
TUGBOAT

Volume 16, Number 3 / September 1995

1995 Annual Meeting Proceedings

222 Robin Fairbairns / Production notes

Opening Address 223 Michel Goossens / President’s words

Fonts 227 Jǐŕı Zlatuška / When METAFONT does it alone

233 Richard J. Kinch / MetaFog: converting METAFONT shapes to contours

244 Alan Hoenig / The Poetica family: fancy fonts with TEX and LATEX

253 Michel Goossens / Using Adobe Type 1 Multiple Master fonts with TEX

259 Jeremy Gibbons / Dotted and dashed lines in METAFONT

265 Sergey Lesenko / Printing TEX documents with partial Type 1 fonts

LATEX 269 Matthew Swift / Modularity in LATEX

276 Dennis Kletzing / A multienumerate package

Hyphenation 280 Petr Sojka and Pavel Ševeček / Hyphenation in TEX — Quo Vadis?

290 Petr Sojka / Notes on compound word hyphenation in TEX

Literate programming 297 W lodek Bzyl / Literate Plain source is available!

300 Bart Childs, Deborah Dunn and William Lively / Teaching CS/1 courses

in a literate manner

Methods 310 T.V. Raman / An audio view of (LA)TEX documents — part II

315 Sebastian Rahtz / Another look at LATEX to SGML conversion

325 Robin Fairbairns / Omega — Why bother with Unicode?

329 Gabriel Valiente Feruglio / Modern Catalan typographical conventions

News &

Announcements

339 TUG’96 Announcement

340 Calendar

TUG Business 341 TUG’95 — List of Attendees

344 Institutional members

Advertisements 345 TEX consulting and production services

TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, Flood Building, 870
Market Street, #801; San Francisco, CA 94102,
U.S.A.

1996 dues for individual members are as follows:
Ordinary members: $55
Students: $35

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in the annual election.
A membership form is provided on page ???.
TUGboat subscriptions are available to organi-

zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $70 a year, including air mail delivery.
Second-class postage paid at San Francisco,

CA, and additional mailing offices. Postmaster:
Send address changes to TUGboat, TEX Users
Group, 1850 Union Street, #1637, San Francisco,
CA 94123, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office.

TUGboat c© Copyright 1995, TEX Users Group

Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this

publication provided the copyright notice and this permission

notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-

tions of this publication or of individual items from this

publication into another language, under the above condi-

tions for modified versions, except that this permission notice

may be included in translations approved by the TEX Users

Group instead of in the original English.

Some individual authors may wish to retain traditional

copyright rights to their own articles. Such articles can be

identified by the presence of a copyright notice thereon.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Michel Goossens, President∗

Judy Johnson∗, Vice President
Mimi Jett∗, Treasurer
Sebastian Rahtz∗, Secretary
Barbara Beeton
Karl Berry
Mimi Burbank
Michael Ferguson
Peter Flynn
George Greenwade
Yannis Haralambous
Jon Radel
Tom Rokicki
Norm Walsh
J́ı̌ri Zlatuška
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

All correspondence,
payments, etc.

TEX Users Group
1850 Union Street, #1637
San Francisco,
CA 94123 USA

Parcel post,
delivery services:

TEX Users Group
Flood Building
870 Market Street, #801
San Francisco,
CA 94102, USA

Telephone

+1 415 982-8449

Fax

+1 415 982-8559

Electronic Mail

(Internet)
General correspondence:
TUG@tug.org

Submissions to TUGboat:
TUGboat@AMS.org

TEX is a trademark of the American Mathematical
Society.

Production Notes

Robin Fairbairns

University of Cambridge Computer Laboratory

Pembroke St

Cambridge, CB2 3QG

UK

Email: rf@cl.cam.ac.uk

URL: http://www.cl.cam.ac.uk/users/rf/

The Papers

There were more papers presented at the conference
than could be accommodated within the page count
available to us. As a result, the production team has
had to move Jonathan Fine’s paper New Perspec-
tives on TEX Macros and Jerry Marsden’s (et al.)
paper Introduction to FasTEX to TUGboat 16(4).
Since that issue is being produced in parallel with
the present one, readers will not have a serious wait.
A transcript of Prof. Knuth’s question and answer
session is being prepared, and will (subject to his
approval) be published in some future issue ofTUG-
boat.
Of his two papers in this issue, Petr Sojka only

presented the second (Notes on Compound Word
Hyphenation in TEX) at the conference. Since that
paper was awarded the prize for best paper (at Don-
ald Knuth’s recommendation), Michel Goossens sug-
gested that the first paper (Hyphenation in TEX—
Quo Vadis?), which sets the scene for the second
paper, should also be presented here1.

Macros

For the whole of the period of editing these proceed-
ings, I’ve been working in parallel on macros to use
with LATEX2ε for producing TUGboat. I hope to
report the state of this work in a paper for a future
issue of TUGboat, but there’s still much to do before
the work is complete. For one paper (Childs, Dunn
and Lively) I developed a separate (small) LATEX2ε
package. This package (variline) hasn’t yet been
released to CTAN, for lack of various sorts of test-
ing; the omission on my part proves to be fortuitous,
since the package doesn’t work with the December
1995 release of LATEX2ε (the incompatibility is eas-
ily dealt with, but I shan’t be able to do so until the
new year).
All but three papers were submitted as LATEX

source; the others were submitted as plain TEX

1 It had appeared in the preprints, due to an organisa-

tional error on my part.

marked up with the usual macros. Of the three
plain papers, I converted one (Bzyl’s) to LATEX,
left one (Valiente’s) as it was, and am no longer re-
sponsible for the remaining one (Fine’s).

Fonts

Most of this issue has been set in Computer Modern
(or DC, version 1.1) fonts— in Malyshev’s BaKoMa
PostScript Type 1 versions; the only exception is the
paper by Goossens, Rahtz and myself on the use
of Adobe Multiple Master fonts. My original aim
was to use Adobe Minion Multiple Master (which
that paper uses) as the default font family for the
whole of the issue, but planned further work on the
metrics, and work on using Minion with papers sub-
mitted in plain TEX, was not completed in good
enough time.
Three of the other papers (Gibbons, Hoenig

and Zlatuška) used ‘exotic’ fonts of one sort or an-
other, but both Gibbons and Hoenig’s samples were
supplied as encapsulated PostScript. (Gibbons’ pa-
per talks about a bug in ‘some printers’ firmware’
that affects one of his diagrams; that bug affects his
printer and mine, but not the one used for produc-
tion at SCRI.)
Zlatuška’s paper imposes slight difficulties on

the production system—it requires some reasonably
modest use of METAFONT to produce the logo font
that he uses as the example of his technique. How-
ever, as he notes in the paper, some DVI drivers are
offended by the behaviour of the fonts he produces;
naturally, the driver that the production team is one
of those.

Output

Though individual articles were worked on by mem-
bers of the production team on their local computer
systems, the final output was prepared (by Mimi
Burbank) at SCRI on an IBM RS6000 running AIX,
using the Web2C implementation of TEX. Output
was printed on a QMS 680 print system at 600 dpi.

222 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

TUG and You—Together We Can Do It

TUG and You—Together We Can Do It

Michel Goossens, TUG President
CERN European Laboratory for Particle Physics

CH-1211 Geneva 23

Switzerland

Email: president@tug.org

On Sunday July 23rd the new TUG Board (after
the spring elections) convened formally for the first
time in Saint Petersburg Beach, Florida.
As incoming President I therefore have the plea-

sure of thanking outgoing President Christina Thiele
for her continued dedication and efforts with which,
during the last two and a half years, she ran the
TEX Users Group. They have not been easy years
and several difficult problems had to be faced and re-
solved. Christina, with the help of members of the
outgoing Board, laid the basis for deciding where
improvements can be made. I consider it the main
task of the new Board for the coming year(s) to build
upon the experience and efforts of the past to find
better and more efficient ways to serve the TEX user
community in general and the TUG membership in
particular.
I wish to congratulate Karl Berry, Judy John-

son, and Jǐŕı Zlatuška (new members) and Barbara
Beeton (who has been a Board member for many
years) for their election by acclamation last spring.
To fill vacancies due to resignations and shortfalls of
candidates in the elections, I nominated Mimi Jett,
Tom Rokicki and Norman Walsh. I welcome all of
them to the Board and hope that, together with the
remaining members Mimi Burbank, Michael Fergu-
son, Peter Flynn, George Greenwade, Yannis Hara-
lambous, Jon Radel, and Sebastian Rahtz, we can,
by our enthusiasm, dedication, and team-work en-
sure that TUG remains strong and healthy.
I also want to express thanks to the outgoing

Board members Jackie Damrau, Luzia Dietsche, and
Nico Poppelier, who all three had to resign for pro-
fessional reasons, and to Michael Doob, whose term
came to an end, for all the time they have dedicated
to their work relating to TUG.
Next a word about the Special Directors, who

joined the TUG Board as representatives of the local
TEX User groups in 1989 to increase the awareness
of problems non-North American users face when
using TEX. Having only five “international” rep-
resentatives, although historically correct in 1989,
no longer reflects the real situation, and in order
to allow TUG to find ways of proposing a better

representation for all TEX User Groups worldwide,
the representatives of DANTE, GUTenberg, NTG,
Nordic TUG, and UKTUG resigned so that the ti-
tle of Special Director could be abolished. I want
to thank Joachim Lammarsch, Bernard Gaulle, Jo-
hannes Braams, Dag Langmyhr, and Chris Rowley
(and their predecessors) for their many valuable con-
tributions, and I sincerely hope that we shall be able
to count on the continued support of all these and
the other user groups in the future.
At this year’s Board meeting, a new Executive

Committee was elected: Judy Johnson was elected
as Vice-President, Sebastian Rahtz as Secretary and
Mimi Jett as Treasurer. I look forward to working
with this new team and the Executive Director Pa-
tricia Monohon, and hope that the fact that both
Judy and Mimi are located on the West Coast will
prove a great plus for the Office, which has had to
work somewhat in isolation the last year or two since
all officers were somewhat remote. At this point it
is a pleasure to say thank you to the outgoing Sec-
retary Peter Flynn, who acted as the “TUG scribe”
for all these years, and to George Greenwade, as
outgoing Treasurer, who gave some extremely valu-
able input but has been practically unavailable for
many months due to an extremely busy professional
schedule.
Change in continuity is to be the theme of this

new Board. We must find ways to take advantage of
new technologies to provide tools that our present-
day working environments need. We no longer are
using the large and costly mainframes or limited PCs
of ten years ago, but many of us now have power-
ful personal computers with large disks and a CD-
ROM reader on our desks at home or at work. We
should take this into account, together with the fact
that TEX is a “tool” for most people, not an end
in itself. Physicists, mathematicians, scientists in
all fields, writers of all kind—even I, for my per-
sonal letters—want to have the most appropriate
and user-friendly tool that gets the job done. There-
fore we should look around and live in symbiosis
with progress in other text-processing areas that are

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 223

Michel Goossens, TUG President

evolving every day. HTML/SGML, hypertext, Ac-
robat, multi-media, colour, multilingualism, multi-
byte encodings are only a few of the items on the
shopping list of every “writer” in a modern envi-
ronment, and we should be ready to face these is-
sues and come with working extensions that address
these questions.
Above I mentioned the issue of a better repre-

sentation of the various user groups in the workings
of TUG. During TUG95 we discussed various sce-
narios to build an equitable structure giving each
User Group that wants to join forces the chance to
influence decisions related to TEX. Such a structure
should be based on mutual trust and sharing of re-
sponsibilities, work and support. TUG should act
as catalyst for ideas and should provide a frame-
work to coordinate global developments, to elimi-
nate wasteful duplication of efforts and to concen-
trate on agreed points of action. But we should be
careful not to fall victim to committee-itis. Small
technical working groups with complete autonomy
and led by one or two dedicated individuals should
provide the main thrust of our efforts. TUG’s rôle
should be concentrated on coordinating funding and
assigning of priorities.
But this is all music for the (near) future. To-

day we are facing a falling membership (2400 TUG
members in 1994, about 1750 so far in July 1995)
and one of the main problems is the non-appearance
of our flagship publication TUGboat, which is now
three issues behind schedule. I made it my first task
as new President to get TUGboat back onto sched-
ule by the end of this year, promising four issues
before Christmas 1995. Since April of this year the
TUG Publications Committee has discussed the best
way to remedy this situation and we have come up
with the following detailed plan.
We have set up a core team, and a production

environment at SCRI (the Supercomputer Compu-
tations Research Institute at Florida State Univer-
sity) is now in place allowing this team to work
on the various articles in a coherent and coordi-
nated way. Barbara Beeton remains in charge of
the overall process, but with the more practical pro-
duction tasks she will be assisted by Mimi Bur-
bank, Robin Fairbairns, Sebastian Rahtz, Christina
Thiele and myself. All these people are confident
that they have free time available during the next
year or so and they have shown in the past that they
can produce high-quality output in a timely way as
proceedings editors or editors of other TEX maga-
zines. At the Business meeting I clearly stated that
I take it upon myself to do everything possible, to-
gether with this core team, to get four TUGboat’s

on our member’s desks before Christmas 1995, i.e.,
these four issues of TUGboat have to go to the
printers before the end of each month between Au-
gust and November. TUGboat 15(4) and TUG-
boat 16(1), each of about 100 pages, will be reg-
ular issues containing articles submitted since mid-
1994, TUGboat 16(2), with Malcolm Clark as edi-
tor, will be a theme-issue, contain articles related to
electronic documents, in particular SGML, HTML,
hypertext, and Acrobat, while TUGboat 16(3), the
proceedings issue, edited by Robin Fairbairns, will
contain not yet published papers presented at the
conference, including all prize-winning articles men-
tioned in my report on the TUG95 Conference.1

On a longer time scale, we will have to break the
various tasks down into smaller assignments, with
very detailed and clear instructions. This will take
some time and coordination, and Barbara Beeton
has circulated to those who stepped forward at St.
Petersburg an outline of TUGboat production pro-
cedures. At the same time, I would like to repeat
what Barbara already said, namely, that there are
other important tasks that have little to do with
editing, correcting or running articles through TEX.
We need authors of good specialist, introductory,
and tutorial-level articles. So everybody can help
us find amongst their colleagues or friends potential
writers who can provide material for publishing in
TUGboat. I am confident that a lot of developments
and experience are still hidden in the grey matter of
potential contributors. With a little prompting it
can be made to see the daylight, materialize into
sentences and drawings, and thus be shared in all
its splendour with all TEX users of the world.
Let me now give an overview of some of the ma-

jor developments of the recent past. As many of you
will already know, the TUG Office has moved to San
Francisco (the new address is: TEX Users Group,
1850 Union Street, Suite 1637, San Francisco CA

94123, USA. Phone: (+1) 415 982 8449, fax: (+1)
415 982 8559. The email address remains unchanged
as tug@tug.org). There were many reasons for this
move, the main ones being that our lease was coming
to an end in December 1995 and the owners offered
to pay the complete moving expenses if we moved
before the end of June. So we gracefully took on the
offer (knowing that in any case the lease would not
be renewed after 1995). Moreover, San Francisco,
being a much larger town than Santa Barbara, offers
vastly improved connectivity to the Internet, has

1 Since you are reading this now, we have kept our word,

and, indeed, we are now up-to-date with the TUGboat issues,

and, moreover, well underway to also get the last TUGboat

of 1995 to the printer before Christmas.

224 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

TUG and You—Together We Can Do It

cheaper rates for telephone, rent, personnel charges,
and, with all the universities in the vicinity, it will
be much easier to find teachers and rooms for or-
ganizing courses or volunteer effort for other TUG
activities. Let me take this occasion to congratulate
the Office staff for the perfect planning and efficiency
with which they have handled this major enterprise.
To make the Office more visible to the outside

world and hence to promote TEX, and to provide
better service to TUG members, I have asked our
Executive Director to take the necessary steps to
work closely together with the PR-Committee con-
sisting of Jon Radel, Tom Rokicki and others, to
define actions (via the Internet, direct mailing, pub-
lishing in magazines, targeting specific groups, like
math teachers, etc.) to increase the awareness of
TEX among the public. The Office will also be re-
sponsible for running courses, selling TEX related
material (like books, diskettes, CD-ROMs), provide
infrastructure, act as liaison and otherwise support
in any possible way the organizers of the yearly TUG
Conference, plus other topical ones, if a need is felt.
With the active participation of TUG Board mem-
bers and other volunteers we are planning to run
mail servers for various TUG-related discussion lists
and develop and maintain the TUG WWW pages on
the Web. All in all the operations in the Office will
be streamlined so that it can respond better to the
needs of TEX users of the middle nineties.
A joint membership arrangement with the Dutch

(NTG) and British (UKTUG) TEX user groups al-
lows their members to also become TUG members
with a discount of 10%—and the reverse is also true.
This possibility is greatly appreciated, since bank
transfers between Europe and the States are not al-
ways efficient and can, moreover, be quite expensive.
We hope to continue this arrangement and extend it
in one form or another to other user groups if there
is interest.
It has been decided that the publications of

most user groups will be published on CD-ROM in
the near future. NTG volunteered to coordinate this
effort.
As further evidence that TUG takes its inter-

national rôle seriously it was decided to hold the
TUG 1996 annual meeting in Dubna, Russia, where
we shall be the guests of the Joint Institute for Nu-
clear Research, an international Laboratory where
scientists of many countries have been doing basic
research for many decades. Dubna is a small town
on the Volga river some 100 miles north of Moscow.
The proposed dates are July 28th to August 2nd.
This will be a unique opportunity not only to meet
TEX users from several less familiar countries, to

exchange ideas and discuss local developments, but
also to visit a few of the treasures of Russian art and
civilization, and to get to know the famous Russian
hospitality. Information is given elsewhere in this
TUGboat; more details will be published in TUG-
boat 16(4) and 17(1).
Since the beginning of the year our magazine

TEX and TUG News (TTN for the initiated) has a
new editor: Peter Flynn succeeds Christina Thiele.
Since June 1991, when TTN number 0 came out,
Christina has made sure that all TUGmembers could
read at regular three-month intervals news, short
non-technical articles, announcements, book reviews,
all nicely complementary to TUGboat’s more aca-
demic style. Many thanks Christina, for the hard
work. I am confident that Peter will do his best to
make TTN as interesting and fun to read as before,
at the same time adding his own typographic style
and experience to give TTN his own personal touch.
The year 1994 had a balanced budget, essen-

tially thanks to supplementary income from courses
and the sale of books, and the membership fees of
2400 members.
For 1995 we foresee a deficit of between $20,000

and $30,000, essentially due to the fall of the mem-
bership numbers by about 20%. Most non-renewers
state that they will only renew when they get TUG-
boat on schedule again. So, with the actions relat-
ing to the publication of TUGboat outlined above,
plus a publicity campaign planned for the end of
this year, we hope to get back most of the mem-
bers we have lost since 1994 and also get new ones.
Therefore we proposed a balanced budget for 1996.
Of course we hope to do better, since an efficient
organization is one with some funds to spend on in-
teresting developments or for sponsoring conferences
or other activities.
But attracting new members is not merely a

matter of printing TUGboat on time; we must also
offer other services that TEX users want and can-
not find easily somewhere else. Therefore we should
try and involve as many TEX users as possible with
TUG, and that is why it is so important to set up a
new structure for TUG, that would allow all mem-
bers of the other TEX user groups to fully participate
in and benefit from TUG activities. This way we
can probably double our membership, and approach
again the number of 4000 members or so that TUG
had in 1989–1990. By using the expertise and avail-
ability of all those potential contributors we can all
together develop plug-and-play CD-ROMs for Unix,
Mac, and other platforms, publish manuals about
interesting software, sponsor new developments like
ε-TEX, Omega, and NT S (see these proceedings, or

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 225

Michel Goossens, TUG President

my reports on the TUG94 and EuroTEX94 confer-
ences on CTAN).
As I stated in my program statement accom-

panying the ballots, I consider it my main goal to
make TUG into the real international home for all
TEX users in the world, an organization that can
help new groups form, advise existing groups or in-
dividuals about where they can find help, coordinate
common developments in the area of text processing
in its widest sense, represent the interest of TEX in
the (ISO, ANSI, . . .) standards groups, foster ideas
and bring people together by making them aware of
one another’s existence.
But this ambitious program can only succeed

when I have the full support of everybody. There-
fore, I shall go and talk to the representatives of the
various user groups, to find out which is the best way
to work together, and to determine possible scenar-
ios to form the basis of a collaboration.
I hope that I have convinced you that it is in the

interest of all of us, TEX users of the world, to unite,
and work together harmoniously to transform TEX,
METAFONT and friends, graciously offered to hu-
manity by Knuth, into even better performing tools

for the 21st century. We must not sin by conser-
vatism nor by overzealous revolutionary actions, but
we must take into account that the world around us
is continuously changing, and that we should use
these changes to our advantage by including useful
extensions into TEX, LATEX or other programs.
All that does not move is dead, and the last

thing we want is that TEX should die. All living
things evolve and so must TEX. Together, in a
well-determined and agreed way, we should define
how much change is needed, desirable and imple-
mentable. Then we can assign the necessary re-
sources and get the job done, once, everybody work-
ing in unison. That is important, since we do not
want a cacophony of rival versions. Therefore a
world-wide collaboration in a global forum is so im-
portant, and it is my sincere conviction that only
TUG can offer it. I count on your continued support
to make it all happen.
If you have comments, suggestions, or just want

to say hello, I can easily be reached by email as
president@tug.org

226 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

When METAFONT Does It Alone

Jǐŕı Zlatuška
Faculty of Informatics

Masaryk University

Burešova 20

602 00 Brno

Czech Republic

Email: zlatuska@informatics.muni.cz

Abstract

Combining METAFONT and TEX when typesetting text and graphics together
has been shown on several occasions to bring very impressive results. A.Hoenig
presented a method for communication between TEX and METAFONT in order
to solve two problems otherwise difficult to handle within TEX or METAFONT
alone: label placement for diagrams generated by METAFONT, and curvilinear
typesetting. We show that the method for curvilinear typesetting (involving
three passes in Hoenig’s approach) can be considerably simplified by using the
extended ligature mechanism of TEX 3, and that a single METAFONT pass is
actually sufficient, with quite a simple interface on TEX’s side. Institutional
seal text placement can be realized as a simple METAFONT application using
this method. While PostScript offers ready-to-use easy solutions to this class of
problems, METAFONT solutions can still be preferable to PostScript because of
the ability of adding META-ness, e.g., by introducing second-order magnitude
corrections/distortions to the letters and/or logos in order to enhance legibility
when used in smaller sizes.

Introduction

There are several methods available for including
graphical information into TEX documents. Some
of them rely on the \special primitive of TEX and
consists in combining pictures created by tools inde-
pendent of TEX on the level of dvi drivers. Within
the TEX world, theMETAFONT program can be used
for defining graphic objects by using its capabilities
as in the case of defining letterforms, resulting in a
“font” containing graphic images as “letters” which
can be typeset within a TEX-composed document.
There are interesting possibilities arising from

combination of METAFONT and TEX especially
when it comes to typesetting text material along
curved baselines and/or combined with other pieces
of graphical information. Effects of this kind can
also be prepared using PostScript transformations
as prepared by, e.g., the pstricks collection by
Timothy van Zandt. Nonetheless, reasons can
be found for preferring a solution using just the
combination of METAFONT and TEX, excluding
effects caused by combination of the dvi driver
and the underlying printing language. One of them
can be the necessity of using either a printer or a
previewer which does not understand PostScript.

Another may be the need to use non-linear effects
within the generated pictures, e.g., scaling the
proportions of letters used within them similarly
as they change when changing design sizes for
METAFONT-generated fonts.
One of the problems of using METAFONT easily

for creating pictures involving also text parts, is
the lack of ‘typesetting’ capabilities (solved in John
Hobby’s metapost generating PostScript output
from an input formulated in a language extending
METAFONT) which would allow efficient incorpo-
ration of typeset text into METAFONT-generated
figures. Alan Hoenig (Hoenig, 1991; Hoenig, 1992)
defined a scheme for bidirectional communication
between TEX and METAFONT allowing TEX to
submit requirements for special effects under which
METAFONT would generate particular instances
of the letters (e.g., rotated and/or scaled) and
TEX would place these letters onto the appropriate
place within the typeset material. One particular
application of this TEX and METAFONT “working
together” was curvilinear typesetting when type-
setting centred text around the circumference of a
circular area as used for institutional seals or logos.
In this paper we show an approach for tackling

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 227

Jǐŕı Zlatuška

this problem within a simpler scheme than the
three-step method described by Hoenig. We use the
capabilities of the ligature programs of METAFONT
to create composite pictures which can be then
invoked from within TEX documents with a certain
level of “intelligence” built into them. This can be
simpler to use than the three-step method and the
composition steps embedded into the font definition
corresponding to the particular piece of graphics.

Typesetting along curved baselines

with METAFONT

When typesetting parts of a text using METAFONT
in non-standard ways such as placing the text along
a curve and/or combined with other graphic objects,
it is often necessary to break the picture into sep-
arate parts stored as individual characters within
a font which METAFONT generates as its output.
There are several reasons for doing this. The result-
ing METAFONT picture comprising the picture as a
whole may be too large for METAFONT’s memory
limitations. We may also want to be able to use
parts of the picture independently of the others, or
to select just a few of them in particular cases. On
the level of typesetting the pictures in TEX, it is
necessary to be able to typeset the fragments of the
picture (characters from the font representing it) at
the proper places in the typeset material.
We can illustrate some of the requirements

which should be handled by a METAFONT-based
definition of an institutional logo for the author’s
home institution – a logo of the Faculty of Infor-
matics of Masaryk University consisting of an
Escher-like graphic based on a design by Petr Sojka,
encircled by a pair of Latin inscriptions typeset
around the circumference with different orientation
each. The logo as such looks as follows:

} w��������
��������������� !"#$%&'()+,-./012345<vIxBvIyA|
The basic variations we may have in mind may

be typesetting just the graphic drawing inside the
seal, typesetting just the inscription alone, skipping
out the shaded parts – hence obtaining variants of
the picture looking as follows:

� yAvIxBvIyA| } w��������
��������������� !"#$%&'()+,-./012345<z } w��������
��������������� !"#$%&'()+,-./012345<yA|

Hoenig’s method A.Hoenig proposed a method
for combining METAFONT and TEX in such a way
that a sequence of three steps of communication
takes place between METAFONT and TEX. First,
TEX makes basic measurements of the text parts to
be typeset. Second, METAFONT reads this infor-
mation, generates the pictures and/or transformed
letterforms and passes this back to TEX as a font
together with numeric information (e.g., positions
onto which the characters should be typeset) en-
coded as kerns between pairs of special structure.
Third, TEX reads the metric information associated
with the font, extracts any encoded data which are
needed and then typesets the generated characters
onto specified positions.
Although the communication between META-

FONT and TEX is solvable in this way, the resulting
process is rather complicated. It is hard to imag-
ine the technique becoming so easy to use that the
resulting graphics could regularly be invoked in non-
expert users’ documents.

Leaving the placement to METAFONT The
final composition of the picture is left to TEX
in Hoenig’s “METAFONT cooperates with TEX”
method, and this is also the reason that communi-
cation between METAFONT and TEX is introduced.
There is a simpler possibility of leaving the

whole job of placing the parts of the final picture
to METAFONT alone. METAFONT can generate
characters which are placed correctly with respect
to the resulting picture and use a common point
of the resulting graphic composition as the refer-
ence point of each of the characters generated as
parts of it. METAFONT knows this information
in any case, so it can just use it for changing
the currenttransform transformation in order to
move the character to the desired place. (Note that
METAFONT will not exceed its memory limits if it
just moves the picture within the coordinate system
without actually setting on pixels far away from it.)
The resulting font METAFONT generates con-

sists of characters which should be superposed one
on top of another. The point where this should occur
from TEX’s point of view is the common reference
point of the generated characters. A TEX loop inde-
pendent of the structure of the picture can be used
for this – just reserving space for the picture within
the typeset document and overprinting all the char-
acters from the font within the loop. In order for
this to work, the widths of the individual characters
in such a font are set to zero so that sequencing the
characters on TEX’s input actually means printing
them on top of each other.

