

\def\gif{\setbox\@gifbox=\vbox\bgroup}

\def\endgif{\egroup\shipout

\copy\@gifbox\unvbox\@gifbox}

This means that the contents of the gif environment
is put in a box which is shipped out on a separate
page of the dvi file without disturbing LATEX too
much. Later, a shell script extracts the extra pages
from the dvi file using dvips and turns them into
bitmaps using ghostscript. The shell script itself is
created by the LATEX run.
Hyperlatex implements most LATEX commands

that have a clear HTML analog, such as sectioning,
font styles and sizes, displays and quotations, lists,
accents (well, the ones defined in HTML), verba-

tim text, and there’s even a weak implementation
of tabular. I tried to be faithful to the spirit of
LATEX when adding new commands. latexinfo had
some commands with non-LATEX syntax, but those
all had to go. I also changed the parser such that
it much more closely mimics TEX’s parsing. One
of the basic rules is that the meaning of no LATEX
command has been changed.
Hyperlatex provides a number of different ways

of treating parts of your document differently in
LATEX and HTML mode. The two simple commands
\texonly and \htmlonly ignore their argument if in
the wrong mode. The command \texorhtml takes
two arguments of which only one is evaluated. The
two environments iftex and ifhtml are convenient
to ignore larger chunks of input in one mode. Fi-
nally, you can prefix a single line with \T or \W, so
that you could write

We are now in

\T \LaTeX-mode.

\W Html-mode.

Hyperlinks are created with the commands \link
and \label: \link{anchor}{label} typesets the
text anchor and makes it an active hyperlink to the
label label in the HTML document. To also create
a reference in the printed document, you will need
to use \ref or \pageref. This is facilitated by the
optional argument of \link.

\link{anchor}[printed reference]{label}

The LATEX output of this command will contain the
anchor and the printed reference, while the HTML
output will only show the anchor as a hyperlink to
the position marked with the label. So you can write

This parameter can be set in the

\link{configuration panel}%

[~(Section~\ref{con-panel})]{con-panel}.

The starred version \link* suppresses the anchor in
the printed version, so that we can write

We will see

\link*{later}[in Section~\ref{sl}]{sl}

how this is done.

It is common to cross-reference by using \ref{label}
or \pageref{label} inside the optional argument,
where label is the label set by the link command. In
that case the reference can be abbreviated as \Ref
or \Pageref (with capitals). These definitions are
already active when the optional arguments are ex-
panded, so we can write the example above as

This parameter can be set in the

\link{configuration panel}%

[~(Section~\Ref)]{con-panel}.

TUGboat, Volume 16 (1995), No. 2 162

This even works when we need the \Ref command
outside, but after the \link command, as for in-
stance in

\link{Such a file}{\Ipe-file} is at

the same time ... a legal \LaTeX{}

file\texonly{---see Section~\Ref}.

References to external resources are made in ex-
actly the same way, using the \xlink command, and
references to the bibliography work using the same
principle.
To facilitate typing short pieces of mathematics,

Hyperlatex has a \math command whose argument
is read in math mode in the printed version. In the
HTML version, it is simply left untreated, so you can
write \math{x_i} to get x i in the HTML document.
You could also use the optional argument, and writ-
ing \math[\code{x[i]}]{x_i} will give you x[i]
in the HTML version. The Pythagorean example can
by written as either \math{a^2 + b^2 = c^2}, or
as \math[a*a + b*b = c*c]{a^2 + b^2 = c^2}.
The most important shortcomings in Hyperla-

tex 1.3 are: there are no footnotes; \newcommand
and \newenvironment can only be used without ar-
guments; and there is no support for the new <fig>,
<table>, and <math> tags of HTML3 (which are al-
ready supported by some browsers). Also, there are
a few idiosyncrasies that still stem from Hyperla-
tex’s origin in latexinfo. The most important of these
is the treatment of special characters. While LATEX
has ten of these, latexinfo has only three, namely
\, {, and }. latexinfo is mainly used for software
documentation, where one often has to use these
characters without their special meaning, and since
there is no math mode in info files, most of them
are useless anyway. In the first version of Hyperla-
tex, I had only added the unbreakable space ~, so
there were four special characters. Since my main
use was to write the Ipe manual, I found it conve-
nient that I didn’t even have to escape the % sign,
for instance. However, it soon turned out that most
other Hyperlatex users found this more confusing
than convenient, and in Hyperlatex 1.1 the percent
sign became a comment. And now that HTML3 de-
clares a <math> tag, I find that it is time to return
all 10 special characters to their special status, and
this is going to be realized in Hyperlatex 1.4. That
means that the $ sign can now be used to enclose
math mode material, that & can be used as a sep-
arator in formulas, and # for parameters for new
commands. I hope that this will make it easier for
new Hyperlatex users.
A problem is the growing number of HTML di-

alects. By users’ request, I had added the font size-

changing command when the Web browser Netscape
became available. Some other Netscapeisms can be
used using optional arguments (which simply gen-
erate raw HTML attributes). I also changed the
center environment to use Netscape’s <center> tag
(it used to be the same as quotation). It’s getting
more messy all the time, and Hyperlatex 1.4, which
I’m testing right now, will have a \htmllevel com-
mand to set the type of HTML that will be generated
(HTML2, Netscape, or HTML3).
When HTML3 is selected, then Hyperlatex 1.4

will generate <math> tags for math mode material.
It will also translate LATEX’s figure and table en-
vironment to <fig> tags, and will have a fuller im-
plementation of tabular using <table>.
Hyperlatex 1.4 will also have footnotes, and

commands and environments with arguments, and
I hope that this will make Hyperlatex users even
happier.
More information about Hyperlatex is avail-

able on the Web at http://hobak.postech.ac.kr/
~otfried/html/hyperlatex.html or http://www.
cs.ruu.nl/~otfried/html/hyperlatex.html

You may find Hyperlatex 1.4 already there by
the time this article appears.

⋄ Otfried Schwarzkopf

Dept. of Computer Science

Postech

San 31, Hyoja-Dong

Pohang 790-784, South Korea

Email: otfried@vision.postech.

ac.kr

TUGboat, Volume 16 (1995), No. 2 162

LATEX, hypertext and PDF, or the entry of
TEX into the world of hypertext

∗

Yannis Haralambous and Sebastian Rahtz

1 The relationship between hypertext and
LATEX

Unlike hypermarket, hypertension and hyper -
activity, where the prefix hyper- expresses high
quantity, and excess, hypertext is not a giant text,
but a text with an internal structure that view-
ers can exploit to allow for non-linear navigation
through the document.

∗ This paper is based on one published by Yannis in
Cahiers GUTenberg no. 19, January 1995. The translation
from French was undertaken by Leonor Barroca and Sebas-
tian Rahtz, who apologize to Yannis for the massacre of his
elegant writing style. The article was revised and extended
by Sebastian Rahtz.

TUGboat, Volume 16 (1995), No. 2 163

There is thus a relationship between the no-
tion of hypertext and the mark-up system of LATEX:
both add structure to a document. For example,
the LATEX notion of cross referencing corresponds to
the notion of linking in hypertext. The main differ-
ence between the two concepts is the lack of interest
of TEX in screen interaction. TEX deals with boxes
that can contain characters, rules, images, etc. The
task of replacing these boxes with the actual charac-
ters falls to the screen or printer drivers. Since TEX
is a tool for typographical composition, it does not
use a screen other than for previewing, and screen
display is seldom considered the final aim of a TEX
compilation.
This lack of interest in TEX of the screen is even

more important when we recall that many Post-
Script constructions, introduced into a DVI file by
\special commands, are typically ignored by pre-
viewers.1

We claim that, for effectively the first time in
its existence, TEX is becoming seriously useful for
creating documents whose aim is to be read on the
screen. In fact, LATEX is totally adequate for the
automatic production of hypertext links, and the
methods that will be presented in this article allow
for an automatic conversion of almost every existing
LATEX document into an hypertext document. It is
worth insisting that such a document keeps all the
typographical quality of LATEX, and can be printed
exactly in the same way as before.

2 Overview

TEX and LATEX read a file that contains the text of
a document with structural and visual labels, and
create a second file which describes the printed page
with great precision. This output file is called DVI
(DeVice Independent) because it only contains ab-
stract data: the position of each character on the
page, the name of the font in which the program
will find the pixels for this character, its code in this
font, etc.
The visualisation or printing of a DVI file pre-

supposes the availability of a certain number of
fonts. This is usually easy in the case of large sys-
tems or network-connected workstations, but it be-
comes problematic in the case of personal systems.
The situation is even more critical when one wants
to distribute electronic documents: a document that
can be viewed and printed by a large number of peo-
ple can hardly be distributed in DVI format (since
this is only of interest to the TEX community, and

1 Except for the lucky ones amongst us who can use op-
erating systems with Display PostScript.

one would be effectively limited to CM fonts, which
are the only fonts (almost) guaranteed to be present
on all TEX systems). In practice it is almost impos-
sible, for anything but very simple documents, to
keep on disk the document itself plus enough utilities
to allow for its immediate previewing and printing,
without having to install a complete TEX system.
Finally, hypertext links are not catered for in

the syntax of the DVI format;2 every attempt to
develop an hypertext program to use the DVI format
will lead to a new ‘Hyper-DVI’ format, with all the
problems of compatibility with the TEX community
which is (rightly) proud of the stability of its tools.
It seems then that the DVI format is not the ideal
candidate for a file format which is easily usable and
sufficiently interactive to allow for the integration of
hypertext links.
What then can we do? An obvious candidate

for storing documents—at least, today— is the PDF
format (Portable Document Format) developed by
Adobe Systems. It is an extension of the PostScript
language, closely resembling the syntax of files pro-
duced by Adobe’s Illustrator program, with two im-
portant additions: support for device independent
screen viewing and printing, regardless of the fonts
used in the document, and the integration of hyper-
text functionality.
We shall return to the details of the PDF for-

mat in Section 7.1. For the moment, we describe
how the PDF format can be integrated into the pro-
cess of document production (electronic or printed).
In Figure 1, input/output files are represented by
oblique boxes, the software by rectangles, operations
(visualisation, printing, etc) by boxes with rounded
corners, while arrows indicate the basic transforma-
tions described in this article.
The .tex file is our starting point (it is in

the central circle). TEX will produce a .dvi file
(it also uses macro files, and font metrics). If the
LATEX format is used, and the hyperref package has
been loaded (as the last package), the cross reference
commands, bibliographic citations and indexing will
produce hypertext links, included in the .dvi file
with the help of \special commands.3

Another possible starting point is an HTML file
(in the top left of the diagram). An HTML file can
be easily converted to LATEX, and the hypertext links
in the former can be kept in the latter.

2 The description of the DVI format can be found on
CTAN in the directory CTANdviware/driv-standard/level-
0/dvistd0.tex

3 These commands have no effect on the typesetting of
a page and their argument is written verbatim to the DVI
file, so that they constitute excellent means to communicate
information to post-processors.

TUGboat, Volume 16 (1995), No. 2 164

But let’s get back to our .dvi file. We can
inspect it directly, using a previewer, or a non-Post-
Script printer. But we can also convert it to Post-
Script with the dvips program. Either an extended
version of dvips by Mark Doyle, called dvihps (DVI
to HyperPostScript), keeps the hypertext links con-
tained in the .dvi file, or we can write Acrobat
pdfmark code directly. Once the PostScript file has
been created, we can print on a PostScript printer
(or a non-PostScript printer with the help of the
GhostScript program), or convert it to PDF format
using Adobe’s Acrobat Distiller. This program rec-
ognizes the hypertext links and includes them in the
PDF document.
Finally, to visualise a PDF document we can

use Adobe Acrobat Reader, which is freely avail-
able for Macintosh, Windows, DOS and some Unix
platforms. This program allows us to browse and
navigate the document and print it on any printer
supported by the host system. Recent versions of
the free PostScript interpreter, GhostScript (later
than 3.51) are also able to display and print PDF
files.
It is easy to see that if the starting point is

an HTML document, all the hypertext functionality
will be kept, but we have also gained the typographic
presentation of LATEX. A PDF document is a faithful
copy of the printed document (it can even be photo-
typeset to produce a professional quality result with
colour images, graphics, etc.). On top of that it
offers hypertext navigation using links, which, with
version 2 of Acrobat, refer not only to points inside
the document, but also to other documents on the
network.
The structure of a LATEX document can be ex-

ploited by a wide application domain: the most
striking example is the voice synthesizer [3] for the
use of visually impaired people, which can pro-
nounce a mathematical formula, and indicate the
structure of the document by use of sound.
We will describe in this article another applica-

tion: the creation of electronic books, whose presen-
tation is no worse than the traditional books (since
they can be printed with no loss of quality) but
that offer some interactivity: hypertext navigation
between table of contents, index, bibliography and
text, on the same machine or across a network.
In the remainder of this article we will study

each step of the process indicated by the fat arrows
in the diagram of Figure 1.

3 HTML to LATEX

The HTML mark-up system is defined according to
the SGML standard. It contains a limited number

of tags, mainly for screen appearance; there are also
various logical text styles (emphasis, address, quo-
tation,lists, etc.), and visual styles like italic, bold,
underline, etc, but there is no support for funda-
mental page objects like tables and footnotes. It is
obvious that LATEX is a much richer language than
HTML, and so the conversion from HTML to LATEX
is essentially trivial.4 The conversion has to do some
simple jobs:

1. convert certain tags straight to a LATEX envi-
ronments, such as <CITE> and </CITE> going
to \begin{quotation} and \end{quotation};

2. convert other tags to LATEX commands with
arguments, such as and going to
\emph{...};

3. replace a very few tags with simple LATEX com-
mands, like \par for <P>;

4. deal with accented character entities, so that
é becomes \’e and çla be-
comes \c{c} and so on.

There are two classes of tags which present
more problems:

1. Those which have no direct equivalent in LATEX,
such as ; the appropriate action for
these is to convert them to new LATEX environ-
ments, and provide appropriate definitions in a
style file. Thus

Very important!

would be converted to

\begin{strong}

Very important!

\end{strong}

and an appropriate definition might be:

\newenvironment{strong}%

{\bfseries\itshape}{}

2. Tags for hypertext functions. For these we can
conveniently use the hyperref package described
below, to place the complete functionality of the
hypertext commands into the dvi file. There
are four situations we need to deal with:

(a) Definition of a target (an “anchor”
in HTML jargon) is achieved with
 . . . (where
keyword) is a unique (to the doc-
ument) name chosen for the tar-
get; this is represented in LATEX by
\hyperdef{}{keyword}{}{. . . }, where
. . . is the chosen text.

4 Going in the other direction is much harder (see [2])!

TUGboat, Volume 16 (1995), No. 2 165

Screen vi ew

Visualisation

Navigation

Printing

non

PostScript

HTML to

LaTeX

Fil e

HTML

Mosaic
Fil e

*.tex
TeX

Fil e

*.dvi

DVI(h)PS

Fil e

*.ps

Acrobat

Distiller

Fil e

*.pdf

Acrobat

Reader

Visualisation

Printing

PostScript

Fil e

*.ps

Fil e

*.rep

Repere

Figure 1: Flow diagram for processing hypertext LATEX files

(b) Definition of a link to an anchor in the
same document, represented in HTML
with . . .
(where keyword is the name of the anchor
to point to); in LATEX we would write
\hyperref{}{keyword}{}{. . . } where . . .
would be the text which a user selects to
make the hypertext jump.

(c) Definition of a link to another doc-
ument, which HTML marks as . . . where
address is a valid URL. The equiv-
alent LATEX mark-up would be
\hyperref{address}{}{}{. . . }.

(d) Linking to an image, which in HTML
would be ;
in LATEX this is converted into
\hyperimage{address}

4 LATEX to DVI

Let us be clear from the start: more or less any
valid LATEX2ε document can produce a electronic
equivalent, by the simple addition of

\usepackage{hyperref}

at the end of the document preamble (this is very
important, to give the package a fighting chance of
being the last one to redefine underlying macros).
This loads Sebastian Rahtz’ hyperref package, which
redefines the following LATEX macros to produce hy-
pertext links:

• \label, \ref and \pageref (cross-referencing)

• \chapter, \section, \subsection etc.. (made
into hypertext anchors)

• \cite (provides link to references; references
can also be made to link back to their place of
citation)

• \index (index creation)

• \includegraphics (inclusion of pictures)

Nothing more needs to be done to the document
source, unless specific links are needed in a man-
ner not supported by the generic LATEX mark-up, in
which case the “raw” commands \hypertarget and
\hyperlink and \hyperimage can be used.

4.1 The HyperTEX specification and the
hyperref package

The hyperref package derives from and builds on
the work of the HyperTEX project, described in

TUGboat, Volume 16 (1995), No. 2 166

the World Wide Web document http://xxx.lanl.
gov/hypertex/. It aims to extend the functional-
ity of all the LATEX cross-referencing commands (in-
cluding the table of contents) to produce \special
commands which are parsed by DVI processors con-
forming to the HyperTEX guidelines (i.e., xhdvi and
dvihps); it also provides general hypertext links, in-
cluding those to external documents.
The HyperTEX specification

5 says that confor-
mant viewers/translators must recognize the follow-
ing set of \special commands:

href: html:

name: html:

end: html:

image: html:

base name: html:<base href =
"href_string">

The href, name and end commands are used
to perform the basic hypertext operations of estab-
lishing links between sections of documents. The
image command is intended (as with current HTML
viewers) to place an image of arbitrary graphical
format on the page in the current location. The
base name command is used to communicate to the
dvi viewer the full (URL) location of the current
document so that files specified by relative URL’s
may be retrieved correctly.
The href and name commands must be paired

with an end command later in the TEX file—the
TEX commands between the two ends of a pair form
an anchor in the document. In the case of an href
command, the anchor is to be highlighted in the
dvi viewer, and when clicked on will cause the view
to shift to the destination specified by href string.
The anchor associated with a name command rep-
resents a possible location to which other hypertext
links may refer, either as local references (of the form
href="#name string" with the name string identi-
cal to the one in the name command) or as part
of a URL (of the form URL#name string). Here
href string is a valid URL or local identifier, while
name string could be any string at all: the only
caveat is that ‘"’ characters should be escaped with
a backslash (\), and if it looks like a URL name it
may cause problems.
The hyperref package redefines or overloads a

lot of LATEX macros to express all the common con-
structs in terms of this generic functionality. It is
hoped that the redefinition is robust, but some as-
pects of it are quite complex, and some other pack-
ages may conflict with it—it should always be loaded

5 This description is derived from Arthur Smith’s
documentation.

last! Anything which uses cross-referencing and the
internal \setref command should convert, but so-
phisticated packages like AMSLATEX can cause prob-
lems.
The package supports the following options:

draft makes the low-level macros have no effect;

colorlinks colours the links and anchors (this needs
the standard LATEX2ε color package). The col-
ors can be changed by redefining two macros;
the default setting is:

\def\LinkColor{red}

\def\AnchorColor{blue}

nocolorlinks turns off colouring, if it has been ac-
tivated by default;

backref if the backref package is used, which lists
citation points for each entry in the bibliogra-
phy, this option sets up back-referencing to be
hyper links by section number;

pagebackref sets up back-referencing by page
number;

hyperindex makes index entries be links back to
the relevant pages;

nativepdf does not emit standard HyperTEX
\special commands, but produces pdfmark
code directly as raw PostScript;

nohyperindex disables hypertext indexing;

plainpages in this package, every page is make a
target for links; this option normalizes all page
numbers to be plain arabic, since typesetting
commands like \textbf can cause the main hy-
perref macros to break;

noplainpages turns off the above behaviour, so
that sequences like roman numbering of a
preamble is respected;

hyperfigures makes included figures (assuming
they use the standard graphics package) be hy-
pertext links;

nohyperfigures turns off the above behaviour;

nonesting currently, dvihps doesn’t allow anchors
to be nested within targets, so this option tries
to stop that happening. Other processors may
be able to cope;

nesting allows nesting to take place;

The following options are the default: nocolorlinks,
noplainpages, nonesting, hyperindex and nohyperfig-
ures

4.2 Creating an enriched PDF file with
repere

As we can see in Figure 2, Acrobat gives us the
possibility of displaying a hierarchical, active, ta-
ble of contents on the left-hand side of the window.

TUGboat, Volume 16 (1995), No. 2 167

The dvihps program does not, in its current ver-
sion, directly support this facility; to remedy this
lack, Haralambous developed a post-processor for
the output of dvihps which creates the necessary
extra material. The program, repere, is written in
Flex, and can be compiled on most platforms with
a Flex implementation and a C compiler.
The repere program works in conjunction with

the hyperref package, whose macros write all section-
ing titles to an external file with the suffix .rep.
After processing the file with LATEX, and running
dvihps, the .rep file is prepended and appended
to the PostScript file, and the result run through
repere. For a file foo.tex, the sequence would be
(for Unix, or other systems with pipes:6)

latex foo

latex foo

dvihps -z foo -o footemp.ps

cat foo.rep footemp.ps foo.rep \

| repere > foo.ps

This would result in a PostScript file, foo.ps which
can be given to Adobe Distiller which will produce
the table of contents. The repere program works by
writing pdfmark commands for Distiller.
The trickiest part of the operation is the con-

version of the encoding of the LATEX file which is
written to the .rep file into the PDF Encoding (an
combination of the Windows, Mac and Adobe Stan-
dard encodings) needed for the table of contents.
When LATEX writes the .rep file, it may expand ac-
cented characters and the like, depending on the en-
coding used; command sequences like \TeX also get
expanded to strange forms. While repere tries to
locate accented letters and replace them with the 8-
bit equivalent from the PDF Encoding, there remain
considerable problems in getting a totally clean ta-
ble of contents without some manual editing. Luck-
ily, this affects only the appearance—the hypertext
links between the table of contents and the main
document remain intact regardless of how horrible
the contents may look.

