
TUGboat, Volume 16 (1995), No. 2 162

LATEX, hypertext and PDF, or the entry of
TEX into the world of hypertext

∗

Yannis Haralambous and Sebastian Rahtz

1 The relationship between hypertext and
LATEX

Unlike hypermarket, hypertension and hyper -
activity, where the prefix hyper- expresses high
quantity, and excess, hypertext is not a giant text,
but a text with an internal structure that view-
ers can exploit to allow for non-linear navigation
through the document.

∗ This paper is based on one published by Yannis in
Cahiers GUTenberg no. 19, January 1995. The translation
from French was undertaken by Leonor Barroca and Sebas-
tian Rahtz, who apologize to Yannis for the massacre of his
elegant writing style. The article was revised and extended
by Sebastian Rahtz.

TUGboat, Volume 16 (1995), No. 2 163

There is thus a relationship between the no-
tion of hypertext and the mark-up system of LATEX:
both add structure to a document. For example,
the LATEX notion of cross referencing corresponds to
the notion of linking in hypertext. The main differ-
ence between the two concepts is the lack of interest
of TEX in screen interaction. TEX deals with boxes
that can contain characters, rules, images, etc. The
task of replacing these boxes with the actual charac-
ters falls to the screen or printer drivers. Since TEX
is a tool for typographical composition, it does not
use a screen other than for previewing, and screen
display is seldom considered the final aim of a TEX
compilation.
This lack of interest in TEX of the screen is even

more important when we recall that many Post-
Script constructions, introduced into a DVI file by
\special commands, are typically ignored by pre-
viewers.1

We claim that, for effectively the first time in
its existence, TEX is becoming seriously useful for
creating documents whose aim is to be read on the
screen. In fact, LATEX is totally adequate for the
automatic production of hypertext links, and the
methods that will be presented in this article allow
for an automatic conversion of almost every existing
LATEX document into an hypertext document. It is
worth insisting that such a document keeps all the
typographical quality of LATEX, and can be printed
exactly in the same way as before.

2 Overview

TEX and LATEX read a file that contains the text of
a document with structural and visual labels, and
create a second file which describes the printed page
with great precision. This output file is called DVI
(DeVice Independent) because it only contains ab-
stract data: the position of each character on the
page, the name of the font in which the program
will find the pixels for this character, its code in this
font, etc.
The visualisation or printing of a DVI file pre-

supposes the availability of a certain number of
fonts. This is usually easy in the case of large sys-
tems or network-connected workstations, but it be-
comes problematic in the case of personal systems.
The situation is even more critical when one wants
to distribute electronic documents: a document that
can be viewed and printed by a large number of peo-
ple can hardly be distributed in DVI format (since
this is only of interest to the TEX community, and

1 Except for the lucky ones amongst us who can use op-
erating systems with Display PostScript.

one would be effectively limited to CM fonts, which
are the only fonts (almost) guaranteed to be present
on all TEX systems). In practice it is almost impos-
sible, for anything but very simple documents, to
keep on disk the document itself plus enough utilities
to allow for its immediate previewing and printing,
without having to install a complete TEX system.
Finally, hypertext links are not catered for in

the syntax of the DVI format;2 every attempt to
develop an hypertext program to use the DVI format
will lead to a new ‘Hyper-DVI’ format, with all the
problems of compatibility with the TEX community
which is (rightly) proud of the stability of its tools.
It seems then that the DVI format is not the ideal
candidate for a file format which is easily usable and
sufficiently interactive to allow for the integration of
hypertext links.
What then can we do? An obvious candidate

for storing documents—at least, today— is the PDF
format (Portable Document Format) developed by
Adobe Systems. It is an extension of the PostScript
language, closely resembling the syntax of files pro-
duced by Adobe’s Illustrator program, with two im-
portant additions: support for device independent
screen viewing and printing, regardless of the fonts
used in the document, and the integration of hyper-
text functionality.
We shall return to the details of the PDF for-

mat in Section 7.1. For the moment, we describe
how the PDF format can be integrated into the pro-
cess of document production (electronic or printed).
In Figure 1, input/output files are represented by
oblique boxes, the software by rectangles, operations
(visualisation, printing, etc) by boxes with rounded
corners, while arrows indicate the basic transforma-
tions described in this article.
The .tex file is our starting point (it is in

the central circle). TEX will produce a .dvi file
(it also uses macro files, and font metrics). If the
LATEX format is used, and the hyperref package has
been loaded (as the last package), the cross reference
commands, bibliographic citations and indexing will
produce hypertext links, included in the .dvi file
with the help of \special commands.3

Another possible starting point is an HTML file
(in the top left of the diagram). An HTML file can
be easily converted to LATEX, and the hypertext links
in the former can be kept in the latter.