228 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

When METAFONT Does It Alone

The first four characters needed to typeset the
upper part of the curved inscription above are (the
dot indicating the reference point):

.� .� .� .�
Overprinting them on top of each other yields:

.����
Character definitions In order to generate these
characters, we have to modify the METAFONT pro-
gram files so that the letterforms are properly trans-
formed and to add the code for computing their pa-
rameters.
The basic change in the METAFONT programs

for characters can be done following the way
A.Hoenig used, with just a few extra parameters
added because the placement of the calculations
should be based on them.
The code defining letters of the form

cmchar "The letter F";

beginchar

(n,11.5u#-width_adj#,cap_height#,0);

...

endchar;

will be replaced by METAFONT macros of the form:

width.F:=11.5u-width_adj;

def F_(expr n, rotation_angle,

position_shift) =

currenttransform:=identity

rotated rotation_angle

shifted position_shift;

def t_=transformed

currenttransform enddef;

cmchar "The letter F";

beginchar

(n,11.5u#-width_adj#,cap_height#,0);

...

endchar;

In this transformation we extracted the width
information concerning the character (which will be
needed for proper character placement) and defined
a macro generating an instance of the letter as slot
number n in the generated font consisting of the
letter rotated by angle rotation_angle and moved
to position given by vector position_shift.
Note that currenttransform in this definition

may be further modified by other transformations
needed. When typesetting texts in circular logos,
it is for example good to stretch the letters a bit
when the size of the logo becomes smaller. This
can be achieved by introducing a global parame-
ter taller_letters (e.g., to depend on the sec-

ond order of logo size change), and modifying the
currenttransform setting to

currenttransform:=identity

yscaled taller_letters

rotated rotation_angle

shifted position_shift;

Computing character positions For character
position calculations it is enough to incrementally
move the reference point of the text characters along
the circle and to compute the positions and angu-
lar shifts of the letters to be typeset. These cal-
culations can be carried out analytically, and use
of the solve macro is not needed (in contrast with
Hoenig’s method).
For the upper arch of the circular text, the char-

acter position calculations are based on the widths
of the characters only, and for the lower arch also on
the height of the caps (because the characters should
be shifted out of the basic circle by this distance).
The essential piece of information is the widths

of the characters (including any kerning which fol-
lows them—as Hoenig notes (Hoenig, 1992), it is
better not to rely on the default kerning used for
linear text). We define an array for this,

numeric c[];

and fill in the width information including kerning
for the circular text such as

c[1]:=width.F+kkk;

c[2]:=width.A+kk;

c[3]:=width.C;

c[4]:=width.U;

c[5]:=width.L+kk;

c[6]:=width.T+kk;

c[7]:=width.A;

c[8]:=width.S;

...

c[chars_placed_up]:=width.AE;

c[first_down]:=width.U;

...

c[last_down]:=width.A;

Now three arrays will be defined,

numeric centering[],

rot_angle[];

pair pos_shift[];

for recording the information concerning rotation
angle and position shift of each of the individual
instances of the letter, and an auxiliary array used
for centering the texts along the vertical axis.
Now based on the character widths in the c ar-

ray we are ready to calculate the co-ordinates of each
of the characters c[1] up to c[chars_placed_up]

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 229

Jǐŕı Zlatuška

placed on the upper arch. Note that two passes are
done here. The first one starts typesetting at 180
degrees, calculates the overall angle length, and sets
centering[0] to the actual angle where centered
text should start from. The second pass then recal-
culates the positions and angles starting from this
corrected initial setting.

centering[0]:= 180;

for j:=1,2:

pos_shift[1]:= radius*dir(centering[0]);

for i=1 upto chars_placed_up:

half:=1/2 c[i];

halfdist:= radius +-+ half;

centering[i] := centering[i-1]

- 2 * angle (halfdist, half);

pos_shift[i+1]:=radius*dir centering[i];

rot_angle[i] := angle (pos_shift[i+1]

- pos_shift[i]);

endfor;

centering[0]:= 180 - 1/2 centering

[chars_placed_up];

endfor;

Parameters of the characters placed into the
lower arch are calculated in the opposite direction
using the same approach. We just need to align the
upper parts of each of the characters and to move
the reference point out of the base circle – hence the
difference in calculating pos_shift[i]:

centering[last_down+1]:= 0;

for j:=1,2:

pos_shift[last_down+1]:=

(radius + cap_height

* taller_letters)

* dir(centering[last_down+1]);

for i=last_down downto first_down:

half:=1/2 c[i];

halfdist:= radius +-+ half;

centering[i] := centering[i+1]

- 2 * angle (halfdist, half);

pos_shift[i]:= radius*dir(centering[i])

+ (radius + cap_height

* taller_letters)

* (dir(centering[i+1]

- angle (halfdist, half)))

- radius * (dir(centering[i+1]

- angle (halfdist, half)));

rot_angle[i] := angle (pos_shift[i]

- pos_shift[i+1]) + 180;

endfor;

centering[last_down+1]:=

centering[last_down+1] - 1/2

* (180 + centering[first_down]);

endfor;

Generating the characters Now we are ready
to generate the actual instances of the characters
according to arrays rot_angle[] and pos_shift[].
We just need to pass the information to the appro-
priate procedures:

F_(1,rot_angle[1],pos_shift[1]);

A_(2,rot_angle[2],pos_shift[2]);

C_(3,rot_angle[3],pos_shift[3]);

U_(4,rot_angle[4],pos_shift[4]);

L_(5,rot_angle[5],pos_shift[5]);

T_(6,rot_angle[6],pos_shift[6]);

A_(7,rot_angle[7],pos_shift[7]);

S_(8,rot_angle[8],pos_shift[8]);

...

This font can now be used from within TEX by
saying, e.g.,

\char1\char2\char3\char4

\char5\char6\char7\char8

in order to generate the following fragment:

��������
Mounting the pieces together using META-

FONT It would still be clumsy to useMETAFONT in
order to generate the pieces of the picture, but still
to have to compound them together manually within
TEX as the example above suggests. Fortunately
we can do better, using the ligature mechanism of
TEX fonts. A similar trick is used within F. Sowa’s
bm2font or K.Horák’s (Horák, 1994) method for de-
composition of big METAFONT pictures.
Combinations of at least two letters from a font

occurring adjacent to each other in the TEX source
suffice for invoking METAFONT’s ligature program.
Unlike the common ligatures used in ordinary Latin
alphabet fonts, ligatures employed for this purpose
make use of the fact that ligature handling is de-
fined as a simple rewriting system rewriting pairs
of codes into results consisting of inserting a new
character and either leaving the source characters in,
or removing them. Moreover, TEX inserts a special
“boundary” character before and after each word,
including points where the font changes. Hence a
simple way to define the full picture composed of
the individual pieces is to define a ligature program
combining the boundary character with a single let-
ter triggering generation of the full picture. There
can be several such triggers defining several parts of
the picture.
Suppose for example that we want to be able to

print three parts of the logo separately – the inscrip-
tion, the Escher-like drawing inside of the logo, and

230 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

When METAFONT Does It Alone

the colour areas inside of the drawing. Let us se-
lect three identifiers for this purpose – “S” standing
for “seal”, “L” standing for “logo”, and “C” stand-
ing for “colour”. In order for the ligature mechanism
to work, we add them as empty characters with zero
dimensions:

beginchar("S",0,0,0); endchar;

beginchar("L",0,0,0); endchar;

beginchar("C",0,0,0); endchar;

Before designing the ligature program, let’s
consider one more feature of the resulting picture.
So far all the characters generated had zero width
so that composing them did not change the position
of the reference point within TEX. This works for
every character inside of the composition of the
picture except for the first and the last – half of
the “bounding box” of the resulting picture should
be inserted there. Using slot 254 for the half of
the bounding box we can define one additional
character with non-trivial dimensions:

beginchar(254,radius#+cap_height#,

radius#+cap_height#,

radius#+cap_height#);

endchar;

Now the ligature program capable of starting every-
thing off would have the form of:

boundarychar:=255;

ligtable

||: "S" =:| 254,

"L" =:| 254,

"C" =:| 254,

254: "S" |=:|> "S",

254: "L" |=:|> "L",

254: "C" |=:|> "L",

"S": "S" =:| 1,

1: "S" |=:| 2,

2: "S" |=:| 3,

3: "S" |=:| 4,

4: "S" |=:| 5,

5: "S" |=:| 6,

6: "S" |=:| 7,

7: "S" |=:| 8,

8: "S" |=:| 10,

10: "S" |=:| 11,

11: "S" |=:| 12,

12: "S" |=:| 13,

13: "S" |=:| 14,

14: "S" |=:| 16,

...

chars_placed_up: "S" |=:| first_down,

...

last_down-1: "S" |=: last_down,

last_down: "L" |=:|> "L",

"C" |=:|> "C",

255 |=:> 254,

"L": "L" =:| 254,

254: "L" |=: "A", %logo char

"A": "S" |=:|> "S",

"C" |=:|> "C",

255 |=:> 254,

"C": "C" =:| 254,

254: "C" |=: "B", %colour char

"B": "S" |=:|> "S",

"L" |=:|> "L",

255 |=:> 254,

The font is intelligent enough to be used in such
a way that after saying

\font\L=our-logo at 2cm

we can use the following input in order to define
pictures of the form:

{\L S} } w��������
��������������� !"#$%&'()+,-./012345<z
{\L L} � yA|
{\L C} ~ LxB{
{\L SL} } w��������
��������������� !"#$%&'()+,-./012345<yA|
{\L LS} � yAw��������
��������������� !"#$%&'()+,-./012345<z
{\L SC} } w��������
��������������� !"#$%&'()+,-./012345<vIxB{
{\L SLC} } w��������
��������������� !"#$%&'()+,-./012345<vIxBvIyA|

Driver problems The scheme outlined above
works fine except for a minor problem with certain
dvi drivers which may slightly distort the resulting

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 231

Jǐŕı Zlatuška

appearance of the complete picture. As a general
rule, resetting max_drift to zero may be a good
idea with most drivers, or else the first component
may be slightly mis-aligned (alternatively one can
add an empty character with zero dimensions to
the beginning of every ligature chain in order to
compensate for the drift with a harmless character
first).
With dvips there’s one more problem: it re-

jects empty characters with non-trivial dimensions.
Before this gets fixed, the remedy may be including
one pixel into the 254 character so that it’s no longer
empty. The pixel should be placed in a position that
is set in any case. In our case there is no pixel shared
by all the possible variants, hence the 254 character
had to be split into some six other ones which are
used depending on the context within the activated
ligature chain.
Output drivers within the emtex family exhibit

even more peculiar behavior: The characters to be
overprinted are off-placed by positive horizontal
skips so that the resulting picture gets completely
distorted. Note this is not a problem with the emtex
implementation which does generate a correct dvi
file in this case, but purely a problem with the
driver handling the somewhat unusual font rather
unfaithfully.

Conclusion

We have described a method for composing im-
ages containing typesetting of circular texts and
pictures with sufficiently rich functionality us-
ing just the possibilities offered by definitions in
METAFONT alone. The ideas used mostly derive
from A.Hoenig’s ideas (Hoenig, 1992), yet are
enough to locate all the necessary mechanism into
a single METAFONT pass instead of invoking iter-
ative processes involving communication between
METAFONT and TEX.

Acknowledgement This work has been sup-
ported by GA ČR grant 201/93/1269.

References

A. Hoenig. “When TEX and METAFONT talk: type-
setting on curvilinear paths and other special ef-
fects”. TUGboat 12(4), 554–557, 1991.

A. Hoenig. “When TEX and METAFONT work to-
gether”. In Proceedings of EuroTEX 92, edited
by J. Zlatuška, pages 1–19, Prague. 1992.

K. Horák. “Fighting with big METAFONT pictures
when printing them reversely or landscape”. In
Proceedings EuroTEX 94, edited by W. Bzyl and

T. Plata-Przechlewski, pages 105–107, Gdańsk.
1994.

232 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

MetaFog: Converting METAFONT Shapes to Contours

Richard J. Kinch
6994 Pebble Beach Court

Lake Worth FL 33467 USA

Email: kinch@holonet.net

URL: hhtp://www.emi.net/~kinch

Abstract

The Computer Modern Typefaces have their original specification in terms of
the METAFONT language. The individual glyph programs rely on the sophisti-
cated algebra and marking methods of METAFONT. Many of the METAFONT
primitives, such as stroked pens and overlapping ink, are not directly expressable
in outline typeface formats such as Type 1 and TrueType, which support only
topographic contours expressed as non-overlapping Bézier curves.
We explain the computational geometry involved in the conversion from

METAFONT shapes to outlines, why this is a difficult problem, and why pre-
vious efforts have fallen short. We describe MetaFog, a set of programs writ-
ten to post-process METAPOST output to complete such conversions, and the
algorithms implemented to solve the mathematical problems. The two most sig-
nificant problems are (1) finding the envelope of an elliptical pen stroked along
a Bézier curve (an algebraic problem), and (2) reducing overlapping paths to
an equivalent, non-overlapping contour (a topological problem). We propose a
scheme to embed Type 1 and TrueType hint technology into METAFONT sources
to reduce the duplication of effort to produce well-hinted fonts. We compare
the accuracy of MetaFog’s analytic conversions to approximations based on auto-
tracing of METAFONT’s bit-mapped output, and show examples of errors in the
Computer Modern Typefaces which are hidden in METAFONT proofs but visible
in MetaFog proofs.

TEX and its Fonts

Modern implementations of TEX like TrueTEX
r©

have eliminated bit-mapped meta-fonts in favor of
outline formats such as TrueType or Type 1. TEX
did an admirable job of producing its own font
bit-maps in the days before operating systems sup-
ported fonts. But today the most popular operating
systems and print engines require outline fonts.
These scalable formats facilitate previewing and
printing TEX documents in a powerful, portable,
and flexible fashion which bit-mapped fonts cannot
achieve.
While pure TEX is independent of any particu-

lar fonts, TEX is nevertheless just as dependent to-
day on Computer Modern and other METAFONT-
based fonts as ever. Thus arises the need for conver-
sion of METAFONT programs into equivalent outline
forms.
While METAFONT programs can describe a

glyph in terms of complex, overlapping paths, the
outline formats require that we specify glyphs as a

set of contours (non-overlapping outlines). Herein
lies the most difficult aspect of conversion: META-
FONT’s primitive shapes are built from third-degree
parametric curves modulated by third-degree paths,
and such shapes can overlap, add and subtract in
arbitrarily devious ways.

Conversions: analytic versus approximate.

MetaFog is a system for exact, analytic conver-
sion of METAFONT shapes to contours. That is,
MetaFog always store shapes in terms of their pure,
parametric curves. By “analytic” we mean that the
methods we use analyze and solve the underlying
equations for the parametric curves. We use no
intermediate approximations such as converting
curves to polygons, so that every result curve is a
direct derivation of an input curve and every input
point is unchanged in the output.
By “exact” we mean that the result curves fol-

low the METAFONT shapes to within one pixel in
the 1024 or 2048 pixels/em grid used in typical out-
line font formats. In some cases METAFONT design

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 233

Richard J. Kinch

envelopes cannot be represented exactly by Bézier
curves, and we use this metric to determine the de-
gree of curve-fitting needed. We use a METAFONT
mode_def for a “perfect” output device needing no
corrections for fill-in or overshoot.
Automating an analytic conversion of META-

FONT shapes requires a major effort in both math-
ematics and software. It requires solutions to prob-
lems which Knuth managed to avoid in METAFONT
by using numerical tricks and simplifications. Ear-
lier projects have attempted the task, but either fall
short of or approximate the full solution (Yanai and
Berry, 1990; Carr, 1987; Henderson, 1989).
Outline conversions of meta-fonts have also

been done before using approximation techniques,
thus avoiding the difficulty of an exact, analytic
conversion. For example, autotracing attempts to
fit an outline to a high-resolution bit-map. With
enough skilled labor, autotracing yields an aes-
thetically pleasing result, although the shapes will
tend to have certain artifactual deviations from
the precise METAFONT originals. The BlueSky-
Y&Y conversions of Computer Modern and other
meta-fonts show that careful autotracing and hand-
tuning can produce a result equal to that of a
conventionally-designed commercial font.
More recently Malyshev (1994) has published

the BaKoMa fonts, which contain very precise out-
line conversions of Computer Modern. Malyshev’s
publication is limited to the results (that is, the out-
line fonts themselves); he has not revealed the de-
tails of his technique, although he claims that it is
analytic and not an autotraced or otherwise a digi-
tized approximation. We will show below examples
of font details which an analytic conversion would
preserve, but which are missing from the BaKoMa
fonts. Malyshev’s claim of analytic perfection could
nevertheless be true, if such errors were introduced,
for example, by bugs in his conversion software. On
the other hand, if a hidden approximation is in-
volved somewhere in the BaKoMa conversion pro-
cess, the result would not meet our strict definition
of being both “exact” and “analytic”. This is not
to say that the BaKoMa fonts are poor conversions;
it is evident that the shapes are excellent in every
way important to font designers and that they are
generally faithful to the METAFONT originals.

The Nature of the Conversion

Let us consider the nature of the conversions in-
volved. METAFONT can actually do more sophis-
ticated things than we are about to describe, but
we will restrict our consideration to those META-

FONT features that are actually used in typefaces
like Computer Modern.

Bézier curves. We will consider Bézier (Glassner,
1990) contours to be our target format. A Bézier
curve (Figure 1) is a parametric curve governed by
the equation:

z(t) = (1− t)3z1 + 3(1− t)2tz2 + 3(1− t)t2z3 + t3z4
Parameter t is called the time along the curve and
ranges over the interval [0, 1]; the point at time t is
z(t). A Bézier path is a set of Bézier curves which
connect in a chain at their endpoints to form a more
complex curve. A closed path which does not over-
lap describes a complete circuit and encloses an area.
A set of such paths make a Bézier contour, which
can describe the outlines of a glyph. The paths in
the contour of a well-formed glyph do not intersect
each other, and as well they do not intersect them-
selves. This is the representation used in the Type 1
font format (Adobe Systems, 1990). Conversion of
Type 1 glyphs to TrueType glyphs (which use lower-
order parametric curves) is a straightforward con-
version. In METAFONT (as documented in the lit-
erate source code), Knuth calls the Bézier paths cu-
bic splines (an equivalent mathematical term), and
uses a data structure consisting of knot locations
and control points to specify paths. This is the ter-
minology we use in MetaFog. In Figure 1, points z1
and z4 are knots, and z2 and z3 are control points.
The goal of MetaFog conversion is to pro-

duce Bézier outlines which accurately represent
the METAFONT designs. This will be close to
the minimal set of knots needed to fit the design,
because both METAFONT and Computer Modern
are economical in their use of reference points,
and the reference points in a METAFONT program
generally expand into the minimal set of knots
to implement a fitted curve. Because METAFONT
divides curves into octants, METAFONT’s curves
tend to have control points every 45 degrees or so,
versus Type 1 fonts which often subtend curves
of 90 or 180 degrees per control point. So in this
sense METAFONT designs have more control points
than good Type 1 designs. On the other hand,
the Type 1 format mandates rules for tangents and
extrema points that tend to add redundant control
points to designs, so in this sense METAFONT de-
signs have fewer control points than good Type 1
designs. MetaFog preserves the pure METAFONT
design, such as the addition of 45 degree control
points and the absence of redundant extrema points
versus a likely implementation in Type 1. The
final conversion code will optionally add redundant
points to meet the Type 1 mandates.

234 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

MetaFog: Converting METAFONT Shapes to Contours

z1= z(0)

z4= z(1)
z(t)

z2

z3

Figure 1: Bézier curve, starting at z1 and ending
at z4. The outgoing control point is z2, incoming
is z3.

Before METAFONT digitizes a glyph into a
bit map, it represents the glyph as a collection of
shapes. Each shape can be an outline determined
by a set of Bézier curves or the envelope of an
ellipse stroked along a path. Each shape also can
add or subtract ink. This is the internal represen-
tation which we wish to reduce to an equivalent
set of Bézier outlines, which are the shapes which
a Type 1 font uses directly or which can be easily
converted into the shapes for a TrueType font.

METAFONT shapes also have color; in practice
this means that we can think of each shape as ei-
ther additive black ink or “white” ink that subtracts
black ink already drawn. We can see that the order
of drawing shapes in a glyph must therefore be pre-
served.
Within MetaFog we use the winding-number

convention (like PostScript’s) for controlling color
(black versus white), while METAFONT stores an
explicit color for each shape. METAFONT shapes
usually, but not always, follow a consistent winding
direction for the associated color. MetaFog is careful
to check shapes on input so that the winding number
and color are consistent. When MetaFog discovers
an inconsistency, it reverses the input path.
The different models treat edges differently

when rendering bit maps. We have yet to take this
into account in our conversions.

Bézier tools. MetaFog uses quite a few alge-
braic tools to manipulate curves. Some are re-
implemented or generalized algorithms from META-
FONT, and some are entirely new concepts:

• Find the coordinates of a given time value on a
curve.

• Find closest time on a curve to a given point.

• Audit a curve, path, or contour data structure
for consistency.

• Test whether a path is degenerate (zero winding
number).

• Test whether a path is redundant (contained
within) with respect to another.

• Test whether a path (possibly pivoted) dupli-
cates another.

• Test whether two paths overlap (that is, have a
common segment).

• Find all intersections between two curves, asso-
ciating mutual intersecting locations.

• Find all intersections in a contour, associating
them with each appropriate curve in terms of
time.

• Sort intersection times associated with curves
in a contour.

• N-sect a curve into N curves given a set of times.
• Given an ellipse, generate a four-curve approx-
imation.

• Given an ellipse, find the point on the ellipse at
a given angle from the major axis.

• Given an ellipse and an angle of rotation, find
the maximum point (horizontal tangent) on the
ellipse.

• Test if two line segments cross.
• Given the parallel curves of a stroked path,
stretch or shrink the endpoints to fit a given
ellipse with arbitrary rotation.

• Given a curve and a rotated ellipse, return the
6 to 8 curves fitting the envelope.

• Given the positions and tangents of a curve end-
points, and a midpoint position, locate the end-
points which fit the constraints.

• Test a curve for “simpleness” (that is, turning
angle ≤ π

2
and no inflections).

• Given an open path and an ellipse, return the
envelope, reducing overlapping segments.

• Test whether a given point is on a curve (with
given tolerance).

• Test whether a given point is inside a closed
path.

• Test whether a given path is interior to another
path.

• Find all circuits in a contour.
The above algorithms, plus syntactical and

data-structure chores, make up about 12,000 lines
of C program code.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 235

Richard J. Kinch

Loading Shape Information from METAPOST.

METAPOST (Hobby, 1989) relieves us of the diffi-
cult task of running METAFONT and extracting the
Bézier curve information relevant to a character. We
chose to have MetaFog interpret the PostScript out-
put from METAPOST and to construct the MetaFog
contour data structures during this interpretation,
rather than trying to modify METAPOST to make
output in a more convenient form. This allows us to
stay current with METAPOST improvements.

METAPOST outputs outline curves in Post-
Script by first defining the path with newpath,
moveto, curveto, lineto and closepath com-
mands, followed by a zero-pen-width stroke and
a fill. For “white” ink METAPOST uses setgray
before stroking or filling. For elliptical pens and
slanted coordinate output transformations META-
POST uses dtransform’s to apply affine transfor-
mations. MetaFog contains an input interpreter
that converts METAPOST output to internal data
structures.

Rendering ellipses stroking paths. One of the
problems which Knuth sidestepped in METAFONT
was computing the envelope of an ellipse stroking
along a Bézier curve. Knuth here chose to use
Hobby’s method to compute the envelope in terms
of the raster instead of scalable curves; the com-
putational geometry then reduces to a matter of
manipulating line-segments and polygons instead of
polynomial curves (The METAFONTbook, §524).
We instead want to compute a Bézier curve out-

line for stroked-ellipse envelope. Algebra tells us
that stroking a 3rd degree polynomial curve (the el-
lipse approximated by Bézier curves) along a 3rd
degree polynomial curve (the Bézier curve of the
stroked path) results in a 6th degree envelope curve.
We will have to approximate these 6th degree exact
envelope curves with 3rd degree (Bézier) curves.
Figure 2 shows how an ellipse contour may

be approximated by a contour made from Bézier
curves. This is similar to the four-curve approx-
imation to a circle cited by Knuth. The Bézier
control points for a unit circle are located symmet-
rically 4

3
(
√
2− 1) ≈ 0.552 units away from the end

points. (This quantity does not appear explicitly in
METAFONT, but we can solve for it by substituting
the known angles and locations at the ends and
midpoints of the curves.) The affine properties
of Bézier curves permit us to linearly distort the
Bézier control points of the unit circle in proportion
to the eccentricity of a unit ellipse to fit a Bézier
contour to that ellipse. We can also apply linear

transformations of rotation, scaling, and translation
to tilt, size, and place a unit ellipse as desired.

Figure 2: Contour of four Bézier curves which
approximate an ellipse.

To proceed to the envelope problem, let us as-
sume that the situation looks like Figure 3, where
(without loss of generality) we have rotated and
translated the coordinates such that the start of the
stroking path is at the origin and has zero slope
there.

Untransformed

Ellipse

Transformed

Ellipse

Ellipse at

Midpoint

Ellipse at

Endpoint

Figure 3: Stroking an Elliptical Pen on a Bézier
Path.

We will fit an envelope consisting of two ends
and two sides. The sides are “parallel” to the

236 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

MetaFog: Converting METAFONT Shapes to Contours

stroking path, and the ends are subsets of the el-
lipse at the start and finish of the stroke. We use
a set of boundary conditions for the approximation
which will be natural and visually appealing: The
slopes of the side curves start at zero and end with
the same angle at which the stroke curve ends.
We fix the midpoints and angles of the side curves
based on the location of the ellipse at the midpoint
of the stroke, using the tangent points of the ellipse
matching the angle of the stroke at its midpoint.
This approximation is quite good when curves are
not too “sharp”; that is, they do not turn through
more than 90 degrees, and are not too “tight”; that
is, they do not have a high 2nd spatial derivative.
We can always bisect sharp and/or tight curves
to improve the accuracy of the approximation as
needed; in practice the curves are almost always so
gentle as to be well-fitted without bisection.
To compute the envelope curves, we must find

their endpoints and their control point locations.
We first translate and rotate the coordinates of the
problem to the normalized coordinate system to
fit the model. Using the boundary conditions—
namely the endpoint locations, endpoint tangent
angles, and the midpoint locations—a bit of poly-
nomial algebra and a solution of simultaneous
equations yields a closed-form solution to where to
put the endpoints and control points of the envelope
curves. Given these two curves, we can compute
the subset of the ellipse curves as a maximization
problem in another transformed coordinate system.
Inverting the rotation and translation of coordinates
yields the desired solution.
Figure 4 shows some examples of envelopes

computed with this method. Careful attention
to generality and numerical domains yields a ro-
bust algorithm, which is crucial to the wild data
characteristic of graphical shapes.

METAFONT usually uses circles (of course, a cir-
cle is a special case of an ellipse) to stroke pens. The
exceptions whereMETAFONT uses elliptical pens are
the calligraphic capitals and a few math symbols.
Knuth also used circular pens quite liberally in Com-
puter Modern. For example, circular pens draw the
rectangular stems, since the technique makes param-
eterization of stem widths and rounding of corners
somewhat easier, and the serif programs take care
of squaring off the round corners for Roman faces.

The logical shape primitives OR and NOT.

Once MetaFog expands any stroked paths to en-
velopes, it can proceed to intersect overlapping
paths. MetaFog must compute all possible multi-
ple intersections of each pair of curves in a path,

Figure 4: Envelopes computed for various Bézier
strokes of an elliptical pen.

instead of assuming only one possible intersection
as in METAFONT. (Two Bézier curves can have 8
intersections—try to find an example using your
favorite drawing program!). MetaFog computes
all intersections using an exhaustive extension to
the recursive, numerical solution Knuth used in
METAFONT; a closed-form solution employing ze-
roes to cubic polynomials is also possible but not
implemented. Computing all such intersections and
reconstituting the shapes with new knots at all in-
tersections in the general case is a difficult problem
which consumes most of MetaFog’s running time.

Weeding. The MetaFog weeder is a visual tool
which allows a human operator to examine and
hand-correct the output from automatic conver-
sions. Manual input to the conversion process is
vital, becauseMETAFONT output often has degener-
ate shapes and intersections that defy an automatic
solution. In such cases, MetaFog cannot determine
which shapes are overlapping, and so outputs a
partial solution to the topological problem; the
weeder allows the human designer to choose the
proper Bézier shapes from intermediate METAFONT
elements.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 237

Richard J. Kinch

Figure 5 shows the weeding display for char-
acter ‘m’ of cmti10. The display shows each of
the Bézier curves of the input shapes, intersected
and broken into separate pieces. The user has in-
voked MetaFog in “minimal” mode (which is guar-
anteed to succeed), which means that all curves used
in computing envelopes of strokes are retained; an
“intermediate” mode (which does not always suc-
ceed) reduces each envelope to the exterior curves.
Note how MetaFog has stroked a circular pen along
Bézier paths and produced curves for the envelope.
MetaFog has also inserted new knots where curves
intersect; this computation can be quite complex
since a given curve can have arbitrarily many inter-
section points, resulting in a repeated bisection of
the curve. The human operator uses the mouse to
observe and toggle Bézier segments which make up
the correct envelope of the character; each segment
changes color as it toggles on (blue) or off (red).
Toggling proceeds quickly because the mouse click
need only be near (not necessarily on) the desired
curve, clicks are buffered when the operator out-
paces the CPU, and a second click will toggle off
any inadvertently erroneous selections.