4.3 Problems at the TEX level

The fact that dvi files were designed solely to pro-
duce printed pages means that we have to take some
precautions when preparing material which is to be
converted to PDF.
The precautions have largely to do with the

fonts used in the document. The biggest problem
for a program like Acrobat, which sets out to dis-
play and print any PostScript file whatsoever, is the

6 DOS or VMS users will have to use copy/append com-
mands to create a temporary file.

range of PostScript fonts used in the document. The
vast majority of the existing PostScript fonts (and
there are thousands of them. . .) are commercial,
and their usage is determined by the license agree-
ment between the vendor and the user. How do we
arrange it so that an author can distribute a docu-
ment using one of these fonts, and be sure that the
reader has a copy of the same font?
Adobe solved this problem with the Multiple

Master technology; this is similar to the principles
of METAFONT,7 by which fonts have certain meta-
characteristics which can be varied to produce differ-
ent looking glyphs (in terms of their weight, width,
etc. along up to four axes). Using the extended
Adobe Type Manager (Super ATM, or ATM ver-
sion 3), and two Multiple Master fonts (one serif,
and one sans-serif), Acrobat is able to mimic the
look of any PostScript font which is not present on
the reader’s system. The Acrobat document simply
contains the font name, and a set of metrics; if the
font can be found, it is used, but otherwise a Mul-
tiple Master instance is created to get (at least) the
weight, spacing and size right.
Can Multiple Masters mimic any font? Not

quite. If the font has a non-standard set of charac-
ters (i.e., it is not a Latin text font), such as math-
ematics, phonetic symbols or Greek, simply substi-
tuting characters from a text font will obviously pro-
duce catastrophic results. There are two solutions
to this:

1. The ‘exotic’ font can be fully embedded in the
PDF document, so that it is available to the
viewing system. This avoids the problem of in-
appropriate Multiple Master substitution, but
raises copyright issues—the author needs per-
mission from the font vendor to distribute it in
this way. In Version 2 of Acrobat, Adobe im-
plemented partial font downloading—for each
font used, Distiller makes a subset containing
just those characters actually used. This makes
for smaller files, and goes a considerable way to-
ward alleviating the fears of font vendors, many
of whom do now permit their fonts be in dis-
tributed in this partial way.

2. In the case of TEX, fonts can be included in PK
bitmap format. The copyright problem does
not arise, since only bitmap representations are
included in the PDF file.8 Unfortunately, Acro-
bat Reader does not display such bitmap fonts

7 Compared to METAFONT, Multiple Master fonts are in
fact quite simplistic.

8 However, if the bitmaps are derived from a commercial
PostScript font, the user would be well advised to check with
the vendor that bitmaps can be distributed in this way.

TUGboat, Volume 16 (1995), No. 2 168

at all well, since they need to be reduced for
screen resolution, and the characters usually
appear very emaciated. Printing, by contrast,
presents no problems, if the resolution of the
bitmap font corresponds to that of the printer,
rather than the screen.

A third solution is to avoid the problem by using
the standard fonts which you can be almost cer-
tain are available for any PostScript device (Times,
Helvetica, Symbol, Courier, Palatino etc). Unfor-
tunately, we cannot produce any mathematics or
Greek of more than trivial quality using the Sym-
bol font, so this approach is of limited effectiveness
for traditional LATEX documents.
A practical approach for mathematics is to use

the Computer Modern fonts for symbols, and Times
for alphanumeric characters (this can be done using
Alan Jeffrey’s mathptm package), and to use Post-
Script Type1 versions of the CM fonts. These can
be purchased from Blue Sky Research, and Y&Y
Inc, or there are free versions in the CTAN archives
of almost equal quality. Prospective users of these
latter fonts should check the license conditions which
only allow non-commercial use.
A final problem to consider is the possible ill-

effect of virtual fonts which produce accented char-
acters by combining separate accents and charac-
ters (such as can be done by Alan Jeffrey’s fontinst
package). The reason for this is that Acrobat has
a facility to search for strings in documents; if ac-
cented characters are in fact represented in the Post-
Script/PDF file by two separate glyphs, searching
will not be complete or accurate (whereas genuine
8-bit characters can be searched for and found). For
example, if the word ‘écouté’ is represented as

e<acute accent>coute<acute accent>

in the PDF document, then a search for écouté,
where é is an 8-bit character, will not be success-
ful.
The solution to this problem is to use Post-

Script fonts encoded in the LATEX T1 (Cork) stan-
dard, and based on re-encoding at the PostScript
level to allow access to the full range of accented
characters. How this is achieved is beyond the scope
of this article, but the CTAN archives contain sets of
metrics for many common PostScript fonts derived
in this way, suitable for immediate use. Some char-
acters like ź are simply not present in most fonts,
and so these will always have to be created by com-
posite characters, but most Western European lan-
guages will come out ‘correctly’. It is worth pointing
out that LATEX2ε will automatically transform 7-bit

input mark-up like \’e into the 8-bit single charac-
ter on output, if T1 encoding is used.

5 DVI to (hyper)PostScript

Like TEX, dvips is a good example of a very
high-quality public domain program, available for
almost all operating environments and producing
good quality PostScript output. In order to get the
most out of the translation to PDF, however, it is
necessary to alter the program a little. Mark Doyle
undertook this task, and the result is the dvihps
variant of dvips, which also runs on all systems.9

Why are changes necessary? To define hyper-
text links, Acrobat Distiller needs (at least) two bits
of information: the active ‘button’ area, and the
document element to be displayed. These areas are
defined in terms of rectangular areas, whose page
coordinates are given in PostScript points (72 to
the inch) in relation to the bottom left corner of
the page. In order to establish the coordinates of
the target area, which may occur pages after the
point of departure, it is necessary to make an ex-
tra pass through the output, after all the text has
been positioned in PostScript coordinates. While it
would theoretically be possible to program all this at
the LATEX level, the transformation from DVI coor-
dinates to PostScript coordinates is distinctly hair-
raising, and it seems sensible to leave this to the
modified dvips program. At all the points where
links are desired, \special commands are inserted
into the output by LATEX macros, and these are con-
verted by dvihps if the new -z command line option
is used.
We may note that the PostScript file produced

by dvihps contains code in the preamble to deacti-
vate the hypertext commands if the file is processed
by an application other than Acrobat Distiller. It
also detects different versions of Distiller, since ver-
sion 2 has more advanced features than version 1,
which are used if possible.
If we know we only want PDF, rather than hav-

ing a portable hypertext dvi file, it is probably eas-
ier to use the nativepdf option of hyperref. This
produces simple pdfmark PostScript, with a greater
degree of flexibility than dvihps currently offers.
The user has full control over all the parameters of
the pdfmark, allowing:

• changing of the color and style of frames around
active areas;

• varying the type of link (i.e., to full page, zooms
etc.);

9 It is to be expected that the functionality will be merged
back into the ‘real’ dvips by Tom Rokicki in due course.

TUGboat, Volume 16 (1995), No. 2 169

• access to the trivial commands like ‘Next Page’
and ‘Previous Page’ without resorting to LATEX
macro programming;

• setting startup code (i.e., to start document in
full-screen mode);

• setting window title etc.

With the release of Acrobat 2.1 in September
1995, the dvihps program and the native pdfmark
feature in hyperref have been enhanced to support
the ‘plug-in’ which allows for access to World Wide
Web browsers from within Acrobat. This allows the
author to define URLs in the text as Web links, and
have them launch a browser when activated. Dis-
tiller 2.1 is required to understand the appropriate
pdfmark commands.

6 PostScript to PDF

This stage, which is certainly the longest in terms of
elapsed time for the user, is entirely under the con-
trol of the Acrobat Distiller program; anyone wish-
ing to create serious PDF documents needs to pur-
chase a copy. It is, on the side, a very good debugger
of PostScript programs, and a good interpreter. It is
a useful way to preview any PostScript file, although
the processing is rather slow. There is another way
of creating PDF, the PDFwriter printer driver which
is part of Acrobat Exchange; this allows users of any
conventional Windows or Mac word-processing pro-
gram to ‘print’ directly from their application to a
PDF file. However, this has no possibilities for auto-
matic creation of hypertext links via pdfmark, so we
do not consider it very useful in the current context.

7 Viewing, navigation, and printing of a
PDF file

These operations are achieved with the help of the
Adobe Acrobat Reader software. Search functions,
zooming, navigation, text copy, etc, are available
from menu options or key combinations. Figure 2
shows a typical Acrobat screen, with page thumb-
nails on the left side for help in navigation, and
marked hyperlink areas in the main text The LATEX
hyperref package allows the user to choose the pre-
sentation of active areas of hypertext links (in red
by default) as well as the anchor areas (in green
by default). Figure 3 shows how hyperref displays
the table of contents, with each line as an active
area, framed in a black box; Figure 4 shows a dif-
ferent style of marking areas, this time in the bib-
liography. In the latter case the links are ‘back
references’ to where the reference is cited in the
text. These are derived automatically by the hy-
perref package.

7.1 Some information on the PDF format

The PDF format is as difficult (or easy!) for average
user to read as the PostScript language. However, it
is interesting to know a bit of its structure, to per-
form, if needed, minor modifications to the presen-
tation file (the PDF format is still quite new and we
desperately lack tools to modify PDF documents).
A PDF file can be either a 7-bit ASCII file or

an 8-bit binary file. It consists of four parts: the
header, the body, the cross reference table and the
trailer. The body is composed of objects: each page
is an object; the links, the notes, the marks, the
font codes, the font descriptors, and the systems for
colour description, are all objects. The advantage
of using objects is that one can change the order,
insert or remove pages, without breaking the exist-
ing hypertext links: the order of the pages is kept
in the cross reference table. A PDF display applica-
tion starts by reading the end of the document, and
retrieves the cross reference table of pointers to the
objects in the document.
We will describe here only some of the objects,

which can be freely modified by the user. However,
it should be noted that each modification of a PDF
file (except one that will be mentioned below) needs
an update of the cross reference table: this table
contains, for each PDF object, its offset relative to
the start of the document. Each object has a num-
ber, which is the first item data for the object. The
objects are not necessarily ordered by number in the
PDF file. The cross reference table contains one line
for each object; this line contains the offset of the
object to the start of the file (a number of 10 dig-
its), followed by a blank, a 5 digit number which is
the number of times this object has been modified,
another blank, and the letter ‘n’. If the object is
deleted, the number of the object will be available
and the syntax of this line will change: the 10 digit
number indicates the number of the next free object
in the table (it is nil if it is the last free object) and
the letter ‘f’ at the end of the line.
Every time an object is modified, it is neces-

sary to change the offset of all the objects which
physically follow it in the file; we must also change
a number at the end of the file which indicates the
offset of the table of cross-references relative to the
start of the file.
As an example, Figure 5 is an extract from a

PDF file, showing the start, the first object (a color
descriptor), the last few objects, part of the cross-
reference table, and the trailer.

TUGboat, Volume 16 (1995), No. 2 170

Figure 2: PDF file being displayed with Acrobat Reader

Figure 3: The LATEX table of contents in Acrobat

TUGboat, Volume 16 (1995), No. 2 171

Figure 4: Bibliography, showing back-referencing

The number 251984 is the offset from the start
of the file of the beginning of the cross-reference ta-
ble. The extract in Figure 6 shows an object in the
main part of the file with the uncompressed version
of some text being displayed
A hypertext link is an object of type ‘Annot’;

an example is

17 0 obj

<<

/Type /Annot

/Subtype /Link

/Rect [107 565 171 577]

/Dest [16 0 R /FitH 842]

/T (page.5)

/C [0 0 1]

/Border [0 0 1 [3 3]

]

>>

endobj

While the /Rect key simply gives the coordinates
of a rectangle around a link area, the /Dest area is
more interesting. In this example, it points to a page
number, and says that the page is to sized to fit a
certain height, but it can also (in Version 2) point to
an external file, or ‘named’ destination. This allows
us to have the same functionality as HTML, opening
another file at a named point, rather than having to
know the actual page number and position in the
other file.
The /Border key describes the appearance of

the link; in Version 1, this was either a frame or
nothing, but Version 2 allows for coloured frames,
and different line types. The values in this example

indicate that the ‘active’ area which is to be clicked
on is outlined with a blue dashed line (the color is
given by the /C key, an abbreviation for /Color).
How can we modify this file? At the end

of the example above, we see the key /Producer
(Acrobat Distiller 2.0 for Windows); we may
want to change this object, and use some of the other
available keys, to produce:

/Author (Mr Kipling)

/Title (My favourite PDF sample)

/Creator (LaTeX, of course)

It is easy to simply edit this in, but we would also
have to go through and change the cross-reference
table for all the objects that follow it, a tedious and
error-prone procedure. Haralambous has written
another Flex program, recticrt, which performs this
task for you, reading a PDF file and writing a new
version with a checked and updated cross-reference
table.
Full documentation of the PDF format can be

found in [1], and in the PDF documents distributed
with Acrobat Distiller.

8 Conclusions

We have tried to show in this paper that a com-
plete, viable, electronic publishing system can be
built with LATEX as its base, and the Portable Doc-
ument Format as its delivery medium. While the
tools we describe, and those we have developed our-
selves, are functional, we believe that only a small
part of the potential has been realized. We hope
that others will develop more tools to make richer

TUGboat, Volume 16 (1995), No. 2 172

%PDF-1.1

1 0 obj

[/CalRGB

<<

/WhitePoint [0.9505 1 1.089]

/Gamma [1.8 1.8 1.8]

/Matrix [0.4497 0.2446 0.02518 0.3163 0.672 0.1412 0.1845 0.08334 0.9227]

>>

]

endobj

.........

9 0 obj

<<

/Type /Pages

/Kids [2 0 R 10 0 R 14 0 R 20 0 R]

/Count 4

/MediaBox [0 0 612 792]

>>

endobj

41 0 obj

<<

/Type /Catalog

/Pages 9 0 R

>>

endobj

42 0 obj

<<

/CreationDate (D:19950420210508)

/Producer (Acrobat Distiller 2.0 for Windows)

>>

endobj

xref

0 43

0000000000 65535 f

0000000017 00000 n

0000021336 00000 n

......

0000211955 00000 n

0000251877 00000 n

trailer

<<

/Size 43

/Root 41 0 R

/Info 42 0 R

/ID [<a7b776d0fb5478b29f5739c089a2c83f><a7b776d0fb5478b29f5739c089a2c83f>]

>>

startxref

251984

%%EOF

Figure 5: Extract from a PDF file

TUGboat, Volume 16 (1995), No. 2 173

3 0 obj

<<

/Length 21095

>>

stream

BT

/F4 1 Tf

7 0 0 7 72 759.67 Tm

0 Tr

0 g

0.014 Tc

[(T)108(e)7(s)19(t)-363(of)-352(c)7(m)25(r)14(1)0(0)-343(o)

0(n)-349(A)0(p)27(r)14(i)27(l)-383(20,)-349(1995)-308(at)-363(1712)]TJ

ET

129.36 719.59 0.48 -16.08 re

...

Figure 6: A PDF object

and richer electronic documents, using TEX typog-
raphy as a solid foundation.

Obtaining the programs

The HyperTEX project, whose standards form the
basis of the work described in this article, should
be visited on the World Wide Web at http://xxx.
lanl.gov/hypertex/.
The hyperref package can be obtained

from any of the CTAN (Comprehensive TEX
Archive Network) archives, from the directory
CTANmacros/latex/contrib/supported/hyperref.
The repere and recticrt programs are supplied in
source form (Flex code) and as compiled MSDOS
binaries. The source of dvihps is available in
CTANdviware/dvihps in the CTAN archives, and
an MSDOS binary is also stored in the hyperref
directory. Michael Mehlich has written another
LATEX2ε package for encapsulating hypertext
functionality in LATEX output, to the same Hy-
perTEX standards as hyperref, with comparable
functionality. This is available on CTAN in
CTANmacros/latex/contrib/supported/hyper.
The PostScript Type1 versions of the Computer

Modern fonts by Basil Malyshev (the BaKoMa col-
lection) can be obtained from CTAN, in the direc-
tory CTANfonts/cm/ps-type1/bakoma.

The free Acrobat Reader for Windows, Mac-
intosh and Sun Unix can be obtained from Adobe
(Internet FTP site ftp.adobe.com, for instance) or
from many other collections.

References

[1] Tim Bientz and Richard Cohn (Adobe Sys-
tems Inc.). Portable Document Format Refer-
ence Manual, Addison Wesley 1993.

[2] Michel Goossens and Janne Saarela. From
LATEX to HTML and back, TUGboat, 16(3),
1995.

[3] T.V. Raman. An audio view of TEX docu-
ments, TUGboat, 13(4), 1992.

⋄ Yannis Haralambous

187, rue Nationale, 59000 Lille,

France

Email: haralambous@

univ-lille1.fr

⋄ Sebastian Rahtz

Elsevier Science Ltd, The

Boulevard, Langford Lane,

Kidlington, Oxford OX5 1GB

Email: s.rahtz@elsevier.co.uk

TUGboat, Volume 16 (1995), No. 2 174

From LATEX to HTML and back

Michel Goossens and Janne Saarela

Abstract

Both LATEX and HTML are languages that can ex-
press the structure of a document, and similarities
between these two systems are shown. A detailed
study is made of the LaTeX2HTML program, written
by Nikos Drakos, that is today the most complete
utility for translating LATEX code into HTML, pro-
viding a quasi-automatic translation for most ele-
ments. A discussion of a few other tools for trans-
lating between HTML and LATEX concludes the ar-
ticle.

1 Similarities between LATEX and HTML

HTML and LATEX are both generic markup systems,
and a comparison between tags for structural ele-
ments in both cases is shown in Table 1. In most
cases the differences are trivial, seeming to indicate
that, at first approximation, translating between
these two systems should not prove too difficult.
The translation programs described in this ar-

ticle use these similarities, but in order to exploit
the richness of the LATEX language as compared to
HTML (especially HTML2, which has no support for
tables or mathematics), an ad hoc approach has to
be adopted. To handle correctly LATEX commands
that have no equivalent in HTML, such elements can
either be transformed into bitmap or PostScript pic-
tures (an approach taken by LaTeX2HTML), or the
user can specify how the given element should be
handled in the target language.

2 Converting LATEX into HTML

Before discussing the LaTeX2HTML program, we want
to mention a few other programs. First there is
l2x,1 written by Henning Schulzrinne (Berlin, Ger-
many), which translates LATEX into various other
formats. This program is written in C and calls
a Tcl function (Ousterhout, 1994) for each LATEX
command.
A converter html.tcl is available for translat-

ing LATEX files into HTML, by writing, for instance:

l2x -p html.tcl article.tex

Presently, only a sub-set of all LATEX commands
are handled (no mathematical formulae, tables, ver-
batim texts, etc.), yet it is not too difficult to aug-
ment the code of the converter html.tcl by intro-
ducing new Tcl commands.

1 See the URL http://info.cern.ch/hypertext/WWW/
Tools/l2x.html.

Schwarzkopf (Schwarzkopf, 1995) has devel-
oped Hyperlatex,2 a package written in the GNU
Emacs lisp language to translate documents marked
up in (a subset of) LATEX into HTML.
Another interesting tool is tex2RTF,3 a utility

to convert from LATEX to four other formats, includ-
ing HTML. It does a relatively good job for a sub-set
of LATEX commands, but, as with the Tcl approach
of l2x, it cannot handle more complex structures,
such as mathematical expressions and tables.
Finally, although not directly relevant to LATEX,

texihtml4 translates texinfo sources5 into HTML.

3 The LaTeX2HTML Converter—Generalities

LaTeX2HTML is a program written in the perl pro-
gramming language6 (Schwartz, 1993; Till, 1995;
Wall and Schwartz, 1991) by Nikos Drakos.7. It
transforms a LATEX document into a series of HTML
files linked in a way that reflects the structure of the
original document.

3.1 What LaTeX2HTML is and What it is Not

LaTeX2HTML is a conversion tool that allows docu-
ments written in LATEX to become part of the World
Wide Web. In addition, it offers an easy migration
path towards authoring complex hypermedia docu-
ments using familiar word-processing concepts.
LaTeX2HTML replicates the basic structure of a

LATEX document as a set of interconnected HTML
files which can be explored using automatically gen-
erated navigation panels. The cross-references, ci-
tations, footnotes, the table of contents and the
lists of figures and tables are also translated into
hypertext links. Formatting information which has
equivalent “tags” in HTML (lists, quotes, paragraph
breaks, type styles, etc.) is also converted appropri-
ately. The remaining heavily formatted items such
as mathematical equations, pictures or tables are

2 The documentation is available at the
URL http://hobak.postech.ac.kr/~otfried/html/

hyperlatex.html. Otfried Schwarzkopf can be reached
via email at otfried@vision.postech.ac.kr.