2 The description of the DVI format can be found on
CTAN in the directory CTANdviware/driv-standard/level-
0/dvistd0.tex

3 These commands have no effect on the typesetting of
a page and their argument is written verbatim to the DVI
file, so that they constitute excellent means to communicate
information to post-processors.

TUGboat, Volume 16 (1995), No. 2 164

But let’s get back to our .dvi file. We can
inspect it directly, using a previewer, or a non-Post-
Script printer. But we can also convert it to Post-
Script with the dvips program. Either an extended
version of dvips by Mark Doyle, called dvihps (DVI
to HyperPostScript), keeps the hypertext links con-
tained in the .dvi file, or we can write Acrobat
pdfmark code directly. Once the PostScript file has
been created, we can print on a PostScript printer
(or a non-PostScript printer with the help of the
GhostScript program), or convert it to PDF format
using Adobe’s Acrobat Distiller. This program rec-
ognizes the hypertext links and includes them in the
PDF document.
Finally, to visualise a PDF document we can

use Adobe Acrobat Reader, which is freely avail-
able for Macintosh, Windows, DOS and some Unix
platforms. This program allows us to browse and
navigate the document and print it on any printer
supported by the host system. Recent versions of
the free PostScript interpreter, GhostScript (later
than 3.51) are also able to display and print PDF
files.
It is easy to see that if the starting point is

an HTML document, all the hypertext functionality
will be kept, but we have also gained the typographic
presentation of LATEX. A PDF document is a faithful
copy of the printed document (it can even be photo-
typeset to produce a professional quality result with
colour images, graphics, etc.). On top of that it
offers hypertext navigation using links, which, with
version 2 of Acrobat, refer not only to points inside
the document, but also to other documents on the
network.
The structure of a LATEX document can be ex-

ploited by a wide application domain: the most
striking example is the voice synthesizer [3] for the
use of visually impaired people, which can pro-
nounce a mathematical formula, and indicate the
structure of the document by use of sound.
We will describe in this article another applica-

tion: the creation of electronic books, whose presen-
tation is no worse than the traditional books (since
they can be printed with no loss of quality) but
that offer some interactivity: hypertext navigation
between table of contents, index, bibliography and
text, on the same machine or across a network.
In the remainder of this article we will study

each step of the process indicated by the fat arrows
in the diagram of Figure 1.

3 HTML to LATEX

The HTML mark-up system is defined according to
the SGML standard. It contains a limited number

of tags, mainly for screen appearance; there are also
various logical text styles (emphasis, address, quo-
tation,lists, etc.), and visual styles like italic, bold,
underline, etc, but there is no support for funda-
mental page objects like tables and footnotes. It is
obvious that LATEX is a much richer language than
HTML, and so the conversion from HTML to LATEX
is essentially trivial.4 The conversion has to do some
simple jobs:

1. convert certain tags straight to a LATEX envi-
ronments, such as <CITE> and </CITE> going
to \begin{quotation} and \end{quotation};

2. convert other tags to LATEX commands with
arguments, such as and going to
\emph{...};

3. replace a very few tags with simple LATEX com-
mands, like \par for <P>;

4. deal with accented character entities, so that
é becomes \’e and çla be-
comes \c{c} and so on.

There are two classes of tags which present
more problems:

1. Those which have no direct equivalent in LATEX,
such as ; the appropriate action for
these is to convert them to new LATEX environ-
ments, and provide appropriate definitions in a
style file. Thus

Very important!

would be converted to

\begin{strong}

Very important!