Figure 5: Weeder display for cmti10 ‘m’

The weeder’s user interface is optimized for
speed. The PC’s numeric keypad provides conve-
nience functions, so that the operator keeps one
hand on the mouse and the other on the function
keys. The operator can quickly switch between
displaying all curves and displaying selected curves
only. Previewing selected curves only gives an accu-
rate check that no segments are missing and that no
extra segments are selected. Zoom-in and zoom-out
allow the operator to pick through “busy” areas
where many curves lie very close together. After
toggling all the exterior edges of the glyph, the

operator visually checks the glyph for proper con-
struction, and finishes by exporting the character.
During export, the weeder takes care of optimizing
the output curves by removing redundant control
points. Keypad functions allow the user to flip
quickly through all the glyphs in a font. This allows
careful previewing and weeding of any glyphs that
need touch-up from MetaFog. A checkplot program
produces a printout of all the glyphs in a font for
checking and documentation.
In the worst case, MetaFog can always produce

a fully-intersected set of shapes with elliptical pen
envelopes (if any) already expanded. The operator
of the weeder then has a more detailed pointing job,
but the result will be just as perfect as an automatic
solution.
Figure 6 shows the MetaFog weeder view of

cmsy10’s calligraphicA. This illustrates how a tilted
elliptical pen strokes a Bézier path in slanted coor-
dinates.

Figure 6: Weeder display for cmsy10 calligraphic
A, illustrating envelopes of elliptical pen strokes

A few cases of the calligraphic capitals con-
tain tightly turning curves which require hand-
corrections using the weeder.

Hinting. Rendering fonts on low-resolution devices
like video displays and laser printers requires heuris-
tic help to yield a pleasing result. Without such
help, the bit maps will have unnatural bumps, stems
will be of uneven width, and drop-outs will occur.

METAFONT handles these matters in the chap-
ter “Discreteness and Discretion” of the The META-
FONTbook and via mode_def items like fillin and
o_correction. The Type 1 font language allows
the designer to add “hinting” for the same purpose.
TrueType calls the same notion “instructions”.
Since most of the industry effort in this regard has

238 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

MetaFog: Converting METAFONT Shapes to Contours

been expended on Type 1 font hinting, “hinting”
has become the generic term for this aspect of font
design.

METAFONT has significant modeling differences
from the outline font hinting methods, so there is no
translation possible to automatically make a hinted
outline font from a METAFONT design.
Hinting can be applied after the translation, ei-

ther automatically by auto-hinting software (yield-
ing a poor to modest result) or by a skilled pro-
grammer (yielding the best results, given enough ex-
pert effort). The big problem with adding hints in
this “post facto” manner, is that the hints become
detached from the original METAFONT programs,
and any change to the meta-fonts will require re-
peating the manual hinting effort. The biggest loss
here is that the meta-ness of METAFONT programs
does not carry over to post-facto hand-hinting; one
METAFONT character program makes variants like
bold, italic, sans serif, etc., but each variant must
be independently hand-hinted. Another important
example is that most of the METAFONT programs
for the DC fonts repeat programs from Computer
Modern, but such redundancies would not be usable
after translation to outline formats. Outline-format
fonts do suffer from an inability to exploit these re-
dundancies, and serious font designers typically have
in-house tools to overcome this problem.
Since METAFONT hinting does not carry over

to Type 1 or TrueType hinting, the ideal solution
would be to enhance the Computer Modern META-
FONT programs to contain new hinting information
suitable for translation to other forms. Type 1
and TrueType hinting employ a limited number
of techniques, which depend on the exact coordi-
nates and design of each particular character. A
programmer could add each hint and the associ-
ated coordinates to each character’s METAFONT
program in the form of pseudo-comments. A hint-
translator program would convert the METAFONT
pseudo-comments into Type 1 hint programs or
TrueType instructions. Making the shape transla-
tion independent of the hint translation would allow
adjusting shapes or hints independently, without
having to re-run both aspects of the translation.
The pseudo-comment language would be designed
to represent the various hinting technologies and
to exploit any commonality between them. The
METAFONT language is well-suited to an extension
of this sort.
For example, Type 1 “flex” hinting needs to

know the size and position of what is called the
“dish” concavity in the Computer Modern serifs.
Addition of this information to the Type 1 fonts

improves the rendering of serifs. While this infor-
mation is present in the METAFONT programs, it is
lost in the process of translation to output shapes.
The proposed method of pseudo-comments and hint-
translator would preserve and translate this infor-
mation. Hints are typically applied to stems, bowls,
bulbs, and other character features, andMETAFONT
is quite aware of the pertinent coordinates of these
items.

This is also a database problem. One of the
difficult tasks of translating TEX fonts is the surfeit
of them. Just between Computer Modern and the
DC fonts, spread across various optical sizes, there
are several hundred fonts each having 128 or 256
glyphs. Given that the typical glyph outline con-
tains dozens of endpoints, each having 3 pairs of
coordinates, one can see that the translation enter-
prise involves millions of coordinates. Organizing
this information into glyph data, character names,
fonts, character metrics, encodings, accent compo-
sition rules, version controls, kerning pairs, ligature
rules, font families, output formats, hinting data,
and so on is a substantial database problem. Since
we want to exploit redundancies like common sub-
sets between OT1 and T1 encodings, we especially
need a capable database approach to managing this
information.
MetaFog uses more of a rapid-prototype ap-

proach. Shell scripts manage the various steps in
translating a given font: running METAPOST to get
intermediate conversions; running MetaFog itself to
convert all or part of a given font to outlines, assem-
bling various files for a C program makefont which
assembles individual character data into complete
Type 1 fonts, including insertion of extrema points,
initial production of an AFM file, and a TEX vir-
tual font file. Tables keep track of redundancies be-
tween characters and fonts so that a given META-
FONT glyph need only be translated once. Tables
such as encoding vectors are typically kept in ASCII
form and look-ups are performed by shell scripts.
Glyph information is kept in PostScript or pseudo-
PostScript form and rapidly manipulated by C pro-
grams built from common function libraries.
To finish the fonts, we use several outside util-

ities. The programs of Hetherington’s t1utils col-
lection take care of the details of conversions to and
from the encrypted Type 1 font format, so that
MetaFog need be concerned only with ASCII Type 1
output. We also test the fonts with all the commer-
cial font editors currently available: Fontographer,
Fontmonger, Type Designer, and FontLab; we use

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 239

Richard J. Kinch

Fontmonger to convert the Type 1 fonts to True-
Type form.
If we were to repeat the implementation, one

might consider using a relational database to store
the information, with query scripts and C programs
doing the detailed work.

Optical Overkill. Fonts as they are used in oper-
ating systems today do not favor the optical scal-
ing which TEX is adept at exploiting. For example,
TEX uses eight optical sizes of the Computer Modern
Roman font (5–10, 12, and 17 points). This is too
many optical sizes—do we really need every step
from 5 to 10 points? No doubt this was encouraged
by theMETAFONT facility at optically scaling with a
simple parameter change. But with the various em-
bellishments of bold, italic, and so on, a minimally
complete Computer Modern font set yields over 100
discrete fonts.
Users today are not accustomed to seeing so

many fonts associated with an application. TEX has
a distinctly archaic atmosphere in this regard. Oper-
ating systems that manage fonts are taxed to handle
the plethora of tiny variations in TEX fonts.
Lately this overkill of optical sizes has worsened

with the NFSS, which does a good job of hiding op-
tical sizes from the user, but encourages the style
designer to multiply them.
The pain is excruciating with regard to out-

line translation, where essentially identical problems
with slight variations are repeated many times. We
would urge restraint on TEX experts when it comes
to selecting optical sizes.

Comparisons of Various Approaches

Let us compare a typical Computer Modern glyph as
translated to outline form by various methods. Fig-
ures 7 through 12 show the output for ‘R’ of cmr10
from various conversions.
Note that Figure 7 and Figure 8 show extra,

relocated, missing, or artifact control points which
have lost the symmetry of the METAFONT control
points. The autotracing method used is evident in
these examples.
Figure 9 has retained most of the METAFONT

control points but also inserted artifacts. Figures 10
and 11 show the set of true METAFONT pieces from
an intermediate step, where MetaFog has expanded
the circular pen strokes into their Bézier envelopes.
Figure 12 shows how MetaFog retains the META-
FONT control points exactly, including all the oc-
tants and all the symmetry; there are no extra or
artifactual control points. In comparing Figures 9
and 12, note that the tip of the leg in the BaKoMa

conversion develops an asymmetry, that the flat top
of the tip has narrowed, and that the 45 degree
control points are missing from the bowl and serif
curves (which will underspecify these curves). The
MetaFog conversion retains the proper symmetry,
flatness, and precision, which are all aspects of this
character readily observed in the METAFONT proof
in Computer Modern Typefaces.

Missing flat
Missing

flat

M
is

si
n
g
 s

y
m

m
et

ry

Figure 7: Blue Sky Research autotraced
conversion.

X-Rays reveal bugs in Computer Modern.

MetaFog allows more detailed visualization of char-
acter designs than METAFONT proofs. While the
proofs show reference points and marked areas,
they cannot show most of the relevant geometric
information. Indeed, few of the knots, not all the
outlines, and none of the stroked pen envelopes are
accessible in METAFONT. Since MetaFog converts
and manipulates all these items, it can also plot
them in a convenient form. This yields a new and
sometimes surprising “x-ray” view of a charac-
ter—a view unavailable in METAFONT. MetaFog’s
output files use a PostScript format so that proof
pictures plot on any PostScript output device. The
weeder is also a convenient visual tool for such
views.
Surprising aspects to some of the Computer

Modern designs show up in the “x-rays”. The para-
metric nature of meta-designed features becomes vi-
sually apparent, and bugs in the design are clear
where they were not before. Figure 13 shows how
the serif subroutine has introduced an unexpected

240 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

MetaFog: Converting METAFONT Shapes to Contours

Asymmetry,

missing flat,

too busy

M
is

si
n
g
 d

is
h

Figure 8: PCTEX autotraced conversion.

inflection in cmbx5 letter ‘x’. Since the loss removes
just a few pixels likely to be filled in physically by
most marking engines and optically by the human
eye, the error is not obvious in normal usage or on
METAFONT proofs. It becomes clear, however, dur-
ing the MetaFog weeding.
Figure 14 shows how joining of the “beak” to

the arm on digit ‘7’ becomes distorted at smaller
sizes. This error is easily missed on proofs but is
visible under magnification. If you magnify and
carefully examine the actual-size proofs in the Com-
puter Modern Typefaces (Volume E of Computers
& Typesetting), this error is visible as a row or two
of extra pixels at the top of the character.
A frank error in dcr10’s ‘thorn’ was easily dis-

covered in this way, although it had escaped all the
proof checks and actual usage for several years (Fig-
ure 15). The bottom serifs have an extra “step”,
which on bit-mapped proofs looks like a purposeful
fillet. On the MetaFog conversion it appears clearly
as an error. (This error has been corrected in the
autographs pursuant to this discovery, and does not
appear on more recent versions.)

Is There an Exact Translation?

Is an exact translation possible? We used the stan-
dard of 1 pixel on a 2048 pixel/em grid. No doubt
the “noise” of digitization and hinting creates many
more varying pixels than this standard of error.
There is no outline that will render the same bit
map in a Type 1 or TrueType engine as METAFONT

A
sy

m
m

et
ry

T
o
o
 w

id
e

Missing knot

A
sy

m
m

et
ry

Figure 9: BaKoMa conversion.

would render for a METAFONT program. The font
format itself requires that we must approximate
sixth-degree pen strokes with third-degree pieces.
METAFONT cannot draw proof picture of the under-
lying curves, it can only produce a high-resolution
bit map. And finally, device-specific mode defini-
tions in METAFONT result in significant changes to
the “proof mode” device.
So there is no such thing, in a practical sense, as

an exact translation, because there is no exact shape
to what a METAFONT program describes! Perhaps
we should instead speak in terms of an “ideal” trans-
lation.

Sample Output

A sample of MetaFog conversion, namely cmr10 in
Type 1 format, is available at:

FTP://ftp.netcom.com/pub/Tr/TrueTeX

This is an unhinted font suitable for viewing in a font
editor, but not suited for textual use. MetaFog itself
is a proprietary product, and is not in the public
domain.

Colophon

We drafted this paper using the TrueTEX imple-
mentation of LATEX2ε for Windows, which allowed
WYSIWYG previewing and printing, including all
graphic images. We used three kinds of figures, and
processed them all through Corel Draw 5: ordinary
drawings, MetaFog imports, and screen snapshots.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 241

Richard J. Kinch

Figure 10: MetaFog intermediate step (overlaid),
showing both explicit METAFONT shapes and
Bézier envelopes of circular pen strokes.

We created figures like the Bézier curve and el-
lipse examples using Corel Draw’s drawing tools;
MetaFog-output figures by importing MetaFog’s
PostScript-like output into Corel Draw; and screen
snapshots by capturing with Corel Capture and
pasting into Corel Draw via the Windows clip-
board. We used the figures in Corel Draw to export
Encapsulated PostScript (EPSF) files and inserted
the files as TEX figures using the epsfig pack-
age for LATEX. The TrueTEX dvips-compatible
special-handlers allowed both screen previews and
printing of the EPSF figures, including printing on
a non-PostScript laser printer. We used Corel Draw
to print overhead transparencies of the figures.
Draft copies and transparencies were imaged on an
HP 4M Plus laser printer. The Proceedings editors
use LATEX and dvips, so that no conversions were
necessary between the author’s submission and the
final production.

References

Adobe Systems. Adobe Type 1 Font Format, version
1.1. Addison Wesley, 1990.

L. Carr. “Of METAFONT and PostScript”.
TEXniques 5, TEX Users Group, 1987.

A. Glassner, editor. Graphics Gems. Academic
Press, Cambridge, MA, 1990.

D. Henderson. “Outline fonts with METAFONT”.
TUGboat 10(1), 36–38, 1989.

Figure 11: MetaFog intermediate step
(exploded). The “dish” at the bottom is a
white shape which subtracts from the serifs.

J. D. Hobby. “A METAFONT-like system with Post-
Script output”. TUGboat 10(4), 505–512, 1989.

B. Malyshev. “Automatic conversion of METAFONT
fonts to Type1 PostScript”. TUGboat 15(3),
200–200, 1994.

S. Yanai and Berry, Daniel M. “Environment for
translatingMETAFONT to PostScript”.TUGboat
11(4), 525–541, 1990.

242 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

MetaFog: Converting METAFONT Shapes to Contours

Symmetric,

narrow

flat

Sym-

metric

Flat

45 degree

control

points

Figure 12: TrueTEX conversion via MetaFog.

2.5x

2.5x

Figure 13: Error in CM serifs (cmbx5)

Figure 14: Error in CM digit 7 (cmbx5)

Step

Figure 15: Error in DC thorn (dcr10)

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 243

The Poetica Family: Fancy Fonts with TEX and LATEX

Alan Hoenig
17 Bay Avenue

Huntington NY 11743

USA

Email: ajhjj@cunyvm.cuny.edu

Abstract

The Adobe Poetica family comprises fonts which have widely varying degrees of
ornamentation, but which are designed to be used together. A document that
employs them must change fonts regularly to provide appropriate ornamentation
in different parts of words. Techniques for using Poetica fonts in (LA)TEX are
presented, using a macro package written by the author, and metrics for the
fonts derived using the fontinst package.

In the beginning of the ‘desktop publishing era’,
digital foundries concentrated on making all old fa-
vorite fonts available in digital form. When that
task was well along, they then began to turn their
attention to enhancements to these fonts, the first
group of which were expert fonts which contained
things like small capitals and all double-f ligatures.
Now that an impressive array of expert fonts has be-
come available, a third wave may be under way—
the development of beautiful fonts which break out
of common font schemes altogether. A prime ex-
ample is the Poetica family of fonts from Adobe.
(Another is the Mantinia faces from the Carter and
Cone foundry.) The purpose of this presentation is
to suggest ways of typesetting with these beautiful
fonts without walking around with numerous font
tables in hand.

The Poetica Package

As delivered from Adobe Systems, the Poetica fonts
comprise 21 fonts in two families. The main font
is plainly modeled after the Chancery scripts of the
Renaissance:

Sonata Number 29 in B Xat major,
opus 106,

Hammerklavier

Why so many fonts? There is a wide variety of plain
and fancy variants for many glyphs, odd ligatures,
and special forms word endings or beginnings. One
font contains ornaments, and another contains noth-
ing but different ampersands. Using some of these
fancy characters, the above phrase might appear

SonatA NumBeR 29

IN B FLaT Major,
oPus 106,

HammerKLaVieR

How can we use TEX and LATEX to typeset with these
fonts, using convenient input conventions?
Yannis Haralambous and John Plaice (1994)

have already demonstrated that the best way is to
use a TEX that handles 16-bit input. In that way,
all the raw Adobe fonts can become part of a single,
huge font associated with which would be a complex
system of ligature rules to automatically select var-
ious glyphs in appropriate situations. Their Omega
system is one such 16-bit system, currently freely
available, which will handle such fonts, and which
will handle a Poetica super-font. However, the fonts
are so attractive that many people will not want to
wait to implement Omega, and so I present the fol-
lowing discussion. Alternatively, the clumsiness of
the arrangements I suggest may convince authors of
the need to upgrade to Omega right away!

The Raw Package: A Closer Look. The main
package consists of four main chancery fonts. Each
has similar lowercase alphabets, but the uppercase
characters are increasingly fancy. An expert font
contains some ligatures, superior and inferior fig-
ures, and miscellaneous glyphs. A small caps font
and an alternate sc font contains upright capitals
that match the Chancery fonts.

244 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

The Poetica Family: Fancy Fonts with TEX and LATEX

Chancery I Abc Def GHI Jklmn
Chancery II Abc Def GHI Jklmn

Chancery III Abc Def GHI Jklmn
Chancery IV Abc Def GHI Jklmn

Expert V Y Z W X
Smap Caps abcdefghijklmn

SC Alternates ABCDEFGHIJKLN

The second Poetica family is more interesting.
There are four swash caps fonts, each of which con-
tains two increasingly fancy uppercase alphabets.

a b c d e A B C D E

a b c d e A B C D E

a b c d e A B C D E
a b c d e A B C D E

An initial swash font contains one very fancy upper-
case font, appropriate only for word beginnings.

A B C D E F G H I J
There are two lowercase alternate fonts, and each of
these contains several groups of alternate forms for
many lowercase characters.

g k p y z
g k p y z
G K P Y Z
g k p y z
G K P Y Z

There are two each of lowercase beginnings and end-
ings fonts. Each of these fonts contains at least two
forms (of certain letters only) appropriate for word
boundaries.

baa end hah ip ton
BaA EnD HaH Ip ToN
baa end hah iQ ton

BaA EnD HaH Iq ToN
A special ligature font contains fancy forms of the
familiar f-ligatures, as well as many more ligatures
not normally used.

G H h i J L k m
c E n p Q q
s V w W x

Finally, separate fonts contain batches of ornaments
and bunches of ampersands.

A B C D E a b c d e
A B C D E a b c d e

It’s clear that there are many ways to repre-
sent a single character, depending on its location in
a word, whether it’s upper- or lowercase, and the
degree of swash that an author desires. The first
example also makes clear that a little swash goes
a long way, and a convenient font selection scheme
would make it convenient to typeset in some single
‘background’ font from which it would be easy to
ascend or descend to fancier or plainer fonts for iso-
lated characters. We’d also like to be able to do this
without having to lug around sheaves of font tables
with us.
The next section details the font scheme that I

propose for these fonts. I will then show how to use
TEX’s virtual font mechanism to create these fonts.

Fonts, Fonts, Fonts

Poetica contains a total of sixteen—16!—upper-
case alphabets. These include:

• four alphabets which match the four original
chancery fonts;

• eight increasingly fancy swash alphabets (these
appear in four fonts so that each font contains
a pair of uppercase alphabets, one of which is
in the lowercase position);

• a super-fancy swash alphabet suitable only for
initial letters (if then);

• two small caps alphabets; and

• a small caps alternate alphabet (although this
is a sparse set—only 15 letters are represented.

I felt able to organize these in twelve fonts:

• four Chancery fonts;

• four swash fonts, each incorporating two upper-
case alphabets;

• one super-swash font;

• two small caps fonts; and

• two titling fonts.

This is still a formidable array of fonts, and I’ll
say more later on about ways of dealing with them
all. But at this point, I’ll indicate that I shoehorned

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 245

Alan Hoenig

two swash uppercase alphabets into each font by
virtue of TEX’s ligature mechanism. Most of the
time, uppercase glyphs appear only at the beginning
of a word, so I created the fonts so that * followed
by a capital letter generates the alternate capital.
For example, if I type

A B C D E

I might get

a b c d e
but if I type

*A *B *C *D *E

in the same font, I get

A B C D E
instead.
The uppercase alphabets dictate the nature of

their fonts. They quite clearly become increasingly
fancy, so it makes sense to apportion some of the
other special characters to these fonts in order of
increasing fanciness. It’s straightforward via Alan
Jeffrey’s fontinst package to add these characters
to the fonts.

Word Boundaries. Many of the characters pro-
vided by Adobe belong specially to the beginnings
or endings of words, and the boundarychar mech-
anism of TEX3 makes this easy to implement, but
not as easy as I expected for the following interest-
ing reason.
Human readers are quite specific in what con-

stitutes a word boundary. Most often it would be
a space or punctuation, but TEX3 is more restric-
tive: essentially any consecutive string of characters
is a word. This means that te\it st is two words
from TEX’s point of view—that is, a font change
in the middle of a word creates two word bound-
aries. Typesetting with fonts containing fancy word
boundary glyphs requires dealing with this fact.
Here is an example of automatic boundary glyph

selection. Notice here how the forms of the ‘m’
and ‘t’ change depending on their positions within
a word. With the proper fonts selected, I simply
typed mat tom-tom to get

MaT Tom-toM

Supporting Macros. These fonts are beautiful,
but I needed some input conventions that would al-
low me to increase or decrease the amount of fanci-
ness in some easy way.
I began by appropriating from mathematics the

characters ^, _, +, and -; this is no loss, as I felt it

unlikely that I’d be doing math in conjunction with
Poetica. (However, some of the Chancery capitals
do make a good candidate as a math calligraphic
alphabet. That is a different and easier problem.)
Typesetting is done within the Poetica environ-

ment:

\begin{Poetica}

...

\end{Poetica}

(I am assuming the conventions of LATEX2ε, so I
have access to the New Font Selection Scheme) which
automatically switches to the Poetica family. All
the fonts are in the medium series m, selected auto-
matically, and the fonts themselves are divided into
three groups of shapes. (Adobe provides no bold
face fonts in this family.) ‘Normal’ fonts comprise
four fonts, with font shapes of n0, n1, n2, and n3.
Two groups of five swash fonts apiece, with shape
designations f0 through f4 and F0 through F4 (f or
F=fancy) encompass the ornate fonts I set up. The
F-shapes incorporate word boundary glyphs, while
f-shapes do not. The higher the number, the fancier
the font. There is also a small caps font (shapes
c and c1) and two titling fonts (shapes t and t1).
The default font has the shape n3 at an eighteen-
on-twenty-two point size:

Alpha-Betic ConVants
Demand Emphasis.

12345 67890
Although these fonts can be accessed by the

usual NFSS commands, the usual \fontshape and
\selectfont commands are discouraged in favor
of a single \Fontshape command which combines
\fontshape and \selectfont together with some
bookkeeping, the reason for which will shortly be-
come clear. It will be necessary to do any font siz-
ing with \fontsize (in the usual way) before calling
\Fontshape.
But even \Fontshape is too verbose. Most of

the time, we are content to typeset virtually every-
thing in a piece of text in the same font, except
from time to time we may want to make one or two
characters more or less fancy than the default. Al-
though the usual font changing could be invoked, it’s
a bit messy to do that for a single character here
and there. I implemented a scheme which seemed
to me ideal from the point of view of making these
spot changes, and for that reason different meanings
were assigned to ^, _, |, \+, and \-. The control se-
quences \+ and \- take the next character (or group)
and raise the level of fanciness up or down by one

246 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

The Poetica Family: Fancy Fonts with TEX and LATEX

font. If that is not sufficient, simply add additional
+s and -s. The symbols ^ and _ now mean go up to
the fanciest and plainest fonts respectively (that is,
shapes n0 and f4),
but the + and - convention also holds here. The

vertical bar is now equivalent to the \noboundary
command. There are also two additional commands:
\wordbounds and \nowordbounds, which select the
F-shape or f-shape fonts respectively.
Thus, if we type

\begin{Poetica}

For every action there is a reaction

\end{Poetica}

we get

For every AEion there is a ReaEion
But if we type

\begin{Poetica}

^For every \+A^{ct}{\i}on\ \

^there i^s a

^--{*R}ea^--{ct}{\i}o^n

\end{Poetica}

we get instead

For every aFıon there is a Reafıon

Actually, the markup here is almost as intrusive as
normal TEX markup would be, but normal Poetica
markup would not be this excessive. I had great fun
generating this sample, adding and subtracting +s
and -s until there was sufficient demonstration of
these conventions as well as a demonstration of sev-
eral different glyphs. Note the several ct ligatures,
and other alternate letterforms.
Let’s see why special treatment of word bounds

is necessary. If we re-typeset this example with
\wordbounds in effect, we get

For every aFıon There iS a ReafıoN
Notice the unfortunate appearance of certain bound-
ary glyphs in the middle of real words due to the
word boundaries formed every time there is a font
shift.
Incidentally, to get an idea of the possibilities

of swash I first typed

\begin{Poetica}

^{For every action

there is a Reaction}

\end{Poetica}

to get

For eVerY aFion yere is a ReaFion
Let me include two more examples. If we type

\newsavebox{\mybox}

\newlength{\mywd}\newlength{\myht}

\newlength{\mydp}

\setlength{\fboxrule}{1.2pt}

\savebox{\mybox}

{\fbox{\begin{minipage}{.5\textwidth}

\begin{center}\begin{Poetica}

\fontsize{26}{34}\selectfont

^--{*A}nd if \+{y}ou wi^{ll} con-\\

sider a\++{ll} t\++h{\i}ngs,

{\wordbounds\++y}ou\\

will find that ^{th}ose\\

whi^{ch} are ^goo^--d an^d\\

use\++ful a\++lways ^have\\

^{th}e grace of beaut^y\\

in ^{th}em as we^--{ll}.\\

{\renewcommand\.{\hspace{1.8pt}}%

\fontshape{t1}\fontsize{16}{24}

\selectfont

c\.a\.s\.t\.i\.g\.l\.i%

\.o\.n\.e}\\[1pc]

\fontsize{30}{38}\orn{78}

\end{Poetica}\end{center}

\end{minipage}}}

\settowidth{\mywd}{\usebox{\mybox}}

\settoheight{\myht}{\usebox{\mybox}}

\settodepth{\mydp}{\usebox{\mybox}}

\noindent\rlap{\vrule width1.1\mywd

height1.1\myht depth1.1\mydp}%

\hskip.05\mywd%

{\White{\usebox{\mybox}}}

we get figure 1. Notice that the titling fonts have to
be accessed explicitly (ditto for the small caps fonts);
they are not part of the bump up scheme elsewhere
in use. We selected a special ornament via the \orn
command; there is a corresponding \amp command
to select ampersands for the special ampersand font.
I guess you will need to have access to the ornament
and ampersand font tables to know which characters
to choose. Since I am using Tom Rokicki’s dvips
post-processor, I use the colordvi package. I get
the fancy effect here by setting a big, black rule box,
and overprinting the text in \White ink. Actually,
only the indented material sets type; the remaining
lines set things up to print white on black.
And a final example. To get figure 2, I typed

\newdimen\W

\newcommand{\dropcap}[1]{\setbox0=

\hbox{\fontsize{44}{48}

\selectfont#1\ }%

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 247

Alan Hoenig

And if you wiq con-

sider ap tHıngs, You

wip Wnd that yose

whia are Good anD
useful aLways Have
ye grace of beautY
in yem as weQ.

c a s t i g L i oO e

N

Figure 1: One example.