3 Written by Julian Smart (Edinburgh, Britain). For
more information see the URL http://www.aiai.ed.ac.uk/
~jacs/tex2rtf.html.

4 Written in perl by Lionel Cons (CERN, Geneva).
For more information see the URL http://asis01.cern.ch/
infohtml/texi2html.html.

5 texinfo is a TEX based markup language used for all
gnu project related documentation.

6 More information can be found in the UF/NA perl
archive at the URL http://www.cis.ufl.edu/perl/.

7 The documentation is at the URL http://cbl.leeds.
ac.uk/nikos/tex2html/doc/latex2html/latex2html.html.
One can also join the LaTeX2HTML mailing list by sending a
message to latex2html-request@mcs.anl.gov with as only
contents line: subscribe.

TUGboat, Volume 16 (1995), No. 2 175

Description HTML LATEX
Sectioning commands

level 1 <H1> \chapter or \section
level 2 <H2> \section or \subsection
level 3 <H3> \subsection or \subsubsection
level 4 <H4> \subsubsection or \paragraph
level 5 <H5> \paragraph or \subparagraph
level 6 <H5> \subparagraph

new paragraph <P> \par

Lists
numbered list \begin{enumerate}

unnumbered list \begin{itemize}

list element \item

description list <DL> \begin{description}

term <DT> \item

definition <DD> text
Highlighting text

emphasis text \emph{text}
italic <I>text</I> \textit{text}
bold text \textbf{text}
fixed with <TT>text</TT> \texttt{text}

Table 1: Comparison of structural elements in HTML and LATEX

converted to images placed automatically at the cor-
rect positions in the final HTML document.
LaTeX2HTML extends LATEX by supporting arbi-

trary hypertext links and symbolic cross-references
between evolving remote documents. It also allows
the specification of conditional text and the inclu-
sion of raw HTML commands. These hypermedia
extensions to LATEX are available as new commands
and environments from within a LATEX document.

3.2 Overview

The main characteristics of the LaTeX2HTML trans-
lator are summarized in this section.

• a document is broken into one or more compo-
nents as specified by the user;

• optional, customizable navigation panels can be
added to each generated page to link other parts
of the document, or external documents;

• inline and displayed equations are handled as
images;

• tables and figures, and all other arbitrary envi-
ronments are passed on to LATEX and included
as images; these images are included inline or
made available via hypertext links;

• figures or tables can be arbitrarily scaled and
shown either as inlined images or “thumbnails”;

• output can be generated to cope with the possi-
bilities of various kind of browsers (for example,
line browsers);

• definitions of new commands, environments,
and theorems are given even when they are in
external files;

• footnotes, tables of contents, lists of figures and
tables, bibliographies, and the index are han-
dled correctly;

• LATEX cross-references and citations are trans-
formed into hyperlinks, which work just as well
inside a (sub)document as between several doc-
uments (located anywhere on the Internet);

• most LATEX accented national characters are
translated into their ISO-Latin-1 equivalent;

• hypertext links to arbitrary Internet services
are recognized;

• programs running arbitrary scripts can be in-
voked (at the LATEX level);

• a conditional text mechanism allows material
to be included in the HTML or printed (DVI)
versions only;

• similarly raw HTML material can be present in
the LATEX document (such as for specifying in-
teractive forms);

• common LATEX commands (i.e.,, those de-
fined in the LATEX Reference manual (Lamport,
1994)) are handled gracefully;

TUGboat, Volume 16 (1995), No. 2 176

• the user can define (in perl) functions to trans-
late (un)known LATEX commands in a customi-
zed way.

3.3 Using LaTeX2HTML

To use LaTeX2HTML, simply type

latex2html options-list file.tex

By default a new directory “file” will be created
to contain the generated HTML files, some log files
and possibly some images.
The output from LaTeX2HTML can be cus-

tomized using a number of command line options,
as described below.
The command line options options-list allow

one to change the default behavior of LaTeX2HTML.
Alternatively, the corresponding perl variables in
the initialization file .latex2html-init may be
changed, in order to achieve the same result (see
Section 3.5).

-split num The default is 8.
Stop splitting sections into separate files at this
depth. A value of 0 will put the document into
a single HTML file.

-link num The default is 4.
Stop revealing child nodes at each node at this
depth. (A node is characterized by the sequence
part-chapter-section-subsection-. . .). A value
of 0 will show no links to child nodes, a value
of 1 will show only the immediate descendents,
etc. A value at least as big as that of the -split
option will produce a table of contents for the
tree structure, rooted at each given node.

-external_images

Instead of including any generated images in-
side the document, leave them outside the doc-
ument and provide hypertext links to them.

-ascii_mode

Use only ASCII characters and do not include
any images in the final output. In ASCII mode,
the output of the translator can be used on
character-based browsers that do not support
inlined images (the tag).

-t top-page-title
Use the string top-page-title for the title of the
document.

-dir output-dir
Redirect the output to the output-dir directory.

-no_subdir

Place the generated HTML files in the current
directory. By default another file directory is
created (or reused).

-ps_images

Use links to external PostScript pictures rather

than inlined GIF (Graphics Interchange For-
mat) images.

-address author-address
The address author-address will be used to sign
each page.

-no_navigation

Do not put navigation links in each page.

-top_navigation

Put navigation links at the top of each page.

-bottom_navigation

Put navigation links at the bottom of each page
as well as at the top.

-auto_navigation

Put navigation links at the top of each page.
If the page exceeds $WORDS_IN_PAGE number of
words (the default is 450) then put one at the
bottom of the page also.

-index_in_navigation

When an index exists, put a link to the index
page in the navigation panel.

-contents_in_navigation

When a table of contents exists, put a link to
that table in the navigation panel.

-next_page_in_navigation

Put a link to the next logical page in the navi-
gation panel.

-previous_page_in_navigation

Put a link to the previous logical page in the
navigation panel.

-info string
Generate a new section About this document ...
containing information about the document be-
ing translated. The default is for generating
such a section with information on the original
document, the date, the user and the transla-
tor. If string is empty (or has the value 0), this
section is not created. If string is non-empty, it
will replace the default information in the con-
tents of the About this document ... section.

-dont_include file1 file2 ...
Do not include the specified file(s) file1 , file2 ,
etc. Such files can be package files that contain
raw TEX commands that the translator cannot
handle.

-reuse

Images generated during a previous translation
process should be reused as far as possible.
With this option enabled the user is no longer
asked whether to reuse the old directory, delete
its contents or quit. Images which depend on
context (for example, numbered tables or equa-
tions) cannot be reused and are always regen-
erated.

TUGboat, Volume 16 (1995), No. 2 177

-no_reuse

Do not reuse images generated during a pre-
vious translation. This enables the initial in-
teractive session during which the user is asked
whether to reuse the old directory, delete its
contents or quit.

-init_file file
Load the perl initialization script file. It will
be loaded after $HOME/.latex2html-init (if it
exists). It can be used to change default op-
tions.

-no_images

Do not produce inlined images. If needed, the
missing images can be generated “off-line” by
restarting LaTeX2HTML with the -images_only
option.

-images_only

Try and convert any inlined images that were
left over from previous runs of LaTeX2HTML. The
advantage of using the latter two options is that
the translation can be allowed to finish even
when there are problems with image conversion.
In addition, it may be possible to fix manually
any image conversion problems and then run
LaTeX2HTML again just to integrate the new im-
ages without having to translate the rest of the
text.

-show_section_numbers

Instruct LaTeX2HTML to show section numbers.
By default, section numbers are not shown, in
order to allow individual sections to be used as
stand-alone documents.

-h Print the list of options.

3.4 Simple Use of LaTeX2HTML

To show the procedure for translating a LATEX doc-
ument into HTML, let us first look at a simple ex-
ample, namely the file shown in Figure 1.8 After
running this file through LATEX (twice, to resolve
the cross-references) one obtains the output shown
in Figure 2.
This same LATEX source document is now run

through LaTeX2HTML with the command

> latex2html -init_file french.pl babel.tex

where the default options have been used apart from
the fact that we want titles in French. That is
why we use the option -init_file to load the file
french.pl, which merely contains

8 This one-page example is chosen because it is discussed
in detail in Chapter 9 of Goossens et al. (1994) and at
the same time shows how LaTeX2HTML handles non-English
documents.

$TITLES_LANGUAGE = "french";

1;

as explained in Section 3.9.
The log messages generated by LaTeX2HTML are

shown below.
This is LaTeX2HTML Version 95.1 (Fri Jan 20 1995)

by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/usr/g/goossens/babel.tex

Loading /usr/local/lib/latex2html/styles/makeidx.perl

....

Reading ...

Processing macros+.....

Reading babel.aux

Translating ...0/8..............1/8....2/8....3/8

....4/8.............5/8............6/8...........

7/8.....8/8.....

Writing image file ...

This is TeX, Version 3.1415 (C version 6.1)

(images.tex

LaTeX2e <1994/12/01>

Generating postscript images using dvips ...

This is dvipsk 5.58e Copyright 1986, 1994

Radical Eye Software

’ TeX output 1995.05.11:0844’ -> 14024_image

(-> 14024_image001) <tex.pro><special.pro>

[1<colorcir.eps><tac2dim.eps>]

(-> 14024_image002) <tex.pro><special.pro>[2]

Writing 14024_image002.ppm

Writing img2.gif

Writing 14024_image001.ppm

Writing img1.gif

Doing section links

Doing table of contents

Doing the index

Done.

The results are shown in Figure 3. The main
document is shown in the middle at the top. Num-
bered arrows indicate the secondary documents that
are produced and to which point in the main docu-
ment they are linked. The document also contains a
table of contents that is not shown explicitly, since
its contents are almost identical to that of the main
document. Note the navigation buttons at the top
of each “page”. This navigation panel corresponds
to the (default) option “-top_navigation”. The
navigation panel contains five push buttons:

Next to go to the next document,
default: -next_page_in_navigation;

Up to go up one level;
Previous to move to the previous document,
default :-previous_page_in_navigation;

Contents to jump directly to Table of Contents,
default: -contents_in_navigation;

Index to jump straight to the Index,
default: -index_in_navigation.

T
U
G
b
o
a
t,
V
o
lu
m
e
1
6
(1
9
9
5
),
N
o
.
2

1
7
8

\documentclass{article}

\usepackage{makeidx}

\usepackage[dvips]{graphicx}

\usepackage[french]{babel}

\makeindex

\begin{document}

\begin{center}\Large

Exemple d’un article en fran\c{c}ais\\[2mm]\today

\end{center}

\tableofcontents

\listoffigures

\listoftables

\section{Une figure EPS}

\index{section}

Cette section montre comment inclure une figure PostScript\cite{bib-PS}

dans un document \LaTeX. La figure~\ref{Fpsfig} est ins\’er\’ee dans le

texte \‘a l’aide de la commande \verb!\includegraphics{colorcir.eps}!.

\index{figure}\index{PostScript}

\begin{figure}

\centering

\begin{tabular}{c@{\qquad}c}

\includegraphics[width=3cm]{colorcir.eps} &

\includegraphics[width=3cm]{tac2dim.eps}

\end{tabular}

\caption{Deux images EPS}\label{Fpsfig}

\end{figure}

\section{Exemple d’un tableau}

Le tableau~\ref{tab:exa} \‘a la page \pageref{tab:exa}

montre l’utilisation de l’environnement \texttt{table}.

\begin{table}

\centering

\begin{tabular}{cccccc}

\Lcs{primo} \primo & \Lcs{secundo} \secundo & \Lcs{tertio}

\tertio & \Lcs{quatro} \quatro & 2\Lcs{ieme}\ 2\ieme

\end{tabular}

\caption{Quelques commandes de l’option \texttt{french}

de \texttt{babel}}\label{tab:exa}\index{tableau}

\end{table}

\begin{thebibliography}{99}

\index{r\’ef\’erences}

\bibitem{bib-PS}

Adobe Inc. \emph{PostScript, manuel de r\’ef\’erence

(2i\‘eme \’edition)} Inter\’Editions (France), 1992

\end{thebibliography}

\printindex

\index{index}

\end{document}

Figure 1: Example of a LATEX document

Exemple d’un article en français

7 décembre 1994

Table des matières

1 Une figure EPS 1

2 Exemple d’un tableau 1

Liste des figures

1 Deux images EPS : 1

Liste des tableaux

1 Quelques commandes de l’option french de babel : 1

1 Une figure EPS

Cette section montre comment inclure une figure PostScript[1] dans un document LATEX. La figure 1 est insérée dans

le texte à l’aide de la commande \includegraphics{colorcir.eps}.

4 6 8 10 12 14

6
8

10
12

14
16

0

40

80

120

160

200

240

Figure 1: Deux images EPS

2 Exemple d’un tableau

Le tableau 1 à la page 1 montre l’utilisation de l’environnement table.

\primo 1
o \secundo 2

o \tertio 3
o \quatro 4

o 2\ieme 2e

Tableau 1: Quelques commandes de l’option french de babel

Références

[1] Adobe Inc. PostScript, manuel de référence (2ième édition) InterÉditions (France), 1992

Index

figure, 1

index, 1

PostScript, 1

références, 1

section, 1

tableau, 1

1

Figure 2: Output generated by LATEX from document shown in Figure 1

TUGboat, Volume 16 (1995), No. 2 179

Each of the default values can be modified by re-
defining the corresponding perl variables in the ini-
tialization file .latex2html.init, as described in
Section 3.5.4.
A detailed explanation of the meaning of the

various numbers in Figure 3 is given below.

➊ the list of figures, containing a hyperlink point-
ing to document ➌ (containing the figure in
question);

➋ the list of tables, containing a hyperlink point-
ing to document ➍ (containing the table in
question);

➌ the first section, containing some text, a figure,
and a hyperlink ([1]) pointing to an entry in
the bibliography (document ➎);

➍ the second section, also containing some text
and a table;

➎ the bibliographic references;

➏ the index, containing keywords that provide hy-
perlinks pointing to entry points in the various
documents;

➐ an explanatory note detailing the procedure by
which the document was translated into HTML.
This text can be customized with the help of the
option -desc (see Section 3.6.3).

3.5 Extending and Customizing the
Translator

As the translator only partially covers the set of
LATEX commands and because new LATEX commands
can be defined arbitrarily using low level TEX com-
mands, the translator should be flexible enough to
allow end users to specify how they want particular
commands to be translated.

3.5.1 Adding Support for Packages

LaTeX2HTML provides a mechanism to automatically
load files containing code to translate specific pack-
ages. For instance, when in a LATEX document, the
command \includegraphics{xxxx} is found, a file
LATEX2HTMLDIR/styles/xxxx.perl is looked for. If
such a file exists, it will be loaded into the main
script.
This mechanism keeps the core script both

smaller and more modular and also makes it easier
for others to contribute perl code to translate spe-
cific packages. The current distribution includes the
files german.perl, french.perl, makeidx.perl,
and for the hypertext extensions html.perl. Note,
however, that writing such extensions requires an
understanding of perl and of the way LaTeX2HTML
is organized. Some more details will be given in
Section C.

Presently, the user can ask that particular com-
mands and their arguments be ignored or passed on
to LATEX for processing (the default behavior for un-
recognized commands is for their arguments remains
in the HTML text). Commands passed to LATEX
are converted to images that are either “inlined”
in the main document or are accessible via hyper-
text links. Simple extensions using the commands
below may be included in the system initialization
file LATEX2HTMLDIR/latextohtml.config, or in the
customization initialization file .latex2html-init
in the user’s home directory or in the directory
where the files to be converted reside.

3.5.2 Directing the Translator to Ignore
Commands

Commands that should be ignored may be spec-
ified in the .latex2html-init file as input to
the ignore_commands subroutine. Each command
which is to be ignored should be on a separate line
followed by compulsory or optional argument mark-
ers separated by #’s, for example:9

<cmd_name>#{}# []# {}# [] ...

{}’s mark compulsory arguments and []’s optional
ones.
Some commands may have arguments which

should be left as text, even though the command
should be ignored (\mbox, \center, etc.). In these
cases the arguments should be left unspecified.
Here is an example of how this mechanism may

be used:

&ignore_commands(<<_IGNORED_CMDS_);

documentclass # [] # {}

linebreak# []

pagebreak# []

center

<add your commands here>

_IGNORED_CMDS_

3.5.3 Asking the Translator to Pass
Commands to LATEX

Commands that should be passed on to LATEX for
processing because there is no direct translation to
HTML may be specified in the .latex2html-init
file as input to the process_commands_in_tex sub-
routine. The format is the same as that for specify-
ing commands to be ignored. Here is an example:

&process_commands_in_tex (<<_RAW_ARG_CMDS_);

fbox # {}

9 It is possible to add arbitrary perl code between any of
the argument markers that will be executed when the com-
mand is processed. For this, however, a basic understanding
of how the translator works and, of course, perl is required.

T
U
G
b
o
a
t,
V
o
lu
m
e
1
6
(1
9
9
5
),
N
o
.
2

1
8
0

➌

➍

➏

➐

➊

➋

➎

Figure 3: The HTML structure generated from the LATEX source of Figure 1 as visualized with the Mosaic browser

TUGboat, Volume 16 (1995), No. 2 181

framebox # [] # [] # {}

<add your commands here>

_RAW_ARG_CMDS_

3.5.4 Customizing LaTeX2HTML

Besides honoring the options specified on the com-
mand line, LaTeX2HTML reads two standard files that
can be used to customize its behavior. The first file,
latextohtml.config, is a system-wide file (usually
in the directory /usr/local/lib/latex2html). It
contains the definitions for a complete installation,
i.e.,, those common for all users, and specifies where
certain external utility programs needed by LaTeX2-
HTML are to be found on the system (such as LATEX,
dvips, gs, pmbplus). Moreover, in this file impor-
tant perl variables are initialized to their default
values. At the end of the file one has the possibil-
ity of specifying those LATEX commands or environ-
ments that should be ignored, and those that should
be passed on to LATEX to be transformed into images
for inclusion in the HTML file.
The second file, .latex2html-init, allows the

user to customize LaTeX2HTML on an individual level.
LaTeX2HTML will normally look for this file in the
user’s home directory (variable $HOME on Unix). The
file can contain the same information as the global
configuration file latextohtml.config and is thus
the ideal place to overwrite default values or to spec-
ify in the perl language how certain specific LATEX
commands should be handled. It should be noted
that the standard distribution of LaTeX2HTML al-
ready contains a few files with definitions for transla-
tions of supplementary LATEX commands introduced
by certain extension packages, such as german.perl,
french.perl, html.perl and makeidx.perl. To
help the user, the distribution comes with an exam-
ple file dot.latex2html-init that can serve as a
model for writing one’s own .latex2html-init.

3.5.5 Creating a Customization File
.latex2html-init

Before discussing examples of commands that can
be put in the .latex2html-init customization file,
it should be emphasized once more that this file, as
well as all other files that are part of the LaTeX2HTML
system, contain only perl instructions, and that one
should thus have at least a basic understanding of
this language before trying to edit any of these files.
Figures 4 and 5 show the contents of the ex-

ample initialization file dot.latex2html-init. Its
first parts initialize most of the perl variables used
by the LaTeX2HTML system by setting them equal to
their default values (as defined in the system-wide
initialization file latex2html.config). Values that

need not to be changed can be deleted from the
file. When studying the various system variables,
note the correspondence between the perl variables
and the options of the latex2html described in Sec-
tion 3.3).

Examples

We want to leave most of the values at their defaults
as shown in Figures 4 and 5. However, we specify the
format of the address fields explicitly and make a few
more modifications; in particular, we do not want
images to be included inside the HTML documents.
Thus we should write something like:

$ADDRESS = "<I>Michel Goossens
" .

"CN Division
" .

"Tel. 3363
" .

"\n$address_data[1]</I>";

$MAX_SPLIT_DEPTH = 2; # stop at subsection

$MAX_LINK_DEPTH = 1; # child nodes to sections

$EXTERNAL_IMAGES = 1; # images outside document

draw a nice rainbow-colored line (gif file)

instead of the default simple line (<HR>)

$CHILDLINE = "
<IMG " .

"SRC=rainbow_line.gif>
"

Normally, LaTeX2HTMLwill read all package and
class files and interpret all the commands that are
defined in those files. This can lead to problems, so
it is wise to exclude some files. Also, one may want
to define a translation into perl for the commands
in one or more files, so they should also not be read.
The list of files to be excluded, is specified as follows:

$DONT_INCLUDE = "memo:psfig:times:revtex:" .