\end{strong}

and an appropriate definition might be:

\newenvironment{strong}%

{\bfseries\itshape}{}

2. Tags for hypertext functions. For these we can
conveniently use the hyperref package described
below, to place the complete functionality of the
hypertext commands into the dvi file. There
are four situations we need to deal with:

(a) Definition of a target (an “anchor”
in HTML jargon) is achieved with
 . . . (where
keyword) is a unique (to the doc-
ument) name chosen for the tar-
get; this is represented in LATEX by
\hyperdef{}{keyword}{}{. . . }, where
. . . is the chosen text.

4 Going in the other direction is much harder (see [2])!

TUGboat, Volume 16 (1995), No. 2 165

Screen vi ew

Visualisation

Navigation

Printing

non

PostScript

HTML to

LaTeX

Fil e

HTML

Mosaic
Fil e

*.tex
TeX

Fil e

*.dvi

DVI(h)PS

Fil e

*.ps

Acrobat

Distiller

Fil e

*.pdf

Acrobat

Reader

Visualisation

Printing

PostScript

Fil e

*.ps

Fil e

*.rep

Repere

Figure 1: Flow diagram for processing hypertext LATEX files

(b) Definition of a link to an anchor in the
same document, represented in HTML
with . . .
(where keyword is the name of the anchor
to point to); in LATEX we would write
\hyperref{}{keyword}{}{. . . } where . . .
would be the text which a user selects to
make the hypertext jump.

(c) Definition of a link to another doc-
ument, which HTML marks as . . . where
address is a valid URL. The equiv-
alent LATEX mark-up would be
\hyperref{address}{}{}{. . . }.

(d) Linking to an image, which in HTML
would be ;
in LATEX this is converted into
\hyperimage{address}

4 LATEX to DVI

Let us be clear from the start: more or less any
valid LATEX2ε document can produce a electronic
equivalent, by the simple addition of

\usepackage{hyperref}

at the end of the document preamble (this is very
important, to give the package a fighting chance of
being the last one to redefine underlying macros).
This loads Sebastian Rahtz’ hyperref package, which
redefines the following LATEX macros to produce hy-
pertext links:

• \label, \ref and \pageref (cross-referencing)

• \chapter, \section, \subsection etc.. (made
into hypertext anchors)

• \cite (provides link to references; references
can also be made to link back to their place of
citation)

• \index (index creation)

• \includegraphics (inclusion of pictures)

Nothing more needs to be done to the document
source, unless specific links are needed in a man-
ner not supported by the generic LATEX mark-up, in
which case the “raw” commands \hypertarget and
\hyperlink and \hyperimage can be used.

4.1 The HyperTEX specification and the
hyperref package

The hyperref package derives from and builds on
the work of the HyperTEX project, described in

TUGboat, Volume 16 (1995), No. 2 166

the World Wide Web document http://xxx.lanl.
gov/hypertex/. It aims to extend the functional-
ity of all the LATEX cross-referencing commands (in-
cluding the table of contents) to produce \special
commands which are parsed by DVI processors con-
forming to the HyperTEX guidelines (i.e., xhdvi and
dvihps); it also provides general hypertext links, in-
cluding those to external documents.
The HyperTEX specification

5 says that confor-
mant viewers/translators must recognize the follow-
ing set of \special commands:

href: html:

name: html:

end: html:

image: html:

base name: html:<base href =
"href_string">

The href, name and end commands are used
to perform the basic hypertext operations of estab-
lishing links between sections of documents. The
image command is intended (as with current HTML
viewers) to place an image of arbitrary graphical
format on the page in the current location. The
base name command is used to communicate to the
dvi viewer the full (URL) location of the current
document so that files specified by relative URL’s
may be retrieved correctly.
The href and name commands must be paired

with an end command later in the TEX file—the
TEX commands between the two ends of a pair form
an anchor in the document. In the case of an href
command, the anchor is to be highlighted in the
dvi viewer, and when clicked on will cause the view
to shift to the destination specified by href string.
The anchor associated with a name command rep-
resents a possible location to which other hypertext
links may refer, either as local references (of the form
href="#name string" with the name string identi-
cal to the one in the name command) or as part
of a URL (of the form URL#name string). Here
href string is a valid URL or local identifier, while
name string could be any string at all: the only
caveat is that ‘"’ characters should be escaped with
a backslash (\), and if it looks like a URL name it
may cause problems.
The hyperref package redefines or overloads a

lot of LATEX macros to express all the common con-
structs in terms of this generic functionality. It is
hoped that the redefinition is robust, but some as-
pects of it are quite complex, and some other pack-
ages may conflict with it—it should always be loaded