248 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

The Poetica Family: Fancy Fonts with TEX and LATEX

\setbox0=\hbox to.5\wd0{\hss\box0}%

\W=\wd0 \gdef\.{\noindent\hskip\W}

\noindent\vbox to10pt{\box0 \vss}}

\begin{center}

\begin{Poetica}\fontsize{23}{31}

\selectfont

\fontsize{30}{32}\selectfont

_{A Sonne}{\wordbounds^--{|t}}

\\[3pt]

{\fontsize{14}{21}\fontshape{c}

\selectfont

William Shakespeare}

\end{Poetica}\end{center}

\begin{verse}\begin{Poetica}

\dropcap{^W}hen, in disgrace with

\+{*F}ortune and men’s eye^{s},\\

\.I a^--{ll} alone beweep my

outca\++{st} \ ^{st}ate,\\

And trouble deaf heaven with my

bootle^--{ss} cries,\\

\+And look upon myself, and

curse my fate,\\

Wishing me like to one more

ri^{ch} in ^-{h}ope,\\

Featured like him, like him

with ^{f}riends posse^--{st},\\

Desiring this man’s ar^---{t}

and that man’s sco^---{p}e,\\

\+With what I most enjoy

contented least;\\

Yet in these thoughts myself

almost de^--{sp}{\i}sing---\\

Haply I think on ^{th}ee:

and then my \+++{st}ate,\\

Like to the \+Lark at break

of day arisin{\wordbounds^g}\\

\+From su^-{ll}en earth,

sings hymns at \++Heaven’s

gate;\\[6pt]

\quad ^For ^{th}y sweet \ \ \

{\wordbounds^--l}ove rememb’red

suc^-{h} weal^{th} brings\\

\quad ^{Th}at t^-{h}en \++++{*I}

scorn to ^{ch}ange my ^-{st}ate

with ^-{*K}ings.\\

\end{Poetica}

\end{verse}

The Poetica macro file, very short, appears in Ap-
pendix A.

Creating Poetica Virtual Fonts. The tool of
choice for creating virtual fonts is the Alan Jeffrey’s
fontinst package. In the presence of ASCII files
containing font information, running the installation

file through TEX creates the .vpl files from which
the actual .vf virtual fonts are rendered. The font
information should be in three types of files.

1. Metric files—files giving information about the
sizes and kernings of each glyph. typically, these
are files with extensions .pl (TEX fonts) or .afm
(type 1 outline fonts). The fontinst package
reads these files and creates its own metric .mtx
files. Other metric information needs to be sup-
plied in additional .mtx files using commands
following the standard fontinst syntax.

2. Encoding files, which say how the glyphs should
be arranged in the font. In addition to this en-
coding information, ligature information is also
found here.

3. Miscellaneous additional files, usually metric in
nature.

The fontinst installation file has the following
structure.

\input fontinst.sty

\installfonts

\installfamily{OT1}{poet}{}

\installfont{pof3}{posl0,unposl3,

poslaii0,poslai0,

unlai1,

possciv0,unsc,

setfont1,

pociii0,latinpoe}

{OT1swa}%

{OT1}{poet}{m}{f3}{}

...

...

\endinstallfonts

\bye

The lines of ellipses represent the (many) additional
\installfont commands not shown here. These
instructions provide for a font family called poet
which uses OT1 (original TEX) encoding. One font
in that family is called pof3 and corresponds to
medium series m and font shape f3 within this fam-
ily.
Of the parameters of the \installfont com-

mand, the second and third present a list of metric
and encoding files that fontinst will need to con-
struct the virtual fonts. The cryptic nature of these
file names is imposed, as is so often the case, by the
8 + 3 file name structure of MS-DOS. Here’s a brief
description of these files.

• All file names po* are of .afm files contain-
ing metric information about one of the 21 Po-
etica raw fonts. The names posl0, poslai0,
poslaii0, poslbii0, posleii0, poslei0,
possciv0, and pociii0 belong to the ligature,

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 249

Alan Hoenig

the second lowercase alternates, the first low-
ercase alternates, the second lowercase begin-
ning letters, the second lowercase endings, the
first lowercase endings, the fourth supplemen-
tary swash caps, and Chancery font number 3.

• Because the order in which the information is
read by fontinst, we need some mechanism
for removing superfluous information from its
memory. The un*.mtx files perform this func-
tion. See below for an extensive description
of this process. Remember that the fontinst
macros have been crafted so that information
once read is not over-written by later informa-
tion.

Crafting a Font

Let’s consider in greater detail the construction of
the font we called pof3. The first thing fontinst
does is read the glyph information pertaining to the
ligatures (posl0), whose glyphs have been named
according to the standard Adobe encoding vector.
For example, position 65—A—of the ligature raw
font posl0 is occupied by the ligature ‘Ch’ and is
called ‘A’ in the .afm file.
This is bad, and a violation of Adobe’s own

standards! Such a glyph should, by rights, be named
‘Ch’ since that’s what the letterform looks like and
not ‘A’. If something is not done, the real ‘A’ (in
possciv0) will never be typeset and every ‘A’ in the
source document will appear as ‘Ch’ in the typeset
output. (Do you see why? fontinst pays attention
only to the first definition of a letterform. Since the
default nomenclature creates an ‘A’ out of a C-h lig-
ature, this becomes the definition of ‘A’ and a proper
definition of A later on will be ignored.) Therefore,
we must read a file unposl3.mtx which saves the
ligature information under a more meaningful name
and frees up the ‘A’ slot for the real glyph. Two
lines of this file might read

\resetligglyph Ch A

\unsetglyph A

where we have previously entered the definition

\setcommand\resetligglyph#1#2#3{

\setleftkerning{#1#2}{#1}{1000}

\setrightkerning{#1#2}{#2}{1000}

\resetglyph{#1#2}

\glyph{#3}{1000}

\endresetglyph

}

In this case, a new glyph called ‘Ch’ is defined to
be equivalent to ‘A’. This new glyph is also given
some appropriate kerning information. Once that

definition has been fixed, the ‘A’ glyph has been
made free for later use.
This is the philosophy behind the next several

files. Special alternate forms, beginning forms, and
ending forms are carefully ingested, and various un*
files save glyphs under more appropriate names and
free up poorly named slots. Finally, the uppercase
letters are taken from a swash font, some of the al-
ternate characters are declared to be equivalent to
letter glyphs (in file setfont1.mtx), the remaining
lowercase and other characters are taken from the
Chancery 3 font pociii0, and latinpoe.mtx lists
the characters in the font. This concludes the met-
ric portion.
Anything not involving measurement is by def-

inition the province of an encoding file. The file lays
out the order of glyphs in a font—the encoding vec-
tor—and arranges for ligature formation. For ex-
ample,

\setslot{c}

\Ligature{h}{ch}

\Ligature{k}{ck}

\Ligature{l}{cl}

\Ligature{t}{ct}

\atendofword{cend}

\endsetslot

arranges things with TEX so that ‘c’ followed by ‘h’
are replaced by the special ‘ch’ ligature if the ‘ch’
glyph exists. If a ‘c’ appears at the end of a word,
it is replaced by a special final c glyph, here called
‘cend’. Special forms for the beginning of a word are
set up by

\setslot{boundarychar}

\atstartofword{b}{bbeg}

\atstartofword{e}{ebeg}

...

\atstartofword{w}{wbeg}

\atstartofword{y}{ybeg}

\endsetslot

We use the fontinst definitions

\setcommand\Ligature#1#2{% cond’l lig

\ifisglyph{#2}\then

\ligature{LIG}{#1}{#2}\fi}

\setcommand\atendofword#1{%

\Ligature{boundarychar}{#1}}

\setcommand\atstartofword#1#2{%

\Ligature{#1}{#2}}

to control these special ligatures.
The fontinst files are to be posted on CTAN

for anonymous file transfer.

250 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

The Poetica Family: Fancy Fonts with TEX and LATEX

A Sonnet
William Shakespeare

W hen, in disgrace with Fortune and men’s eyes,
I aQ alone beweep my outcaw xate,

And trouble deaf heaven with my bootleT cries,
and look upon myself, and curse my fate,
Wishing me like to one more ria in Hope,
Featured like him, like him with friends posseW,
Desiring this man’s art and that man’s scoPe,
with what I moV enjoy contented leaV;
Yet in these thoughts myself almoV deSısing—
Haply I think on yee: and then my Wate,
Like to the lark at break of day arising
from suqen earth, sings hymns at heaven’s gate;

For yy sweet love rememb’red sucH wealy brings

zat tHen I scorn to aange my xate with Kings.

Figure 2: A second example.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 251

Alan Hoenig

The Poetica Macros

%%% Package File poetica.sty

\newcount\poetic

\newcount\poetbound \poetbound=4

\newcount\poetceiling \poetceiling=8

\newcount\poetfloor \poetfloor=0

\def\wordbounds{\def\fancyshape{F}}

\def\nowordbounds{\def\fancyshape{f}}

\nowordbounds % default

\def\parsefontshape#1#2{\poetic=-1

\if f#1\poetic=\poetbound

\advance\poetic by#2 \fi

\if n#1\poetic=\poetfloor

\advance\poetic by#2 \fi

}

\def\setshape{% input is \poetic

\ifnum\poetic<0 \else

\ifnum\poetic<\poetbound

\edef\fshape{n\the\poetic}%

\else\advance\poetic by

-\poetbound

\edef\fshape{\fancyshape

\the\poetic}%

\fi

\fi

}

\newcommand{\Fontshape}[1]{%

\parsefontshape#1%

\fontshape{#1}\selectfont}

\newenvironment{Poetica}{%

\begingroup\fontencoding{OT1}

\fontfamily{poet}\fontsize{18}{22}

\fontseries{m}\Fontshape{n3}

\poetic=3 \setshape}{\endgroup}

\let\dhyph=\- \let\mytabs=\+

\let\oldhat=^ \let\oldsub=_

\let\oldvert=|

\catcode‘\^\active \catcode‘_\active

\catcode‘\|\active \def\|{\oldvert}

\let|=\noboundary

\newcount\INC \INC 1

\def^{\bgroup \let\compare=-

\let\bump=\bumpdown \INC-1

\poetic=\poetceiling

\afterassignment\getnextchar

\global\let\nexttok= }

\def_{\bgroup \let\compare=+

\let\bump=\bumpup \INC 1

\poetic=\poetfloor

\afterassignment\getnextchar

\global\let\nexttok= }

\def\-{\bgroup \let\compare=-

\let\bump=\bumpdown \INC-1 \bump

\afterassignment\getnextchar

\global\let\nexttok= }

\def\+{\bgroup \let\compare=+

\let\bump=\bumpup \INC 1 \bump

\afterassignment\getnextchar

\global\let\nexttok= }

\def\getnextchar{%

\if\compare\nexttok

\bump \let\nextact\grabchar

\else

\edef\nextact{%

\noexpand\typeset

\noexpand\nexttok}%

\fi \nextact

}

\def\grabchar{\afterassignment

\getnextchar \let\nexttok}

\def\bumpdown{\advance\poetic \INC

\ifnum\poetic<\poetfloor

\poetic\poetfloor \fi}

\def\bumpup{\advance\poetic \INC

\ifnum\poetic>\poetceiling

\poetic\poetceiling \fi}

\def\typeset#1{\setshape\fontshape

{\fshape}

\selectfont #1\egroup}

%% ornaments and ampersands

\newcommand{\orn}[1]{%

{\fontshape{orn}\selectfont

\symbol{#1}}}

\newcommand{\amp}[1]{%

{\fontshape{amp}\selectfont

\symbol{#1}}}

\endinput

References

Y. Haralambous and Plaice, John. “First appli-
cations of Ω: Adobe Poetica, Arabic, Greek,
Khmer”. TUGboat 15(3), 344–352, 1994.

252 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Using Adobe Type 1 Multiple Master Fonts with TEX

Michel Goossens
CN Division, CERN

CH-1211 Geneva 23

Switzerland

Email: m.goossens@cern.ch

Sebastian Rahtz
Elsevier Science Ltd

The Boulevard, Langford Lane

Kidlington, Oxford OX5 1GB

UK

Email: s.rahtz@elsevier.co.uk

Robin Fairbairns
University of Cambridge Computer Laboratory

Pembroke St, Cambridge CB2 3QG

UK

Email: rf@cl.cam.ac.uk

Abstract

Adobe’s Multiple Master font format has some of the properties thatMETAFONT pioneered

toexpressmanyfontsofthesamefamilyfrom thesame(set of) sources. Theadvent ofmultiple

master fonts could offer a significantlybetter choiceof fonts to users ofTEX;however, thereare

problems integratingthem with TEX, and thepaper presents a first solution to thoseproblems.

Thepaper isderived(byRobinFairbairns) fromanarticlewrittenbyMichelGoossensand

Sebastian Rahtzfor theUKTUGmagazineBaskervillevolume5,number 3. Asademonstration

of the effectiveness of the techniques described, it is being typeset using Adobe Minion and

Myriad multiple master fonts.

Introduction

Themultiplemaster font format isan extension oftheType1

font format, which allows the generation ofa wide varietyof

typeface styles from a single font program. This capability

allows users and applications control over the typographic

parameters of fonts used in their documents, in a manner

reminiscent ofKnuth’sground-breakingMETAFONT. This

article describes the multiple master system in some detail,

and describes theproceduresneeded tomakeinstances, and

create the appropriate font metrics for use with TEX.

Multiple Master overview

Amultiplemaster fontprogramcontainstwoor moreoutline

typefaces called master designs, which describe one or more

design axes. Themaster designs that constitutea design axis

represent a dynamic range of one typographic parameter,

such as the weight or width. This range of styles is defined

in a multiple master font program byspecifyingone master

design to represent each end of an axis, such as a light and

extra-bold weight, as wellas any intermediatemasterdesigns

that are required. The maximum number of master designs

allowed is sixteen.

A font instance consists of a font dictionary derived

from the multiple master font program (or from another

font instance). It contains a WeightVector array with k

values that sum to 1.0and which determine the relativecon-

tributionsofeach master design to theresultinginterpolated

design.

Allderived font instancessharetheCharStringsdic-

tionary and Subrs array of the main multiple master font

program, making it relatively economical to generate a va-

riety of font instances. Multiple master fonts can be made

compatible with the installed base of PostScript language

interpreters byincludingseveral PostScript languageproce-

duresand anewset of OtherSubrs routines in thefont pro-

gram. Theprocedures include thenewmakeblendedfont

operator, the interpolation procedure $Blend and a new

definition of thefindfont operator.

TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting 253

Michel Goossens, Sebastian Rahtz and Robin Fairbairns

Multiple MasterDesign Space It ispossible to thinkofthe

master designsasbeingarrangedina1,2,3,or 4dimensional

space with various font instances correspondingto different

locations in that space. Theentries in theFontInfodictio-

naryspecifywhat this space is and where themaster designs

arelocated in it. Thisinformation isnecessaryfor interactive

programs that allow users to create newfont instances, and

should beincluded in thefont’sAdobeMultipleFont Metrics

(AMFM) file.

Figure 1 illustrates an example of the design space of a

threeaxis multiplemaster font. In this example, theaxes are

weight, width, and opticalsize. It is recommended that a font

program be organized to have the lightest weight, narrowest

width, and smallest design size mapped to the origin of the

blend space.

Multiple master coordinates are of two types: those

which represent the design space and those which represent

theblend space. Design coordinatesareintegerswhoserange

for a particular typeface is chosen by the designer. Theyare

used in font names and in the user interface for software

which creates and manipulates multiple master font pro-

grams. The theoretical range for a weight or width axis is

from 1 to 999 design units; however a typical typeface, with

styles ranging from light to black, might have a dynamic

range of from 200 (for light) to 800units (for black).

Another type of optional axis would be for optical size,

in which the character design changes with the point size.

The design coordinates for the optical size axis might have

a dynamic range of from 6- to 72-point, which represents

the practical extremes of sizes for typefaces designed for

publishing purposes.

Blendcoordinatesarenormalizedvalues, in therangeof

0to1, which correspond to theminimum and maximum de-

signspacecoordinates. TheyareusedbytheType1rasterizer

because they are more convenient for mathematical manip-

ulations. The linear space of blend coordinates is related to

the (potentially) non-linear space of the design coordinates

by theBlendDesignMapentry in the font dictionary.

Afour axisdesignmightalsobeconsidered;anexample

of a fourth axis would be having an axis for a typographic

style(serif/sansserif)or contrast (high/low: theratioofthick

to thin stem widths). If four axes are defined,sixteen master

designs are required. Also, since sixteen is the maximum

number of designs allowed, there can be no intermediate

designs with four axes.

Multiple Master Font Programs

Multiple master typefaces may contain from two to sixteen

master designs, organized as havingfrom one to four design

axes. Sincethemaximum number ofmaster designsallowed

in a multiple master font is 16, the number x of intermediate

masters is subject to the restriction 2n + x ≤ 16, where n is

the number of design axes.

The values used for calculating the weighted aver-

age are stored in the font dictionary in an array named

WeightVector. The multiple master font program, as

shipped by the font vendor, can have a default setting for

the WeightVector; it is recommended that it is set so the

default font instance will be the normal roman design for

that typeface.

Multiple Master Keywords BlendAxisTypes is a (re-
quired) arrayof n PostScript language strings where n is the
dimension ofthedesign spaceand hencethenumber ofaxes.
Each stringspecifiesthecorrespondingaxis type. In thecase
of the Minion 3-axis example, this value would be:

/BlendAxisTypes [/Weight /Width /OpticalSize]

BlendDesignPositions is a (required) array of k

arrays giving the locations of the k master designs in the

design space. Each location subarray has n numbers giving

the location of the design in the n dimensions of the blend

space, with a minimum value of zero and a maximum value

of one. Table 1 with eight master designs is based on the

example shown in Figure 1. It corresponds to the blend

space of a 3-axis multiple master font like Minion.

For theMinionMMfont,theBlendDesignPositions

arraybecomes:

/BlendDesignPositions

[[0 0 0][1 0 0][0 1 0][1 1 0]

[0 0 1][1 0 1][0 1 1][1 1 1]] def

BlendDesignMap is a required entryconsisting of an

arrayofnarrayswheren isthedimensionofthedesignspace.

Each arraycontains m subarrays that describe the mapping

of design coordinates into normalized coordinates for that

designaxis. Theminimumvalueallowedfor m istwo,andthe

maximum is twelve. Theorder ofthesubarrayscorresponds

to theorder ofdesign axesinBlendAxisTypes. In thecase

of the Minion font this array is three dimensional (n = 3)
and has the following form:

/BlendDesignMap [

[[345 0] [620 1]] [[450 0] [600 1]]

[[6 0] [8 0.35] [11 0.5] [18 0.75] [72 1]]]

The first number in an individual subarray is in design co-

ordinates with a minimum value of 1 and a maximum value

of 999. The second number in the subarray is in normalized

coordinates, that is, in the range of 0 to 1. In the above

example, the weight ranges from 345to 620, while the width

ranges from 450to 600in design space. The third axis, opti-

calsize, ranges from 6to72(correspondingto thepoint sizes

for which thetypefacecan beadjusted for optimallegibility).

The makeblendedfontOperator

blendedfontdict weightvector makeblendedfont blendedfontdict

This operator creates a font dictionary with blended

entries. The blendedfontdict argument is a font dictionary

of an existing multiple master font; it can be from either

254 TUGboat, Volume 16(1995), No. 3— Proceedings of the 1995 Annual Meeting

Using Adobe Type 1 Multiple Master Fonts with TEX

Black
Expanded
Large
1,1,1

Black
Condensed
Large
1,0,1

Light
Expanded
Large
0,1,1

Black
Condensed
Small
1,0,0

Black
Expanded
Small
1,1,0

Light
Expanded

Small
0,1,0

Light
Condensed

Small
0,0,0

Light
Condensed
Large
0,0,1

design axis 1: weight

desi
gn a

xi
s

3: s
iz

e

d
e

s
ig

n
 a

x
is

 2
:

w
id

th

Figure 1: Multiple master typeface blend space

arrangement

Design label Blend space

coordinates

design 1: light condensed small 0 0 0

design 2: black condensed small 1 0 0

design 3: light expanded small 0 1 0

design 4: black expanded small 1 1 0

design 5: light condensed large 0 0 1

design 6: black condensed large 1 0 1

design 7: light expanded large 0 1 1

design 8: black expanded large 1 1 1

Table 1: Design labels and blend space values for

the Minion 3-axis multiple master font

the original multiple master font itself, or from an interpo-

lated font instance since any Blend dictionary contains all

elements needed to derive additional font instances.

Theweightvectorargument isanarrayofnumberssum-

mingto1.0tobeused astheweightsfor creatingthenewfont

instance. The value of WeightVector in blendedfontdict

is set to the values in the arrayweightvector. Blended values

are calculated for entries in the Private and FontInfo

dictionaries. The result is a font dictionary that can be

used as an argument to definefont. The resulting dic-

tionary and its contents are still read-write, so the caller

of makeblendedfont can make further modifications if

necessary.

The Blend dictionary data structures provide the in-

formationneededbythemakeblendedfontoperator,with-

out needing to have the specific list of entries to be blended

built into the procedure. This allows a single copy of the

procedure to be used even if the set of entries to be blended

varies in future fonts.

Multiple Masterfindfont Procedure Multiplemaster font

programs from Adobe include a procedure which redefines

the findfont operator in systemdict. This is necessary

because of the need to generate font instances on-the-fly to

satisfy multiple master font references in a PostScript lan-

guage document. The procedure creates all necessary font

instances before calling the standard findfontprocedure.

Two procedures, NormalizeDesignVector and

ConvertDesignVector, which are referenced in

findfont, must be configured for the number of axes and

master designs in the font program in which they are used.

The NormalizeDesignVectorprocedure must calculate

the normalized equivalent of the design coordinates in the

FontName, using the values in the BlendDesignMap ar-

ray. These normalized coordinates must be left on the

stack for the ConvertDesignVector procedure. This

procedureshould take thenormalized coordinates, generate

WeightVectorvalues, and leave them on the stack for the

makeblendfontoperator.

Using Multiple master fonts with TEX

Multiple master fonts come with a set of multiple mas-

ter AFM files, which are called “AMFM” (Adobe Master

Font Metrics) files. This file contains information about

the number of master designs, the number of axes, the

BlendDesignPositionsand BlendDesignMaparrays,

as well as the names, and weightvector for the master

designs, from which all font instances are derived.

To get the actual metric information for the characters

in a font instance, one has to combine the metric informa-

tion of the master designs (eight, in the case of Minion).

To do this one needs to calculate the weightvector for

the given instance. Starting from design-coordinate space

one can use the NormalizeDesignVector operator to

transform to the normalized coordinate space, and from

there with the ConvertDesignVector operator one ob-

tains the weightvector. These two operators are particular

to a font (since they depend on the master designs), and

are present in the multiple master font dictionary. One can

decode the PostScript code for calculating the weightvector

and translate it into another computer language, and then

use the procedure to combine the values in the AFM files

for the master designs to calculate the values needed for the

font instance. For instance, in the case of the MinionMM

font, thePostScript codedefines theeight components ofthe

weightvector as follows:

w1 = xyz w2 = (1− x)yz
w3 = x(1− y)z w4 = (1− x)(1− y)z
w5 = xy(1− z) w6 = (1− x)y(1− z)

w7 = x(1− y)(1− z) w8 = 1−
∑7
n=1
wn

where x is the normalized weight, y the normalized width,

and z the normalized optical size.

These eight numbers wi allow the calculation of all

needed parameters in an AFM file for a font instance. One

TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting 255

Michel Goossens, Sebastian Rahtz and Robin Fairbairns

/y 140 def

300 100 700 % outer loop on width>>>>>>>>>>>>+

{ /x 25 def % reset x v

/y y 25 sub def % calculate y v

/Wi exch def % width from for loop<<+

220 100 820 % inner loop on weight>>>>>>>>>>>+

{ x y moveto % go to new coordinate v

/We exch def % weight from for loop<<+

/MM /MyriadMM findfont dup begin [

We Wi NormalizeDesignVector ConvertDesignVector

] end makeblendedfont definefont 20 scalefont setfont

(Hxkp) show

/x x 55 add def % recalculate x

} for

} for

Figure 2: PostScript code for generatinga a two-dimensional matrix showing instances of the multiple master font Myriad

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Figure 3: Two dimensional grid showing various instances of the two axes multiple master Myriad sans serif font.

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Hxkp Hxkp Hxkp Hxkp Hxkp Hxkp

Figure 4: The three axes multiple master Minion serif font. The top line shows various optical sizes (6pt, 8pt, 11pt,

18pt, 40pt, and 72pt) normalized to 20pt. The bottom matrix shows various weights (increasing from left to right) and widths

(increasing from top to bottom).

256 TUGboat, Volume 16(1995), No. 3— Proceedings of the 1995 Annual Meeting

Using Adobe Type 1 Multiple Master Fonts with TEX

readseach parameter valuein turn in theeight master design

AFMfiles, applies the relevant weight, and the weighted sum

thus obtained is the desired interpolated value of the given

parameter for the font instance.

Myriad is a sans serifcompanion font to Minion. It has

two design axes and four master designs. The weights for

derivingfont-instanceparameters in normalized coordinate

space in function of the four master designs are given by:

w1 = (1− x)(1− y) w2 = (1− x)y
w3 = x(1− y) w4 = xy

where x is the normalized weight and y the normalized

width. The corresponding mapping parameters between

design space and normalized coordinates are:

BlendDesignPositions [[0 0] [1 0] [0 1] [1 1]]

BlendDesignMap [[[215 0][830 1]][[300 0][700 1]]]

BlendAxisTypes [/Weight /Width]

Nowone can extract anyof the boundingbox and kern

entries for a given font instance by getting the element in

question from the eight (or four, in the case of Myriad)

master files and calculating the interpolated value. To make

matters simpler an explicit example will be given for the

Myriad font, since it involves only four numbers in each

case. Figure 5 shows some parts of the four master-design

AFMfiles

When theinstanceAFMfilehasbeen created, a suitable

metric for TEX can be built with afm2tfm or the fontinst

package.

In practice

Wehave instantiated the ideas outlined above bydeveloping

Unix shell scripts, and adapting an AFM-parsing program

distributed by Adobe. The main script takes the following

actions:

1. create a small PostScript file to invoke multiple master

operators with values passed to the script;

2. run GhostScript on this file to derive normalized

weights, and write them to a temporary file; note that

thismustbeversion3.33or later ofAladdinGhostScript

— earlier versionsoftheprogram did not havethecode

to realize multiple master fonts;

3. run our “mmafm” program to read master AFM files,

write a new instance AFM file, and create a TEX met-

ric (our initial setup uses afm2tfm to create 8r base-

encoded metrics, and EC-encoded virtual fonts for ac-

tual use);

4. write a dvips map entry and header file to tell the

driver about the newfont.

Thus a call to our scripts consists of the parameters

MinionMM zmnl8ac6 360 460 6

Thiscreatesametricfilecalledzmnl8ac6,usingKarlBerry’s

scheme to name “Minion, light weight, 8a-encoded, con-

densed, at 6pt design size”. The entry in the map file reads

zmnl8rc6 zmnl8ac6 "TeXBase1Encoding \

ReEncodeFont" <8r.enc <MinionMM.pfb \

<zmnl8ac6.pro

where the prologue file zmnl8ac6.pro contains instruc-

tions to the PostScript interpreter as to how the given font

instance should be generated from the multiple master font

codeinMinionMM.pfb: zmnl8ac6.procontainsthecode:

/zmnl8ac6 /MinionMM findfont

dup begin [

360 460 6 NormalizeDesignVector

ConvertDesignVector

] end makeblendedfont definefont

Note the presence of the NormalizeDesignVector,

ConvertDesignVectorandmakeblendfontPostScript

operators described earlier.

In addition,wehand-wrote“fd”files to tellLATEXhowto

match up the various weight and width instances we created

to its notions of series and shape. The only complication

herewas that theMinion font has an optical sizeaxis, and we

built four instances which wewanted LATEXto useat different

user sizes:

\DeclareFontShape{T1}{zmn}{lc}{n}{%

<-7>zmnl8tc6 %

<7-10>zmnl8tc8 %

<10-15>zmnl8tc11 %

<15->zmnl8tc18}

{}

The effect of the optical sizes is demonstrated by Figure 6

which shows the 6pt and 18pt instances scaled to the same

size. The differences in design are as apparent as the corre-

sponding examples from Computer Modern would be.

The tools we developed served to test the ideas, and

build a set of metrics; they are available from us on request,

but users should beware that they are neither intuitive in

use, nor necessarily robust. It is to be hoped that a more

functional, portable, solution willbedeveloped in time. The

keen TEXie may be interested in developing a MakeTeXTFM

script for Unixweb2c systems to apply the programs on the

flyfrom within TEX.

TUGboat, Volume 16 (1995), No. 3— Proceedings of the 1995 Annual Meeting 257

Michel Goossens, Sebastian Rahtz and Robin Fairbairns

FontName MyriadMM-LightCn

FamilyName Myriad MM

Weight Light

ItalicAngle 0

IsFixedPitch false

FontBBox -52 -250 970 818

...

StartKernPairs 974

KPX A z 10

KPX A y -31

KPX A x 4

KPX A w -36

KPX A v -42

KPX A u -9

KPX A t -17

KPX A s 0

KPX A r -4

KPX A quoteright -90

KPX A quotedblright -90

KPX A q -9

KPX A p -4

KPX A o -12

...