"aps:float:harvard:tabls";

Special symbols and inline equations are gener-
ally transformed into inlined (bitmap) images that
are placed inside the HTML text on the same line
when viewing the document with a browser. On
the other hand, display environments, such as ta-
bles, figures, minipages, and multi-line equations are
transformed into images that will also be shown on
a line by themselves after starting a new paragraph.
The scale factor for the two kinds of images (inline
and displayed) can be specified by the following pa-
rameters:

$MATH_SCALE_FACTOR = 1.6;# inline images

$FIGURE_SCALE_FACTOR = 0;# display images

= 0, original dimension

Finally, we specify—as described in Sections
3.5.2 and 3.5.3—a list of commands to be ignored
and passed to LATEX.

Commands to ignore

&ignore_commands(<<_IGNORED_CMDS_);

documentclass # [] # {}

TUGboat, Volume 16 (1995), No. 2 182

#LaTeX2HTML Version 95.1 : dot.latex2html-init

#

Command Line Argument Defaults

$MAX_SPLIT_DEPTH = 8; # Stop making separate files at this depth

$MAX_LINK_DEPTH = 4; # Stop showing child nodes at this depth

$NOLATEX = 0; # 1 = do not pass unknown environments to Latex

$EXTERNAL_IMAGES = 0; # 1 = leave the images outside the document

$ASCII_MODE = 0; # 1 = do not use any icons or internal images

$PS_IMAGES = 0; # 1 = use links to external postscript

images rather than inlined GIF’s.

$TITLE = $default_title; # The default is "No Title"

$DESTDIR = ’.’; # Put the result in this directory

$NO_SUBDIR = 0; # 0 = create (reuse) file subdirectory

1 = put generated HTML files in current dir.

Supply your own string if you don’t like the default <Name> <Date>

$ADDRESS = "<I>$address_data[0]
\n$address_data[1]</I>";

$NO_NAVIGATION = 0; # 1 = no navigation panel at top of each page

$AUTO_NAVIGATION = 1; # 1 = put navigation links at top of page

$WORDS_IN_PAGE = 300; # if nb. words on page > $WORDS_IN_PAGE put

navigation panel at bottom of page.

$INDEX_IN_NAVIGATION = 1; # put link to index page in navigation panel

$CONTENTS_IN_NAVIGATION = 1; # put link to table of contents " " "

$NEXT_PAGE_IN_NAVIGATION = 1; # put link to next logical page " " "

$PREVIOUS_PAGE_IN_NAVIGATION = 1;# put link to prev. " " " " "

$INFO = 1; # 0 = do not make "About this document..." section

$REUSE = 1; # Reuse images generated during previous runs

Do not try to translate these package files.

Complex LaTeX packages may cause the translator to hang.

If this occurs add the package’s filename here.

$DONT_INCLUDE = "memo:psfig:pictex:revtex";

When this is 1, the section numbers are shown. The section numbers should

then match those that would have bee produced by LaTeX.

The correct section numbers are obtained from the $FILE.aux file generated

by LaTeX.

Hiding the section numbers encourages use of particular sections

as standalone documents. In this case the cross reference to a section

is shown using the default symbol rather than the section number.

$SHOW_SECTION_NUMBERS = 0;

Other global variables

$CHILDLINE = "
 <HR>\n";

This is the line width measured in pixels and it is used to right justify

equations and equation arrays;

$LINE_WIDTH = 500;

Affects ONLY the way accents are processed

$default_language = ’english’;

This number will determine the size of the equations, special characters,

and anything which will be converted into an inlined image

except "image generating environments" such as "figure", "table"

or "minipage".

Effective values are those greater than 0.

Sensible values are between 0.1 - 4.

$MATH_SCALE_FACTOR = 1.6;

This number will determine the size of

image generating environments such as "figure", "table" or "minipage".

Effective values are those greater than 0.

Sensible values are between 0.1 - 4.

$FIGURE_SCALE_FACTOR = 0;

Figure 4: dot.latex2html-init file (part 1)

TUGboat, Volume 16 (1995), No. 2 183

If this is set then intermediate files are left for later inspection.

This includes $$_images.tex and $$_images.log created during image

conversion.

Caution: Intermediate files can be *enormous*.

$DEBUG = 0;

The value of this variable determines how many words to use in each

title that is added to the navigation panel (see below)

#

$WORDS_IN_NAVIGATION_PANEL_TITLES = 4;

If both of the following two variables are set then the "Up" button

of the navigation panel in the first node/page of a converted document

will point to $EXTERNAL_UP_LINK. $EXTERNAL_UP_TITLE should be set

to some text which describes this external link.

$EXTERNAL_UP_LINK = "";

$EXTERNAL_UP_TITLE = "";

If this is set then the resulting HTML will look marginally better if viewed

with Netscape.

$NETSCAPE_HTML = 0;

Valid paper sizes are "letter", "legal", "a4","a3","a2" and "a0"

Paper sizes has no effect other than in the time it takes to create inlined

images and in whether large images can be created at all ie

- larger paper sizes *MAY* help with large image problems

- smaller paper sizes are quicker to handle

$PAPERSIZE = "a4";

Replace "english" with another language in order to tell LaTeX2HTML that you

want some generated section titles (eg "Table of Contents" or "References")

to appear in a different language. Currently only "english" and "french"

is supported but it is very easy to add your own. See the example in the

file "latex2html.config"

$TITLES_LANGUAGE = "english";

Navigation Panel

#

The navigation panel is constructed out of buttons and section titles.

These can be configured in any combination with arbitrary text and

HTML tags interspersed between them.

The buttons available are:

$PREVIOUS - points to the previous section

$UP - points up to the "parent" section

$NEXT - points to the next section

$NEXT_GROUP - points to the next "group" section

$PREVIOUS_GROUP - points to the previous "group" section

$CONTENTS - points to the contents page if there is one

$INDEX - points to the index page if there is one

#

If the corresponding section exists the button will contain an

active link to that section. If the corresponding section does

not exist the button will be inactive.

#

Also for each of the $PREVIOUS $UP $NEXT $NEXT_GROUP and $PREVIOUS_GROUP

buttons there are equivalent $PREVIOUS_TITLE, $UP_TITLE, etc variables

which contain the titles of their corresponding sections.

Each title is empty if there is no corresponding section.

#

The subroutine below constructs the navigation panel in each page.

Feel free to mix and match buttons, titles, your own text, your logos,

and arbitrary HTML (the "." is the Perl concatenation operator).

sub navigation_panel {....}

1; # This must be the last line

Figure 5: dot.latex2html-init file (part 2). The navigation panel perl code is shown in Figure 9.

TUGboat, Volume 16 (1995), No. 2 184

usepackage # [] # {}

mbox

makebox# [] # []

_IGNORED_CMDS_

Commands to pass on to LaTeX{}

&process_commands_in_tex (<<_RAW_ARG_CMDS_);

includegraphics # [] # [] # {}

rotatebox # {} # {}

_RAW_ARG_CMDS_

1; # This MUST be the last line

We notice that the mandatory argument of the
\mbox and \makebox commands is not specified, so
that it will end up in the text, while the optional ar-
guments of the \makebox command will disappear.
In the case of the framed box commands \fbox
and \framebox, both mandatory and optional ar-
guments are passed on to LATEX.
It is important to note that the last line of the

file must be the one shown in the example above.

3.6 Hypertext Extensions

These commands are defined in the html.sty pack-
age file that is part of the distribution. They are
defined as LATEX commands that are (mostly) ig-
nored during the LATEX run but are activated in the
HTML version. To use them the html package must
be included with a \usepackage command.

3.6.1 Hyperlinks in LATEX

With the \htmladdnormallink and \htmladdimg
commands one can build arbitrary hypertext refer-
ences.

\htmladdnormallink{text}{〈URL〉}

When processed by LATEX the URL part will be ig-
nored, but LaTeX2HTML will transform it into an ac-
tive hypertext link that can give access to sound,
images, other documents, etc.; for instance,

\htmladdnormallink{The Ω Project}

{http://www.ens.fr/omega/}

\htmladdnormallinkfoot{text}{〈URL〉}

This command takes the same two arguments and
has the same effect when generating HTML as the
command \htmladdnormallink, but when pro-
cessed by LATEX it shows the URL as a footnote.

\htmladdimg{〈URL〉}

In a similar way, the argument of the \htmladdimg
command should be a URL pointing to an image.
This URL is ignored in the LATEX hard copy output.

3.6.2 Cross-References between Living
Documents

In this case we want to use a mechanism for estab-
lishing cross-references between two or more docu-
ments via symbolic labels independent of the phys-
ical realisation of these documents. The documents
involved may reside in remote locations and may be
spread across one or more HTML files.
The mechanism is an extension of the simple

\label-\ref pairs that can be used only within a
single document. A symbolic label defined with a
\label command can be referred to using a \ref
command. When processed by LATEX, each \ref
command is replaced by the section number at which
the corresponding \label occurred but when pro-
cessed by LaTeX2HTML each \ref is replaced by a
hypertext link to the place where the correspond-
ing \label occurred. The new commands, detailed
below, show how it is possible to refer to symbolic
labels defined with \label in other external docu-
ments. These references to external symbolic labels
are then translated into hyperlinks pointing to the
external document.
Cross-references between documents are estab-

lished with the commands:

\externallabels

{〈URL directory external document〉}
{〈external document labels.pl file〉}

\externalref{〈label in remote document〉}

The first argument to \externallabels should
be a URL to the directory containing the external
document. The second argument should be the full
pathname to the labels.pl file belonging to the
external document. The file labels.pl associates
symbolic labels with physical files and is generated
automatically for each translated document. For
remote external documents it is necessary to copy
the labels.pl file locally so that it can be read
when processing a local document that uses it. The
command \externallabels should be used once for
each external document in order to import the exter-
nal labels into the current document. The argument
to \externalref can be any symbolic label defined
in any of the external documents in the same way
that the \ref command refers to labels defined in-
ternally.
After modifications in an external document,

such as addition or deletion of sectioning levels, or
a segmentation into different physical parts, a new
file, labels.pl, will be generated. If in another
document the \externallabels command contains

TUGboat, Volume 16 (1995), No. 2 185

the correct address to the labels.pl file, then cross-
references will be realigned correctly. A warning will
be given if labels.pl cannot be found.

3.6.3 Example of a Composite Document

In this section we show how to handle a set of com-
posite documents taking advantage of the hypertext
extensions described in Section 3.6.
We start with the LATEX source document

shown in Figure 1 and divide it, for demonstration
purposes, into four sub-documents, shown in Fig-
ure 6, namely a master file (ex20.tex) and three sec-
ondary files (ex21.tex, ex22.tex and ex2bib.tex).
We must first run all these files through LATEX
and then LaTeX2HTML, in the correct order. As
we use cross-references to refer to document ele-
ments in external documents (with the commands
\externalref and \externallabels) we first treat
the secondary files before tackling the master file
ex20.tex.
By default, LaTeX2HTML writes the files that it

creates into a subdirectory with the same name as
the original file, for example, after execution of the
command:

> latex2html ex20.tex

one ends up with a directory ex20 containing all
files associated with the translation of the input file
ex20.tex. Figure 7 shows the structure of the four
sub-directories created.
To guide LaTeX2HTML in translating these docu-

ments we also used a customization file, myinit.pl,
containing some redefinitions of perl constants.

File myinit.pl

Customization of latex2html

$ADDRESS = "<I>Michel Goossens
" .

"Division CN
" .

"Tél. 3363
" .

"\n$address_data[1]</I>";

$MAX_SPLIT_DEPTH = 0; # do not split document

$MAX_LINK_DEPTH = 0; # no down links needed

$NO_NAVIGATION = 1; # no navigation panel

1; # Mandatory last line

When executing LaTeX2HTML on the files we
then issued the following command:

> latex2html -init_file myinit.pl \

> -t "Image" \

> -info "Test du 2/12/94" \

> ex21.tex

In addition to our customization file moninit.pl
(loaded with option -init_file), we also specify
a title for the document (option -t), and add a de-
scription about the document (option -info). The

Top directory (TeX source files)

================================

569 ex20.tex

721 ex21.tex

627 ex22.tex

322 ex2bib.tex

Subdirectories (generated HTML files)

=====================================

ex20

1187 ex20.html

109 images.pl

93 labels.pl

ex21

1755 T_18854_figure15.gif

12118 _18854_figure15.gif

122 _18854_tex2html_wrap57.gif

1345 ex21.html

539 images.pl

589 images.tex

190 labels.pl

ex22

624 _15561_table12.gif

1047 ex22.html

512 images.pl

687 images.tex

191 labels.pl

ex2bib

844 ex2bib.html

109 images.pl

141 labels.pl

Note the presence of the files labels.pl that contain
information associating the symbolic names used on the
\label commands in the original LATEX source docu-
ments with the physical documents. The other files are
one or more HTML files that were created by the trans-
lation process. GIF images are generated for all envi-
ronments that LaTeX2HTML cannot translate gracefully
into HTML. In this case the relevant part of the LATEX
code is first copied into a file images.tex that is run
through LATEX, which places each such environment on
a separate page, so that the dvips program can produce
a PostScript picture for each that is then (in principle)
translated into GIF by using the Ghostscript program
(see Section A.1 for more information about all these
programs)

Figure 7: Subdirectory structure after translation
of the four documents shown in Figure 6

TUGboat, Volume 16 (1995), No. 2 186

\documentclass{article}

\usepackage{html}

\usepackage[dvips]{graphicx}

\usepackage[french]{babel}

\begin{document}

\begin{center}

\Large Exemple d’un document compos\’e

\end{center}

\htmladdnormallink{Les Images}%

{../ex21/ex21.html}

\externallabels{../ex21}%

{../ex21/labels.pl}

R\’ef\’erence \‘a une figure

externe~\externalref{Fpsfig}.

\htmladdnormallink{Les tableaux}%

{../ex22/ex22.html}

\externallabels{../ex22}%

{../ex22/labels.pl}

R\’ef\’erence \‘a un tableau

externe~\externalref{tab-exa}.

\htmladdnormallink{La bibliographie}%

{../ex2bib/ex2bib.html}

\end{document}

\documentclass{article}

\usepackage{html}

\usepackage[dvips]{graphicx}

\usepackage[french]{babel}

\makeindex

\begin{document}

\section{Une figure EPS}\label{sec-figure}

Cette section montre comment inclure une

\externallabels{../ex2bib}%

{../ex2bib/labels.pl}%

figure PostScript\externalref{bibPS}

dans un document \LaTeX. La

\hyperref{figure}{figure }{}{Fpsfig}

est ins\’er\’ee dans le texte \‘a l’aide

de la commande

\verb!\includegraphics{colorcir.eps}!.

\begin{figure}\centering

\htmlimage{thumbnail=0.2}

\begin{tabular}{c@{\qquad}c}

\includegraphics[width=6cm]{colorcir.eps} &

\includegraphics[width=6cm]{tac2dim.eps}

\end{tabular}

\caption{Deux images EPS}\label{Fpsfig}

\end{figure}

\end{document}

Master file (ex2.tex) File containing images (ex21.tex)

\documentclass{article}

\usepackage{html}

\usepackage[french]{babel}

\newcommand{\Lcs}[1]{%

\texttt{\symbol{’134}#1}\enspace}

\begin{document}

\section{Exemple d’un tableau}

\label{sec-tableau}

Le \hyperref{tableau}{tableau }{}{tab-exa}

montre l’utilisation de l’environnement

\texttt{table}.

\begin{table}\centering

\begin{tabular}{ccccc}

\Lcs{primo} \primo &

\Lcs{secundo} \secundo &

\Lcs{tertio} \tertio &

\Lcs{quatro} \quatro &

2\Lcs{ieme}\ 2\ieme

\end{tabular}

\caption{Quelques commandes de l’option

\texttt{french} de

\texttt{babel}}\label{tab-exa}

\end{table}

\end{document}

\documentclass{article}

\usepackage{html}

\usepackage[french]{babel}

\makeindex

\begin{document}

\begin{thebibliography}{99}

\bibitem{bib-PS}\label{bibPS}

Adobe Inc. \emph{PostScript, manuel de

r\’ef\’erence (2i\‘eme \’edition)}

Inter\’Editions (France), 1992

\end{thebibliography}

\end{document}

File containing the table (ex22.tex) File with the bibliography (ex2bib.tex)

Figure 6: Example of a composite document (LATEX files)

TUGboat, Volume 16 (1995), No. 2 187

result can be seen in the upper left corner of Fig-
ure 8.
Shown below are the informative messages gen-

erated by LaTeX2HTML when executing the above
command. At first the file html.perl associated
with the hypertext extensions described in Section
3.6 is loaded (thanks to the \usepackage{html}
command as seen in the source in Figure 6). The
auxiliary file ex21.aux is also read, thus remind-
ing us that the documents should be treated by
LATEX before LaTeX2HTML is run. After reading
the complete LATEX input file, LaTeX2HTML gener-
ates the file image.tex which contains the LATEX
code corresponding to all environments for which
no translation rules were available. After running
LATEX on images.tex the DVI file is transformed
by the dvips program into PostScript. Another
program, Ghostview, interprets this PostScript and
transforms it into the GIF format (via an interme-
diate stage using the ppm format). It is these GIF
images that are used by most browsers to show the
images on screen. At the end, LaTeX2HTML reads
the file(s) containing the labels of the external doc-
uments in order to resolve possible cross-references
by including the necessary <URL> addresses.
This is LaTeX2HTML Version 0.6.4 (Tues Aug 30 1994)

by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/usr/goossens/html/ex21.tex

Loading /usr/local/lib/latex2html/styles/html.perl...

Reading ...

Reading ex21.aux

Translating ...0/2..........1/2........2/2......

Generating images using LaTeX ...

This is TeX, Version 3.1415 (C version 6.1)

(18854_images.tex

LaTeX2e <1994/06/01> patch level 3

Hyphenation patterns for english, loaded.

Generating postscript images using dvips ...

This is dvipsk 5.58c Copyright 1986, 1994

Radical Eye Software

’ TeX output 1994.12.02:1830’ -> 18854_image

(-> 18854_image001) <tex.pro><special.pro>[1]

(-> 18854_image002) <tex.pro>

<special.pro>[2<colorcir.eps><tac2dim.eps>]

GS>GS>Writing 18854_image001.ppm

GS>Writing _18854_tex2html_wrap57.gif

GS>GS>Writing 18854_image002.ppm

GS>Writing _18854_figure15.gif

GS>GS>Writing 18854_image002.ppm

GS>Writing T_18854_figure15.gif

Doing section links

Done.

The result of all our efforts is shown in Figure 8.

3.7 Including arbitrary HTML Markup

Raw HTML tags and text may be included using the
rawtext environment. An interesting use of this fea-
ture is in the creation of interactive electronic forms.
from within a LATEX document. When producing
the paper (DVI) version of a document the rawhtml
environment is ignored.
Here is an example:

\begin{rawhtml}

<HTML>

<HEAD>

<TITLE>Example of simple form</TITLE>

</HEAD>

<BODY>

<FORM

ACTION="http://www.server.ch/form.cgi"

METHOD="POST">

Radio buttons:

 <INPUT TYPE="radio" NAME="mode"

VALUE="FM"> Frequency modulation.

 <INPUT TYPE="radio" NAME="mode"

VALUE="SW" CHECHED> Short waves.

</FORM>

</BODY>

</HTML>

\end{rawhtml}

The result of running this electronic form with Mo-
saic would yield something like:

3.7.1 Conditional Text

Conditional text can be specified using the environ-
ments latexonly and htmlonly. These allow the
writing of parts of a document intended only for
electronic delivery or only for paper-based delivery.
This would be useful in, for example, adding

a long description of a multi-media resource to the

T
U
G
b
o
a
t,
V
o
lu
m
e
1
6
(1
9
9
5
),
N
o
.
2

1
8
8

➊

➋

➌

➀

➁

➂

✪

✪

As requested, there are no navigation pannels, the titles and the information part About this document ... have been customized as indicated in the file myinit.pl.

The arrows carrying the numbers ➊, ➋, and ➌ correspond to hyperlinks pointing to an HTML document using the \htmladdnormallink command in the LATEX

source. The arrows numbered ➀ and ➁ are cross-references constructed with the commands \externalref, that make use of symbolic names specified as the

argument of \label commands in the target documents. The arrow numbered ➂ corresponds to a hyperlink connecting the thumbnail in the text with the

real-size image available as a separate external gif file. Finally, the start and end points of the bibliographic reference link are indicated by the symbol ✪.

Figure 8: The HTML file structure obtained from the composite document and its sub-documents (Figure 6) as viewed by the Mosaic browser.

TUGboat, Volume 16 (1995), No. 2 189

paper version of a document. Such a description
would be redundant in the electronic version, as the
user can have direct access to this resource.
Using LATEX commands involving counters (for

example, numbered figures or equations) in condi-
tional texts may cause problems with the values of
the counters in the electronic version.

3.7.2 Cross-References shown as
“Hyperized” Text

In printed documents cross-references are shown by
numerical or symbolic indirection, such as “see equa-
tion 3.1a” (numeric indirection), or “see chapter
‘Hypertext’ ” (symbolic indirection). In a hypertext
document, however, cross-references can be shown
without any indirection by using highlighting of a
relevant piece of text. This can contribute to making
a document more readable by removing unnecessary
visual information.
With LaTeX2HTML one can use the \hyperref

command to specify how a cross-reference should
appear in the printed and hypertext versions of a
document.