5 This description is derived from Arthur Smith’s
documentation.

last! Anything which uses cross-referencing and the
internal \setref command should convert, but so-
phisticated packages like AMSLATEX can cause prob-
lems.
The package supports the following options:

draft makes the low-level macros have no effect;

colorlinks colours the links and anchors (this needs
the standard LATEX2ε color package). The col-
ors can be changed by redefining two macros;
the default setting is:

\def\LinkColor{red}

\def\AnchorColor{blue}

nocolorlinks turns off colouring, if it has been ac-
tivated by default;

backref if the backref package is used, which lists
citation points for each entry in the bibliogra-
phy, this option sets up back-referencing to be
hyper links by section number;

pagebackref sets up back-referencing by page
number;

hyperindex makes index entries be links back to
the relevant pages;

nativepdf does not emit standard HyperTEX
\special commands, but produces pdfmark
code directly as raw PostScript;

nohyperindex disables hypertext indexing;

plainpages in this package, every page is make a
target for links; this option normalizes all page
numbers to be plain arabic, since typesetting
commands like \textbf can cause the main hy-
perref macros to break;

noplainpages turns off the above behaviour, so
that sequences like roman numbering of a
preamble is respected;

hyperfigures makes included figures (assuming
they use the standard graphics package) be hy-
pertext links;

nohyperfigures turns off the above behaviour;

nonesting currently, dvihps doesn’t allow anchors
to be nested within targets, so this option tries
to stop that happening. Other processors may
be able to cope;

nesting allows nesting to take place;

The following options are the default: nocolorlinks,
noplainpages, nonesting, hyperindex and nohyperfig-
ures

4.2 Creating an enriched PDF file with
repere

As we can see in Figure 2, Acrobat gives us the
possibility of displaying a hierarchical, active, ta-
ble of contents on the left-hand side of the window.

TUGboat, Volume 16 (1995), No. 2 167

The dvihps program does not, in its current ver-
sion, directly support this facility; to remedy this
lack, Haralambous developed a post-processor for
the output of dvihps which creates the necessary
extra material. The program, repere, is written in
Flex, and can be compiled on most platforms with
a Flex implementation and a C compiler.
The repere program works in conjunction with

the hyperref package, whose macros write all section-
ing titles to an external file with the suffix .rep.
After processing the file with LATEX, and running
dvihps, the .rep file is prepended and appended
to the PostScript file, and the result run through
repere. For a file foo.tex, the sequence would be
(for Unix, or other systems with pipes:6)

latex foo

latex foo

dvihps -z foo -o footemp.ps

cat foo.rep footemp.ps foo.rep \

| repere > foo.ps

This would result in a PostScript file, foo.ps which
can be given to Adobe Distiller which will produce
the table of contents. The repere program works by
writing pdfmark commands for Distiller.
The trickiest part of the operation is the con-

version of the encoding of the LATEX file which is
written to the .rep file into the PDF Encoding (an
combination of the Windows, Mac and Adobe Stan-
dard encodings) needed for the table of contents.
When LATEX writes the .rep file, it may expand ac-
cented characters and the like, depending on the en-
coding used; command sequences like \TeX also get
expanded to strange forms. While repere tries to
locate accented letters and replace them with the 8-
bit equivalent from the PDF Encoding, there remain
considerable problems in getting a totally clean ta-
ble of contents without some manual editing. Luck-
ily, this affects only the appearance—the hypertext
links between the table of contents and the main
document remain intact regardless of how horrible
the contents may look.