EndKernPairs

FontName MyriadMM-BlackCn

FamilyName Myriad MM

Weight Black

ItalicAngle 0

IsFixedPitch false

FontBBox -64 -250 970 843

...

StartKernPairs 974

KPX A z 10

KPX A y -10

KPX A x 0

KPX A w -10

KPX A v -10

KPX A u 0

KPX A t 0

KPX A s 10

KPX A r 0

KPX A quoteright -20

KPX A quotedblright -20

KPX A q 0

KPX A p 0

KPX A o 0

...

EndKernPairs

FontName MyriadMM-LightSemiEx

FamilyName Myriad MM

Weight Light

ItalicAngle 0

IsFixedPitch false

FontBBox -58 -250 1100 825

...

StartKernPairs 974

KPX A z 25

KPX A y -10

KPX A x 0

KPX A w -10

KPX A v -25

KPX A u -10

KPX A t 0

KPX A s -10

KPX A r 0

KPX A quoteright -30

KPX A quotedblright -30

KPX A q -10

KPX A p 0

KPX A o -10

...

EndKernPairs

FontName MyriadMM-BlackSemiEx

FamilyName Myriad MM

Weight Black

ItalicAngle 0

IsFixedPitch false

FontBBox -48 -250 1432 867

...

StartKernPairs 974

KPX A z 7

KPX A y -44

KPX A x -6

KPX A w -47

KPX A v -62

KPX A u -22

KPX A t -32

KPX A s -6

KPX A r -10

KPX A quoteright -90

KPX A quotedblright -90

KPX A q -18

KPX A p -10

KPX A o -18

...

EndKernPairs

Figure 5: The four AFM files for the Myriad master designs

Figure 6: Minion instances from opposite ends of the optical size axis set at the same size (exaggerated)

258 TUGboat, Volume 16(1995), No. 3— Proceedings of the 1995 Annual Meeting

Dotted and Dashed Lines in METAFONT

Jeremy Gibbons
Department of Computer Science, University of Auckland, Private Bag 92019, Auckland, New Zealand.

Email: jeremy@cs.auckland.ac.nz

Abstract

We show how to draw evenly dotted and dashed curved lines in METAFONT,
using recursive refinement of paths. METAPOST provides extra primitives that
can be used for this task, but the method presented here can be used for both
METAFONT and METAPOST.

Introduction

Knuth’s METAFONT has powerful facilities for ma-
nipulating and drawing curves or ‘paths’. These
facilities are generally sufficient for METAFONT’s
primary intended purpose, namely drawing letters.
However, METAFONT is also very well suited to pro-
ducing technical diagrams; for this secondary pur-
pose, METAFONT lacks a valuable facility—that of
drawing evenly dotted and dashed curves. In this
paper we show how to remedy this shortcoming, us-
ing the facilities that METAFONT does have avail-
able.
John Hobby’s METAPOST is an adaptation of

METAFONT for producing PostScript output rather
than bitmaps. METAPOST was primarily intended
for producing technical diagrams (Don Hosek re-
ports Hobby as saying, ‘Well, you could use it for
generating characters, but I wouldn’t recommend
it’). METAPOST therefore provides an ingenious
scheme for drawing dotted and dashed lines: an ar-
bitrary picture can be used to generate a dash pat-
tern for drawing paths. This scheme is not very gen-
eral— there are reasonable dashed-line-like applica-
tions for which it does not work—but METAPOST
also provides lower-level primitives arclength and
arctime that are quite general. These primitives
make the approach presented in this paper largely
redundant for METAPOST, but it remains necessary
for the ‘core METAFONT’ language.
Throughout this paper, we use the term ‘META-

FONT’ to refer to both Knuth’s METAFONT and
Hobby’s METAPOST; we use the term ‘METAPOST’
to refer just to Hobby’s METAPOST.

Cubic Bézier curves

METAFONT represents curved lines by piecewise cu-
bic Bézier curves, which it calls ‘paths’. These are
discussed in Chapter 3 of the METAFONTbook; we
summarize here all that is needed for the purposes

of this paper. For most of this paper, we consider
only non-cyclic paths; we discuss cyclic paths briefly
at the end of the paper.
A path is specified by a sequence of knots and

control points. The path runs from the first knot
to the last knot, passing through each knot in turn.
Between each pair of consecutive knots, there are
two control points; the path leaves one knot in the
direction of the next control point, and enters the
next knot in the direction of the previous control
point. A path with n+1 knots is said to have length
n, and can be considered as a function from ‘time’
(i.e., the real numbers) between 0 and n inclusive to
points in the plane; times that are natural numbers
correspond to the knots, with time 0 the start of the
path and time n the end. (Throughout this paper,
we use the term ‘length’ as a measure of the number
of knots in a path; it is always a natural number. In
contrast, we use the term ‘arc length’ for the spatial
distance covered in travelling along the path.)
For example, here is a spiral path of length 4,

and the knots (dots) and control points (crosses)
used to generate it.

This path was drawn by the METAFONT code

p := (90,0) .. controls (90,20) and (70,50) ..

(50,60) .. controls (30,70) and (7,61) ..

(0,40) .. controls (-5,25) and (5,10) ..

(20,10) .. controls (32,10) and (40,18) ..

(40,30);

draw p

METAFONT actually has sophisticated algorithms
for choosing ‘nice’ control points given just the knots
and possibly some other information, but that does

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 259

Jeremy Gibbons

not concern us here; whichever way the path is spec-
ified, METAFONT represents it internally as knots
and control points.
An important property of piecewise cubic Bézier

curves is that each segment of a path (i.e., a part be-
tween two consecutive knots) lies entirely within the
‘convex hull’ of—that is, the smallest convex poly-
gon surrounding—the knots at either end and the
control points in between. For example, here is the
same spiral, with the convex hull surrounding each
path segment shown shaded grey.

There are two general forms for a segment of
a path: either the control points between the two
knots are both on the same side of the ‘chord’ be-
tween the knots, or they are on different sides. These
two cases are illustrated below.

Notice that, in either case, the arc length of the
chord between the knots is no greater than that of
the path, and the arc length of the ‘control polygon’
(consisting of three straight lines, from the first knot
to the second via the control points) is no less than
that of the path; this fact is important in what fol-
lows. Clearly, this property holds of paths as well as
path segments. Also, the degenerate case in which
both control points are on the same line as the knots
yields a path that also lies entirely on that line; the
arc lengths of the chord and control polygons again
form lower and upper bounds on the arc length of
the path.

Evenly-spaced points on a path

The essential problem when it comes to drawing dot-
ted or dashed lines is that points evenly separated
in time along a path are not necessarily evenly sepa-
rated in space. For example, here is the same spiral
path as above, with 21 dots spaced evenly in time—
that is, placed every 1/5th of a time unit. Notice how
the dots get closer as the curve gets tighter; a point
moves at different ‘speeds’ in space as it progresses
along the path evenly in time.

Producing evenly-spaced dots basically involves
finding the arc length of a cubic Bézier curve. This
is a difficult mathematical problem; it involves inte-
grating the square root of a degree-four polynomial,
which in turn can only be done analytically using ‘el-
liptic integrals’—not one of the primitives provided
by METAFONT.
Fortunately, there is a simple approximation

method for finding the arc length; this method is
the subject of this paper. The basis of the method
is recursive refinement of the path, picking more
and more knots on the path and hence using control
points that are closer to the curve. For example, if
we pick an extra knot half way (in time) between
each pair of consecutive knots on the above spiral
path, we get the following picture:

This spiral path is generated by the METAFONT
code

path q;

q := subpath (0,0.5) of p

for i := 1 step .5 until length p:

& subpath(i-0.5,i) of p

endfor;

The path itself has not changed (although it is now
travelling at half of its original speed), but the chord
and control polygons are much closer approxima-
tions to the curve. How good are these approxima-
tions? Gravesen (1993) shows that, under repeated
recursive refinements, the average of the arc lengths
of the chord and control polygons converges very
quickly to the arc length of the path1. We use re-
cursive refinement to get a sufficiently-close polygo-
nal approximation to a path, and then divide that
polygonal approximation up evenly in space. This
yields (for example) the result below.

1 In fact, the average of the arc lengths of the chord and

control polygons under k recursive refinements converges to

the arc length of the path as 16−k ; that is, the error decreases

by a factor of 16 on every iteration. Gravesen also gives a

general result for degree-n Bézier curves.

260 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Dotted and Dashed Lines in METAFONT

vardef chordpoly expr p =

save i; numeric i;

point 0 of p

for i := 1 upto length p:

-- point i of p

endfor

enddef;

vardef controlpoly expr p =

save i; numeric i;

point 0 of p

for i := 1 upto length p:

-- postcontrol (i-1) of p

-- precontrol i of p

-- point i of p

endfor

enddef;

vardef chordlen expr p =

save i; numeric i;

0

for i := 1 upto length p:

+ abs(point i of p - point (i-1) of p)

endfor

enddef;

vardef controllen expr p =

chordlen (controlpoly p)

enddef;

Figure 1: The functions chordlen and
controllen

Notice now that the dots are evenly spaced, even as
the curve gets tighter.

Recursive refinement

In order to refine a path, we need first to be able
compute lower and upper bounds to its arc length.
The functions chordlen and controllen, which re-
turn the arc lengths of the chord and control poly-
gons, are defined in Figure 1. (The METAFONT ex-
pression point i of p returns the position of the
path at time i; for natural i, postcontrol i of p
returns the first control point after knot i, and sim-
ilarly, precontrol i of p returns the last control
point before knot i.)
Given the lower bound chordlen p and upper

bound controllen p to the arc length of a path
p, recursive refinement is straightforward. If the

bounds are sufficiently close, we return just p; oth-
erwise we split p into two halves (time-wise), inde-
pendently refine the two halves, and join the results
back together. We use a multiplicative rather than
additive test for ‘sufficiently close’, so that if a num-
ber of subpaths are independently ‘sufficiently re-
fined’ then their concatenation will also be. Note
that splitting the path in two doesn’t double the
length, as we did in our earlier spiral example; it only
adds zero or one more knot (depending on whether
or not length p is even). However, it does give the
advantage of adaptive refinement—nearly straight
parts of the path are not refined as much as very
wiggly parts.

numeric tol; tol := eps;

vardef refine expr p =

if (controllen p)<=(1+tol)*(chordlen p):

p

else:

(refine (subpath(0, length p/2) of p)) &

(refine (subpath(length p/2,length p) of p))

fi

enddef;

Marking a path evenly

Having refined the path p, we still need to divide it
into equal-sized chunks; that is, we need to find a
sequence of times t0, . . . , tr such that the arc length
between points ti and ti+1 of p for each i is some
fixed given distance d. However, we now have a
polygonal path chordpoly(refine p) which very
closely approximates p. It is straightforward (if a
little messy) to find the times that divide this poly-
gonal approximation into chunks of arc length d; we
simply use those same times for the curved path p.
The code for the function markedevery is given

in Figure 2. The function takes in a path p and a
distance d, and returns the sequence of times that
divide the chord polygon of p evenly into chunks of
arc length d. This function should be called only on
a path which is ‘very nearly’ polygonal—one that is
actually polygonal, or perhaps the result of refining
another path.
The program maintains variables t, the ‘cur-

rent time’, which increases from 0 to the length (in
time) of p and is always at an integer value (in fact,
equal to knot) at the start of the outer loop body,
and dnext , which is the distance from the ‘current
point’ (point t of p) until the next mark. Each path
segment is considered in turn, the time counter t ad-
vancing as required along it. Note that the first and
last ‘chunks’ taken from a segment may be shorter
than d.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 261

Jeremy Gibbons

secondarydef p markedevery d =

begingroup

save q; path q; q := (0,0); % for result

save dnext; numeric dnext; dnext := d;

save seglength; numeric seglength;

save knot; numeric knot;

save t; numeric t; t:=0;

save dt; numeric dt;

for knot := 0 upto length p - 1:

seglength := abs (point (knot+1) of p

- point knot of p);

% arc length of this segment

if seglength > 0:

forever:

dt := dnext / seglength;

% time to next mark (if this segment)

exitif t+dt > knot+1;

% exit if next mark not on this seg

t := t+dt; % move forwards...

q := q -- (t,0); % ... & put mark here

dnext := d; % next mark is d away

endfor

% now t <= knot+1 < t+dt

dnext := dnext - (knot+1-t)*seglength;

% put leftover towards next mark

t := knot+1;

else: % empty seg (coincident knots)

t := t+1;

fi

endfor;

q % return time sequence we’ve built up

endgroup

enddef;

Figure 2: The function markedevery

def drawdotted (expr p, d) =

save refined, marks, i;

path refined, marks; numeric i;

refined := refine p;

marks := refined markedevery d;

for i := 0 upto length marks:

drawdot

point (xpart(point i of marks))

of refined;

endfor

enddef;

Figure 3: The procedure drawdotted

METAFONT has no ‘list’ type that can be used
to return the sequence of times t0, . . . , tr, so we re-
turn the path (t0, 0) −− · · · −− (tr, 0) instead; this
path is built up in the variable q.

Dotted and dashed lines

The function markedevery does the work of marking
a path evenly in space; as described above, to draw
a dotted path we first refine it, and mark the re-
fined polygonal approximation evenly instead. The
procedure drawdotted is defined in Figure 3.
For example, we can place dots every eight units

in space on our spiral path as follows:

pickup pencircle scaled 0.5;

draw p;

pickup pencircle scaled 2;

drawdotted (p, 8);

This yields the picture

Notice that there is no guarantee that the last dot
will be at the end of the path. To ensure that this is
the case, we must choose the dot spacing to divide
evenly into the arc length of the path. Fortunately,
the average of the arc lengths of the chord and con-
trol polygons makes a very good estimate of the arc
length, as discussed above. The evenly-dotted spiral
on page 261 with the 21st dot exactly at the end of
the path was drawn with the commands

pickup pencircle scaled 0.5;

draw p;

pickup pencircle scaled 2;

path q; q := refine p;

drawdotted (p,

.5[chordlen q,controllen q]/(20*(1+eps)));

(Notice that we have to scale down the ‘ideal’ dot
spacing by a factor of 1+eps, to ensure that the last
dot is just on rather than just off the end of the path
in case of rounding errors.)
Dashed lines can be drawn using pretty much

the same approach. Here is a simple-minded macro
to do it.

def drawdashed (expr p, d) =

save refined, marks, i;

path refined, marks; numeric i;

refined := refine p;

marks := refined markedevery d;

if (length marks) mod 2 = 0:

marks := marks -- (length refined,0);

fi

262 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Dotted and Dashed Lines in METAFONT

vardef refine expr p =

if (controllength p)<=(1+tol)*(chordlength p):

p

else:

(refine (subpath(0, length p/2) of p)) &

(refine (subpath(length p/2,length p) of p))

if cycle p: & cycle fi

fi

enddef;

Figure 4: refine for cyclic paths

for i := 0 step 2 until length marks - 1:

draw subpath(xpart (point i of marks),

xpart (point (i+1) of marks)) of refined;

endfor

enddef;

For example, with the same spiral path and d = 8
we get

Notice that we add an extra mark at the end of the
path (yielding a partial final dash) if the number of
marks is odd.
A more elaborate approach would allow differ-

ing dash and gap sizes, and displacing the dashes.
This could be done by using the greatest common
divisor of the various distances to mark the path,
or perhaps by altering the markedevery function to
take several distances as arguments.

Cyclic paths

The same recursive refinement technique works just
as well for cyclic paths; in fact, the only change that
is needed is to the function refine. When we split a
path into two halves, we need to remember whether
the path is cyclic, recombining the halves as a cycle
if so. The code for this version of refine is given in
Figure 4.

Iterative non-adaptive refinement

The recursive refinement technique described here
is quite elegant, but it can cause METAFONT to run
out of stack space on very wiggly paths. An iterative
approach can avoid this, at the cost of not easily
providing adaptive refinement; we simply repeatedly
double the length until the lower and upper bounds
on the arc length are sufficiently close. The code is
given in Figure 5.

vardef refine expr p =

save q; path q; q := p;

forever:

exitif (controllen q)<=(1+tol)*(chordlen q);

q := subpath (0,0.5) of q

for i := 1 step .5 until length q:

& subpath(i-0.5,i) of q

endfor

if cycle q: & cycle fi;

endfor;

q

enddef;

Figure 5: An interative version of refine

An unusual application

As we mentioned in the introduction, Hobby’sMETA-
POST does provide primitives for drawing dotted
and dashed lines. You can do some surprising things
with dashes; for example, you can draw crosses along
a path by drawing the path twice, once with long
thin dashes and once with short fat dashes.

interim linecap:=butt;

draw p dashed dashpattern(on 6 off 6)

withpen pencircle scaled 2;

draw p dashed dashpattern(off 2 on 2 off 8)

withpen pencircle scaled 6;

(The assignment to linecap produces square, rather
than rounded, ends to lines.) Unfortunately, al-
though METAPOST generates good PostScript from
such constructions, bugs in many PostScript inter-
preters make them come out wrong. For example,
the following picture should consist of crosses, but
on some PostScript interpreters some of the crosses
turn out mushroom-shaped.

Still, there are some things that cannot be done
with METAPOST’s dash primitives, but can be done
with the techniques described here. We conclude
this paper with one such application. (In fact, this
application was the original motivation for the au-
thor’s interest in the topic.) Note that this problem
can also be solved using METAPOST’s arclength
and arctime primitives, but then the solution is not
portable to ‘core METAFONT’.
Several years ago, while a PhD student, the au-

thor used to play in a jazz band called the Missis-
sippi Muskrats, and he endeavoured to produce a

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 263

Jeremy Gibbons

logo for posters for the band. This logo included a
picture of a muskrat, for which a ‘furry’ effect was
obtained by drawing diagonal lines across a path.
The first attempt at drawing a furry muskrat used
the same time interval for every path, and yielded a
bushy throat and a threadbare back:

(The author makes no claims for the artistic merit
of these drawings.)
The second attempt used different time inter-

vals for different paths, and was much better; still
however, the muskrat’s back suddenly gets hairier
about halfway from the tail to the neck, and of
course there’s the hassle of choosing all those dif-
ferent numbers.

The third attempt used the method described in this
paper, and gave a much healthier-looking muskrat:

Acknowledgements

The author would like to thank Jens Gravesen for
his very elegant paper (Gravesen, 1993), and Alan
Hoenig, Geoffrey Tobin and several other people
who have put up with discussions of this topic elec-
tronically and in person over the last few years.

References

J. Gravesen. “Adaptive Subdivision and the Length
of Bézier Curves”. Technical Report 472, The
Danish Center for Applied Mathematics and Me-
chanics, Technical University of Denmark, 1993.

264 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

T1part: Printing TEX Documents with Partial Type 1 Fonts

Sergey Lesenko
Institute for High Energy Physics

Scientific Information Department

Protvino, Moscow Region, Russia, P.O. Box 35

Email: lesenko@desert.ihep.su

Abstract

A large fraction of the scientific papers available on the Internet have been created
by TEX and dvips. Most of these papers use Computer Modern fonts at 300 dpi,
and thus neither preview well with a typical screen resolution of less than 100 dpi,
nor take advantage of the higher resolution of current laser printers. This paper
presents T1part, a set of subroutines that decompose Type 1 PostScript fonts,
including only those characters needed in a particular document. This package,
in conjunction with a high-quality freely available set of Computer Modern fonts,
can provide for the distribution of compact PostScript files that preview legibly
and print beautifully. In addition, this package allows the printing of much more
complex documents using more fonts than have previously been available in dvips.
The T1part subroutines are modular and can be easily incorporated into other
drivers.

Introduction

Using Type 1 PostScript fonts in TEX documents has
been problematic for a number of reasons. Not least
among these problems is the requirement that ei-
ther the fonts be included in the document itself, or
that the fonts be available to all potential recipients
of the document. Including such fonts in the doc-
ument itself raises serious copyright issues, as well
as causing the resulting file to be large and slow to
print. In this paper, we present T1part, which al-
lows such fonts to be included in PostScript output
in a partial form. It is currently integrated with
Tomas Rokicki’s dvips program (Rokicki, 1994).
While commercial programs with this feature

have been available for a number of years, this is
the first freely available integrated implementation
of this functionality.
The idea for this paper was suggested by Basil

Malyshev’s paper (Malyshev, 1994). The program is
based on information available in the Adobe “Black
Book” (Adobe Systems, 1990). In addition, I found
work by Rajeev Karunakaran (1994), Chris B. Sears
(1991), and Al Stevens (1994) to be useful.
This paper discusses the interface, algorithms,

and finally the efficiency of using the T1part pro-
gram.

Interface

T1part, as a subroutine, needs to be told what fonts
and what characters in each font to include. The
fonts are indicated by a file name pointing at a PFB
or PFA Type 1 font. The set of characters to include
can be specified either by a list of glyph names or
by a set of character codes. In the latter case, the
character codes must be translated into glyph names
through the font’s encoding vector.
The resulting output of the program is a partial

font in PFA format. As integrated into dvips, the
program inserts this font directly into dvips’ output
stream.

Algorithm

Before we present how T1part works, we must de-
scribe the format of a Type 1 font. We will first
consider a font in PFB format; the PFA format is a
simple modification of this. A Type 1 font in PFB
format has the following structure and relevant key-
words in each part:

• ASCII part

– keyword /Encoding

• BINARY part (eexec encryption)

– keyword /lenIV

– keyword /Subrs

– keyword /CharStrings

• ASCII part

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 265

Sergey Lesenko

By “ASCII”, we mean the portion of the file that is
not eexec encrypted.
Since the font contains three different parts,

each part has its own parsing process. The minimum
set of keywords listed above allows us to quickly
parse the input at a high speed and with a simple
parser.
The parsing process is as follows. First, we

read the initial ASCII portion and search for the
Encoding keyword. After finding it we define its
type with the help of the next token. If the next
token is StandardEncoding, we will assume that
the Adobe Standard Encoding is the default font
encoding vector.
If a reencoding has been specified for this font

in the dvips psfonts.map file, then we use that
reencoding to translate the character codes to glyph
names. Otherwise, we try to parse an encoding from
the input stream by searching for index and glyph
name pairs. If we do not find such an encoding, we
search for and parse an AFM file associated with the
font.
Next, we parse the BINARY portion of the font.

We start by performing the eexec decryption and
loading the result directly and entirely into memory.
We then scan the decrypted section for the keywords
/lenIV, /Subrs, and /CharStrings. Each of the
sections separated by these keywords has a similar
structure.
When initially parsing the Subrs section, we

simply identify what subroutines exist by number
and keep track of the number of tokens in each sub-
routine definition. We do not initially send out any
subroutines.
When we parse the CharStrings section, we

initially identify what subroutines are associated
with each character. We parse the subroutines
for each used character, recursively diving into the
Subrs entries as necessary, marking which subrou-
tines are actually used. If there are multiple Subrs
sections, as is the case with some hybrid fonts, we
consider all such sections.
If a required character is a composite character,

then the component characters will be marked and
processed as above.
For efficiency, all selected subroutines are de-

crypted only once; a flag associated with each sub-
routine is used to indicate whether that subroutine
has already been decrypted.
After finishing the scanning phases, the size of

the Subrs and CharStrings arrays must change to
reflect the deleted subroutines. The new values are:

• Subrs size— largest selected subroutine plus
one

• CharStrings size—number of selected char-
strings

We retain the indices of the subroutines for simplic-
ity (so we do not need to rescan and modify each
subroutine) and to easily guarantee that each sub-
routine only refers to those with a lower index (an
Adobe requirement that prevents recursive subrou-
tines).
Finally, the selected portions of the scanned

memory are eexec encrypted and directed to the out-
put in hexadecimal (PFA) form.
To finish up the font, the final ASCII portion is

sent to the output without changes.
If the input font is in PFA format, the keywords

that define the beginning of the hexadecimal eexec
section are currentfile eexec; a line of all zeros
marks the end of the section.

Results

T1part was tested by integrating it into dvips and
running it over a number of files using the BaKoMa
collection of Computer Modern fonts, as well as the
Acrobat Reader selection of Adobe fonts. The re-
sults of these tests are:

• Size of output file. The total size of the resulting
PostScript file when using T1part and PS fonts
was compared with that when using bitmap PK
fonts under both 300 dpi and 600 dpi. Usually,
the bitmapped font output was slightly smaller
at 300 dpi, but slightly larger at 600 dpi. Thus,
using partial Type 1 fonts is practical from the
perspective of final file size.

• Reduction in PS fonts. In our tests, we found
that usually less than half of the characters
from body text fonts were used, and a very
small fraction of special fonts were used. On
average, the size of the partial PostScript font
created by T1part was less than 30% of the size
of the original font.

The figures are given in detail in tables 1–3.
The output of the program has been tested with

GhostScript (Deutsch, 1993), and the time and mem-
ory required to view documents created with partial
fonts was less than those with the whole fonts.
It is clear that the popular paradigm of TEX—

dvips—GhostScript will be more efficient when us-
ing the integrated T1part functionality.

Acknowledgements

I would like to thank Tomas Rokicki for his helpful
discussion and suggestions.

266 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

T1part: Printing TEX Documents with Partial Type 1 Fonts

References

Adobe Systems. Adobe Type 1 Font Format, version
1.1. Addison Wesley, 1990.

L. P. Deutsch. “Aladdin Ghostscript version 2.6.1”.
Electronic distribution from ftp.cs.wisc.edu
via CTAN, 1993.

R. Karunakaran. “PFB2PFA program”. Electronic
distribution via comp.sources.postscript,
volume 03 issue 51, 1994.

B. K. Malyshev. “Problems of the conversion of
Metafont fonts to PostScript Type 1”. In Pro-
ceedings of TUG94, edited by M. Goossens,
Santa Barbara, CA. 1994.

T. Rokicki. “Dvips: A TEX Driver”. Electron-
ically distributed from labrea.stanford.edu
via CTAN with dvips, version 5.58, 1994.

C. B. Sears. “CHARS program”. Electronic distri-
bution via comp.sources.misc volume 19 issue
94, 1991.

A. Stevens. “Quincy: a C interpreter”. ‘Dr. Dobb’s’
journal (09), 1994. Electronic distribution as
ftp://ftp.mv.com/pub/ddj/1994/1994.09/

qnc41.zip.

T
a
b
le
1
:
D
v
ip
s’
o
u
tp
u
t*
w
it
h
va
ri
o
u
s
m
o
d
es
o
f
u
se
d
fo
n
ts
(d
v
ip
s.
d
v
i,
v
er
si
o
n
5
.5
8
,
u
se
d
a
s
in
p
u
t)
.

F
o
n
t
ty
p
e

P
S
T
y
p
e
1

P
K

M
o
d
e
o
f
fo
n
t
em
b
ed
d
in
g

F
u
ll
P
a
rt
ia
l

P
a
rt
ia
l

O
u
tp
u
t
re
so
lu
ti
o
n
(d
p
i)

3
0
0

6
0
0

1
0
1
6

1
2
0
0

1
8
0
0

O
u
tp
u
t
si
ze
(b
y
te
s)

7
6
2
9
8
1
3
9
8
3
5
8
4
2
4
5
2
9
1
0
1
2
1
9
5
3
0
8
2
2
1
5
4
4
8
7
1
6
8
1
4
9
3
3
0
9
5

O
u
tp
u
t
w
it
h
co
m
p
re
ss
ed
b
it
m
a
p
fo
n
ts

–
–

2
7
4
2
0
5

3
3
5
9
8
1

4
1
8
8
9
5

4
8
0
0
8
3

6
2
2
4
0
5

(b
y
te
s)

D
is
k
sp
ac
e
re
q
u
ir
ed
fo
r
fo
n
ts
∗
∗

2
7
7
5
7
9
2
7
7
5
7
9
1
0
4
0
3
6

2
5
1
7
5
6

4
7
9
0
8
0

5
8
8
6
9
6

9
4
7
6
8
4

(b
y
te
s)

*
D
v
ip
s’
o
u
tp
u
t
si
ze
w
it
h
o
u
t
em
b
ed
d
in
g
o
f
fo
n
ts
—
2
2
8
9
1
8
b
y
te
s

*
*
P
F
B
fo
rm
a
t
is
u
se
d
fo
r
P
S
T
y
p
e
1
fo
n
ts

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 267

S
er
ge
y
L
es
en
k
o

Table 2: Efficiency of partial font downloading for each used font (dvips.dvi used as input)

Font name cmbx10 cmr10 cmr8 cmsl10 cmti10 cmtt10 cminch cmmi10 cmsy10 cmsy7 logo10 Total

Font version ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗

Percentage characters used 55 75 14 27 28 72 19 6 7 7 99 32

Partial font (bytes) 28 757 40 675 7 314 14 903 18 382 37 908 4 438 3 628 3 862 3 929 5 301 169 097

Full font (bytes) 52 768 53 960 53 360 54 870 65 948 52 915 23 211 63 752 52 613 54 951 5 372 533 720

Table 3: Results of using DC instead of CM fonts

Font name dcbx10 dcr10 dcr8 dcsl10 dcti10 dctt10 cminch cmmi10 cmsy10 cmsy7 logo10 Total

Font version ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗ ∗ ∗ ∗∗

Percentage characters used 34 44 9 18 17 44 19 6 7 7 99 23

Partial font (bytes) 25 766 34 039 6 732 14555 15 827 36 450 4 438 3 628 3 862 3 929 5 301 154 527

Full font (bytes) 75 311 77 211 76 871 80687 92 105 83 261 23 211 63 752 52 613 54 951 5 372 685 345

* BaKoMa/CM Fonts Collection (1.3, (Level-C), January 95)

** Paradissa Fonts Collection (1.0-prerelease, 1993)

*** BaKoMa/DC Fonts Collection (1.0, (Level-B), 1994)

2
6
8

T
U
G
b
o
a
t,
V
o
lu
m
e
1
6
(1
9
9
5
),
N
o
.
3
—
P
ro
ce
ed
in
g
s
o
f
th
e
1
9
9
5
A
n
n
u
a
l
M
ee
ti
n
g

Modularity in LATEX

Matt Swift
59 Brainerd Rd #202

Allston MA 02134-4564

USA

Email: <swift@bu.edu>

Abstract

The author surveys several kinds of desirable modularity in LATEX and argues
the advantages of a system in which sources and macros may inhabit modules
called bits and features, respectively, that are independent of their context in a
disk file and are identified by names independent of disk file names. The author
discusses implementation, and sketches are given of solutions involving extensions,
enhancements, front ends, and back ends to TEX. The author has made available
code which adds some new modular features to LATEX.