\hyperref{text-h}{text-d1}{text-d2}{label}

The meaning of the four arguments is as follows:

text-h text to be highlighted in the hypertext
version;

text-d1 text to be shown in the printed version
followed by a numeric reference;

text-d2 text following the reference text;

label the label defining the cross-reference.

Example of the use of hyperref, with a

\hyperref

{reference to conditional text}

{reference to conditional text

(see Section }

{ for more information)}

{sec:latexonly}

as an example.

Here is how it will be printed:

Example of the use of hyperref, with a refer-
ence to conditional text (see Section 3.7.1 for
more information) as an example.

In the hypertext version what would appear is:

Example of the use of hyperref, with a
reference to conditional text as an example.

A simpler version of the above command but
having the same effect for the HTML version:

\htmlref{text}{label}

In the HTML version the text will be “hyper-
ized” pointing to the label, while in the printed ver-

sion the text will be shown as it is and the label
ignored.

3.7.3 Customizing the Navigation Panel

The navigation panel is the strip containing “but-
tons” and text that appears at the top and possi-
bly at the bottom of each generated page and that
provides hypertext links to other sections of a docu-
ment. Some of the options and variables that control
whether and where it should appear have already
been mentioned in Section 3.3.
A simple mechanism for appending customized

buttons to the navigation panel is provided by the
command, \htmladdtonavigation. This takes one
argument, which LaTeX2HTML appends to the navi-
gation panel:

\htmladdtonavigation

{\htmladdnormallink

{\htmladdimg{http://server/mybutton.gif}}

{http://server/link}}

For example, the above will add an active but-
ton mybutton.gif pointing to the specified location.
It is also possible to completely specify what

is to appear in the navigation panel and its order
of appearance. As each section is processed, La-
TeX2HTML assigns relevant information to a number
of global variables. These variables are used by the
subroutine navigation_panelwhere the navigation
panel is constructed as a string consisting of these
variables and some formatting information.
This subroutine can be redefined in the system

or user configuration files HOME/.latex2html-init
and LATEX2HTMLDIR/latex2html.config.
The list below contains the names of control

panel variables that relate to navigation icons and
explains where they point to.

CONTENTS contents page (if it exists);

INDEX index page (if it exists).

NEXT next section;

PREVIOUS previous section;

UP “parent” section;

NEXT_GROUP next “group” section;

PREVIOUS_GROUP previous “group” section.

The list below contains the names of textual
links that point to the title information associated
with the control panel variables described above.

NEXT_TITLE next section;

PREVIOUS_TITLE previous section;

UP_TITLE “parent” section;

NEXT_GROUP_TITLE next “group” section;

PREVIOUS_GROUP_TITLE previous “group” section.

TUGboat, Volume 16 (1995), No. 2 190

If the corresponding section exists, each iconic
button will contain an active link to that section. If
the corresponding section does not exist, the but-
ton will be inactive. If the section corresponding to
a textual link does not exist then the link will be
empty.
The number of words in each textual link is set

by the WORDS_IN_NAVIGATION_PANEL_TITLES vari-
able, which may also be changed in the configura-
tion files. Figure 9 shows an example of a navigation
panel.

3.8 Image Conversion

LaTeX2HTML converts equations, special accents, ex-
ternal PostScript files, and LATEX environments it
cannot directly translate into inlined images. It is
possible to control the final appearance of such im-
ages, both for inline and display-type constructs.
The size of all “inline” images depends on a

configuration variable, MATH_SCALE_FACTOR, which
specifies how much to enlarge or reduce them in re-
lation to their original size in the printed version of
the document, i.e.,, scale factors of 0.5 or 2.0 make
all images half or twice as large as the original. A
value of 0.0 means that no scaling factor has to be
applied.
On the other hand, display-type images (such as

those generated by the environments table, figure,
equation, or minipage) are controlled by the vari-
able FIGURE_SCALE_FACTOR. The default value for
both of these variables is 1.6.
Moreover, several parameters can affect the

conversion of a single “figure” with the \htmlimage
command:

\htmlimage{options}

This command can be used inside every envi-
ronment that is normally translated into a display-
type image. To be effective the \htmlimage com-
mand (and its options) must be placed inside the
environment on which it has to operate. The ar-
gument options specifies how the image in question
will be handled; it contains a comma-separated list
of keyword-value pairs.

scale=scale-factor
the scale factor for the final image;

external

the image does not have to be included in
the document, but a hyperlink whose URL
points to it has to be inserted to access it;

thumbnail=reduction-factor
a small inlined image will be generated and
placed in the caption; its size depends on the
specification reduction-factor that downsizes

the image by that amount. Note that this
option implies external.

map=image-map-URL
turns the inlined image into an active image
map.10

An example is the following LATEX code:

\begin{figure}

\htmlimage{thumbnail=0.25}

\includegraphics{myfig.eps}

\caption{description of my figure}

\label{fig-myfig}

\end{figure}

\htmlimage can also be used to locally can-
cel out the effect of the FIGURE_SCALE_FACTOR con-
figuration variable. For instance, if one does not
want to resize a given image, then the command
htmlimage{scale=0} will do the trick.

3.9 Internationalization

A special variable, TITLES_LANGUAGE, in the ini-
tialization or configuration files determines the lan-
guage in which some section titles will appear. For
example, by setting it to

$TITLES_LANGUAGE = "french";

LaTeX2HTML will produce “Table des matières” in-
stead of “Table of Contents”.
Currently, “french” and “english” are the only

languages supported. It is not difficult, however, to
add support for another language in the initializa-
tion file latex2html.config. As an example, below
is shown the entry for French titles:

sub french_titles {
$toc_title = "Table des matières";

$lof_title = "Liste des figures";

$lot_title = "Liste des tableaux";

$idx_title = "Index";

$bib_title = "Références";

$info_title =

"À propos de ce document...";

}

In order to provide full support for another lan-
guage you may also want to replace the navigation
buttons which come with LaTeX2HTML (which are by
default in English) with your own. As long as the
new buttons have the same filenames as the old ones
there should not be a problem.

10 More information on active image maps is at the URL
http://wintermute.ncsa.uiuc.edu:8080/map-tutorial/

image-maps.html.

TUGboat, Volume 16 (1995), No. 2 191

sub navigation_panel {

Start with a horizontal rule (3-d dividing line)

"<HR> ".

Now add few buttons with a space between them

"$NEXT $UP $PREVIOUS $CONTENTS $INDEX $CUSTOM_BUTTONS" .

"
\n" . # Line break

If ‘‘next’’ section exists, add its title to the navigation panel

($NEXT_TITLE ? " Next: $NEXT_TITLE\n" : undef) .

Similarly with the ‘‘up’’ title ...

($UP_TITLE ? "Up: $UP_TITLE\n" : undef) .

... and the ‘‘previous’’ title

($PREVIOUS_TITLE ? " Previous: $PREVIOUS_TITLE\n" : undef) .

Horizontal rule (3-d dividing line) and new paragraph

"<HR> <P>\n"

}

Figure 9: Example definition of a navigation panel. (Note that “.” is the perl string concatenation operator
and “#” signifies a comment).

3.10 Known Problems

Users of LaTeX2HTML should take note of the follow-
ing shortcomings of the translator.

• Unrecognized commands and environments.
Unrecognized commands are ignored and any
arguments are left in the text. Unrecognized
environments are passed to LATEX and the re-
sult is included in the document as one or more
inlined images. Users can take care of this by
providing information to LaTeX2HTML on how
to handle such cases, either by deciding to ig-
nore them (see Section 3.5.2 on page 179), or
by defining a perl procedure (see Appendix C
on page 204).

• Cross-references.
References in environments that are passed to
LATEX for processing (such as \cite or \ref
commands), are not processed correctly. On
the other hand, \label commands are handled
satisfactorily.

• Order-sensitive commands.
Commands affecting global parameters during
the translation that are sensitive to the order
in which they are processed may cuase prob-
lems. In particular, counter manipulation with
commands such as \newcounter, \setcounter,
\stepcounter should be watched.

• Index.
LaTeX2HTML generates its own index by saving
the arguments of the \index command. The
contents of the theindex environment are ig-
nored.

• New definitions.
New definitions (with the \def, \newcommand,
\newenvironment, \newtheorem commands)
do not work as expected if they are defined
more than once. Indeed, only the last defini-
tion will be used throughout the document.

• Scope of declarations and environments.
LaTeX2HTML processes sections as independent
units. Thus, when the scope of a declaration
or environment crosses section boundaries, the
output may not be as expected.

4 HTML3 Extensions to LaTeX2HTML

4.1 The math2html Program

The simple notation for even complex mathemat-
ics and the diversity of the symbols and characters
sets available makes LATEX the typesetting system of
choice in many of the scientific fields. Tens of thou-
sands of articles, theses, and reports have been writ-
ten in LATEX and most publishing houses that deal
with scientific papers use LATEX for handling, stor-
ing and archiving their documents. Therefore it is
to be expected that all these parties wish to protect
their investment and prefer not to have to recode

TUGboat, Volume 16 (1995), No. 2 192

their mathematics formulae for hypertext purposes
only.
The LaTeX2HTML translator solves the problem

of presenting mathematics in HTML by converting
each mathematical sentence into a bitmap image.
Although simple and straighforward, this approach
seems a little unreasonable in general, since in many
cases an article of a few pages can generate many
hundreds of bitmap images, which have to be stored
with the document, kept up to date, and transmitted
with the document over the Internet, thus wasting
an enormous amount of bandwidth. Therefore, a
clear need for a translator from LATEX mathematics
into HTML3’s primitive mathematics was considered
an important goal. Thanks to the increased dis-
playing capabilities of HTML3 complyable browsers,
most inline mathematics and a fair proportion of dis-
play equations can be translated into HTML3 source
code and hence transmitted in textual format to-
gether with the rest of the document, doing away
with well over 90% of the images that are created
in the HTML2 case where only bitmap images are
generated. In addition, mathematics text can be
searched for keywords as the rest of the document,
thus increasing the value of the HTML document.
The math2html program has been interfaced to

the LaTeX2HTML program via a new option -html3.
When this option is specified, LaTeX2HTML will
first pass the LATEX input source code through the
math2html translator. In this case, native HTML3
code will be generated for mathematics and tables
when math2html can handle the input. In case
math2html cannot parse the given LATEX input, it
gives an error message and LaTeX2HTML creates an
image as usual.
At CERN we have translated thousands of

pages of manuals and hundreds of physics articles.
We found that math2html successfully translates on
average 95% of all mathematics present in the in-
put files, thus reducing by a substantial amount the
number of generated bitmap images.

4.1.1 A few Examples

The HTML3 extensions translate quite a large frac-
tion of not-too-complex LATEX math constructs (for
as far as they can be handled by the HTML3 DTD,
of course).
A first explicit example is the code represent-

ing the differential cross-section of δ-ray production.
The original LATEX code and its result as typeset by
LATEX are shown in parts (a) and (b) of Figure 10,
while the result of the translation by math2html of
the LATEX source in (a) into HTML3 is shown in (c),
yielding the output with the Arena browser shown

in (d). Part of the tree constructed by math2html
when parsing this LATEX input is shown in Figure 17
on page 213.
Multi-line mathematical constructs, such as

arrays (array and eqnarray environments), are
also handled without too many problems, and the
present limits of the translation are due more to
shortcomings of the HTML3 browser Arena (which
is, after all, merely a beta-test version), than to in-
trinsic limitations in the approach. In Figure 11 we
show the LATEX source and result as seen with Arena
of two multi-line environments.

4.1.2 Writing Convertible LATEX

By following the rules below, one can expect the La-
TeX2HTML translator enhanced with math2html to
produce good output in terms of a low number of
bitmap images.

• Do not write the base of a superscript or a sub-
script outside the mathematics markup, i.e.,,
a2 is not converted correctly but creates a
bitmap image. The correct way is to write it
a^2 or $\mathrm{a}^$depending on whether
or not one wants the letter “a” in math italic or
in a roman font. When you leave the base out-
side of the math markup (the $ signs) the text
between the mathematics delimiters is passed
to the math2html translator and the latter does
not know where to place the mathematics start
(<math>) tag.
• Do not write nested array/tabular environ-
ments. The math2html translator cannot create
an HTML3 counterpart for that markup since
the HTML3 table model does not allow nested
tables. Keeping the tables simple (not nested,
for example) will improve their reusability.

4.2 Tables to HTML3 Conversion

Hennecke recently developed some code for treat-
ing LATEX’s tabular environment with LaTeX2HTML
by translating it into HTML3-compliant tables. His
patches11 allow LaTeX2HTML to translate most LATEX
tables reasonably well. There are a few things it
cannot do, but mainly because HTML tables are
not quite as powerful as LATEX tables. Most impor-
tantly, HTML tables are quite limited when it comes
to borders, since they are not nearly as flexible in
specifying borders as LATEX tables. In his implemen-
tation, when a LATEX table has a border anywhere,
the resulting HTML table will have borders around
all cells. LATEX commands inside cells are treated

11 Available from the URL ftp://ftp.crc.ricoh.com/
pub/www/l2h/tables.tar.gz. The author Marcus E. Hen-
necke can be reached by email at marcush@crc.ricoh.com.

TUGboat, Volume 16 (1995), No. 2 193

(a) LATEX source that has to be translated:

\frac{d\sigma}{d\epsilon}=\frac{2\pi Z r_0^2m}{\beta^2(E-m)}\left[\frac{(\gamma-1)^2}

{\gamma^2}+\frac{1}{\epsilon}\left(\frac{1}{\epsilon}-\frac{2\gamma-1}{\gamma^2}\right)

+\frac{1}{1-\epsilon}\left(\frac{1}{1-\epsilon}\frac{2\gamma-1}{\gamma^2}\right)\right]

(b) Result of the above source as typeset with LATEX:

dσ

dǫ
=
2πZr20m

β2(E −m)

[

(γ − 1)2

γ2
+
1

ǫ

(

1

ǫ
−
2γ − 1

γ2

)

+
1

1− ǫ

(

1

1− ǫ

2γ − 1

γ2

)]

(c) Result of the translation of the code in (a) into HTML3:

<math><box>dσ<over>dε</box>=<box>2πZr₀²m<over>β

²(E-m)</box>[<box>(γ-1)²<over>γ²</box>+

<box>1<over>ε</box>(<box>1<over>ε</box>-<box>2γ-1<over>γ<sup>2

</sup></box>)+<box>1<over>1-ε</box>(<box>1<over>1-ε</box>

<box>2γ-1<over>γ²</box>)]</math>

(d) Result of viewing of the HTML3 code of (c) with the arena browser:

Figure 10: Example of transforming LATEX code to HTML3 with math2html

\begin{eqnarray}

a & = & \sin \alpha_2 \\

b & = & \cos \omega_3 \\

\Gamma & = & \Phi + \Theta\\

\end{eqnarray}

\[

\begin{array}{cccccc}

a_{11} \\

a_{21} & a_{22} \\

a_{31} & a_{32} & a_{33} \\

a_{41} & a_{42} & a_{43} &

a_{44} \\

a_{51} & a_{52} & a_{53} &

a_{54} & a_{55} \\

a_{61} & a_{62} & a_{63} &

a_{64} & a_{65} & a_{66}\\

\end{array}

\]

Figure 11: How math2html translates LATEX multi-line mathematics into HTML3

TUGboat, Volume 16 (1995), No. 2 194

as they should and declarations are limited in scope
to the cell in which they appear (just as in LATEX
itself).
His additions can be placed in the LaTeX2HTML

perl code itself, or in the customization files. In
any case to leave open the possibility of generating
tables with and without this feature turned on, a
new command line option -html_level can be used
to specify the level of HTML to be produced.

4.2.1 Examples

First, we look at a simple table with different align-
ments:

\begin{tabular}{|l|c|r|} \hline

first column &

second column &

third column \\\hline

111 111 & 22 22 22 &

3 3 3 3 \\\hline

\end{tabular}

The result is seen at the top of Figure 12.
Math can also be handled (in this case it will be

translated into images). With a little bit if “hand-
work” it could be translated into native HTML3:

\begin{tabular}{|ll|} \hline

$10^{10^{10}}$& a big number \\\hline

10^{-999} & a small number\\\hline

\end{tabular}

The result is seen in the second table from the top
in Figure 12.
Modifications to text inside cells remain limited

to that cell (as it should). In the present version only
one \multicolumn command is recognized (when
more than one such command is encountered inside
a row, only the first one is taken into account):

\begin{tabular}{|ll|}

\multicolumn{2}{c}{\bf PostScript

type 1 fonts} \\

\em Courier &

cour, courb, courbi, couri \\

\em Charter &

bchb, bchbi, bchr, bchri \\

\em Nimbus &

unmr, unmrs \\

\em URW Antiqua &

uaqrrc \\

\em URW Grotesk &

ugqp \\

\em Utopia &

putb, putbi, putr, putri

\end{tabular}

The result is seen in the third table from the top
of Figure 12. Note that, even though only verti-

Figure 12: Four examples of tabular
environments translated automatically to
HTML3 as viewed with the Arena browser

TUGboat, Volume 16 (1995), No. 2 195

cal rules were specified in the tabular’s preamble,
rules are drawn everywhere. This is because the
BORDER attribute of the <TABLE> tag in HTML3 has
only one value, i.e.,, borders are present or absent
everywhere.
Our final example has also a few \multicolumn

commands, but also shows that non-specified cells
are treated gracefully (this can be compared to the
example in Section 4.1.1, where a similar table was
built as an array inside math mode):

\begin{tabular}{cccccc}

\multicolumn{6}{c}{\bf global top title}\\

a11 \\

a21 & a22 \\

a31 & a32 & a33 \\

a41 & a42 & a43 & a44 \\

a51 & a52 & a53 & a54 & a55 \\

a61 & a62 & a63 & a64 & a65 & a66 \\

\multicolumn{6}{c}%

{\em columns 1-6 bottom title}

\end{tabular}

The result is seen as the bottom table of Figure 12.
As no vertical nor horizontal rules were specified in
the input, the resulting table has no borders.

5 Caml based LATEX to HTML Translation

Xavier Leroy (INRIA, France) developed a LATEX to
HTML translator based on the Caml language.12

What was needed was to translate a 200-page
technical document (the reference manual and user’s
documentation for their implementation of the Caml
Light programming language). This manual was
written in LATEX and contained some rather non-
standard environments and macros written directly
in TEX. Parts of the document were automatically
generated: syntactic definitions (typeset from BNF
descriptions) and descriptions of library functions
(extracted from commented source code).

5.1 Why not just use LaTeX2HTML?

When LaTeX2HTML finds a LATEX construct that it
does not know how to translate into HTML, it sim-
ply turns it into a bitmap. This approach was con-
sidered inappropriate by Leroy et al., since

• information transformed into a bitmap is not
searchable;

• bitmaps cannot easily be integrated into Mac-
intosh or Windows online documentation sys-
tems;

12 More information can be found at the URL
http://pauillac.inria.fr/~xleroy/w4g.html.

• bitmaps are generally hard to read, since their
resolution usually does not match that of the
HTML viewer;
• as bitmaps can be quite large, transmission
times increase and network bandwidth suffers.

In order to minimize the generation of bitmaps
and to allow the production of a better quality
HTML source, the information in the LATEX source
was tagged by LATEX macros to explicitly show its
semantics meaning. Special care was taken to avoid
inline mathematics constructs, since they result in
bitmap images, for example, \var{x} was preferred
to its typographic equivalent x (denoting a meta-
variable), and \nth{v}{n} was used to mean the
n-th component of v, rather than writing v_n.
The same technique was also used to eliminate “low-
level” typesetting constructs and environments such
as center and tabular.
When the document is typeset with LATEX

the new commands are simply translated into the
appropriate typographic representation, but dur-
ing the translation into HTML they are explic-
itly recognized and individually translated into a
form corresponding to the possibilities of HTML;
e.g.,, \nth{v}{n} would become something like
<i>v(n)</i>, showing <i>v(n)</i>.
Programs that automatically generated BNF or

program fractions for inclusion in the LATEX source
were adapted so that the contents could now also
be included without problems in the HTML source
by “hiding” the generated material inside a rawhtml
environment.
In the few places where more complex mathe-

matical constructs were needed they were translated
into a form acceptable to HTML by hand and stored
inside a rawhtml environment, leaving the original
mathematics expressions inside a latexonly envi-
ronment. Thus both the LATEX and HTML views
of the document were optimized. Although in prin-
ciple such an approach can lead to synchronization
problems between the LATEX and HTML parts of the
information, it was found that, due to the care that
was taken in using the generic markup approach out-
lined above, only about 0.2% of the source had to
be manually translated.
Although Leroy and his collaborators originally

planned to use LaTeX2HTML for translating their doc-
ument into HTML, they found that some commands,
especially those using verbatim-like constructs (no-
tably the alltt environment), cannot be defined in
perl in an easy way using the interface of init files
described earlier. Therefore modifications have to
be made inside the body of the LaTeX2HTML pro-
gram itself, and this is very complicated since the

TUGboat, Volume 16 (1995), No. 2 196

inner workings of LaTeX2HTML are undocumented
and scarcely commented, so that the perl code is
not always clear to follow. Also, the memory re-
quirements of LaTeX2HTML (especially the pre-1995
versions, when the tests were done) can be huge,
exhausting all the memory available on the ma-
chine and causing the program to crash (this should
no longer be a problem with the current version
of LaTeX2HTML if the LATEX source in divided into
a set of smaller files). They therefore decided to
write their own LATEX-to-HTML translator for the
extended subset of LATEX commands they used.
This translator works in two main stages:

• The translator first reads the whole LATEX doc-
ument and outputs one large HTML document.
It is written in Caml Light and uses the lexical
analyzer generator camllex (the Caml equiva-
lent of lex for C) heavily. Note that Caml is a
modern, type-safe high-level programming lan-
guage with good memory management, so that
the translator has negligible memory require-
ments, runs quickly, is easy to extend, and took
little time to develop.
• The output of the translator is then split into
smaller parts (for instance at the <H1> or <H2>
heading levels), and these parts are linked to-
gether using “Next” and “Previous” buttons.
This linking is performed by two simple perl
scripts.