4.3 Problems at the TEX level

The fact that dvi files were designed solely to pro-
duce printed pages means that we have to take some
precautions when preparing material which is to be
converted to PDF.
The precautions have largely to do with the

fonts used in the document. The biggest problem
for a program like Acrobat, which sets out to dis-
play and print any PostScript file whatsoever, is the

6 DOS or VMS users will have to use copy/append com-
mands to create a temporary file.

range of PostScript fonts used in the document. The
vast majority of the existing PostScript fonts (and
there are thousands of them. . .) are commercial,
and their usage is determined by the license agree-
ment between the vendor and the user. How do we
arrange it so that an author can distribute a docu-
ment using one of these fonts, and be sure that the
reader has a copy of the same font?
Adobe solved this problem with the Multiple

Master technology; this is similar to the principles
of METAFONT,7 by which fonts have certain meta-
characteristics which can be varied to produce differ-
ent looking glyphs (in terms of their weight, width,
etc. along up to four axes). Using the extended
Adobe Type Manager (Super ATM, or ATM ver-
sion 3), and two Multiple Master fonts (one serif,
and one sans-serif), Acrobat is able to mimic the
look of any PostScript font which is not present on
the reader’s system. The Acrobat document simply
contains the font name, and a set of metrics; if the
font can be found, it is used, but otherwise a Mul-
tiple Master instance is created to get (at least) the
weight, spacing and size right.
Can Multiple Masters mimic any font? Not

quite. If the font has a non-standard set of charac-
ters (i.e., it is not a Latin text font), such as math-
ematics, phonetic symbols or Greek, simply substi-
tuting characters from a text font will obviously pro-
duce catastrophic results. There are two solutions
to this:

1. The ‘exotic’ font can be fully embedded in the
PDF document, so that it is available to the
viewing system. This avoids the problem of in-
appropriate Multiple Master substitution, but
raises copyright issues—the author needs per-
mission from the font vendor to distribute it in
this way. In Version 2 of Acrobat, Adobe im-
plemented partial font downloading—for each
font used, Distiller makes a subset containing
just those characters actually used. This makes
for smaller files, and goes a considerable way to-
ward alleviating the fears of font vendors, many
of whom do now permit their fonts be in dis-
tributed in this partial way.

2. In the case of TEX, fonts can be included in PK
bitmap format. The copyright problem does
not arise, since only bitmap representations are
included in the PDF file.8 Unfortunately, Acro-
bat Reader does not display such bitmap fonts

7 Compared to METAFONT, Multiple Master fonts are in
fact quite simplistic.

8 However, if the bitmaps are derived from a commercial
PostScript font, the user would be well advised to check with
the vendor that bitmaps can be distributed in this way.

TUGboat, Volume 16 (1995), No. 2 168

at all well, since they need to be reduced for
screen resolution, and the characters usually
appear very emaciated. Printing, by contrast,
presents no problems, if the resolution of the
bitmap font corresponds to that of the printer,
rather than the screen.

A third solution is to avoid the problem by using
the standard fonts which you can be almost cer-
tain are available for any PostScript device (Times,
Helvetica, Symbol, Courier, Palatino etc). Unfor-
tunately, we cannot produce any mathematics or
Greek of more than trivial quality using the Sym-
bol font, so this approach is of limited effectiveness
for traditional LATEX documents.
A practical approach for mathematics is to use

the Computer Modern fonts for symbols, and Times
for alphanumeric characters (this can be done using
Alan Jeffrey’s mathptm package), and to use Post-
Script Type1 versions of the CM fonts. These can
be purchased from Blue Sky Research, and Y&Y
Inc, or there are free versions in the CTAN archives
of almost equal quality. Prospective users of these
latter fonts should check the license conditions which
only allow non-commercial use.
A final problem to consider is the possible ill-

effect of virtual fonts which produce accented char-
acters by combining separate accents and charac-
ters (such as can be done by Alan Jeffrey’s fontinst
package). The reason for this is that Acrobat has
a facility to search for strings in documents; if ac-
cented characters are in fact represented in the Post-
Script/PDF file by two separate glyphs, searching
will not be complete or accurate (whereas genuine
8-bit characters can be searched for and found). For
example, if the word ‘écouté’ is represented as

e<acute accent>coute<acute accent>

in the PDF document, then a search for écouté,
where é is an 8-bit character, will not be success-
ful.
The solution to this problem is to use Post-

Script fonts encoded in the LATEX T1 (Cork) stan-
dard, and based on re-encoding at the PostScript
level to allow access to the full range of accented
characters. How this is achieved is beyond the scope
of this article, but the CTAN archives contain sets of
metrics for many common PostScript fonts derived
in this way, suitable for immediate use. Some char-
acters like ź are simply not present in most fonts,
and so these will always have to be created by com-
posite characters, but most Western European lan-
guages will come out ‘correctly’. It is worth pointing
out that LATEX2ε will automatically transform 7-bit

input mark-up like \’e into the 8-bit single charac-
ter on output, if T1 encoding is used.