This paper aims to clarify several issues in the
use and development of LATEX that belong under
the general heading of modularity. The issues have
arisen during attempts to solve particular problems.
Certain modular features are not worth imple-

menting in LATEX2ε and should instead be the con-
cern of those who are designing and implementing
LATEX3, ε-TEX, NT S, and the tools that will ac-
company them. Other modular features can be im-
plemented in LATEX without a large programming ef-
fort or extensive changes in user syntax. The author
has implemented some modest modular features in
LATEX with encouraging results.
Some terms will be given a precise definition

below, but modularity will be used only as a broad
descriptive term.
Several concerns addressed here have been ad-

dressed earlier in the companion papers “An Object-
Oriented Programming System in TEX” (Baxter,
1994) and “Object-Oriented Programming, Descrip-
tive Markup, and TEX” (Ogawa, 1994) published in
the TEX Users Group ’94 proceedings (TUGboat 15,
no. 3). I recommend these thoughtful papers to
readers interested in this subject. Baxter describes a
LATEX-like markup that realizes many of the benefits
of object-oriented program design. Its syntax could
for the most part exist simultaneously with stan-
dard LATEX. Ogawa enumerates some ways LATEX
falls short of an ideal object-oriented markup lan-
guage.

What is a document?

The LATEX processor and an accompanying suite of
programs and hardware devices translate a com-

puter disk file called a LATEX source (“source”) into
a document. One can reasonably say, in our con-
text, that a document is a text-dominated visual
presentation of information whose canonical form is
an ordered collection of pages.
We are used to calling many things documents

that are not documents in this sense. A source is not
a document—not a visual presentation of informa-
tion—nor is it intended to be a complete description
of a document (though it is such, trivially, when it
is viewed or printed). A source is a partial, abstract
description of a document, a meta-description of a
document. The LATEX processor interprets the min-
imal information in a source by means of implicit
conventions and explicit rules, and the resulting in-
terpretation (the dvi file) is a complete document
description. A subsequent procedure transforms the
document description into a real document, a real
image on a screen or page.
There are several good reasons to create and

maintain sources instead of document descriptions
or documents themselves. Source files are much
smaller than the files that result from them, since
they contain less information. They are human-
readable, whereas document descriptions, in the in-
terests of efficiency, are difficult or impossible to
read. Worrying about the large amount of extra
information necessary to describe a document dis-
tracts authors, to whom it is superfluous. Sources
are a versatile form because they can be used to
produce many different kinds of documents or even
presentations of the information that are not docu-
ments in the present sense, such as aural presenta-
tions (see Raman, 1995).

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 269

Matt Swift

Our goal is to allow a computer program to
present information to our senses in a manner that
meets our needs, which can change from time to time
and from user to user. Ideally, marked-up text in the
source makes explicit all the information we would
like the document in any form to convey. Marked
text is a very efficient conventional form of informa-
tion. Typically, we wish to present the information
in a manner that most greatly facilitates the reader’s
understanding by presenting various aspects of its
content efficiently to the eye, which can process it
extremely quickly. But there is not a single superior
scheme for accomplishing this. Also, because per-
ceiving a document is a personal experience like any
other, typesetting can aim to be beautiful, or, as
in advertising, manipulative. To meet these various
needs, a variety of documents can be derived from
the source by reprocessing it with different parame-
ters.
Practically, it is very hard to decide what in-

formation should be made explicit by markup, and
what can be assumed. When we stretch the borders
of the present definition of a document, we change
our ideas of what elements must be differentiated
in the document and consequently discover a need
to mark structures that were handled implicitly for
more familiar documents. In some languages, for ex-
ample, the sequence of glyphs in the source must be
presented right-to-left, or top-to-bottom, or both,
not in the way of written English. The notion of
pages is ill-adapted to a computer-screen. And when
we change the presentation’s form from visual to au-
ral, we discover that some of our markup is visual
and not as abstractly informational as perhaps we
thought.
One can consider a LATEX source from several

different points of view. Very basically, it is a pro-
gram written in TEX, which is a “list-based macro
language with late binding” (NTS, 1995), and us-
ing the LATEX macro library. From another point
of view, as mentioned, it is a meta-description of a
visual presentation of text-dominated information.
If a certain method of processing the source, such
as standard LATEX, is agreed upon, then it can be
agreed that a source is a complete description of a
document.
Our present interest suggests another point of

view that considers a source to comprise two kinds of
elements identified by markup (not including com-
ments). A block element is a list of atoms— ir-
reducibles such as font glyphs and spaces—other
block elements, and/or anchor elements. An anchor
element is a signal to the formatter that it should

act as if certain atoms or block elements were in the
source at that point.
Anchors are used when it is better that the

formatter supply data from somewhere at runtime,
rather than the user include it in the source docu-
ment. There is a close correspondence between an-
chors and HTML entities (see Goossens and Saarela,
1995a). An anchor used for citation, for example,
might generate two block elements such as (Hobson
1956) and an entry in a bibliography at the end of
the chapter.
From a more abstract point of view, blocks and

anchors are markup functions. The difference—not
strict— is that blocks take an argument, often a long
one, of text to be represented quite directly in the
typeset image, whereas anchors do not take an ar-
gument of this kind.
A source is therefore itself a single block ele-

ment. Once anchor references are resolved, it may
be considered to be a single list of atoms. Any num-
ber of contiguous regions of the list are identified
(“tagged”) as subordinate block elements. Block el-
ements may nest but not overlap.
In the translation from source to document, the

order of the list of atoms is for the most part pre-
served. Certain classes of block elements, however,
are conceptually independent of their contexts in the
source, and routinely appear in new contexts in the
document. We might call this kind of block element
a float element as opposed to a fixed element whose
immediate context does not change in the transla-
tion. Float elements include footnotes, LATEX floats,
marginalia, and entries in bibliographies and indices.
The existence of float elements is possible exactly
because block elements do not overlap in the source.
LATEX is both the language in which sources are

written and the engine which creates a document
description from a source. Users must distinguish
these capabilities or confusion and inefficiency may
result. Regions in the list of atoms that compose
the source are ideally tagged by markup that de-
scribes what the region is; that is, markup that is
not specific to any particular document description
derived from it. Some “visual markup”, or markup
that describes how the region should be actually pre-
sented, is inevitably necessary during the creation of
complex documents, when the automatic procedures
break down and require manual aid. What is most
to be regretted, however, is the confusion and en-
couragement of inefficient habits that results from
allowing the same syntax for both the desirable and
undesirable kinds of markup.

270 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Modularity in LATEX

A new block element is needed

Block elements usually constitute the majority of
a source, conceptually and physically. Let us use
the term block modularity to describe what allows
LATEX to handle block elements independently and
abstractly. LATEX already provides block modularity
in several useful ways. An itemized list, for exam-
ple, is a natural unit of text for which LATEX pro-
vides the itemize environment whose appearance
in the document is controlled by macro definitions
that are in effect only inside the environment. This
kind of local definition is made possible by TEX’s
grouping mechanism. The items within the list are
blocks in their own right, and these in turn might
be divided further into paragraph blocks or other
kinds of blocks, such as emphasized phrases, and so
on. The document environment is another natural
unit of text, a much more general one. Its appear-
ance is controlled by the preamble, which includes
\documentclass and \usepackage commands.
These examples show that block elements are

specified in the source file in a broad variety of ways.
Some of the causes and consequences of this variety
are adduced in another section below.
I propose as a useful concept a block element

of intermediate size called a bit defined as a con-
ceptually independent unit of text, a block element
that might reasonably appear in new contexts. If
the block could reasonably appear with a null con-
text, that is, could alone generate a reasonable doc-
ument, it is not only a bit but also a potential doc-
ument. The name is appropriate because any docu-
ment could conceivably be placed in a new context,
though long documents are quite unlikely to appear
in any but the null context.
A collection of poems or recipes would consist

almost entirely of a sequence of bits. An academic
paper would probably contain only one bit, its entire
self, but might contain a bit here or there, such as
an embedded poem, illustration, or derivation. The
standard LATEX letter class provides a clear exam-
ple of a bit structure. The document environment
in a source of the letter class consists of one or more
LATEX letter environments, each of which is func-
tionally modular and conceptually independent.
Bits are similar to sections as we might think

of them when we read or write. Sections, however,
may not be conceptually independent. The LATEX
sectioning commands such as \chapter have lim-
ited power and serve for the most part as informa-
tive markers in a continuous stream of text. There-
fore they should be considered not as tagging the
long block element that follows them, but rather as

an anchor specifying one fixed element (the section
heading) and one float element (the entry in the ta-
ble of contents).
The status of the LATEX sectioning commands

as anchors and not block delimiters is not required
by their syntax; that is, not required because they
occur singly and do not enclose text. The familiar
sectioning commands could in fact be implemented
to give a programmer control over the following text
as a block element, but they are not implemented
this way.
When we consider the modularity of sources

and documents, bits are the most basic and impor-
tant unit. They are atomic in the sense that every
document has an integral number of them. When
we think about the exchange of sources, we should
think in terms of the bit.
A generally useful implementation of bits would

have several key characteristics. First, there should
be an anchor for bits, a command which says “put
this bit here”. Bits should also be as independent
as possible of disk files. By this I primarily mean 1)
they should be referred to by names which do not
depend on the disk file in which they occur, and 2)
as LATEX program code they should be portable—as
independent as possible of their immediate program-
ming context in the disk files that contain them. A
bit should have a type and a name—a unique label.
To process a source is to process a bit of type “doc-
ument”. This task comprises relatively independent
subtasks, one corresponding to each bit type, and
one to handle the presentation of the entire sequence
of bits and intervening text, the presentation of the
document as a whole.
Many users are probably accustomed to imple-

menting bits implicitly by taking advantage of the
modularity of disk files. A bit can be put into its
own disk file which can be incorporated into new
contexts by the action of disk file inclusion. The bit
name is the disk file name. Chief among the ad-
vantages of identifying bits explicitly in the markup
is that disk file structure and disk file names can
be freed from this frequent burden of bearing infor-
mation about bits. This change facilitates several
beneficial developments proposed below. Summar-
ily, the introduction of a layer of abstraction between
disk files and user syntax makes possible a broad and
desirable flexibility in the distribution of source doc-
uments among disk files. Disk files might ideally be
construed as objects which can export bits.
Many things said so far about source documents

and disk files apply also to code libraries and disk
files. In particular, there are similar advantages
in recognizing functionally independent segments of

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 271

Matt Swift

code through markup, rather than disk file struc-
ture, and to introducing a layer of abstraction be-
tween disk files and programmer syntax. These seg-
ments, which we can call features after GNU Emacs,
are exact analogs of the bit in a context of program-
ming code. The breaking up of the kernel and the
standard document classes into functionally inde-
pendent modules is the intended first stage of the
NT S project (NTS, 1995).

Present limitations on LATEX disk file

structure

The TEX primitives \input and \endinput deter-
mine the possible structures of LATEX disk files. The
\input command is an anchor for the contents of a
disk file. When the contents of a disk file are being
processed at the request of an \input command, the
\endinput command signals the formatter to act as
if the end of the file was encountered at the end of
the current line.1

Though many disk file configurations are pos-
sible, only one seems practical, namely, a principal
source that contains a single document environment,
and any number of auxiliary sources that contribute
material to the principal source or to other auxiliary
sources by disk file inclusion.
LATEX provides two more sophisticated inter-

faces to the \input primitive. The \include and
\includeonly commands implement a convenient
way to enable and disable the inclusion of files. The
price is that \include commands cannot be nested
like \input commands. The group of class and pack-
age commands new in LATEX2ε keep track of what
files have been included, perform some checking to
ensure that the right file was included, and imple-
ment a system of user options—a system of passing
certain information to the included files.
Because both extensions are founded on the

primitive \input, the basic modular unit is still the
disk file, identified by its name. Several alterna-
tive ways to identify bits and features may now be
suggested. One difficulty to keep in mind is that
file names are often exactly how users choose to
uniquely identify their information. Consider two
versions of the same composition residing in two files
in the same directory, distinguished only by a few
changed words.
The possibilities seem to be:

1. Mandate a new TEX primitive

\inbit{〈bit-name〉}

1 Suppressing the continuation until the end of the line

is a surprisingly complex task; here, to my mind, is a good

candidate for a change to TEX.

or primitives upon which such a command could
be constructed. One can imagine a kpathsea-
like system library which handles requests for
both files and bits. When a search is ambigu-
ous, the engine could issue a warning.

2. Bend the rules and allow the back end (system-
dependent implementation) of \input to search
for bits if its argument does not match a file
name. This change would not break the trip
test, and need not be considered an change to
TEX.

The search method for bits could be path
searching like kpathseaor involve other schemes
like file stamp attributes or a catalog of cross
references like the SGML Open HTML catalog
file (see Appendix D of Goossens and Saarela,
1995b). When a search is ambiguous, the en-
gine could issue a warning.

This is the most promising solution to pursue.

3. Develop a sophisticated front-end to LATEX that
will hide from the user a preprocessing stage
that assembles a conventional source document
for compilation.

A back-end solution is going to be more stable
and portable than a front-end solution, but it must
inevitably be less ambitious and slower to appear.

Experiments in LATEX

The author is in the process of implementing bits in
a limited way within LATEX. The ongoing project,
called Frankenstein, will provide several bit types
as well as generic routines for creating new ones. It
will be a poor-man’s Object-Oriented Processor (see
Baxter, 1994). The anchor for bits, available in the
newclude package, has the following syntax:

\includebit{〈bit name〉}{〈file name〉}

And a bit is tagged as follows:

\begin{〈bit type〉}{〈bit name〉}{〈init code〉}
...

\end{〈bit type〉}

For example, the command

\includebit{Ode to a Lion}{safari}

would include the bit that is declared in the file
safari.tex with

\begin{poem}{Ode to a Lion}

{\numberstanzas

\newcommand\growl{{\large Gr\"owl!}}}

The new interface to \input provided by the
newclude package implements two new basic com-
mands, a command like \include but without the
enclosing \clearpages, and a command to include

272 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Modularity in LATEX

a delimited section of a disk file. The omission of
the \clearpages is achieved by writing out a single
aux file per document (eliminating the additional
ones for each file included with \include). None of
the features of the old \include command are lost.
The task of including only a delimited section of an
included file is accomplished by generalizing the ver-
batim package so that all irrelevant parts of the the
file can be ignored.
The success of the system so far is promising.

It is now possible with LATEX to create a document
whose contents are LATEX environments distributed
among an arbitrary number of disk files. In this
case these files are used as auxiliary sources, but
nothing prevents them from being principal source
files that can be processed independently by LATEX.
That is, they may have the usual \documentclass
declaration and document environment or not, it is
irrelevant.
One can imagine the following application: a

teacher’s 25 students turn in (or, better, make avail-
able over a network) 25 LATEX sources containing
three book reviews each. The teacher can prepare
a document consisting of all the reports on a single
book, or a portfolio of the best reviews of each stu-
dent, or a snapshot of their work in progress. It
remains possible for the students to format their
sources in their own preferred manner, completely
independent of the formatting the teacher chooses
for the composite documents. Since the sources for
each are the same, version control does not involve
more than the usual task of keeping document im-
ages up to date with principal sources.
Further applications suggest themselves read-

ily. A lecturer can extract derivations or figures or
abstracts or quotations from scholarly papers and
incorporate them into slide presentations. If any of
the source material is revised in the future, it need
only be revised in one place. Selected parts of a
LATEX source can be exported and published on the
World Wide Web using latex2html. This is already
possible using that program’s conditional inclusion
facilities, but the bit solution allows the same source
to export different parts of itself to different web
documents without need to alter it (see Goossens
and Saarela, 1995b).
The limitations encountered in this system have

prompted theoretical contemplation of more power-
ful improvements. The shortcomings include, no-
tably, the continuing dependence of bit names on
disk file names. The method of including regions of
files accepts only a strict verbatim syntax and verba-
tim matches for the delimiters. TEX inserts \par at

an \input, so that bit boundaries must correspond
with paragraph boundaries.2

These are significant limitations, and the way
forward in LATEX is difficult. The verbatim and doc
packages are evidence of how complex is the task
of getting TEX to perform the offices of even a sim-
ple inflexible text stream editor. Moreover, it seems
foolhardy to attempt to emulate in LATEX what can
be done in UNIX with minimal effort, and proba-
bly with no more effort on other TEX platforms. I
believe these experiments in LATEX are going to be
useful, but the most satisfactory way forward must
be toward one of the solutions suggested at the end
of the previous section.

The implementation of block

modularity

I observed above that block elements are specified
in a variety of ways. Some (though not all) of the
differences can be justified by an appeal to natural
user syntax. It would certainly be inconvenient most
of the time, for example, to have to type

\beginparagraph

...

\endparagraph.

The differences present a problem, however, to the
LATEX developer for whom, as a programmer, stan-
dards are always an advantage.
TEX’s internals confront us with basic differ-

ences between those units handled by an every*
token variable (paragraphs, lines, etc.), those han-
dled by TEX’s grouping mechanism (environments,
\items), and those handled by macro arguments
(e.g., \emph). A good programmer interface would
hide these differences as much as possible.
The number and format of optional and manda-

tory arguments to environments is nonstandard. In
the present LATEX environment, one needs to rely on
a convention, such as the syntax given above for bits,
the syntax suggested by Baxter (1994) of a series of
command sequences each taking a single mandatory
argument, or a single argument parsed by the keyval
package.
The document “environment” looks like an en-

vironment and should be parallel to one. The pream-
ble is just a special kind of argument that is serving
to instantiate a block element, a bit of type “docu-
ment”.
The list environment is an attempt to pro-

vide a standard programmer interface to defining a

2 This behavior seems to be another good candidate for a

change to TEX.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 273

Matt Swift

block element made up of a single kind of subele-
ment separated by dividing commands. This is the
right idea and can profitably be made more general:
the inheritance (nesting) of lists is ad hoc, and only
one kind of subelement is allowed (that is, \items).
In typesetting a play, for example, you would like at
least two kinds of subelements: speeches and stage
directions. This of course could be implemented us-
ing environments, but there are many situations in
which using dividing commands rather than enclos-
ing commands is preferable (e.g., ease of use, im-
porting or converting source material).

Intra-package modularity

While developing the Frankenstein system, I ran
into an interesting problem which led to the idea
of intra-package modularity. I had a large package
which accomplished a number of things that I pre-
ferred to use in constellation but others were go-
ing to use singly or in arbitrary combinations. The
problem was to find a system that allowed me to
share my code with the LATEX community in a way
that both provided efficient code and allowed me to
maintain the code easily. Using the vocabulary in-
troduced in this paper, the problem was how to get
a single disk file to efficiently provide more than one
feature.
If I broke up my large package into a number

of smaller independent packages, then each package
would be efficient when used alone but I would have
to maintain several different packages that shared
common code and documentation. In some cases,
the shared code was so brief that it seemed ineffi-
cient and confusing to separate it into its own disk
file. There would also be an efficiency problem with
TEX’s resources such as command names and coun-
ters, since each package would have to reserve its
own resources. A way was desired to let this group
of packages share resources, while preventing con-
flicts with other packages.
With a tool like noweb (see Bzyl, 1995), the

doc package and docstrip program, or an imple-
mentation of features as discussed above, a macro
written only once in the source can end up in any
number of extracted packages. None of the standard
defining commands, however, are suitable for defin-
ing such a macro. If \def is used, all the extracted
packages are vulnerable to name conflicts with other
packages (not to mention self-conflict during devel-
opment). But \newcommand is also wrong because
then the extracted packages could not be used to-
gether—the second package to define the command
would fail. If \renewcommand were used, the first

would fail. The command \providecommand, which
defines a macro only if it is not already defined,
was added to LATEX2ε. But using this, one assumes
that if the macro was already defined it has an ac-
ceptable definition. This level of checking might be
sufficient in some circumstances, but a command is
desired that guarantees a macro will subsequently
have a particular definition. To this end I define
\guaranteecommand which calls \newcommand if its
first argument is undefined and \CheckCommand if it
is already defined.
In the Frankenstein source, any macro which

will end up in more than one package, but which I do
not want to install into a separate package required
by the others, is defined using \guaranteecommand.
The definition of \guaranteecommand occurs in the
safedefs package, which all the other packages re-
quire (though it is not hard to bootstrap this one
command, to get it to guarantee itself).

Disk files and copyrights

The LATEX developers have put a lot of effort into
making it easy to create sources which reliably pro-
duce identical document descriptions (identical dvi
files) at different sites. Such uniformity in the docu-
ments derived from a single source is very important
in many situations, especially when a longer docu-
ment is assembled from multiple sources.
One of the ways in which the developers have

sought to establish and maintain this standard is by
placing conditions on the distribution of the LATEX
system files that require disk file names to serve as
unique labels for segments of code. Because com-
mands like \documentclassand \usepackage cause
LATEX to load files with particular names, there is
one and only one (legally-produced) document de-
scription that can be generated from a source which
invokes standard LATEX classes and packages.
No one doubts the usefulness of a good stan-

dard for deriving documents from sources, but this
standard has been achieved at the cost of abstrac-
tion. The unique labels which serve to establish the
standard should not of necessity coincide with the
labels by which a feature or document class is iden-
tified in the source. It should never be necessary to
alter a source to derive different document descrip-
tions from it. Altering sources is time-consuming. It
causes timestamps to be updated and confuses ver-
sion control systems. It can introduce errors, and
it encourages a proliferation of not-quite-identical
copies.
On the other hand, it should always remain ob-

vious how to generate the standard document from

274 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Modularity in LATEX

a source, so that standard documents are generally
available and convenient.
In response to these two concerns, the author

has developed the ALATEX system. The A may be
understood to stand for alternate or abstract, or to
be the indefinite article, which emphasizes that fact
that documents derived from sources with ALATEX
are just one of an indefinite number of possibilities.

ALATEX is a simple system. It is a slightly-
modified clone of the standard LATEX format, which
when used as distributed behaves exactly like LATEX,
except that it displays its own identification ban-
ner. (Only in the most perverse situations will the
two formats not produce identical output.) Inter-
nally, the behavior is not quite the same. The
\documentclass command in ALATEX parses its ar-
guments and passes them to a file of code called
metaclas.cfg. As its name implies, the file is a
meta-class which determines how the class speci-
fication in the source should be interpreted. And
just as important, the file may be altered and dis-
tributed with no restrictions. The meta-class dis-
tributed with ALATEX emulates LATEX’s behavior,
but this can easily be overridden by changing the
file, or putting a different file with the same name
earlier in TEX’s search path. Code that enables
either of two convenient mechanisms of overriding
are provided in comments. Using one of these sam-
ple mechanisms restores a useful level of abstraction
to LATEX sources, because if full abstract control is
available at the first line of the source, it is available
for the whole source.
Because it is very difficult to have a working

ALATEX without also having a working LATEX, no
one is likely to find it inconvenient to create, from
the same source, either a standard LATEX dvi file
(by invoking the LATEX format) to facilitate seamless
exchange of sources, or a not-standard-LATEX dvi file
(by invoking the ALATEX format with an appropriate
meta-class).
It should be emphasized that there is no rea-

son at all to compose sources while previewing with
ALATEX. Doing so could compromise the portability
of the source if a strange meta-class is used. ALATEX
is useful only to change the look of already-existing
sources from the standard appearance to a nonstan-
dard appearance. Even in this case, using ALATEX
is not always necessary, since it may be possible to
legally modify the appropriate style files, or not too
inconvenient to modify the source.

Conclusion

I have argued for the advantages of several kinds
of modularity in the LATEX user and developer en-
vironments that do not presently exist to a satis-
factory degree. A primary difficulty not resolved
is the choice of the domain in which to improve
modularity. Are the Frankenstein, newclude, and
ALATEX solutions adequate? If not, should solutions
be effected in LATEX, in LATEX3, at the back end
of TEX in platform-dependent TEX distributions, at
the front end of LATEX in platform-dependent inte-
grated LATEX user and developer environments, in
extensions to TEX (ε-TEX), or in enhancements to
TEX (NT S)? In any case I hope I have won inter-
est and enthusiasm for discussing and working on
changes in a certain direction.
The Frankenstein system, the safedefs and new-

clude packages, and the ALATEX format should be
available on CTAN by the time of publication, if they
are not in the meantime adopted in some form into
the standard LATEX distribution.

References

NTS. “Frequently asked questions of NTS-L”. 1995.
5th edition, available as CTAN:info/nts-faq,
maintained by Jörg Knappen <knappen@

vkpmzd.kph.uni-mainz.de>.

W. E. Baxter. “An object-oriented programming
system in TEX”. TUGboat 15(3), 331–338, 1994.

W. Bzyl. “Literate plain source is available!”.
TUGboat 16(3), 297–299, 1995.

M. Goossens and Saarela, Janne. “A practical in-
troduction to SGML”. TUGboat 16(2), 103–145,
1995a.

M. Goossens and Saarela, Janne. “TEX to HTML
and back”. TUGboat 16(2), 174–214, 1995b.

A. Ogawa. “Object-oriented programming, descrip-
tive markup, and TEX”. TUGboat 15(3), 325–
330, 1994.

T. V. Raman. “An Audio View of (LA)TEX Doc-
uments— Part II”. TUGboat 16(3), 310–314,
1995.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 275

A Multienumerate Package

Dennis Kletzing
Stetson University

DeLand FL 32720

USA

Email: kletzing@bliss.stetson.edu

Abstract

The multienum.sty package allows the user to produce an enumerated array of
multiple columns, each vertically aligned on the counter. An optional argument
provides for consecutive numbering of the array items, or an even-only or odd-
only numbering scheme.

Introduction

Typesetting the solutions manual for a text usu-
ally involves creating an enumerated list involving
many short answers. Typically these are set with
several items per line, with no attempt made to ver-
tically align the exercise numbers. This article de-
scribes a package, multienum.sty, which provides
an environment, multienumerate, that produces an
enumerated array in which columns are vertically
aligned on the counter. If the user wishes, the enu-
meration counter can be changed to give a list of
even-only numbers or odd-only numbers.

1. Not 2. Linear 3. Not

4. Quadratic 5. Not 6. Linear

7. No; if x = 3, then y = −2. 8. x = 2

9. (x1, x2) = (2 +
1

3
t, t) or (s, 3s− 6)

10. y = 7 11. x+ y = 3 and z = 1

12. (2,−1, 3) 13. None 14. (2, 1, 0, 1)

15. 2 16. 3 17. 4 18. 5

19. (0, 0) and (0, 1) 20. If x = 1, y = −2.