In order to get a feeling of the result of the
translation, one can look at a randomly chosen page
from the manual that was converted. Figure 13
shows the result of LATEX (viewed with xdvi) and
Figure 14 is the result of the HTML conversion, as
shown by Mosaic.13 Appendix E takes a closer look
at how the Caml system translates LATEX commands
into HTML.

5.2 Discussion

Based on their experience with writing and using
their translator Leroy and collaborators draw the
conclusions summarized in the next sections.

5.2.1 About the HTML Language

Despite its apparent simplicity, the HTML language
is almost rich enough to format TEX-intensive tech-
nical documentation. The features that were absent
were tables, sub- and superscripts. This is much
less true today, since HTML3 already contains an
interesting table model, and allows for super and

13 The complete manual—HTML and DVI files—are at
the URLs http://pauillac.inria.fr/~xleroy/man-caml/
and ftp://ftp.inria.fr/lang/caml-light/Release7beta/

cl7refman.dvi.gz, respectively.

subscripts. Moreover, the latest versions of Mosaic
and Netscape support these functions.

5.2.2 About HTML Viewers

The quality of the typesetting performed by pop-
ular HTML viewers (e.g.,, Mosaic and Netscape) is
very often insufficient. It seems especially difficult
to ensure font consistency throughout a document.
The difficulty in finding good translators and

adequate viewers probably has to do with the im-
maturity of the field. Leroy et al., are convinced
that the widespread use of perl for programming
translation tools is partly responsible for this situa-
tion. They state that perl is inherently not suited
to the parsing and transformation of structured lan-
guages, such as LATEX and HTML, and go on to say
that languages with high-level parsing capabilities,
real data structures and clean semantics are much
more suited for these tasks.
They also ask the question: what is the best

markup language for preparing documentation so
that it can be nicely printed but also easily trans-
formed into HTML for publishing on the Web? They
accept that, LATEX presently being the de facto stan-
dard markup language used in computing and other
science fields, it will be difficult in the short term
to propose a solution other than to invest more ef-
fort in developing cleverer and more comprehensive
LATEX-to-HTML translators.

6 Converting HTML to LATEX

Although utilities for obtaining PostScript represen-
tations from HTML files are readily available, either
using HTML browsers, such as Mosaic, that offer
PostScript as one of their output formats, or directly
(for example, htps14) the visual layout of these doc-
uments is often appalling, and the structuring of the
information has been made almost completely invis-
ible. Often one would like to obtain a nicely typeset
document that presents the information marked up
in HTML in a structured way, with all document el-
ements clearly identifiable. A translation into LATEX
allows one to combine the power of the TEX type-
setting engine while at the same time exploiting the
structural similarities between HTML and LATEX as
explained in Section 1 and Table 1.
A first program HTML2LaTeX translates a large

fraction of the HTML commands into LATEX, while
SGML2TeX takes a more general approach and allows
the transformation of an arbitrary SGML source into
LATEX.

14 More information is at the URL http://info.cern.ch/
hypertext/WWW/Tools/htps.html.

T
U
G
b
o
a
t,
V
o
lu
m
e
1
6
(1
9
9
5
),
N
o
.
2

1
9
7

Figure 13: Example page of Caml manual (LATEX viewed with xdvi) Figure 14: Example page of Caml manual (HTML converted
with Caml based translator viewed with Mosaic)

TUGboat, Volume 16 (1995), No. 2 198

6.1 HTML2LaTeX, an HTML-to-LATEX
Converter

HTML2LaTeX is a C-program written by Nathan
Torkington (New Zealand). Basically, the HTML
parser of the NCSA Mosaic HTML browser is used
for the translation. The calling sequence of the pro-
gram is:

html2latex [options] [filenames]

For each input file specified, HTML2LaTeX trans-
forms the HTML markup in the source into the
equivalent LATEX markup. When no filenames are
specified, HTML2LaTeX will display a short descrip-
tion of how to use the program. If filenames is equal
to -, then the input text is read on standard input
stdin. For each input file an output file with the
same name, but with the extension .tex instead of
.html is generated.

6.1.1 Options

HTML2LaTeX has a number of options that modify its
way of operation. The more important are:

-n number the sections;

-p start a new page after the titlepage
(if present) or the table of contents
(if present);

-c generate a table of contents;

-s write output information on stdout;

-t Title generate a titlepage containing the
title Title;

-a Author generate a titlepage containing the
author(s) Author ;

-h Start-Text introduce the text Start-Text im-
mediately following the command
\begin{document};

-h End-Text introduce the text End-Text imme-
diately preceding the command
\end{document};

-o options specify the options options on the
\documentclass command.

6.1.2 Examples

Let us consider the following command:

html2latex -n - < file.html | more

In this case the file file.html is transformed into
LATEX and the result is shown on the screen. The
option -n makes sure no section numbers are gener-
ated.
A more complex example is shown below:

html2latex -t ’HTML for Pedestrians’ \

-a ’First Last’ -p \

-c -o’[12pt,twoside]{article}’\

my-article.html

In this case file my-article.html will be read, and
the output written to the file my-article.tex. A
titlepage (using the text “HTML for Pedestrians”
as title and “First Last” as author) will be output
on a separate page (option -p). A Table of con-
tents (option -c) followed by a new page (option -p
again) will also be generated. Sections will be num-
bered (default behavior). The LATEX document will
be typeset at 12 point using the document option
twoside, to allow two-sided printing.

6.1.3 Limitations

The present version of HTML2LaTeX recognizes the
following HTML tags: <TITLE>, <H1> to <H6>, for
lists ,, <DT>, <DD> and , plus the pre-
sentation tags , <I>, <U>, , <CODE>, <SAMP>,
, <KBD>, <VAR>, <DFN>, <LISTING>, and
<CITE>. Of the entities only &, < and >
are handled correctly. The content fields of the tags
<ADDRESS>, <DIR> and <MENU> are not handled cor-
rectly. Moreover, the COMPACT attribute of the <DL>
tag is not honored and the text of the <TITLE> tag
is ignored. Even worse, the body of the <PRE> ele-
ments are completely ignored.
Note that the complete HTML file is read into

memory; this can lead to problems when handling
large files on machines with limited memory capa-
bilities.

6.2 SGML2TeX, a General-Purpose SGML to
LATEX Converter

SGML2TeX15 is a program written by Peter
Flynn (Flynn, 1995) that translates SGML tags into
TEX instructions. At present the system is only im-
plemented in PCL16 running under MSDOS on a
PC but the author has plans to rewrite it in a more
portable programming language.
SGML2TeX does not verify the SGML source for

correctness but accepts all SGML documents marked
up using the reference concrete syntax. It is up to
the user to define a LATEX equivalent for each of the
SGML document elements, their attributes, and the
entities used in the source. A configuration file that
contains a set of such predefined correspondences
for certain elements, attributes, or entities, can be
read by SGML2TeX, thus substantially alleviating the
task of the user, who will only have to provide the

15 For more information see the URL http://info.cern.
ch/hypertext/WWW/Tools/SGML2TeX.html.
16 PCL stands for Personal Computer Language, an inter-

preted language for dos on the *86 chips. It is a very fast
prototyping tool, not a production language since it cannot
link executable images.

TUGboat, Volume 16 (1995), No. 2 199

missing definitions. By default, i.e.,, in the absence
of an explicit translation, SGML elements are trans-
lated in a form acceptable to LATEX by adopting the
following conventions:

• start tags get the prefix \start and end tags
the prefix \finish followed by the tagname in
upper case, followed by a pair of braces ({}).
This pair of braces corresponds to a do-nothing
definition for each of the tags thus handled;

• SGML entities of the form &ent; are translated
into \ent{} and written into the output file;

• attributes are handled in the same way, but
their value is specified between curly braces like
a LATEX argument.

Acknowledgments

We sincerely thank Nelson Beebe (Utah University,
beebe@math.utah.edu) for email discussions and
for his detailed comments of the compuscript. His
many suggestions improvements have without doubt
substantially increased the readability and quality
of the article. We also want to acknowledge Steven
Kennedy (CERN) for proofreading the article.

References

Flynn, Peter. HTML and TEX: Making them sweat.
TUGboat, 16(3), 1995.

Goossens, Michel and Eric van Herwijnen. The ele-
mentary Particle Entity Notation (PEN) scheme.
TUGboat, 13(1), pages 201–207, July 1992.

Goossens, Michel, Frank Mittelbach and Alexan-
der Samarin. The LATEX Companion. Addison-
Wesley, Reading, 1994.

Lamport, Leslie. LATEX, User’s Guide and Reference
Manual (2nd Edition). Addison-Wesley, Read-
ing, 1994.

Ousterhout, John K. Tcl and the Tk Toolkit.
Addison-Wesley, Reading, 1994.

Rumbaugh et al., Object-Oriented Modeling and De-
sign. Prentice Hall, Inc., Englewood Cliffs, N.J.,
1991.

Schwarzkopf, Otfried. The Hyperlatex story. TUG-
boat, 16(3), 1995.

Schwartz, Randal L. Learning Perl. O’Reilly & As-
sociates, Inc., Sebastopol, CA, USA, 1993.

Schrod, Joachim. Towards interactivity for TEX.
TUGboat, 15(3), pages 309-317, September 1994.

Till, David. Teach yourself Perl in 21 days. Sams
Publishing, Indianapolis, 1995.

Wall, Larry and Randal L. Schwartz. Programming
Perl. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, 1991.

A complete and up-to-date list of titles of books
on HTML and perl is maintained by Nelson Beebe
(Utah University, beebe@math.utah.edu) and can
be found in his BibTEX databases sgml.bib and
unix.bib, respectively, in the directory with URL
address ftp://ftp.math.utah.edu/pub/tex/bib/
.

⋄ Michel Goossens and Janne
Saarela

CERN, CN Division, CH-1211
Geneva 23, Switzerland

Email: saarela@cern.ch

TUGboat, Volume 16 (1995), No. 2 200

Appendices

Appendices A and B present a few practical details that we found particularly relevant when installing
or troobleshooting LaTeX2HTML.17 Appendix C then provides some more information about the internal
workings of the LaTeX2HTML program and how it can be extended by writing perl procedures. Finally,
Appendix D contains technical information about the math2html extension to LaTeX2HTML, while Appendix E
takes a closer look at Leroy’s Caml-based LATEX-to-HTML translator.

A LaTeX2HTML—Installation

A.1 Requirements to run LaTeX2HTML

LaTeX2HTML uses several publicly available tools that can be readily found on most computer platforms,
namely:

• LATEX (of course).

• perl (version 4 from patch level 36 onward, or, even better, version 5).

• DBM or NDBM, the Unix DataBase Management system.

• dvips (version 5.516 or later) or dvipsk.

• gs (Ghostscript version 2.6.1 or later).

• The pbmplus or better still the netpbm libraries; some of the filters in those libraries are used during
the postscript to GIF conversion.

• For making transparent inlined images one needs giftrans.c18 by A. Ley together with pbmplus.
Alternatively, netpbm will do the trick.

To reduce the memory requirements of the translation, LaTeX2HTML spawns off separate Unix processes
to deal with each of the input’ed or include’d files. As each process terminates, all the space that it
used is reclaimed. Asynchronous communication between processes takes place using the Unix DataBase
Management system (DBM or NDBM) which should be present. To take advantage of these changes it is
necessary to split the source text into multiple files that can be assembled using LATEX’s \input or \include
commands.
When gs or the pbmplus (netpbm) library are not available, one can still generate HTML output,

but without images (using the -no_images option). Also, do not forget to include the html package with
the \usepackage command if you want to include any of the hypertext extension commands described in
Section 3.6.

A.2 Installing LaTeX2HTML

Those intending to install LaTeX2HTML on their system should read the manual in detail. Below we describe
only the main steps.

• Specify where perl is on the system.
In the files latex2html, texexpand, pstogif, and install-test modify the first line saying where
perl is on your system.

• Specify where the external utilities are on the system.
In the file latex2html.config give the correct pathnames for some directories (the latex2html direc-
tory and the pbmplus or netpbm library) and some executables (latex, dvips, gs).
Note that LaTeX2HTML can be run even if one does not have some of these utilities.

One can also include the following supplementary customization:

• Setting up different initialization files.
One can customize on a “per user” basis the initialization file. To this effect one should copy the file
dot.latex2html-init into the home directory of any user who wants it, modify it according to the
user’s preferences and rename it to .latex2html-init.

At runtime both latex2html.config and $HOME/.latex2html-init files will be loaded, but the
latter will take precedence. Moreover, one can also set up a “per directory” initialization file by copying

17 These sections are adapted from the LaTeX2HTML manual that is available at the URL http://cbl.leeds.ac.uk/nikos/
tex2html/doc/latex2html/latex2html.html.
18 ftp://ftp.rz.uni-karlsruhe.de/pub/net/www/tools/giftrans.c.

TUGboat, Volume 16 (1995), No. 2 201

a version of the initialization file .latex2html-init into each directory where it should be effective. In
this case an initialization file /X/Y/Z/.latex2html-init takes precedence over all other initialization
files if /X/Y/Z is the “current directory” when LaTeX2HTML is invoked.

• Make local copies of the LaTeX2HTML icons.
The icons subdirectory should be copied to a place in the local WWW tree where it can be served by
the local server. Therefore, in the file latex2html.config file the value of the variable $ICONSERVER
should be changed accordingly.

B LaTeX2HTML—Troubleshooting

This section gives a few hints about how to solve problems with LaTeX2HTML. As a general rule, if one gets
really lost, one can obtain a lot of information from the perl system by setting the environment variable
DEBUG to 1. In particular it will point out missing files or utilities. Below we present some often occurring
problems and propose a way how to deal with them.

LaTeX2HTML just stops without further warnings.

Check the package files that are included, since they might contain raw TEX commands, which cannot be
handled. In this case start LaTeX2HTML with the option -dont_include followed by the name of the package
file in question. Alternatively, one can add the name of the package file to the variable DONT_INCLUDE in
the HOME/.latex2html-init file, or create one in the current directory containing the following lines:

$DONT_INCLUDE = "$DONT_INCLUDE:<name-of-package-file>";

1; # This must be the last line

Similarly, when the LATEX source file itself contains raw TEX command (\let is a common example!) La-
TeX2HTMLmight also stop. Such commands should therefore be introduced inside a latexonly environment.

LaTeX2HTML gives an Out of memory message and crashes.

Divide the LATEX source file into several files that can be input using \include commands. One can also
try the -no_images option.

The “tilde” (˜) does not show.

The easiest solution is to use the command \~{}. Alternatively it is possible to write something like:

\htmladdnormallink{mylink}

\begin{rawhtml}

{http://host/~me/path/file.html}

\end{rawhtml}

Macro definitions do not work correctly.

As already mentioned, plain TEX definitions are be converted. But there can be problems even when using
LATEX definitions (with the \newcommand and \newenvironment commands) if such definitions make use of
sectioning or verbatim commands, since these are handled in a special way by LaTeX2HTML and cannot be
used in macro definitions.

LaTeX2HTML behaves differently when running on the same file.

When noticing strange side-effects due to files remaining from previous runs of LaTeX2HTML one can use the
option -no_reuse and choose (d) when prompted. This deletes intermediate files generated during previous
runs. One can also delete those files oneself by removing the complete subdirectory created by LaTeX2HTML
for storing the translated files. Note that in this case the image reuse mechanism is disabled.
> latex2html -no_reuse myfile.tex

This is LaTeX2HTML Version 95.1 (Fri Jan 20 1995) by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/user/goossens/myfile.tex

Cannot create directory ./myfile: File exists

(r) Reuse the images in the old directory OR

(d) *** DELETE *** ./myfile AND ITS CONTENTS OR

(q) Quit ?

:d

TUGboat, Volume 16 (1995), No. 2 202

Cannot convert PostScript images included in the LATEX file.

It is likely that the macros used for including PostScript files (for example, \epsffile or \includegraphics)
are not understood by LaTeX2HTML. To avoid this problem enclose them in an environment which will be
passed to LATEX anyway, for instance:

\begin{figure}

\epsffile{<PostScript file name>}

\end{figure}

Another reason why this might happen is that the shell environment variable TEXINPUTS is undefined. This
is not always fatal but if you have problems you can use full pathnames for included postscript files (even
when the PostScript files are in the same directory as the LATEX source file). Therefore it is important to
check the setting of the TEXINPUTS environment variable and make sure that it ends in a colon “:”, for
example, “.:/somedir:”.

Some of the inlined images are in the wrong places.

This occurs when any one of the inlined images is more than a (paper) page long. This is sometimes the
case with very large tables or large PostScript images. In this case, one should specify a larger paper size
(such as “a3”, “a2”, or even “a0”) instead of the default (“a4”) using the LaTeX2HTML variable PAPERSIZE
in the file latex2html.config.

The labels of figures, tables or equations are wrong.

This can happen if inside figures, tables, equations or counters are used inside conditional text, i.e., inside
a latexonly or a htmlonly environment.

With Ghostscript 3.X inline images are no longer generated for equations, etc.

One can run the installation script install-test again, or else change the way gs is invoked in the file
pstogif, using something like:

open (GS, "|$GS -q -sDEVICE=ppmraw -sOutputFile=$base.ppm $base.ps");

Cannot get it to generate inlined images.

Try a small test file for example,

% image-test.tex

\documentclass{article}

\begin{document}

Some text followed by \fbox{some more text in a box}.

\end{document}

One should get something like the following:
> latex2html image-test.tex

This is LaTeX2HTML Version 95.1

(Fri Jan 20 1995) by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/usr/goossens/image-test.tex

Reading ...

Processing macros ...

Translating ...0/1.....1/1.....

Writing image file ...

This is TeX, Version 3.1415 (C version 6.1)

(images.tex

LaTeX2e <1994/12/01>

Generating postscript images using dvips ...

This is dvipsk 5.58e Copyright 1986, 1994 Radical Eye Software

’ TeX output 1995.05.08:1958’ -> 6666_image

(-> 6666_image001) <tex.pro>[1]

Writing 6666_image001.ppm

TUGboat, Volume 16 (1995), No. 2 203

Writing img1.gif

Doing section links

Done.

Problems encountered during the conversion from PostScript to GIF can be located by doing the trans-
lation manually, as shown below for a generation using gs 3.33.
> latex image-test

This is TeX, Version 3.1415 (C version 6.1)

(image-test.tex

LaTeX2e <1994/12/01>

(/usr/local/lib/texmf/tex/latex/base/article.cls

Document Class: article 1994/12/09 v1.2x Standard LaTeX document class

(/usr/local/lib/texmf/tex/latex/base/size10.clo))

No file image-test.aux.

[1] (image-test.aux))

Output written on image-test.dvi (1 page, 348 bytes).

Transcript written on image-test.log.

> dvips -o image-test.ps image-test.dvi

This is dvipsk 5.58e Copyright 1986, 1994 Radical Eye Software

’ TeX output 1995.05.08:2006’ -> image-test.ps

<tex.pro>. [1]

cblelca% gs -dNODISPLAY pstoppm.ps

> gs -dNODISPLAY pstoppm.ps

Aladdin Ghostscript 3.33 (4/10/1995)

Copyright (C) 1995 Aladdin Enterprises, Menlo Park, CA. All rights reserved.

This software comes with NO WARRANTY: see the file PUBLIC for details.

Usage: (file) ppmNrun

converts file.ps to file.ppm (single page),

or file.1ppm, file.2ppm, ... (multi page).

N is # of bits per pixel (1, 8, or 24).

Examples: (golfer) ppm1run ..or.. (escher) ppm8run

Optional commands you can give first:

horiz_DPI vert_DPI ppmsetdensity

horiz_inches vert_inches ppmsetpagesize

(dirname/) ppmsetprefix

page_num ppmsetfirstpagenumber

GS>(image-test) ppm1run

Writing image-test.ppm

GS>quit

> pnmcrop image-test.ppm >image-test.crop.ppm

pnmcrop: cropping 74 rows off the top

pnmcrop: cropping 139 rows off the bottom

pnmcrop: cropping 149 cols off the left

pnmcrop: cropping 249 cols off the right

> ppmtogif image-test.crop.ppm >image-test.gif

ppmtogif: computing colormap...

ppmtogif: 2 colors found

Still no inlined images are obtained.