5 DVI to (hyper)PostScript

Like TEX, dvips is a good example of a very
high-quality public domain program, available for
almost all operating environments and producing
good quality PostScript output. In order to get the
most out of the translation to PDF, however, it is
necessary to alter the program a little. Mark Doyle
undertook this task, and the result is the dvihps
variant of dvips, which also runs on all systems.9

Why are changes necessary? To define hyper-
text links, Acrobat Distiller needs (at least) two bits
of information: the active ‘button’ area, and the
document element to be displayed. These areas are
defined in terms of rectangular areas, whose page
coordinates are given in PostScript points (72 to
the inch) in relation to the bottom left corner of
the page. In order to establish the coordinates of
the target area, which may occur pages after the
point of departure, it is necessary to make an ex-
tra pass through the output, after all the text has
been positioned in PostScript coordinates. While it
would theoretically be possible to program all this at
the LATEX level, the transformation from DVI coor-
dinates to PostScript coordinates is distinctly hair-
raising, and it seems sensible to leave this to the
modified dvips program. At all the points where
links are desired, \special commands are inserted
into the output by LATEX macros, and these are con-
verted by dvihps if the new -z command line option
is used.
We may note that the PostScript file produced

by dvihps contains code in the preamble to deacti-
vate the hypertext commands if the file is processed
by an application other than Acrobat Distiller. It
also detects different versions of Distiller, since ver-
sion 2 has more advanced features than version 1,
which are used if possible.
If we know we only want PDF, rather than hav-

ing a portable hypertext dvi file, it is probably eas-
ier to use the nativepdf option of hyperref. This
produces simple pdfmark PostScript, with a greater
degree of flexibility than dvihps currently offers.
The user has full control over all the parameters of
the pdfmark, allowing:

• changing of the color and style of frames around
active areas;

• varying the type of link (i.e., to full page, zooms
etc.);

9 It is to be expected that the functionality will be merged
back into the ‘real’ dvips by Tom Rokicki in due course.

TUGboat, Volume 16 (1995), No. 2 169

• access to the trivial commands like ‘Next Page’
and ‘Previous Page’ without resorting to LATEX
macro programming;

• setting startup code (i.e., to start document in
full-screen mode);

• setting window title etc.

With the release of Acrobat 2.1 in September
1995, the dvihps program and the native pdfmark
feature in hyperref have been enhanced to support
the ‘plug-in’ which allows for access to World Wide
Web browsers from within Acrobat. This allows the
author to define URLs in the text as Web links, and
have them launch a browser when activated. Dis-
tiller 2.1 is required to understand the appropriate
pdfmark commands.

6 PostScript to PDF

This stage, which is certainly the longest in terms of
elapsed time for the user, is entirely under the con-
trol of the Acrobat Distiller program; anyone wish-
ing to create serious PDF documents needs to pur-
chase a copy. It is, on the side, a very good debugger
of PostScript programs, and a good interpreter. It is
a useful way to preview any PostScript file, although
the processing is rather slow. There is another way
of creating PDF, the PDFwriter printer driver which
is part of Acrobat Exchange; this allows users of any
conventional Windows or Mac word-processing pro-
gram to ‘print’ directly from their application to a
PDF file. However, this has no possibilities for auto-
matic creation of hypertext links via pdfmark, so we
do not consider it very useful in the current context.

7 Viewing, navigation, and printing of a
PDF file

These operations are achieved with the help of the
Adobe Acrobat Reader software. Search functions,
zooming, navigation, text copy, etc, are available
from menu options or key combinations. Figure 2
shows a typical Acrobat screen, with page thumb-
nails on the left side for help in navigation, and
marked hyperlink areas in the main text The LATEX
hyperref package allows the user to choose the pre-
sentation of active areas of hypertext links (in red
by default) as well as the anchor areas (in green
by default). Figure 3 shows how hyperref displays
the table of contents, with each line as an active
area, framed in a black box; Figure 4 shows a dif-
ferent style of marking areas, this time in the bib-
liography. In the latter case the links are ‘back
references’ to where the reference is cited in the
text. These are derived automatically by the hy-
perref package.