21. (10, 11, 0, 0) 22. (0,−1, 0,−5)

Table 1: An enumerated array of solutions

What the package does

Table 1 shows a typical enumerated array. The sec-
ond entry in the third row is left blank since we want
the first item to expand into its space. To get the
vertical alignment of the counter in column 3, we
set row 3 as three entries, but left the second entry
blank thus giving more space for the first entry. To
produce this array, we typed the following:

\begin{multienumerate}

\mitemxxx{Not}{Linear}{Not}

\mitemxxx{Quadratic}{Not}{Linear}

\mitemxox{No; if $x=3$,

then $y=-2$.}{$x=2$}

\mitemx{$(x_1,x_2)=(2+\frac{1}{3}t,t)$ or

$(s,3s-6)$}

\mitemxxo{$y=7$}{$x+y=3$ and $z=1$}

\mitemxxx{$(2,-1,3)$}{None}{$(2,1,0,1)$}

\mitemxxxx{2}{3}{4}{5}

\mitemxx{$(0,0)$ and $(0,1)$}{If $x=1$,

$y=-2$.}

\mitemxx{$(10,11,0,0)$}{$(0,-1,0,-5)$}

\end{multienumerate}

The environment multienumerate has an optional
argument1 for enumerating even-only or odd-only
arrays.

• \begin{multienumerate} ...

\end{multienumerate}

produces a consecutively enumerated array

• \begin{multienumerate}[evenlist]...

\end{multienumerate}

produces an enumerated array using only even
numbers

• \begin{multienumerate}[oddlist] ...

\end{multienumerate}

produces an enumerated array using only odd
numbers

Using the package

Each row of the enumerated array is set using one
of nine commands:

1 The optional argument works only with LATEX2e.

276 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

A Multienumerate Package

\mitemx A single item in the row.

\mitemxx Two items in the row.

\mitemxxx Three items in the row.

\mitemxox Three items in the row with the
center item left blank so the first
item can extend into its space.

\mitemxxo Three items in the row, the last
item left blank so the second item
can extend into its space.

\mitemxxxx Four items in the row.

\mitemxoxx Four items in the row, the second
space left blank so the first item can
extend into its space.

\mitemxxox Four items in the row, the third
space left blank so the second item
can extend into its space.

\mitemxxxo Four items in the row, the last
space left blank so the third item
can extend into its space.

For example, \mitemxxx{a}{b}{c} sets the en-
tries a, b, and c equally spaced across the row, while
\mitemxox{a}{c} sets the two items, a and c, across
the row as if there were three items, leaving the sec-
ond entry blank so that the first entry can extend
into its space; and \mitemxxo{a}{b} sets the two
items, a and b, as if there were three items, but
leaves the space for the third item blank, allowing
the second entry to extend into its space.
A convenient way to use the multienumerate

package is with a two column layout using multicols.
Figure 2 at the end of the article illustrates several
possibilities.
A disadvantage of the package is that the user

must choose how to typeset each line in the array
rather than letting TEX decide how to do it. This
creates a lot of overhead in the macro since separate
commands are needed for each possibility. It is not
difficult to write a macro that will let TEX decide
how many items to set on each line. While this ap-
proach is more efficient, especially if one changes the
entries, it does not always give the visual appearance
the user may want.

How the package works

We describe how the package typesets a line con-
taining two items. The other situations are similar.
Figure 1 shows two items on a line, each con-

sisting of a label box of width lw=\labelwidth, a
label separation of width ls=\labelsep, and a box
containing the entry itself (set \raggedright) of
width .5rxx=.5\remainxx. The length \remainxx
is the total space remaining after two label widths

and two label separations have been removed; thus,
it is the amount of space available for typesetting
the two entries, each in a box whose width is one-
half \remainxx. Since the total width of the line is
\hsize, it follows that

2\labelwidth+ 2\labelsep
︸ ︷︷ ︸

\usedxx

+\remainxx

= \hsize

and therefore

\remainxx= \hsize− \usedxx

In this way the the width of the box is calcu-
lated when two items are typeset on the line.

The macro

A somewhat trimmed copy of the package follows
(\newlength and \newcounter declarations, higher
levels of multienumerate list nesting, and four-across
items are omitted). The full source of the pack-
age may be obtained by anonymous ftp from CTAN
macros/latex/contrib/other/misc/

multienum.sty, or by email from the author.

%Create multiple item styles

\newcommand{\labelname}{%

\csname labelenum\romannumeral

\themultienumdepth\endcsname}

\newcommand{\itemx}[1]{\parbox[t]%

{\labelwidth}{\hfill{\labelname}}

\hskip\labelsep%

\parbox[t]{\remainx}{\raggedright #1}%

\smallskip}

\newcommand{\itemxx}[2]{\parbox[t]%

{\labelwidth}{\hfill{\labelname}}

\hskip\labelsep\parbox[t]%

{.5\remainxx}{\raggedright #1}

\hfill\parbox[t]%

{\labelwidth}{\hfill{\labelname}}

\hskip\labelsep\parbox[t]%

{0.5\remainxx}{\raggedright #2}

\smallskip}

\newcommand{\itemxxx}[3]{\parbox[t]%

{\labelwidth}{\hfill{\labelname}}

\hskip\labelsep\parbox[t]%

{.3333\remainxxx}{\raggedright #1}

\hfill\parbox[t]%

1. stuff

lw ls .5rxx
� - � - � - � - � - � -

2. stuff

lw ls .5rxx

Figure 1: One line containing two items

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 277

Dennis Kletzing

{\labelwidth}{\hfill {\labelname}}

\hskip\labelsep\parbox[t]%

{0.3333\remainxxx}{\raggedright #2}

\hfill\parbox[t]%

{\labelwidth}{\hfill{\labelname}}

\hskip\labelsep\parbox[t]%

{0.3333\remainxxx}{\raggedright #3}

\smallskip}

\newcommand{\itemxox}[2]{\parbox[t]%

{\labelwidth}{\hfill{\labelname}}

\hskip\labelsep\parbox[t]%

{\remainxox}{\raggedright #1}

\hfill\parbox[t]%

{\labelwidth}{\hfill{\labelname}}

\hskip\labelsep\parbox[t]%

{0.3333\remainxxx}{\raggedright #2}

\smallskip}

\newcommand{\itemxxo}[2]{\parbox[t]%

{\labelwidth}{\hfill{\labelname}}

\hskip\labelsep\parbox[t]%

{0.3333\remainxxx}{\raggedright #1}

\hfill\parbox[t]%

{\labelwidth}{\hfill{\labelname}}

\hskip\labelsep\parbox[t]%

{\remainxox}{\raggedright #2}

\smallskip}

%Define counter options

\newcommand{\oddlisti}{%

\setcounter{multienumi}{-1}%

\renewcommand{\labelenumi}%

{\ifodd\value{multienumi}%

\addtocounter{multienumi}{2}%

\themultienumi.\else

\addtocounter{multienumi}{1}%

\themultienumi.%

\addtocounter{multienumi}{-2}\fi}}

\newcommand{\evenlisti}{%

\setcounter{multienumi}{0}

\renewcommand{\labelenumi}%

{\ifodd\value{multienumi}%

\addtocounter{multienumi}{1}%

\themultienumi.%

\addtocounter{multienumi}{-2}\else

\addtocounter{multienumi}{2}%

\themultienumi.\fi}}

\newcommand{\regularlisti}{%

\setcounter{multienumi}{0}%

\renewcommand{\labelenumi}%

{\addtocounter{multienumi}{1}%

\arabic{multienumi}.}}

\newcommand{\listtype}[1]{#1}

\newcommand{\mitemx}[1]{%

\item[] \itemx{#1}}

\newcommand{\mitemxx}[2]{%

\item[] \itemxx{#1}{#2}}

\newcommand{\mitemxxx}[3]{%

\item[] \itemxxx{#1}{#2}{#3}}

\newcommand{\mitemxox}[2]{%

\item[] \itemxox{#1}{#2}}

\newcommand{\mitemxxo}[2]{%

\item[] \itemxxo{#1}{#2}}

%Define the multienumerate environment

\newenvironment{multienumerate}%

[1][regularlist]{%

\ifnum \themultienumdepth >3

\@toodeep\else

\addtocounter{multienumdepth}{1}

\edef\@multienumctr{%

multienum\romannumeral%

\themultienumdepth}

{\csname label\@multienumctr%

\endcsname}{%

\usecounter{\@multienumctr}}%

\listtype{\csname#1\romannumeral

\themultienumdepth\endcsname}\fi

\begin{list}{}{%

\ifnum\themultienumdepth=2

\setlength{\leftmargin}{23pt} \else

\setlength{\leftmargin}{0pt} \fi%

\setlength{\labelwidth}{18pt}

\setlength{\labelsep}{5pt}%

\setlength{\usedx}{\labelwidth}%

\addtolength{\usedx}{\labelsep}%

\addtolength{\usedx}{\leftmargin}%

\setlength{\remainx}{\hsize}%

\addtolength{\remainx}{-\usedx}%

\setlength{\usedxx}{2\labelwidth}%

\addtolength{\usedxx}{2\labelsep}%

\addtolength{\usedxx}{\leftmargin}%

\setlength{\remainxx}{\hsize}%

\addtolength{\remainxx}{-\usedxx}%

\setlength{\usedxxx}{3\labelwidth}%

\addtolength{\usedxxx}{3\labelsep}%

\addtolength{\usedxxx}{\leftmargin}%

\setlength{\remainxxx}{\hsize}%

\setlength{\remainxox}{.666\remainxxx}%

\addtolength{\remainxox}{\labelwidth}%

\addtolength{\remainxox}{\labelsep}%

\setlength{\itemindent}{0pt}}}{%

\addtocounter{multienumdepth}{-1}%

\end{list}}

278 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

A Multienumerate Package

Answers to Even Exercises

Chapter 1

Section 1

2. 2 4. 5 6. −4

8. x = 1 10. y = −7 12. z = 3

14. x2 − 3x+ 7 = 0 16. Yes

18. 2 20. 5 22. −4

24. x = 1 26. y = −7 28. z = 3

30. x2 − 3x+ 7 = 0 32. Yes

34. 2 36. 5 38. −4

40. x = 1 42. y = −7 44. z = 3

46. x2 − 3x+ 7 = 0 48. Yes

50. 2 52. 5 54. −4

56. x = 1 58. y = −7 60. z = 3

62. 2 64. 5 66. −4

68. x = 1 70. y = −7 72. z = 3

74. 2 76. 5 78. −4

Section 2

2. Yes 4. 3x2 + x = −2

6. If x = 1, the only solution is y = 3.

8. x = 1 10. y = −7 12. z = 3

14. Yes 16. No 18. No

20. 2 22. 5 24. −4

26. x2 − 3x+ 7 = 0 28. Yes

30. 2 32. 5 34. −4

36. x = 1 38. y = −7 40. z = 3

42. x2 − 3x+ 7 = 0 44. Yes

46. 2 48. 5 50. −4

52.

6
-

�
�
��

54.

6
-

�
�
��

56. Billy should sell 3 red marbles, buy 2 white
marbles, and keep the rest.

58. Sarah should buy 2 pounds of squash, 3
pounds of potatoes, and 4 pounds of fish.

Answers to Odd Exercises

Chapter 2

Section 1

1. Yes 3. No 5. No 7. 3

9. 5 11. 2 13. −8 15. 7

17. 2x− 3y = 6 19. 1 21. −2

23. 2 25. 5 27. 3x2 − 2y2 = 1

29. y = 3 31. −5 33. x = 9 35. y = 1

37. 7 39. 2x+ 3y = −5 41. 6

43. 7 45. 3 47. 1 49. 6

Quiz #1. Circle the correct answer.

1. Which of the following numbers is a solution
of the equation 2x+ 5 = 9:
a. 0 b. 1 c. 2 d. 3

2. Which of the following numbers is a solution
of the equation x2 + 5 = 9:

a. 0 b. −1 c. −2 d. −3

3. Which of the following expressions is equal to
x2 − y2:

a. (x− y)2 b. (x+ y)2

c. (x− y)(x+ y) d. 0

4. The graph of the equation 3x2 − 2y = 0 is a:

a. circle b. parabola

c. ellipse d. line

5. If x = 2, then the value of x3 − x+ 3 = is:

a. 2 b. 6 c. None of these.

6. Which of the following statements correctly
expresses the meaning of the algebraic
expression 2(x+ y) = 6:

a. twice the value of
x added to twice
the value of y is
equal to 6

b. twice the sum of
x and y is equal
to 6

7. Evaluate the expression 2− [3 + (5− 9)] + -3.

a. 6 b. −1 c. 4 d. 0

8. Evaluate the expression 5 + [3− (1 + -2)].

a. 5 b. −1 c. 9 d. 1

Figure 2: Samples typeset using multienum.sty

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 279

Hyphenation in TEX—Quo Vadis?
∗

Petr Sojka
Faculty of Informatics, Masaryk University
Burešova 20, 602 00 Brno
Czech Republic
Email: sojka@muni.cz

Pavel Ševeček
Faculty of Informatics, Masaryk University
Burešova 20, 602 00 Brno
Czech Republic
Email: pavel@muni.cz

Abstract

Significant progress has been made in the hyphenation ability of TEX since its first
version in 1978. However, in practice, we still face problems in many languages
such as Czech, German, Swedish etc. when trying to adopt local typesetting
industry standards.
In this paper we discuss problems of hyphenation in multilingual documents

in general, we show how we’ve made Czech and Slovak hyphenation patterns, and
we describe our results achieved using the program PATGEN for hyphenation pat-
tern generation. We show that hyphenation of compound words may be partially
solved even within the scope of TEX82. We discuss possible enhancements of the
process of hyphenation pattern generation and describe features that might be
reasonable to think about to be incorporated in Ω or another successor to TEX82.

Motivation

“Go forth and make masterpieces
of hyphenation patterns . . . ”

(Haralambous, 1994)

Editors’ and publishers’ typographical requirements
for camera-ready prepared documents are growing.
To meet some of their requirements in TEX, es-
pecially when typesetting in narrow columns, one
needs perfect hyphenation patterns in order to find
almost all permissible hyphenation points.
When making Czech hyphenation patterns and

typesetting multilingual documents we encountered
some problems with achieving quality hyphenation
and decent-looking documents with TEX. This work
has led to our ideas about possible remedies and
future extensions in a successor to TEX.
Our paper consists of three parts. In the first

part we try to summarize the developments that
have been made on the issue since TEX’s birth.

* Reprinted with corrections from EuroTEX’ 94 proceed-
ings, Gdańsk, pp. 59–68 with permission.

In the second, we describe our attempts to
create Czech and Slovak hyphenation patterns and
summarize hints and suggestions for PATGEN users.
In the third part we discuss possible improve-

ments that might take place in a TEX successor (Ω,
ε-TEX or New Typesetting System (NT S)).

The hyphenation story

Let’s review the developments in hyphenation in
TEX that have been made so far.

English In TEX78 a rule-driven algorithm for En-
glish was built-in by Liang and Knuth. Their al-
gorithm found 40% of the allowable hyphens, with
about 1% error (Liang, 1981). Although authors
claimed that these results are “quite good”, Liang
continued working on the generalization of the idea
of rules expressed by hyphenating and inhibiting
patterns. In his dissertation (Liang, 1983) he de-
scribes a method, which is used in TEX82, based
on the generalization of the prefix, suffix and the
vowel-consonant-consonant-vowel rules. He wrote
(in WEB) the program PATGEN (Liang and Breiten-
lohner, 1991) to automate the process of pattern
generation from a set of already hyphenated words.

280 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Hyphenation in TEX—Quo Vadis?

He started with the 1966 edition of Webster’s Pocket
Dictionary that included hyphenated words and in-
flections (about 50 000 entries in total). In the early
stages, testing the algorithm on a 115 000 word dic-
tionary from the publisher, 10 000 errors in words
not occurring in the pocket dictionary were found.
“Most of these were specialized technical terms that
we decided not to worry about, but a few hundred
were embarrasing enough that we decided to add
them to the word list.” (Liang, 1983, p. 30). He
reports the following figures: 89,3% permissible hy-
phens found in the input word-list with 4447 pat-
terns with 14 exceptions.
Liang’s method is described by Knuth (1986b,

Appendix H) and was later adopted in many pro-
grams such as troff (Emerson and Paulsell, 1987)
and Lout, and in localizations of today’s WYSI-
WYG DTP systems such as QuarkXPress, Ven-
tura, etc. Although specialized dictionaries such
as Allen’s (1990) by Oxford University Press sepa-
rate possible word-division points into at least two
categories (preferred and less recommended), we
have not seen any program that incorporates the
possibility of taking into account these classes of
hyphenation points so far.

Those other languages
“. . . patterns are supposed to be prepared

by experts who are paid well for their expertise.”

(Knuth, 1986b, p. 453, 8th printing)

The first version of TEX82 allowed only one set of
patterns to be loaded at a time. Thus it was not pos-
sible to typeset multilingual documents with correct
hyphenation in all languages and this limitation was
quite unsatisfactory. Already in 1985, two attempts
to solve the problem were made:

Multilingual TÊX: Extensions, most of which af-
terwards Knuth adopted in TEX 3.x were sug-
gested and implemented by Ferguson (1985).
A new primitive \language1 was intro-
duced for switching between several sets of
\patterns and hyphenation exceptions. A new
\charsubdef primitive is still used in today’s
8-bit implementations of TEX. Full details are
give by Ferguson (1988).

ISITEX: Barth and Nirschl (1985) presented an ap-
proach on achieving decent hyphenation in Ger-
man texts under the name SITEX, or in its in-
teractive version under the name ISITEX. Their
method, (available as a change file for UNIXTEX
from eiunix.tuwien.ac.at) has been used

1 A rather misleading name, as it deals with only one par-
ticular feature of a language—hyphenation—which feature
is of only limited interest to linguists.

in Germany for years and is being improved
(Barth and Steiner, 1992; Barth, Steiner, and
Herbeck, 1993). This approach has been pro-
posed for inclusion in NT S (NTS-L, 1992–).
SITEX (ISITEX for the interactive version) in-
troduces a new primitive \nebenpenaltywhich
allows differentiation between main (compound
word boundaries) and secondary (word stem)
hyphenation points.
A new notation for hyphenation patterns is
introduced and a hyphenation algorithm for
German is hardwired into the program. The ta-
bles for the algorithm, file sihyphen.tex (60K)
are written manually and can be simply edited
and enriched. However, no provision for the
generation of these patterns from a word-list
(such as the PATGEN program) is offered.

During the last 15 years almost every year there
appeared a paper in TUGboat reporting new pat-
terns for some language (see table 1). Another cou-
ple of hyphenation patterns, fonts and preprocessors
are available in ScholarTEX

2 (Haralambous, 1991).
Although Don Knuth introduced the new prim-

itives \language and \setlanguage for switching
between several sets of hyphenation patterns in
TEX 3.0, there are indications that not all of the
related problems have been solved and further in-
vestigations are necessary (Fanton, 1991).
Proposals on how to customize TEX for a new

language were suggested by Partl (1990). New
tools to simplify the generation of 8-bit (virtual)
fonts were designed— fontinst (Jeffrey, 1993) and
accents (Zlatuška, 1991). A macro package for
simple language switching, babel (Braams, 1991a;
Braams, 1991b; Braams, 1993), was produced to
simplify typesetting of multilingual documents. An
international version of the Makeindex program was
written (Schrod, 1991). The DC fonts (Ferguson,
1990; Haralambous, 1992a; Haralambous, 1993a),
designed to permit hyphenation in many languages,
are now being widely distributed, forced by the new
LATEX wave. Compliance with the suggestions of the
working group TWGMLC3 (Haralambous, 1992a)
could help too (naming conventions for hyphenation
files, etc.). Multilingual document aspects of type-
setting are being collected in the scope of LATEX3
project in (Gaulle, 1994), where a nice collection
of language-related TEX primitives can be found,
together with definitions of the terminology used.

2 ScholarTEX is a registered trademark of Yannis
Haralambous

3 TEXnical Working Group on Multiple Language
Coordination

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 281

Petr Sojka and Pavel Ševeček

Table 1: Hyphenation patterns for TEX with PATGEN statistics for various languages

language trie ops done by #patt size author (& reference)
BG (Bulgarian) 688 56 hand 263 1672 Ognyan Tonev/90
CA (Catalan) 661 11 hand 826 6136 Goncal Badenes, Francina Turon/91
CY (Welsh) 8552 143 PATGEN 6728 43162 Yannis Haralambous (Haralambous, 1993b)
CZ1 (Czech) 3676 90 hand 4479 25710 Ladislav Lhotka (1991)
CZ2 5302 67 PATGEN 4196 23474 Pavel Ševeček (Sojka and Ševeček, 1994)
DEmin (German) 6099 170 PATGEN 4066 25660 Norbert Schwarz/88
DEmax 9980 255 PATGEN 7007 45720 Norbert Schwarz/88
DE (v3.1) 8375 207 PATGEN 5719 39251 Norbert Schwarz, Bernd Raichle/94

(Schulze, 1984; Partl, 1988; Breitenlohner,
1988; Obermiller, 1991; Kopka, 1991)

DK (Danish) 1815 60 PATGEN 1145 6411 Frank Jensen/92
EL (Mod. Greek) 1278 23 hand 1616 8786 Yannis Haralambous/92
EO (Esperanto) 4895 143 PATGEN 4118 23224 Derk Ederveen/93
ES (Spanish) 1106 29 hand 578 4609 Francesc Carmona/93
ET (Estonian) 2054 45 PATGEN 1267 7976 Enn Saar/92
FI (Finnish) 583 27 hand 232 1342 Kauko Saarinen/92, (Saarinen, 1988)
FR (French) 1634 86 comb. 917 30022 Jacques Désarménien (1984), Daniel Flipo,

Bernard Gaulle et al./84–94
Ancient Greek hand Yannis Haralambous (Haralambous, 1992b)
HR (Croatian) 1471 46 hand 916 7250 Cvetana Krstev/93
HY (Armenian) Yannis Haralambous (in ScholarTEX)
IS (Icelandic) 5477 145 PATGEN 4187 29919 Jorgen Pind/87
IT (Italian) 1327 15 hand 729 4255 Salvatore Filippone/92 (Canzii, Genolini,

and Lucarella, 1984)
IT (Italian) 529 37 hand 210 2571 Claudio Beccari/93 (Beccari, 1992)
Latin hand Yannis Haralambous (1992b)
Modern Latin hand Claudio Beccari (1992)
LT (Lithuanian) 2169 77 PATGEN 1546 9639 Vitautas Statulevicius & Yannis

Haralambous/92
NL1 (Dutch) 7824 124 PATGEN 6105 37997 CELEX/89
NL2 10338 187 PATGEN 7928 50969 CELEX/89
NL3 520 24 hand 326 1732 Peter Vanroose
NO (Norwegian) 3669 220 PATGEN 2371 15589 Ivar Aavatsmark/92
PL (Polish) 4954 194 hand 4053 28907 Hanna Kołodziejska (1987, 1988)
PT (Portuguese) 374 10 hand 126 534 Pedro J. de Rezende (1987)
RU (Russian) 4599 92 hand 4121 29272 Dimitri Vulis (Vulis, 1989; Malyshev,

Samarin, and Vulis, 1991a; Malyshev,
Samarin, and Vulis, 1991b; Samarin and
Urvantsev, 1991)

SK (Slovak) 3600 248 hand 2569 22628 Jana Chlebíkova/92
SK 7606 78 PATGEN 6137 35623 Pavel Ševeček (Sojka and Ševeček, 1994)
SR (Serbian) 1475 40 hand 896 6890 Cvetana Krstev/89 (Krstev, 1991)
SV (Swedish) 5269 125 PATGEN 3733 23821 Jan Michael Rynning/91
TR (Turkish) 678 16 hand 1834 9580 Pierre A. MacKay (1988)
UK (UK English) 10995 224 PATGEN 8527 54769 Dominik Wujastyk/93
US (US English) 6075 181 PATGEN 4447 27302 Frank Liang/82 (Liang, 1983)
US 6661 229 PATGEN 4810 30141 G.D.C. Kuiken (1990)

282 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Hyphenation in TEX—Quo Vadis?

Exception logs
“If any computer center decides to preload
different exceptions from those in plain TEX

(i.e., in the file HYPHEN.TEX),
the changed exceptions should not

under any circumstances
be put into HYPHEN.TEX or PLAIN.TEX.

All local changes should go into a separate file,
so that TEX will still produce identical results

on all machines. In fact, I recommend not preloading
those changes, but rather assuming

that individual users will have
their own favorite collection of updates

to the standard format files.”
(Knuth, 1983)

The exception log and corrections for US English
hyphenation have been reported several times – (e.g.
Thulin, 1987; Beeton, 1989; Kuiken, 1990; Bee-
ton, 1992), as shown in table 2. These listings are
published in accordance with DEK’s wish (Knuth,
1983). Only words with wrongly placed hyphen-
ation points are listed, not those where TEX finds
only a subset of possible breakpoints.

Table 2: Growing number of exceptions for
hyphen.tex

of where
exceptions reported

14 (Liang, 1983)
24 (Beeton, 1984, TUGboat 5, no. 1)
88 (Beeton, 1985, TUGboat 6, no. 3)
127 (Beeton, 1986, TUGboat 7, no. 3)
129 (Thulin, 1987, TUGboat 8, no. 1)
501 (Beeton, 1989, TUGboat 10, no. 3)
543 (Beeton, 1992, TUGboat 13, no. 4)

This shows that significant care and effort
is still needed and is being gradually spent on the
checking of hyphenation points during proof-reading
and that the standard US patterns are not sufficient
to satisfy current needs. Additional sets of patterns
(2 versions – ushyphen.add and ushyphen.max)
have been generated by Kuiken (1990) to cover the
exceptions by additional patterns and these add-on
files are available on CTAN and other hosts, e.g.,
ftp.cs.umb.edu. But, after having added one of
these files at the end of the \patterns command in
hyphen.tex, in order to overcome huge exception
lists that should be loaded with every document,
one loses the compatibility between different instal-
lations and acts against Knuth’s wishes.

The need to re-generate US English patterns

! TeX capacity exceeded, sorry
[exception dictionary=307.]

DEK

So, to follow Knuth’s rules, every document should
start with loading the exception file – for this,
one has to increase TEX82’s exception size (in
words) from 307 to at least 607 (as is now usual in
UNIXTEX, emTEX and other installations). How-
ever, this is barely sufficient for the current English
exception file (remember one has to add words in all
possible inflexions) but for flexive languages (such
as Czech, where from one stem there are about
20 different suffices) it is unusable.
Maybe it is time to re-generate the patterns

from a bigger (say, 200 000 entry) word-list once
again from scratch?4 Imagine the day when you
will know that TEX will find 99.99% of hyphens
contained in your copy of Webster, so you will not
have to go through a list of exceptions and a couple
of dictionaries to check hyphenation points in your
document! For backward compatibility one has to
save every document together with the patterns and
exceptions used anyway.5

Making Czech and Slovak

hyphenation patterns with PATGEN

“A program should do one thing, and do it well.”
Ken Thompson

The first Czech patterns were made in 1988 by
Novák using PATGEN from a list of 170 000 word
forms. Because of errors in his word-list, and only
partially optimized PATGEN parameter settings, the
patterns were good but not perfect.
The patterns weren’t publicly available, so

a second attempt was done by hand by Lhotka
(1991) just as MacKay (1988) did for Turkish. Be-
cause of lots of exceptions to the ‘rules’, their usage
was not quite comfortable either.
As Novák’s list of words had been lately made

public, we started compiling a bigger word-list from
various sources using the old patterns for boot-
strapping. We’ve learned a lot from the experience
described by Rynning (1991) and Haralambous
(1993b) and in a tutorial (Haralambous, 1994).

4 Otherwise in 2050 there will have to be an extra is-
sue of TUGboat devoted to the publication of exceptions to
hyphen.tex.

5 A search on CTAN via quote site index command shows
5 files of different lengths with the name hyphen.tex. (And
Knuth and Liang’s hyphen.tex can be found there under four
different names – hyphen.tex, ushyph1.tex, ushyphen.std,
ushyphen.tex –which leads to the total confusion!)

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 283

Petr Sojka and Pavel Ševeček

Czech hyphenation rules Czech hyphenation
rules are described in (Zdeněk Hlavsa et al, 1993,
pp. 56–57) and in a special book (Haller, 1956)
where a list of exceptions was published. Briefly, we
have syllable hyphenation with ‘etymological’ ex-
ceptions. Hyphenation is preferred between a prefix
and the stem, and on the boundary of compound
words. Things become complicated when:

1. The word evolved in such a way that although
historically it was built from a prefix plus the
stem of another word, today it is perceived as
a new word stem. As an example may serve the
word ro-zu-mět – “to understand” (syllable di-
vision) against roz-u-mět (roz is the prefix and
umět means “to know”).

2. There is no agreement on word hyphenation –
e.g., the current rules for word sestra – “sis-
ter” allow one to hyphenate se-stra, ses-tra
and sest-ra.

3. Word stem hyphenation points change when
a suffix is added – e.g., hrad – “castle” can’t be
hyphenated, but with a suffix could – hra-du.

4. Compound words e.g. tři-a-třiceti-letý –
“33 years old” are taken into account. Czech
has a lot of compound words, but not to the
extent that German has.