When there have been no problems with the above file image-test.tex but some images have still not
been successfully converted in some of the files then one should look in the directory with the generated
HTML files for the two files images.tex and images.log. In particular, one should check whether there
is something unusual in these files. One can copy the source images.tex into the directory of the original
LATEX file, run LATEX on images.tex and check for any errors in the log file images.log. If errors are found
then one should fix images.tex, put it back into the subdirectory with the HTML files, and run LaTeX2HTML
on the original document using the option -images_only.
If one gets into trouble, then one should rerun LaTeX2HTMLwith the options -no_reuse and -no_images,

for example,
> latex2html -no_reuse -no_images image-test.tex

This is LaTeX2HTML Version 95.1 (Fri Jan 20 1995) by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/user/goossens/image-test.tex

Cannot create directory ./image-test: File exists

(r) Reuse the images in the old directory OR

TUGboat, Volume 16 (1995), No. 2 204

(d) *** DELETE *** ./image-test AND ITS CONTENTS OR

(q) Quit ?

:d

Reading ...

Processing macros ...

Translating ...0/1.....1/1.....

Writing image file ...

This is TeX, Version 3.1415 (C version 6.1)

(images.tex

LaTeX2e <1994/12/01>

Doing section links

*********** WARNINGS ***********

If you are having problems displaying the correct images with Mosaic,

try selecting "Flush Image Cache" from "Options" in the menu-bar and

then reload the HTML file.

Done.

Now one should look into the file images.tex (as described above) and correct possible problems. Once
everything seems alright, LaTeX2HTML should be run again with the option -images_only.
Some problems in displaying the correct inlined images may be due to the image-caching mechanisms

of the browser. With some browsers, a simple “Reload Current Document” will be enough to refresh the
images, but with others (including Mosaic) one may need to refresh the cache explicitly. With Mosaic one
should select “Flush Image Cache” in the Options menu, then reload the HTML file.

C For perl Hackers Only—Inside LaTeX2HTML

The basic principle of LaTeX2HTML is that it reads a LATEX source code document, converts the parts it
recognizes into HTML and passes unknown parts to LATEX, which, in turn, creates pictures out of them.
These pictures are then placed inside the final hypertext document.
As discussed in Section 3.3, the program is started by specifying the LATEX source code document

together with a set of parameters. The result is a number of HTML documents and images as GIF or
PostScript files. An overall flow-diagram is shown in Figure 15.
Unknown environments, tables, or pictures are also passed on to LATEX and transformed into GIF or

PostScript images, and kept inline or outside the hypertext documents.

C.1 The Translation Process

Below are shown the various phases that a document goes through when translated from LATEX into HTML.
Let us first consider the original LATEX source document:

\documentclass{article}

\begin{document}

\section{test}

This is a list of two items:

\begin{itemize}

\item{First item}

\item{Second item}

\end{itemize}

\begin{verbatim}

This section includes some special characters such as $, <, >, _.

\end{verbatim}

\end{document}

TUGboat, Volume 16 (1995), No. 2 205

Read the whole LaTeX input into memory

verb commands with markers
Replace verbatim environments and

Split document into several parts

<<id>..<<id>> internal tagging

Replace brackets with

Are there nested environments?
Find environments

environment. Exists?
Find a predefined routine for this

commands in this environment. Exists?
Find a predefined routine for all If command has parameters, leave them.

Generate an error message

contents.

Replace verbatim markers with original

Add navigation tools and headers

do_env_NAME
call Perl subroutine

writing each input’ed document into database.

Yes

for image generation
Place the environment into images.tex

do_cmd_NAME
call Perl subroutine Yes

Yes No

No

No

Figure 15: Flow diagram of the LaTeX2HTML system

This LATEX source is first preprocessed by removing parts which have a special meaning in LATEX, such
as the verbatim and \verb constructs. In this example the verbatim part is stored in a separate file for
later reference and a marker is placed inside the document together with a unique identification number
“<id>” that will later be used to find the original text.

\documentclass{article}

\begin{document}

\section{test}

This is a list of two items:

\begin{itemize}

\item{First item}

\item{Second item}

\end{itemize}

<tex2html_verbatim_mark>verbatim1

\end{document}

At the end of preprocessing in the mark_string procedure, all the bracketed areas are replaced by
<<id><<id>> tags where “id” is identical at both ends of the originally bracketed text.

\documentclass<<1>>article<<1>>

\begin<<2>>document<<2>>

\section<<3>>test<<3>>

This is a list of two items:

TUGboat, Volume 16 (1995), No. 2 206

\begin<<4>>itemize<<4>>

\item<<5>>First item<<5>>

\item<<6>>Second item<<6>>

\end<<7>>itemize<<7>>

<tex2html_verbatim_mark>verbatim1

\end<<8>>document<<8>>

Next, the document is split into sections. The LATEX commands \chapter, \section, \subsection,
etc. work as search-patterns used to split the document into items in an perl array. In our example, the
conversion is configured to create a single document (i.e., no splitting).
For each section, the conversion rules are applied. These rules are implemented as procedures that

have names like do_env_X or do_cmd_X, depending on whether one is dealing with a LATEX environment or
command, where X stands for either the environment or command name. For instance, our example document
includes an itemize environment, and LaTeX2HTML will thus call the perl procedure do_env_itemize, that
will receive as its parameter the contents of the environment, and will then parse that information.
Similarly a procedure do_cmd_chapter exists for converting a chapter command, and so on for the

other sectioning commands. The resulting document after applying these conversion rules looks as follows.

<H1> test</H1>

This is a list of two items:

<#5#>First item<#5#>

<#6#>Second item<#6#>

<tex2html_verbatim_mark>verbatim1

After this each document is enhanced with headers and navigation tools.

<!DOCTYPE HTML PUBLIC "-//W3O//DTD W3 HTML 2.0//EN">

<!Converted with LaTeX2HTML 95.1 (Fri Jan 20 1995) by Nikos

Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds >

<HEAD>

<TITLE> test</TITLE>

</HEAD>

<BODY>

<meta name="description" value=" test">

<meta name="keywords" value="example">

<meta name="resource-type" value="document">

<meta name="distribution" value="global">

<HR>

<tex2html_next_page_visible_mark>

<tex2html_up_visible_mark>

<tex2html_previous_page_visible_mark>

 Next: About this document

Up: No Title

 Previous:No Title

<HR>

<P>

<H1> test</H1>

This is a list of two items:

<#5#>First item<#5#>

<#6#>Second item<#6#>

TUGboat, Volume 16 (1995), No. 2 207

<tex2html_verbatim_mark>verbatim1

<HR>

Finally, the markers are replaced with the contents to which they point. Extraneous tags are removed
and the address of the author is appended to the file.

<!DOCTYPE HTML PUBLIC "-//W3O//DTD W3 HTML 2.0//EN">

<!Converted with LaTeX2HTML 95.1 (Fri Jan 20 1995) by Nikos

Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds >

<HEAD>

<TITLE> test</TITLE>

</HEAD>

<BODY>

<meta name="description" value=" test">

<meta name="keywords" value="example">

<meta name="resource-type" value="document">

<meta name="distribution" value="global">

<P>

<HR>

<IMG ALIGN=BOTTOM ALT="next"

SRC="http://asdwww.cern.ch/icons/next_motif.gif">

<IMG ALIGN=BOTTOM ALT="up"

SRC="http://asdwww.cern.ch/icons/up_motif.gif">

<IMG ALIGN=BOTTOM ALT="previous"

SRC="http://asdwww.cern.ch/icons/previous_motif.gif">

 Next: About this document

Up: No Title

 Previous: No Title

<HR>

<P>

<H1> test</H1>

<P>

This is a list of two items:

First item

Second item

<P>

<PRE>This section includes some special

characters such as $, <, >, _.

</PRE>

<P>

 <HR>

C.2 Enhancing the Translator

From the previous section it is evident that the way to handle user commands and environments is to add
perl code into the system or personal configuration files, as also discussed in Section 3.5. One can include
as well a file with new definitions on the command line using the -init_file option.
To give a taste of how commands and environments are handled by LaTeX2HTML, we provide a few

simple examples that nevertheless clearly show the powerful techniques used to generate HTML documents
that preserve the information present in the original LATEX document.

TUGboat, Volume 16 (1995), No. 2 208

Let us first consider a LATEX command (\Ucom) used to tag commands that have to be typed by the
user on the keyboard. A possible definition using the HTML tag <KBD> for keyboard input is:

sub do_cmd_Ucom {

local($_) = @_;

s/$next_pair_pr_rx//o;

join(’’,qq+<KBD>$&</KBD>+,$_);

}

The perl variable $next_pair_pr_rx contains the substitution pattern that extracts the string of characters
surrounded by the following pair of delimiters. The string of characters and the delimiters are eliminated
and the string is then copied between the HTML <KBD> and </KBD> appended to the output stream.
Similarly, one can translate the argument of a \URL command (containing a Universal Resource Locator)

into an HTML anchor, as shown below:

sub do_cmd_URL {

local($_) = @_;

s/$next_pair_pr_rx//o;

join(’’,"$&",$_);

}

This procedure creates a link to the specified URL by returning an anchor with the URL as its target and
an anchor description along with the rest of the as yet unprocessed document.
Our next example shows an enumerated list EnumZW of a special type whose “numbers” are icons

available on a WWW server. The name of the icon depends on the value of the perl variable count, which
is incremented for each \item command used inside the EnumZW environment. Everything takes place inside
an HTML description list <DL>.

sub do_env_EnumZW {

local($_) = @_;

local($count) = 0;

s|\\item|do {++$count; qq!<DT><IMG ALIGN=TOP ALT=""

SRC="http://somewhere/icons/circled$count.xbm"><DD>!}|eog;

"<DL COMPACT>$_</DL>";

}

Two or more arguments can also be handled graciously, as shown by the following two commands, which
have two and three arguments, respectively, and are typeset by LATEX as follows:

\Command{arg1}

\Command[arg1]{arg2}

The translation in perl is straighforward, since one must merely extract the relevant arguments from
the input stream, one after the other.

sub do_cmd_BDefCm { # \BDefCm{Command}{arg1}

local($_) = @_;

s/$next_pair_pr_rx//o; $command = $&;

s/$next_pair_pr_rx//o; $mandatory1 = $&;

join(’’,"\\$command\{$mandatory1\}<\/strong>", $_);

}

sub do_cmd_BDefCom { # \BDefCom{Command}{arg1}{arg2}

local($_) = @_;

s/$next_pair_pr_rx//o; $command = $&;

s/$next_pair_pr_rx//o; $optional1 = $&;

s/$next_pair_pr_rx//o; $mandatory1 = $&;

join(’’,"\\$command\[$optional1\]\{$mandatory1\}<\/strong>", $_);

}

TUGboat, Volume 16 (1995), No. 2 209

Explaining all this perl code would lead us a little too far, but it should be fairly clear by now that
before trying to develop new code for LaTeX2HTML it is a good idea to study in detail the way Nikos Drakos
coded his program, not only in order to write perl code compatible with his conventions, but also as a
source of inspiration for one’s own extensions. Below we show definitions for frequently occurring regular
expressions in the LaTeX2HTML perl code.

$delimiters = ’\’\\s[\\]\\\\<>(=).,#;:~\/!-’;
$delimiter_rx = "([$delimiters])";

$1 : br_id
$2 : <environment>
$begin_env_rx = "[\\\\]begin\\s*$O(\\d+)$C\\s*([^$delimiters]+)\\s*$O\\1$C\\s*";

$match_br_rx = "\\s*$O\\d+$C\\s*";

$optional_arg_rx = "^\\s*\\[([^]]+)\\]"; # Cannot handle nested []s!

Matches a pair of matching brackets
$1 : br_id
$2 : contents
$next_pair_rx = "^[\\s%]*$O(\\d+)$C([\\s\\S]*)$O\\1$C";
$any_next_pair_rx = "$O(\\d+)$C([\\s\\S]*)$O\\1$C";
$any_next_pair_rx4 = "$O(\\d+)$C([\\s\\S]*)$O\\4$C";
$any_next_pair_rx5 = "$O(\\d+)$C([\\s\\S]*)$O\\5$C";

$1 : br_id
$begin_cmd_rx = "$O(\\d+)$C";

$1 : largest argument number
$tex_def_arg_rx = "^[#0-9]*#([0-9])$O";

$1 : declaration or command or newline (\\)
$cmd_delims = q|-#,.~/\’‘^"=|; # Commands which are also delimiters!
The tex2html_dummy is an awful hack
$single_cmd_rx = "\\\\([$cmd_delims]|[^$delimiters]+|\\\\|(tex2html_dummy))";

$1 : description in a list environment
$item_description_rx =

"\\\\item\\s*[[]\\s*((($any_next_pair_rx4)|([[][^]]*[]])|[^]])*)[]]";

$fontchange_rx = ’rm|em|bf|it|sl|sf|tt’;

Matches the \caption command
$1 : br_id
$2 : contents
$caption_rx = "\\\\caption\\s*([[]\\s*((($any_next_pair_rx5)|([[][^]]*[]])|[^]])*)[]])?$O(\\d+)$C([\\s\\S]*)$O\\8$C";

Matches the \htmlimage command
$1 : br_id
$2 : contents
$htmlimage_rx = "\\\\htmlimage\\s*$O(\\d+)$C([\\s\\S]*)$O\\1$C";

Matches a pair of matching brackets
USING PROCESSED DELIMITERS;
(the delimiters are processed during command translation)
$1 : br_id
$2 : contents
$next_pair_pr_rx = "^[\\s%]*$OP(\\d+)$CP([\\s\\S]*)$OP\\1$CP";
$any_next_pair_pr_rx = "$OP(\\d+)$CP([\\s\\S]*)$OP\\1$CP";

This will be used to recognise escaped special characters as such
and not as commands
$latex_specials_rx = ’[\$]|&|%|#|{|}|_’;

This is used in sub revert_to_raw_tex before handing text to be processed by latex.
$html_specials_inv_rx = join("|", keys %html_specials_inv);

This is also used in sub revert_to_raw_tex
$iso_latin1_character_rx = ’(&#\d+;)’;

Matches a \begin or \end {tex2html_wrap}. Also used be revert_to_raw_tex
$tex2html_wrap_rx = ’[\\\\](begin|end)\s*{\s*tex2html_wrap[_a-z]*\s*}’;

$meta_cmd_rx = ’[\\\\](renewcommand|renewenvironment|newcommand|newenvironment|newtheorem|def)’;

Matches counter commands - these are caught ealry and are appended to the
file that is passed to latex.
$counters_rx ="[\\\\](newcounter|addtocounter|setcounter|refstepcounter|stepcounter|".

TUGboat, Volume 16 (1995), No. 2 210

"arabic|roman|Roman|alph|Alph|fnsymbol)$delimiter_rx";

Matches a label command and its argument
$labels_rx = "[\\\\]label\\s*$O(\\d+)$C([\\s\\S]*)$O\\1$C";

Matches environments that should not be touched during the translation
$verbatim_env_rx = "\\s*{(verbatim|rawhtml|LVerbatim)[*]?}";

Matches icon markers
$icon_mark_rx = "<tex2html_(" . join("|", keys %icons) . ")>";

Frequently used regular expressions with arguments
sub make_end_env_rx {

local($env) = @_;
$env = &escape_rx_chars($env);
"[\\\\]end\\s*$O(\\d+)$C\\s*$env\\s*$O\\1$C";

}
sub make_begin_end_env_rx {

local($env) = @_;
$env = &escape_rx_chars($env);
"[\\\\](begin|end)\\s*$O(\\d+)$C\\s*$env\\s*$O\\2$C(\\s*\$)?";

}
sub make_end_cmd_rx {

local($br_id) = @_;
"Obr_id$C";

}
sub make_new_cmd_rx {

"[\\\\](". join("|", keys %new_command) . ")"
if each %new_command;

}
sub make_new_env_rx {

local($where) = @_;
$where = &escape_rx_chars($where);
"[\\\\]$where\\s*$O(\\d+)$C\\s*(".

join("|", keys %new_environment) .
")\\s*$O\\1$C\\s*"

if each %new_environment;
}
sub make_sections_rx {

local($section_alts) = &get_current_sections;
$section_alts includes the *-forms of sectioning commands
$sections_no_delim_rx = "\\\\($section_alts)";
$sections_rx = "\\\\($section_alts)$delimiter_rx"

}
sub make_order_sensitive_rx {

local(@theorem_alts, $theorem_alts);
@theorem_alts = ($preamble =~ /\\newtheorem\s*{([^\s}]+)}/og);
$theorem_alts = join(’|’,@theorem_alts);
$order_sensitive_rx =

"(equation|eqnarray|caption|ref|counter|\\\\the|\\\\stepcounter" .
"|\\\\arabic|\\\\roman|\\\\Roman|\\\\alph|\\\\Alph|\\\\fnsymbol)";

$order_sensitive_rx =~ s/\)/|$theorem_alts|/ if $theorem_alts;
}
sub make_language_rx {

local($language_alts) = join("|", keys %language_translations);
$setlanguage_rx = "\\\\setlanguage{\\\\($language_alts)}";
$language_rx = "\\\\($language_alts)TeX";

}
sub make_raw_arg_cmd_rx {

$1 : commands to be processed in latex (with arguments untouched)
$raw_arg_cmd_rx = "\\\\(" . &get_raw_arg_cmds . ")([$delimiters]+|\\\\|#|\$)";

}
Creates an anchor for its argument and saves the information in the array %index;
In the index the word will use the beginning of the title of
the current section (instead of the usual pagenumber).
The argument to the \index command is IGNORED (as in latex)
sub make_index_entry {

local($br_id,$str) = @_;
If TITLE is not yet available (i.e the \index command is in the title of the
current section), use $ref_before.
$TITLE = $ref_before unless $TITLE;
Save the reference
$str = "$str###" . ++$global{’max_id’}; # Make unique
$index{$str} .= &make_half_href("$CURRENT_FILE#$br_id");
"$anchor_invisible_mark<\/A>";

}

TUGboat, Volume 16 (1995), No. 2 211

D Technical Details of the math2html Program

D.1 Different Approaches

Various people have approached the problem of translating LATEX into SGML or HTML using different
programming paradigms. Joachim Schrod of the Technical University of Darmstadt, Germany has written
a lisp parser for TEX code which can also be used for conversions (Schrod, 1994).

19 As already discussed in
Section 5, Xavier Leroy used Caml to achieve the same goal, while LaTeX2HTML uses perl (other approaches
based on sgmls also use that language).
Common to all approaches, whether using a procedural or a functional language, is the basic imple-

mentation. A lexer is used to recognize tokens from the input, a parser to create an internal representation
and the conversion process produces the wanted output.
The major difference between functional and procedural languages is the way a language such as TEX

can be parsed. Since the TEX language can at any point in the input define new rules for delimiters and
symbols, the program parsing this input should also be able to cope with these dynamic features. Functional
programming languages can do this by their nature, easily introducing new rules to the parser at runtime.
This is what the parser written by Joachim Schrod can do. In comparison this cannot easily be done with
a fixed grammar inside a parser.
Xavier Leroy’s translator resembles a bison20 input file. It sees groups of tokens and reduces the stacked

input by given BNF-like rules. When it reduces the tokens it produces HTML output for LATEX counterparts.

D.2 Implementation of the Translator

The math2html program, written in C++, takes LATEX mathematics input, parses it and converts it into
HTML3 mathematics (if possible). The program consists of the following components:

• flex, a fast lexical analyzer generator;

• bison, a parser generator;

• C++ code.

The parsing of LATEX source code is, however, non-trivial, since its grammar has been developed step-
by-step to cope with all LATEX syntactical notations. The basic mathematical notation is presented here in
detail.

\[...\] Display mathematics.

txt1 $...$ txt2 Inline mathematics.

{abc} Characters a, b and c are grouped into one.

\abc Characters a, b and c are a control sequence.

a^b Superscripts (b can be a group of characters).

a_b Subscripts (b can be a group of characters). Superscripts and subscripts can be nested.

The lexical analyser recognizes LATEX primitives by generating tokens for the parser. A control sequence,
plain text, superscript, subscript, begingroup, endgroup, fraction, array, column separators and end of row
are examples of typical tokens. These tokens correspond to classes. These classes are depicted in Figure 16
with the object modeling technique (OMT) (Rumbaugh et al., 1991).
The class library presents the supported structures of LATEX mathematics as sums, integrals, fractions,

plain input, sequences and groups. These are currently the only primitives which can be reasonably converted
into HTML3 mathematics. A few examples of basic primitives that can be treated by math2html are shown
below:

Sum: \sum_{i=1}^{n}i Integral: \int_0^1f(x)dx

Fraction: \fraction{1}{n} Sequence: \infty

Group: {|x+1|}^2

Table: \begin{table}{lr} Eqntable: \begin{eqnarray}

a & b \\ c & d y&=&x^2\\z&<=& x^3

\end{table} \end{eqnarray}

19 The system is available at URL ftp://ftp.th-darmstadt.de/pub/tex/src/etls/.
20 Bison is a parser generator in the style of yacc.