7.1 Some information on the PDF format

The PDF format is as difficult (or easy!) for average
user to read as the PostScript language. However, it
is interesting to know a bit of its structure, to per-
form, if needed, minor modifications to the presen-
tation file (the PDF format is still quite new and we
desperately lack tools to modify PDF documents).
A PDF file can be either a 7-bit ASCII file or

an 8-bit binary file. It consists of four parts: the
header, the body, the cross reference table and the
trailer. The body is composed of objects: each page
is an object; the links, the notes, the marks, the
font codes, the font descriptors, and the systems for
colour description, are all objects. The advantage
of using objects is that one can change the order,
insert or remove pages, without breaking the exist-
ing hypertext links: the order of the pages is kept
in the cross reference table. A PDF display applica-
tion starts by reading the end of the document, and
retrieves the cross reference table of pointers to the
objects in the document.
We will describe here only some of the objects,

which can be freely modified by the user. However,
it should be noted that each modification of a PDF
file (except one that will be mentioned below) needs
an update of the cross reference table: this table
contains, for each PDF object, its offset relative to
the start of the document. Each object has a num-
ber, which is the first item data for the object. The
objects are not necessarily ordered by number in the
PDF file. The cross reference table contains one line
for each object; this line contains the offset of the
object to the start of the file (a number of 10 dig-
its), followed by a blank, a 5 digit number which is
the number of times this object has been modified,
another blank, and the letter ‘n’. If the object is
deleted, the number of the object will be available
and the syntax of this line will change: the 10 digit
number indicates the number of the next free object
in the table (it is nil if it is the last free object) and
the letter ‘f’ at the end of the line.
Every time an object is modified, it is neces-

sary to change the offset of all the objects which
physically follow it in the file; we must also change
a number at the end of the file which indicates the
offset of the table of cross-references relative to the
start of the file.
As an example, Figure 5 is an extract from a

PDF file, showing the start, the first object (a color
descriptor), the last few objects, part of the cross-
reference table, and the trailer.

TUGboat, Volume 16 (1995), No. 2 170

Figure 2: PDF file being displayed with Acrobat Reader

Figure 3: The LATEX table of contents in Acrobat

TUGboat, Volume 16 (1995), No. 2 171

Figure 4: Bibliography, showing back-referencing

The number 251984 is the offset from the start
of the file of the beginning of the cross-reference ta-
ble. The extract in Figure 6 shows an object in the
main part of the file with the uncompressed version
of some text being displayed
A hypertext link is an object of type ‘Annot’;

an example is

17 0 obj

<<

/Type /Annot

/Subtype /Link

/Rect [107 565 171 577]

/Dest [16 0 R /FitH 842]

/T (page.5)

/C [0 0 1]

/Border [0 0 1 [3 3]

]

>>

endobj

While the /Rect key simply gives the coordinates
of a rectangle around a link area, the /Dest area is
more interesting. In this example, it points to a page
number, and says that the page is to sized to fit a
certain height, but it can also (in Version 2) point to
an external file, or ‘named’ destination. This allows
us to have the same functionality as HTML, opening
another file at a named point, rather than having to
know the actual page number and position in the
other file.
The /Border key describes the appearance of

the link; in Version 1, this was either a frame or
nothing, but Version 2 allows for coloured frames,
and different line types. The values in this example

indicate that the ‘active’ area which is to be clicked
on is outlined with a blue dashed line (the color is
given by the /C key, an abbreviation for /Color).
How can we modify this file? At the end

of the example above, we see the key /Producer
(Acrobat Distiller 2.0 for Windows); we may
want to change this object, and use some of the other
available keys, to produce:

/Author (Mr Kipling)

/Title (My favourite PDF sample)

/Creator (LaTeX, of course)

It is easy to simply edit this in, but we would also
have to go through and change the cross-reference
table for all the objects that follow it, a tedious and
error-prone procedure. Haralambous has written
another Flex program, recticrt, which performs this
task for you, reading a PDF file and writing a new
version with a checked and updated cross-reference
table.
Full documentation of the PDF format can be

found in [1], and in the PDF documents distributed
with Acrobat Distiller.