TUGboat, Volume 16 (1995), No. 2 212

The parser analyzes the tokens using an ad hoc BNF grammar generated specifically to parse LATEX
code. When reducing the input according to the grammar rules, the parser generates instances of C++
classes (see Figure 16), which correspond to these LATEX primitives. Once the whole input has been parsed,
the internal representation is linked together so that all these instances can be reached from one top-level
list.
The conversion is implemented by calling a conversion method to each instance in the list. Each

primitive knows how to convert itself and also propagates the conversion to all its children nodes.
An instance of the runtime organization of the parsing tree corresponding to the example of Figure 10

is shown in Figure 17 on the next page.

D.3 Mapping of Control Sequences

Since the wide variety of different control sequences is quite impossible to hardcode into the program, an
external configuration file is read every time the program starts. The mapping between control sequences
and HTML3 counterparts is read into a hash table and in this way the user can configure the program to
cope with special control sequences not natively supported by the converter. An example of this is the
Particle Entity Notation scheme (Goossens and van Herwijnen, 1992), a set of standard control sequences
for representing elementary particles. This naming scheme consists of about 240 control sequences and their
presentation counterparts. The configuration file maps each control sequence into its HTML3 counterpart
using the following format:

\Pgppm π^{±} \Pgpz π⁰

\Pgh η \Pgr ρ(770)

\Pgo ω(783) \Pghpr η’(958)

\Pfz <t>f</t>₀(975)

D.4 Program Heuristics

The program uses a few heuristics in order to be able to parse LATEX code successfully. If these coding rules
are not used, parsing may fail.
Optional parameters specified between square brackets ([]) after a control sequence are not parsed

with respect to the control sequence. Therefore, there should be no space left between the control sequence
and the opening bracketwhere optional parameters are used. Space should be left if the brackets are used
as delimiters. An example is the difference between the following two control sequences:

\root[3]{\pi} \left [\pi+2]

It is also worth noticing that all control sequences not supported primitively in math2html, apart from
integrals, fractions, roots, sums and a few others, are dropped out during the conversion, for example, no
text is produced in the HTML3 version. The only way to convert them is to create specific code or map it
in the configuration file.

D.5 Interfacing with other Programs

This application was built to make it easy for other applications to call it. The program can either be
compiled into a single executable program with a command line interface or into a library that can be linked
with any other applications.
The modular approach has the advantage of being both simple and straightforward. The object-oriented

implementation makes the linearisation of the internal representation almost effortless and eases the future
addition of new HTML3 primitives by the user. The program is quite flexible and, as pointed out above,
can be used in different contexts: embedded or stand-alone.

D.6 Drawbacks of the presented Solution

The end-user may find extending the program too difficult, especially if one has no experience with flex,
bison, or C++. The configuration file that comes with the program provides an easy way to do simple
mappings, but if one wants to add more functionality, one must understand the organization of the program.
As trickier tables and equations need to be converted, the program will need extension for analyzing

the internal tree structure and to add, modify or delete specific nodes.
If the LATEX input code uses low-level TEX commands the program will not be able to handle the input.

TUGboat, Volume 16 (1995), No. 2 213

ColSpecifier

Table

convert_html3
convert_12083

List

convert_html3
convert_12083

ConfigurationFile

open
close
nextEntry

Group

convert_html3
convert_12083

Sequence

convert_html3
convert_12083

Sum

convert_html3
convert_12083

Plain

convert_html3
convert_12083

Right

convert_html3
convert_12083

Left

convert_html3
convert_12083

Fraction

convert_html3
convert_12083

Root

convert_html3
convert_12083

StringMap

Add
operator[]

EqnTable

convert_html3
convert_12083

ColList

convert_html3
convert_12083

Integral

convert_html3
convert_12083

Node

subscript
superscript
convert_html3
convert_12083

BeginEqnTable

convert_html3
convert_12083

BarElement

BeginTable

convert_html3
convert_12083

EndMaths

convert_html3
convert_12083

WidthSpecifier

BeginMaths

convert_html3
convert_12083

EndTable

convert_html3
convert_12083

Figure 16: OMT model of the mathematics conversion program

Fraction

List List

Plain Sequence Plain Sequence

BeginMaths

Plain Sequence Plain

PlainPlain

Plain

List

List

List

Fraction

=

Plain

\sigma d \epsilon 2d \pi Z

0 2

m

Figure 17: Example of a runtime parsing tree

TUGboat, Volume 16 (1995), No. 2 214

E Using the Caml System for Translating LATEX to HTML

The program works by expressing the LATEX grammar in a yacc-like format and parsing the LATEX input
lines rule by rule, converting all recognized patterns into HTML. An example of Caml Light grammar rules
for LATEX to HTML conversion is given below.

(* Font changes *)

| "{\\it" | "{\\em"

{ print_string "<i>"; upto ‘}‘ main lexbuf;

print_string "</i>"; main lexbuf }

| "{\\bf" { print_string ""; upto ‘}‘ main lexbuf;

print_string ""; main lexbuf }

| "{\\tt" { print_string "<tt>"; upto ‘}‘ main lexbuf;

print_string "</tt>"; main lexbuf }

| ‘"‘ { print_string "<tt>"; indoublequote lexbuf;

print_string "</tt>"; main lexbuf }

(* Verb, verbatim *)

| "\\verb" _ { verb_delim := get_lexeme_char lexbuf 5;

print_string "<tt>"; inverb lexbuf;

print_string "</tt>"; main lexbuf }

| "\\begin{verbatim}"

{ print_string "<pre>"; inverbatim lexbuf;

print_string "</pre>"; main lexbuf }

Unlike LaTeX2HTML the program does not pass mathematics on to the TEX engine in order to create
bitmap images for unparsable input, but produces plain text only. As the LATEX control sequences recognized
by the program are read from a separate file, the addition of new commands and their HTML counterparts
is relatively easy. An example of such mappings is the following:

def "\\chapter" [Print "<H1>"; Print_arg; Print "</H1>\n"];

def "\\chapter*" [Print "<H1>"; Print_arg; Print "</H1>\n"];

def "\\begin{itemize}" [Print "<p>"];

def "\\end{itemize}" [Print ""];

def "\\begin{enumerate}" [Print "<p>"];

def "\\end{enumerate}" [Print ""];

def "\\begin{description}" [Print "<p><dl>"];

def "\\end{description}" [Print "</dl>"];

def "\\begin{center}" [Print "<blockquote>"];

def "\\end{center}" [Print "</blockquote>"];

The use of this program requires the compilation of the Caml Light distribution, available for a variety
of platforms. The language is compiled with an intermediate step in the C language. The executable
program suffers from some overhead, mainly affecting execution time.
Because the program does not deal with mathematics and tables, it can only be used for a restricted

set of documents. To be useful for the general user it will have to be extended to convert mathematics and
tables either into bitmaps or into HTML3.

1995

Jul 6 DANTE TEX–Stammtisch at the
Universität Bremen, Germany. For
information, contact Martin Schröder
(l15d@zfn.uni-bremen.de;
telephone 0421/628813). 18:30,
Universität Bremen MZH, 4th floor,
across from the elevator.

Jul 24 – 28 TUG 16th Annual Meeting:
Real World TEX,
St. Petersburg Beach, Florida.
For information, send e-mail to
tug95c@scri.fsu.edu. (For a
preliminary announcement, see
TUGboat 15, no. 2, p. 160.)

Jul 27 TEX and Semitic Languages,
Technion, Haifa, Israel.
(For information, contact one
of the organizers: Dan Berry
dberry@cs.technion.ac.il

or Yannis Haralambous
Yannis.Haralambous@univ-lille1.fr.)

Aug 10 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Jul 6.)

Sep 4 – 8 EuroTEX ’95, Papendal, Arnhem,
The Netherlands. For information,
contact eurotex@cs.ruu.nl.

Sep 7 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Jul 6.)

Sep 14– 15 DANTE e.V., 13th general meeting,
Humboldt-Universität, Berlin,
Germany. (For information,
contact Christiane Schöbel
dante-mv13@rz.hu-berlin.de.)

Sep 14 DANTE TEX–Stammtisch,
Wuppertal, Germany. For
information, contact Andreas Schrell
(Andreas_Schrell@FernUni-Hagen.DE,
telephone 0202/502354).
Second Thursday, 19:30,
Gaststätte Yol, Ernststraße 43,
(near Robert-Daum-Platz),
42117 Wuppertal.

TUGboat, Volume 16 (1995), No. 2 215

Calendar

Oct 2 – 5 CyrTUG’95 Annual Meeting,
Protvino (Moscow region), Russia.
(For information, contact
cyrtug@mir.msk.su.)

TUG Courses, San Francisco, California

(For information, contact tug@tug.org.)

Oct 9 – 13 Beginning/Intermediate TEX

Oct 16 – 20 Intensive LATEX

Oct 23 – 27 Modifying LATEX Document Classes

Oct 30 –
Nov 3

Advanced TEX and Macro Writing

Oct 10 DANTE TEX–Stammtisch at the
Universität Bremen, Germany. For
information, contact Martin Schröder
(MS@Dream.HB.North.de; telephone
0421/628813). First Tuesday (if not
a holiday), 18:00, Universität Bremen
MZH, 28359 Bremen, 4th floor,
across from the elevator.

Oct 12 DANTE TEX–Stammtisch,
Wuppertal, Germany.
(For details, see Sep 14.)

Nov 7 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Nov 9 DANTE TEX–Stammtisch,
Wuppertal, Germany.
(For details, see Sep 14.)

Dec 5 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Dec 14 DANTE TEX–Stammtisch,
Wuppertal, Germany.
(For details, see Sep 14.)

1996

Jan 9 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Feb 6 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Status as of 31 May 1995

Mar 5 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Mar 27– 29 DANTE ’96 and 14th general
meeting of DANTE e.V.,
Universität Augsburg,
Germany. For information,
contact Gerhard Wilhelms
(dante96@Uni-Augsburg.de).

Apr 2 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Apr 7 – 10 EP96, the International Conference
on Electronic Documents,
Document Manipulation and
Document Dissemination,
Xerox Palo Alto Research
Center, Palo Alto, California.
Deadline for submission of papers:

4 December 1995. For information,
contact ep96@xsoft.xerox.com.

May 7 DANTE TEX–Stammtisch at the
Universität Bremen, Germany.
(For details, see Oct 10.)

Jul 18 – 21 SHARP 1996: Society for
the History of Authorship,
Reading and Publishing,
Fourth Annual Conference,
Worcester, Massachusetts.
Deadline for proposals: 20 November

1995. For information, contact the
American Antiquarian Society,
cfs@mark.mwa.org.

For additional information on the events listed
above, contact the TUG office (415-982-8449, fax:
415-982-8559, e-mail: tug@tug.org) unless other-
wise noted.

216 TUGboat, Volume 16 (1995), No. 2

90 TUGboat, Volume 16 (1995), No. 2

Late-Breaking News

Production notes

Mimi Burbank

I oversaw the production of this issue of TUGboat
and I had to manage a production team working in
three different time zones and spanning two conti-
nents. But with e-mail and ftp and so forth, time
and distance were not a problem. It soon was obvi-
ous that some of the production team were at work
for practically all of the 24-hour day. Each mem-
ber was involved in the successful completion of this
issue, as well as maintaining and upgrading the sys-
tem used at SCRI. Bandwidth was often a problem
for those “across the pond” and Mimi’s main activ-
ity was running and previewing files and reporting
back to those across the ocean about layout.
Electronic input for articles in this issue was

received by e-mail as well as retrieved from remote
sites by anonymous ftp. In addition to text, the in-
put to this issue includes METAFONT source code,
38 .fd files, and 11 .vf files. There were a consid-
erable number and variety of PostScript files. One
article contained 39 figures, and required 81 files
to produce final output. Over 200 files were used
(as input files) to generate final copy; over 300 files
represent fonts (.tfm and rasters), device-specific
translations, earlier versions of files, auxiliary infor-
mation, and records of correspondence with authors
and referees. The Y&Y advertisement was received
via anonymous ftp as a PostScript file.

TUGboat, Volume 16 (1995), No. 2 91

All articles were received as fully tagged for
TUGboat, using either plain-based or LATEX con-
ventions described in the Authors’ Guide (see TUG-
boat 10, no. 3, pages 378 – 385). 80% of the articles
received were in LATEX2ε. Several authors requested
copies of the current version of LATEX2ε macros for
TUGboat, and we were happy to provide these.
Font work was required on all of the articles

in the “Font Forum” section. The article by Jef-
frey (page 79) used metrics for Adobe Times which
were generated in 1994. Unfortunately, a major
change to the fontinst macros took place in mid-
1995, resulting in different stretch and shrink val-
ues in all the PostScript font metrics distributed as
PSNFSS. Since Alan’s article deals explicitly with
the effects of changing TEX’s parameters relating to
setting text, using the current Adobe Times PSNFSS
metrics caused disastrous results, so we had to main-
tain a copy of the old metrics for this paper.
The production team has been experimenting

with a pre-release of changes to dvips that allow
automatic partial-downloading of Type1 fonts. The
much smaller PostScript files produced are very con-
venient when they have to be transferred across a
slow transatlantic ftp link. The changes to dvips
were made by Sergey Lesenko, and are described in
a paper which will appear in the 1995 proceedings
issue. We hope that they will appear in standard
dvips soon. Type1 versions of the CM fonts are now
used as standard to avoid printing complications on
different devices.

Output

Though individual articles were worked on by mem-
bers of the production team on their local computer
systems, the final output was prepared at SCRI on
an IBM RS6000 running AIX, using theWeb2C im-
plementation of TEX. Output was printed on a QMS
680 print system at 600 dpi.

Future Issues

The next issue will be a theme issue and will be
guest-edited by Malcolm Clark. 16(3) will be the
TUG’95 proceedings issue, and we plan for 16(4) to
be a bilingual issue featuring articles in both Russian
and English.
Topics for future theme issues will be announced

as plans become firm. Suggestions are welcome for
prospective topics and guest editors. Send them to
the Editor, Barbara Beeton (see address on page 3),
or via electronic mail to TUGboat@ams.org.

ComingNext Issue

Guest-edited issue

The next issue of TUGboat, guest-edited by Mal-
colm Clark, focuses on ‘portable’ electronic docu-
ments. It contains articles on the Standard General-
ized Markup Language, bringing in its relationship
to HTML (Hypertext Markup Language) and the
World Wide Web. The other strands are Adobe’s
Portable Document Format (a hypertext-capable ver-
sion of PostScript, and more), which can be gener-
ated from existing TEX and LATEX documents, and
packages which may be included with LATEX to pro-
duce hypertexts suitable for reading at a screen,
rather than paper. The brave new world it her-
alds is one where the tyranny of paper is broken,
and all ‘documents’ are truly virtual. Xanadu looms
through the mists!

• A Practical Introduction to SGML

Michel Goossens and Janne Saarela

• From LATEX to HTML and Back

Michel Goossens and Janne Saarela

• The Inside Story of Life at Wiley with SGML,

LATEX and Acrobat

Geeti Granger

• LATEX, HTML and PDF, or the entry of TEX
into the world of hypertext

Yannis Haralambous and Sebastian Rahtz

• HTML & TEX: Making them sweat

Peter Flynn

• The Hyperlatex Story

Otfried Schwarzkopf

• The Los Alamos E-print Archives: HyperTEX in

Action

Mark D. Doyle

Institutional

Members

The Aerospace Corporation,
El Segundo, California

∗ Air Force Institute of Technology,
Wright-Patterson AFB, Ohio

American Mathematical Society,
Providence, Rhode Island

∗ ArborText, Inc.,
Ann Arbor, Michigan

∗ Brookhaven National Laboratory,
Upton, New York
Pasadena, California¡

CNRS - IDRIS,
Orsay, France

CERN, Geneva, Switzerland

∗ College Militaire Royal de Saint
Jean, St. Jean, Quebec, Canada

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications
Security Establishment,
Department of National Defence,
Ottawa, Ontario, Canada

CSTUG, Praha, Czech Republic

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

∗ Fermi National Accelerator
Laboratory, Batavia, Illinois

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Grinnell College,
Noyce Computer Center,
Grinnell, Iowa

Hong Kong University of
Science and Technology,
Department of Computer Science,
Hong Kong

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Iowa State University,
Ames, Iowa

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

∗ Max Planck Institut
für Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Nippon Telegraph &
Telephone Corporation,
Basic Research Laboratories,
Tokyo, Japan

∗ Personal TEX, Incorporated,
Mill Valley, California

Princeton University,
Princeton, New Jersey

Smithsonian Astrophysical
Observatory, Cambridge,
Massachusetts

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Germany

∗ Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Texas A&M University,
Department of Computer Science,
College Station, Texas

∗ United States Naval
Postgraduate School,
Monterey, California

United States Naval Observatory,
Washington DC

University of California, Berkeley,
Center for EUV Astrophysics,
Berkeley, California

0 TUGboat, Volume 16 (1995), No. 2

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of Canterbury,
Christchurch, New Zealand

University College,
Cork, Ireland

University of Delaware,
Newark, Delaware

University of Groningen,
Groningen, The Netherlands

Universität Koblenz–Landau,
Koblenz, Germany

University of Manitoba,
Winnipeg, Manitoba

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

∗ University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas at Austin,
Austin, Texas

Università degli Studi di Trieste,
Trieste, Italy

Uppsala University,
Uppsala, Sweden

Vrije Universiteit,
Amsterdam, The Netherlands

Wolters Kluwer,
Dordrecht, The Netherlands

Yale University,
Department of Computer Science,
New Haven, Connecticut

(52 institutions listed)

Information about these services can be obtained

from:

TEX Users Group

1850 Union Street, #1637

San Francisco, CA 94123, U.S.A.

Phone: +1 415 982-8449

Fax: +1 415 982-8559

Email: tug@tug.org

North America

Anagnostopoulos, Paul C.

Windfall Software,
433 Rutland Street, Carlisle, MA 01741;
(508) 371-2316; greek@windfall.com

We have been typesetting and composing high-quality
books and technical Publications since 1989. Most of the
books are produced with our own public-domain macro
package, ZzTEX, but we consult on all aspects of TEX and
book production. We can convert almost any electronic
manuscript to TEX. We also develop book and electronic
publishing software for DOS and Windows. I am a
computer analyst with a Computer Science degree.

Cowan, Dr. Ray F.

141 Del Medio Ave. #134, Mountain View, CA 94040;
(415) 949-4911; rfc@netcom.com

Twelve Years of TEX and Related Software Consulting:

Books, Documentation, Journals, and Newsletters

TEX & LATEX macropackages, graphics; PostScript language
applications; device drivers; fonts; systems.

Hoenig, Alan

17 Bay Avenue, Huntington, NY 11743; (516) 385-0736
TEX typesetting services including complete book
production; macro writing; individual and group
TEX instruction.

NAR Associates

817 Holly Drive E. Rt. 10, Annapolis, MD 21401;
(410) 757-5724

Extensive long term experience in TEX book publishing
with major publishers, working with authors or publishers
to turn electronic copy into attractive books. We offer
complete free lance production services, including design,
copy editing, art sizing and layout, typesetting and
repro production. We specialize in engineering, science,
computers, computer graphics, aviation and medicine.

0 TUGboat, Volume 16 (1995), No. 2

TEXConsulting &Production Services

Ogawa, Arthur

40453 Cherokee Oaks Drive,
Three Rivers, CA 93271-9743;
(209) 561-4585

Experienced in book production, macro packages,
programming, and consultation. Complete book production
from computer-readable copy to camera-ready copy.

Quixote Digital Typography, Don Hosek

555 Guilford, Claremont, CA 91711;
(909) 621-1291; Fax: (909) 625-1342;
dhosek@quixote.com

Complete line of TEX, LATEX, and METAFONT services
including custom LATEX style files, complete book
production from manuscript to camera-ready copy;
custom font and logo design; installation of customized
TEX environments; phone consulting service; database
applications and more. Call for a free estimate.

Richert, Norman

1614 Loch Lake Drive, El Lago, TX 77586;
(713) 326-2583

TEX macro consulting.

Type 2000

16 Madrona Avenue, Mill Valley, CA 94941;
(415) 388-8873; Fax: (415) 388-8865
pti@crl.com

$2.50 per page for 2000 DPI TEX and PostScript camera
ready output! We provide high quality and fast turnaround
to dozens of publishers, journals, authors and consultants
who use TEX. Computer Modern, PostScript and
METAFONT fonts available. We accept DVI and
PostScript files only and output on RC paper. $2.25 per
page for 100+ pages, $2.00 per page for 500+ pages; add
$.50 per page for PostScript.

Outside North America

TypoTEX Ltd.

Electronical Publishing, Battyány u. 14. Budapest,
Hungary H-1015; (036) 11152 337

Editing and typesetting technical journals and books with
TEX from manuscript to camera ready copy. Macro writing,
font designing, TEX consulting and teaching.