8 Conclusions

We have tried to show in this paper that a com-
plete, viable, electronic publishing system can be
built with LATEX as its base, and the Portable Doc-
ument Format as its delivery medium. While the
tools we describe, and those we have developed our-
selves, are functional, we believe that only a small
part of the potential has been realized. We hope
that others will develop more tools to make richer

TUGboat, Volume 16 (1995), No. 2 172

%PDF-1.1

1 0 obj

[/CalRGB

<<

/WhitePoint [0.9505 1 1.089]

/Gamma [1.8 1.8 1.8]

/Matrix [0.4497 0.2446 0.02518 0.3163 0.672 0.1412 0.1845 0.08334 0.9227]

>>

]

endobj

.........

9 0 obj

<<

/Type /Pages

/Kids [2 0 R 10 0 R 14 0 R 20 0 R]

/Count 4

/MediaBox [0 0 612 792]

>>

endobj

41 0 obj

<<

/Type /Catalog

/Pages 9 0 R

>>

endobj

42 0 obj

<<

/CreationDate (D:19950420210508)

/Producer (Acrobat Distiller 2.0 for Windows)

>>

endobj

xref

0 43

0000000000 65535 f

0000000017 00000 n

0000021336 00000 n

......

0000211955 00000 n

0000251877 00000 n

trailer

<<

/Size 43

/Root 41 0 R

/Info 42 0 R

/ID [<a7b776d0fb5478b29f5739c089a2c83f><a7b776d0fb5478b29f5739c089a2c83f>]

>>

startxref

251984

%%EOF

Figure 5: Extract from a PDF file

TUGboat, Volume 16 (1995), No. 2 173

3 0 obj

<<

/Length 21095

>>

stream

BT

/F4 1 Tf

7 0 0 7 72 759.67 Tm

0 Tr

0 g

0.014 Tc

[(T)108(e)7(s)19(t)-363(of)-352(c)7(m)25(r)14(1)0(0)-343(o)

0(n)-349(A)0(p)27(r)14(i)27(l)-383(20,)-349(1995)-308(at)-363(1712)]TJ

ET

129.36 719.59 0.48 -16.08 re

...

Figure 6: A PDF object

and richer electronic documents, using TEX typog-
raphy as a solid foundation.

Obtaining the programs

The HyperTEX project, whose standards form the
basis of the work described in this article, should
be visited on the World Wide Web at http://xxx.
lanl.gov/hypertex/.
The hyperref package can be obtained

from any of the CTAN (Comprehensive TEX
Archive Network) archives, from the directory
CTANmacros/latex/contrib/supported/hyperref.
The repere and recticrt programs are supplied in
source form (Flex code) and as compiled MSDOS
binaries. The source of dvihps is available in
CTANdviware/dvihps in the CTAN archives, and
an MSDOS binary is also stored in the hyperref
directory. Michael Mehlich has written another
LATEX2ε package for encapsulating hypertext
functionality in LATEX output, to the same Hy-
perTEX standards as hyperref, with comparable
functionality. This is available on CTAN in
CTANmacros/latex/contrib/supported/hyper.
The PostScript Type1 versions of the Computer

Modern fonts by Basil Malyshev (the BaKoMa col-
lection) can be obtained from CTAN, in the direc-
tory CTANfonts/cm/ps-type1/bakoma.

The free Acrobat Reader for Windows, Mac-
intosh and Sun Unix can be obtained from Adobe
(Internet FTP site ftp.adobe.com, for instance) or
from many other collections.

References

[1] Tim Bientz and Richard Cohn (Adobe Sys-
tems Inc.). Portable Document Format Refer-
ence Manual, Addison Wesley 1993.

[2] Michel Goossens and Janne Saarela. From
LATEX to HTML and back, TUGboat, 16(3),
1995.

[3] T.V. Raman. An audio view of TEX docu-
ments, TUGboat, 13(4), 1992.

⋄ Yannis Haralambous

187, rue Nationale, 59000 Lille,

France

Email: haralambous@

univ-lille1.fr

⋄ Sebastian Rahtz

Elsevier Science Ltd, The

Boulevard, Langford Lane,

Kidlington, Oxford OX5 1GB

Email: s.rahtz@elsevier.co.uk