5. The hyphenation of a word depends on the se-
mantics: nar-val and na-rval.

These rules make it hard to create patterns that
describe all these exceptions and exceptions to ex-
ceptions. As we had handy a word-list with lists
of allowable prefixes and suffixes, together with pre-
liminary patterns to hyphenate word stems for boot-
strapping, we decided to generate a hyphenated list
of Czech words for PATGEN.

Stratified sampling
“A large body of information can be comprehended
reasonably well by studying more or less random

portions of the data. The technical term
for this approach is stratified sampling.”

(Knuth, 1991, p. 3)

Czech is a very flexive language; on average 20–30
inflexions can be derived from one word stem by
changing the suffix added and one can multiply it
almost twice, as negation can be created from many
words (adjectives, verbs) by prefixing ne. Thus from
a 170 000 stem word-list about 5 000 000 inflexions
may be generated. Generating patterns from such a
list would be very impractical. Because the suffixes
are often the same or similar, we generated a word-
list by means of the following rules:

1. We add only every 7th (actually 17th worked as
well) derived word form from the full list to the
PATGEN input list, with exceptions that:

2. every stem must be accompanied by at least one
derived form, and

3. every derived form with overlapping prefixes
has to be present in the PATGEN input list as
well, and

4. only one word with prefixes ne (by which one
can create negation to almost every word) and
nej (by which one creates superlatives) is in-
cluded, and

5. the hand-made list of exceptions from Haller
(1956) (about 10 000 words) and other sources
are always included.

With this procedure we have 372 562 Czech
words to work with PATGEN. We used the same
approach for Slovak. The results are in table 3.

Table 3: PATGEN statistics for the Czech and
Slovak languages

of # of hyphenation points
words Correct Wrong Missed

Czech
372562 1019686 39 18086

(98.26%) (0.01%) (1.74%)

Slovak
333139 1025450 34 15273

(98.53%) (0.01%) (1.47%)

Samples of PATGEN statistics are presented in
tables 4, 5 and 6. These tables show that by twid-
dling with PATGEN parameters one may generate var-
ious versions of patterns. Usually the size of pat-
terns and % of bad hyphenations are the minimiza-
tion criteria, but maximization of % of good (found)
hyphenations and other strategies might be chosen.

Compound words
“Hints for hyphenation are most often needed
at the word boundaries of compound words.”

(Saarinen, 1988, p. 191)

As an experiment we took our (rather huge) word-
list of Czech words in which there was marked
hyphenation only on prefix and compound word
boundaries.

284 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Hyphenation in TEX—Quo Vadis?

Table 4: Standard Czech hyphenation with Liang’s parameters for English

level length param % correct % wrong # patterns size
1 2–3 1 2 20 96.95 14.97 + 855
2 3–4 2 1 8 94.33 0.47 +1706
3 4–5 1 4 7 98.28 0.56 +1033
4 5–6 3 2 1 98.22 0.01 +2028 32 kB

Table 5: Standard Czech hyphenation with improved (size optimized) strategy (cf. table 3)

level length param % correct % wrong # patterns size
1 1–3 1 2 20 97.41 23.23 + 605
2 2–4 2 1 8 85.98 0.31 + 904
3 3–5 1 4 7 98.40 0.78 +1267
4 4–6 3 2 1 98.26 0.01 +1665 23 kB

Table 6: Standard Czech hyphenation with improved (% of correct optimized) strategy

level length param % correct % wrong # patterns size
1 1–3 1 5 1 95.43 6.84 +2261
2 1–3 1 5 1 95.84 1.17 +1051
3 2–5 1 3 1 99.69 1.24 +3255
4 2–5 1 3 1 99.63 0.09 +1672 40 kB

Table 7: Czech hyphenation of composed words with Liang’s parameters but allowing 1-length patterns in
level 1

level length param % correct % wrong # patterns size
1 1–3 1 2 20 72.97 14.32 + 300
2 2–4 2 1 8 69.32 3.09 + 450
3 3–5 1 4 7 84.09 4.02 + 870
4 4–6 3 2 1 82.61 0.33 +2625 25 kB

Table 8: Czech hyphenation of composed words with slightly modified parameters(% of correct slightly
optimized)

level length param % correct % wrong # patterns size
1 1–3 1 2 20 72.97 14.32 + 300
2 2–4 2 1 8 69.32 3.09 + 450
3 3–5 1 4 3 90.82 4.24 +3014
4 4–6 3 2 1 89.07 0.36 +2770 40 kB

Table 9: Czech hyphenation of composed words with other parameters (% of correct optimized, but % of
wrong and size increased)

level length param % correct % wrong # patterns size
1 1–3 1 5 1 64.35 5.34 +1415
2 2–4 1 5 1 67.10 1.88 +1261
3 3–5 1 3 1 97.94 5.39 +8239
4 4–6 1 3 1 97.91 1.14 +2882 84 kB

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 285

Petr Sojka and Pavel Ševeček

The PATGEN program was able to produce hy-
phenation patterns for this list successfully. The
number of patterns was rather large, but feasi-
ble (25–84 kB, depending on parameters). From a
380 698 item word-list the patterns found 307 470
of the hyphenation points6 correctly, 5 040 points
were hyphenated wrongly (exceptions), and 4 680
hyphenation points were missing.
To test the possibility of creating patterns for

compound words in detail, we generated a word-list
of more than 100 000 words with 101 687 hyphen-
ation points marked. The list included both com-
pound words and simple ones too.
The results of some of the runs are shown in

tables 7, 8 and 9.

Some other numbers Just for fun we’ve tried pat-
terns for different languages on our Czech PATGEN
input word-list—see table 10. There are interesting
speculations about these numbers—e.g., trying Slo-
vak patterns on the Czech word-list, one finds more
than 90% of hyphenation points. On the contrary,
probably because of non-syllabic principles and dif-
ferent rules for pronunciation, UK English rules are
totally different — only 19% of Czech words are hy-
phenated correctly by UK patterns. Surprisingly,
Swedish, Finnish and Dutch (NE3) patterns make
fewer wrong hyphenations than the Czech old hy-
phenation patterns. The difference between Dutch
patterns made by hand (NE3) based on the syllabic
principle) and those made by PATGEN (NE1, NE2)
may by caused by the fact that general syllable hy-
phenation is relatively good for languages in which
the hyphenation is based on syllabic principles. Hav-
ing hyphenated word lists of different languages, it
might be interesting to measure the ‘syllabic prin-
ciples of hyphenation’ of different languages on an
universal syllable hyphenation.
As hyphenation in most languages is based on

syllabic principles, it is worth trying to create uni-
versal syllabic hyphenation and only learn the differ-
ence (exceptions) from this universal hyphenation.
Let’s try to summarize what we think should be
done in the future.

6 Some of these points might be wrong, as the database
we used is only preliminary. Due to our experience with the
standard hyphenation list, after correction of errors (wrongly
marked hyphenation points, typos) PATGEN can generalize sub-
stantially better and the size of the list of patterns is reduced
significantly.

Table 10: Patgen-like statistics for using various
language patterns on Czech hyphenated word-list

Language Correct Wrong Missed
CZ (Sev) 98.26 % 0.01 % 1.74 %
NE3 57.38 % 4.11 % 42.62 %
SV 57.10 % 5.32 % 42.90 %
FI 52.67 % 5.40 % 47.32 %
CZ (Lho) 93.39 % 5.89 % 6.61 %
SK 90.77 % 7.28 % 9.23 %
US 31.84 % 9.58 % 68.16 %
IT 49.27 % 9.88 % 50.73 %
NO 51.61 % 11.32 % 48.39 %
FR 59.07 % 11.54 % 40.93 %
NE1 59.14 % 11.59 % 41.86 %
NE2 58.80 % 11.99 % 41.20 %
UK 18.84 % 12.19 % 81.16 %
DEmin 58.62 % 12.50 % 41.38 %
DEmax 58.56 % 12.70 % 41.44 %
PL∗ 69.00 % 12.96 % 31.00 %
PL 68.06 % 13.12 % 31.94 %
DE (v.3.1) 58.84 % 13.86 % 41.16 %
∗ with transformed patterns—accented letters sub-

stituted by non-accented ones

Future

“I hope TEX82 will remain stable
at least until I finish Volume 7

of The Art of Computer Programming.”
(Knuth, 1989, p. 625)

Possible extensions in a successor to TEX
“Good typography therefore is a silent art;

not its presence but rather
its absence is noticeable”

(Mittelbach and Rowley, 1992b)

It seems feasible to incorporate either SITEX (Barth,
Steiner, and Herbeck, 1993) changes or separate
compound word hyphenation patterns in ε-TEX.
These experiments, discussed above (in the

section “Compound words”) show that, even with
the current TEX, only doubling the patterns for
a language with compounds might allow, e.g.,
switching between standard hyphenation in nar-
row columns and compound-word-only hyphenation
in wide columns.
With a simple change in the program, one may

achieve additional flexibility in hyphenation:
New registers \leftcompoundhyphenmin and

\rightcompoundhyphenmin may be helpful for
filtering unneeded hyphenation near compound
word borders and \compoundwordhyphenpenalty
might set a penalty (usually much lower than

286 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Hyphenation in TEX—Quo Vadis?

\hyphenpenalty) for breaks on compound word
boundaries. In this case \compoundwordchar char-
acter (i.e., the compound work mark in the DC
fonts) could be automatically inserted there to
prevent ligatures going over a compound word
boundary.
Another minor addition might be added too,

e.g., ε-TEX: in the old version of MLTEX there was
implemented a flag \dischyph indicating whether or
not to hyphenate words with discretionaries (i.e. em-
bedded hyphens) or not. As an example may serve
the citation (for Author-Prepared Books, 1993) in
this paper, where we had to insert discretionaries
by hand in the compound word “Author-Prepared”
to achieve the limits on underfull boxes set by the
editor. With setting \dischyph=1 this wouldn’t be
necessary.

Pattern generalization Apart from PATGEN ex-
tensions according to character clustering, which
are orthogonal, we are thinking of the following
generalization. Currently, there are only 2 classes
of inter-letter state: an odd or even number that
carries information whether to hyphenate or not.
The natural generalization would be to have n
classes. Inter-letter numbers in patterns would code
these classes in such a way that number m between
letters will mean that this position belongs to the
class number m (mod n) (when numbering classes
from 0). The case n = 2 is the current situation,
so \pattern[2] might mean the classical Liang
patterns. Another class might be prefix boundary,
compound word boundary or whatever else might
possibly be useful for the hyphenation algorithm to
be aware of in the word (discretionary being another
possibility).
An application for English is straightforward

too. Our approach will allow one to distingush “pre-
ferred” and “less recommended” classes of hyphen-
ation points as published in Allen (1990).
In German, one may make other classes (and

patterns), e.g. classes for different discretionary
breaks.

Possible extensions in a successor to TEX
“Please correct if you have a hyphenated word

at the bottom of a right-hand page.”
(for Author-Prepared Books, 1993)

A possible direction was shown by Plaice (1993) and
in Haralambous and Plaice (1994) and Plaice (1994).
With suggested clustering of letters and enriched
PATGEN (Liang and Breitenlohner, 1991) one could
achieve context-dependent discretionaries and thus
solve the c-k → k-k-like problems in German.

Taylor (1992, p. 249) mentions a possible def-
inition of \brokenpenalty = \ifrecto 500\else
200\fi. If the output routine could communicate
with the parameter-breaking algorithm, word breaks
crossing page boundaries could be eliminated.

Conclusions

“Therefore it still is not the right moment
to manufacture TEX on a chip.”

(Knuth, 1989, p. 641)

In our survey we presented an overview on the topic
of hyphenation in TEX and our results based on ex-
perience with Czech and Slovak. We conclude that
the current possibilities of TEX are far from perfect
and might be improved either in the scope of TEX82
(creation of better hyphenation patterns for various
languages by PATGEN), ε-TEX (e.g. duplication of hy-
phenation mechanism for compound words), or Ω
or NT S (special capabilities for context-dependent
discretionaries).

Acknowledgement

The presentation of this work has been made possi-
ble due to the support of Czech Grant Agency (grant
Nr. 201/93/1269). We would like to thank our ref-
eree, Yannis Haralambous, Libor Škarvada and Jiří
Zlatuška for comments and useful suggestions on
how to improve this paper.

References

Allen, R.Ẽ.˙The Oxford Spelling Dictionary, vol-
ume II of The Oxford Library of English Usage.
Oxford University Press, 1990.

AMS–Instructions for Author-Prepared Books.
“AMS–Instructions for Author-Prepared
Books”. 1993.

Barth, W. and H. Nirschl. “Implementierung eines
Verfahrens für die Silbentrennung”. Technical
Report Bericht Nr. 26, Institut für Praktische
Informatik, 1985.

Barth, W. and H. Steiner. “Deutsche Silben-
trennung für TEX 3.1 (German hyphenation for
TEX 3.1)”. Die TEXnische Komödie (Heft 1),
1992. Journal of DANTE (Deutschsprachige An-
wendervereinigung TEX e.V.); Group of German-
speaking TEX Users.

Barth, W., H. Steiner, and H. Herbeck. “ISITEX In-
teraktive Silbentrennung für die deutsche Spra-
che unter TEX 3.14 und 3.141 unter UNIX (In-
teractive hyphenation for German and TEX 3.14
and 3.141 under UNIX)”. electronic documenta-
tion of ISITEX distributed from eiunix.tuwien.
ac.at, 1993.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 287

Petr Sojka and Pavel Ševeček

Beccari, Claudio. “Computer Aided Hyphenation
for Italian and Modern Latin”. TUGboat 13(1),
23–33, 1992.

Beeton, Barbara. “Hyphenation exception log”.
TUGboat 10(3), 336–341, 1989.

Beeton, B. N. “Hyphenation exception log”. TUG-
boat 5(1), 15, 1984.

Beeton, B. N. “Hyphenation exception log”. TUG-
boat 6(3), 121, 1985.

Beeton, B. N. “Hyphenation exception log”. TUG-
boat 7(3), 145–146, 1986.

Beeton, B. N. “Hyphenation exception log”. TUG-
boat 13(4), 1992.

Braams, J. “Babel, a multilingual style-option sys-
tem”. Cahiers GUTenberg 10-11, 71–72, 1991a.

Braams, Johannes. “Babel, a multilingual style-
option system for use with LATEX’s standard doc-
ument styles”. TUGboat 12(2), 291–301, 1991b.

Braams, Johannes. “An update on the babel sys-
tem”. TUGboat 14(1), 60–62, 1993.

Breitenlohner, Peter. “German TEX, a next step”.
TUGboat 9(2), 183–185, 1988.

Canzii, G., F. Genolini, and D. Lucarella. “Hyphen-
ation of Italian words”. TUGboat 5(1), 14, 1984.

de Rezende, Pedro. “Portuguese hyphenation table
for TEX”. TUGboat 8(2), 102–102, 1987.

Désarménien, Jacques. “How to run TEX in a French
environment: Hyphenation, fonts, typography”.
TUGboat 5(2), 91, 1984.

DUDEN. Duden Band 1—Rechtschreibung der
deutschen Sprache. Dudenverlag, 20., neu be-
arbeitete und erweiterte Auflage edition, 1991.

Emerson, Sandra L. and K. Paulsell. troff Typeset-
ting for UNIXTM Systems. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1987.

Fanton, M. “TEX : les limites du multilinguisme”.
Cahiers GUTenberg 10-11, 73–80, 1991.

Ferguson, Michael J. “A multilingual TÊX”. TUG-
boat 6(2), 57–58, 1985.

Ferguson, Michael J. “TEX is Multilingual”. In
Thiele (1988), pages 179–189.

Ferguson, M. J. “Fontes latines européennes et TEX
3.0”. Cahiers GUTenberg 7, 29–32, 1990.

Gaulle, Bernard. “Requirements in multilingual en-
vironments”. in electronic form (version 1.02) on
CTAN as file vt15d02.tex, 1994.

Haller, Jiří˙Jak se dělí slova (How the words get hy-
phenated). SPN Praha, 1956.

Haralambous, Y. “ScholarTEX”. Cahiers GUTen-
berg 10-11, 69–70, 1991.

Haralambous, Yannis. “TEX Conventions Concern-
ing Languages”. TEX and TUG News 1(4), 3–10,
1992a.

Haralambous, Yannis. “Hyphenation patterns for
ancient Greek and Latin”. TUGboat 13(4), 457–
469, 1992b.

Haralambous, Yannis. “DC fonts—questions and
answers”. TEX and TUG News 2(1), 10–12,
1993a.

Haralambous, Yannis. “Using PATGEN to Cre-
ate Welsh Patterns”. Submitted to TUGboat,
1993b.

Haralambous, Yannis. “A small tutorial on the
multilingual features of Patgen2”. in electronic
form, available from CTAN as info/patgen2.
tutorial, 1994.

Haralambous, Yannis and J. Plaice. “First appli-
cations of Ω: Adobe Poetica, Arabic, Greek,
Khmer”. TUGboat 15(3), 344–352, 1994.

Jeffrey, Alan. “A PostScript font installation pack-
age written in TEX”. TUGboat 14(3), 285–292,
1993.

Knuth, Donald. “A note on hyphenation”. TUGboat
4(2), 64, 1983.

Knuth, Donald E. The TEXbook, volume A of Com-
puters and Typesetting. Addison-Wesley, Read-
ing, MA, USA, 1986b.

Knuth, Donald E. TEX: The Program, volume B
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986a.

Knuth, Donald E. “The Errors of TEX”. Technical
Report STAN-CS-88-1223, Stanford University,
Department of Computer Science, 1988.

Knuth, D. E. “The Errors of TEX”. Software—
Practice and Experience 19(7), 607–681, 1989.
This is an updated version of Knuth (1988).

Knuth, Donald Ervin. 3 : 16 Bible texts illuminated.
A-R Editions, Inc., 1991.

Kołodziejska, Hanna. “Dzielenie wyrazów polskich
w systemie TEX”. Technical Report 165, Spra-
wozdania Instytutu Informatyki Uniwersytetu
Warszawskiego, 1987.

Kołodziejska, Hanna. “Le traitement des textes
polonais avec le logiciel TEX”. Cahiers GUTen-
berg (0), 3–10, 1988.

Kopka, Helmut. LATEX—Erweiterungsmöglichkeiten
mit einer Einfürung in METAFONT. Addison-
Wesley Verlag, Bonn, Germany, second edition,
1991.

Krstev, Cvetana. “Serbo-Croatian hyphenation: a
TEX point of view”. TUGboat 12(2), 215–223,
1991.

Kuiken, Gerard. “Additional Hyphenation Pat-
terns”. TUGboat 11(1), 24–25, 1990.

Lhotka, Ladislav. “České dělení pro TEX (Czech hy-
phenation for TEX)”. CSTUG bulletin (4), 8–9,
1991.

288 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Hyphenation in TEX—Quo Vadis?

Liang, Frank and P. Breitenlohner. “PATtern GEN-
eration program for the TEX82 hyphenator”.
Electronic documentation of PATGEN program
version 2.0 from UNIXTEX distribution at ftp.
cs.umb.edu, 1991.

Liang, Frank M. “TEX and hyphenation”. TUGboat
2(2), 19–20, 1981.

Liang, Franklin Mark. “Word Hy-phen-a-tion by
Com-pu-ter”. Technical Report STAN-CS-83-
977, Stanford University, 1983.

MacKay, Pierre A. “Turkish hyphenations for TEX”.
TUGboat 9(1), 12–14, 1988.

Malyshev, B., A. Samarin, and D. Vulis. “Russian
TEX”. Cahiers GUTenberg 10-11, 1–6, 1991a.

Malyshev, Basil, A. Samarin, and D. Vulis. “Russian
TEX”. TUGboat 12(2), 212–214, 1991b.

Mittelbach, Frank and C. Rowley. “The future of
high quality typesetting: structure and design”.
In Zlatuška (1992), page 255.

Mittelbach, Frank and C. Rowley. “The pur-
suit of quality—How can automated typeset-
ting achieve the highest standards of craft
typography?”. In Proceedings of the Interna-
tional Conference on Electronic Publishing, Doc-
ument Manipulation & Typography, Lausanne,
Switzerland, 1992, edited by C. Vanoirbeek and
G. Coray, pages 261–273, New York. Cambridge
University Press, 1992b.

NTS-L. “New Typesetting System discussion list”.
1992–. This is an electronic list devoted to dis-
cussions about TEX’s successor. To subscribe,
send a request with the text subscribe nts-l
to listserv@vm.urz.uni-heidelberg.de.

Obermiller, Walter. “TEX in Germany”. TUGboat
12(2), 211–212, 1991.

Partl, Hubert. “German TEX”. TUGboat 9(1), 70–
72, 1988.

Partl, Hubert. “How to make TEX and LATEX in-
ternational”. In Man-Machine Interface in the
Scientific Environment. Proceedings of the 8th
European Summer School on Computing Tech-
niques in Physics. Skalský Dv �ur, Czecholsovakia,
19–28 September 1989, edited by J. Nadrchal,
volume 61 of Computer Physics Communica-
tions, pages 190–200, Amsterdam, The Nether-
lands. European Summer Schools on Computing
Techniques in Physics, North-Holland Publish-
ing Company; Elsevier Science Publishers B. V.,
1990. Invited paper.

Plaice, John. “Language-dependent ligatures”.
TUGboat 14(3), 271–274, 1993.

Plaice, John. “Progress in the Omega project”.
TUGboat 15(3), 320–324, 1994.

Rynning, Jan Michael. “Swedish Hyphenation for
TEX”. Received in electronic form from author
via email jmr@nada.kth.se, 1991.

Saarinen, Kauko. “Experiences with TEX in Fin-
land”. In Thiele (1988), pages 189–194.

Samarin, A. and A. Urvantsev. “CyrTUG, le monde
TEX en cyrillique”. Cahiers GUTenberg 12, 71–
74, 1991.

Schrod, Joachim. “An International Version of
MakeIndex”. Cahiers GUTenberg 10–11, 81–90,
1991.

Schulze, Bernd. “German hyphenation and Umlauts
in TEX”. TUGboat 5(2), 103, 1984.

Sojka, Petr and P. Ševeček. “Hyphenation in TEX—
Quo Vadis?”. In Proceedings of the 9th Euro-
pean TEX Conference, Gdańsk, 1994, edited by
W. Bzyl and T. Przechlewski, pages 59–68. 1994.

Taylor, Philip. “The Future of TEX”. In Zlatuška
(1992), pages 235–254.

Thiele, Christina, editor. Proceedings of the TEX
Users Group 9th Annual Meeting, Montréal,
1988, Providence, U.S.A. TEX Users Group,
1988.

Thulin, Anders. “More hyphenation exceptions”.
TUGboat 8(1), 76–76, 1987.

Vulis, Dimitri. “Notes on Russian TEX”. TUGboat
10(3), 332–336, 1989.

Zdeněk Hlavsa et al. Pravidla českého pravopisu
(The rules of the Czech spelling). Academia
Praha, 1993.

Zlatuška, J. “Automatic generation of virtual fonts
with accented letters for TEX”. Cahiers GUTen-
berg 10-11, 57–68, 1991.

Zlatuška, Jiří editor. Proceedings of the 7th

European TEX Conference, Prague, 1992.
Masarykova Universita Brno, 1992.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 289

Notes on Compound Word Hyphenation in TEX

Petr Sojka
Faculty of Informatics

Masaryk University Brno

Burešova 20, 602 00 Brno

Czech Republic

Email: sojka@muni.cz

Abstract

The problems of automatic compound word and discretionary hyphenation in TEX
are discussed. At present, such hyphenation points have to be marked manually
in the TEX source file. Several methods for tackling with these problems are
presented. The results obtained from experiments with a German word-list are
discussed.

Motivation

. . . problems [with hyphenation] have more or less
disappeared, and I’ve learnt that this is only because,

nowadays, every hyphenation in the newspaper
is manually checked by human proof-readers.

(Jarnefors, 1995)

In (Sojka and Ševeček, 1994) (reprinted in these
Proceedings) we presented a case study of problems
related to achieving quality hyphenation in TEX—
especially pattern generation for flexive languages
like Czech. It was shown that most issues can be
handled within the frame of good old TEX, but some
of them definitely not, because TEX was primarily
designed not as a universal tool for the typesetting
of all kinds of publications in all languages, but
as one for typesetting of The Art of Computer
Programming (Knuth, 1968), which is written in
American English.
In this paper we continue elaborating these

issues, with the emphasis on the hyphenation
problems in the presence of long compound words
in Germanic (and Slavic) languages.

Problems

Compounds. The main problem with automatic
hyphenation was nicely expressed on the ISO-10646
electronic discussion list by Jarnefors:

“The leading Swedish daily newspaper Dagens
Nyheter had severe problems with occasional
incorrect hyphenations a couple of years ago.
It (and its computerised typesetting) was
for a time the object of much amusement,
ridicule and irritation from its readers. These
problems have more or less disappeared, and
I’ve learnt that this is only because, nowa-

days, every hyphenation in the newspaper
is manually checked by human proof-read-
ers. Because of the higher frequency of long
words in Swedish compared to e.g. English or
French, around a third of all lines in a typ-
ical newspaper article (with approximately
30 characters per line) end with a hyphen-
ated word.

The hyphenation problems in Swedish
have to do with the high frequency of
compound words (the Swedish vocabulary
can’t be enumerated: new compounds are
easily created by anyone) and the rule that
a compound word shall always be hyphenated
between the constituent word parts, to ease
the flow of reading.”

For instance, in German and Czech there are
no hyphens in compound words, you take the first
word, rarely a fill-character and the second word. In
some languages, compounds are built with hyphens.
With this construction, it is easy to break at the
end of line and to spell-check. However, in most of
the languages compound word boundaries cannot be
deducted from syntax only.

Dependency of hyphenation points on seman-
tics. In some cases, even the context of the sentence
is needed in order to be able to decide on the hy-
phenation point. Collection of examples for several
languages follows:

Czech nar|val ‘narwhal’ and na|rval ‘gathered
by tearing, plucked’; pod|robit ‘subjugate, to
bring under one’s domination’ and po|drobit ‘to
crumble’; o|blít ‘to vomit up’ and ob|lít ‘to pour
around’

290 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Notes on Compound Word Hyphenation in TEX

Danish træ|kvinden ‘the wood lady’ and træk|vinden
‘the draught’; ku|plet ‘verse’ and kup|let ‘domed’

Dutch kwart|slagen ‘quarter turns’ and kwarts|lagen
‘quartz layers’; go|spel ‘the game of Go’ and
gos|pel ‘certain type of music’; rots|tempel
‘rock temple’ and rot|stempel ‘damned stamp’;
dĳ|kramp ‘cramp in the thighs’ and dĳk|ramp
‘dike catastrophe’; ver|ste ‘farthest’ and vers|te
‘most fresh’.

English rec|ord and re|cord
German Staub|ecken ‘dusty eck’ and Stau|becken
‘traffic jam in the valley’; Wach|stube ‘guard
room’ and Wachs|tube ‘wax tube’

Exceptions. Some hyphenation points are forbid-
den because of unwanted connotations the new parts
of the word may have:

Czech kni|hovna, sere|náda, tlu|močení, se|kunda
English the|rapists, anal|ysis
German Spargel|der, beste|hende, Gehörner|ven,
bein|halten, Stiefel|tern

Discretionary hyphenation points.

1. \discretionary{xx}{x}{xx} (in German, x
is a consonant f, l, m, n, p, r or t)
Now there will be the situation that the first
word ends with a double consonant and the
second word starts with the same consonant.
If the second letter of the second word is
a consonant, nothing changes—Sauerstoff +
Flasche composes to Sauerstoffflasche. If the
second letter of the second word is a vowel,
the three consonants will be reduced to two—
Schiff + Fahrt composes to Schiffahrt. One
can find meaning-dependent discretionaries:
Bett|tuch ‘sheet’ vs. Bet|tuch ‘prayer shawl’.

2. \discretionary{k}{k}{ck} (German)
This discretionary (as most of the others) has
the rationale in the fact that pronunciation of
c depends on the following letter (as in other
languages). If hyphen occurs just after the
letter c, the reading is slowed down because
the reader doesn’t know how to pronounce it
and the eye has a long way to the beginning of
the next line.
Even here the hyphenation can depend on the
word meaning: wordDruckerzeugnis is hyphen-
ated Druck|erzeugnis in case of ‘printed matter’
or Druk|kerzeugnis when speaking about a ‘cer-
tificate for a printer’.1

1 The German speaking countries are in the process of

introducing new rules for hyphenation, in which ck is not

any more allowed to be hyphenated. With the new rules, an

old way which was introduced in 1902—e.g. hyphenation of

Zuk|ker ‘sugar’ might change to Zu|cker in the future norm.

3. \discretionary{a}{}{aa} (Dutch)
There is another type of discretionary in
which a character is deleted in case hyphenation
occurs—word omaatje becomes oma|tje when
hyphenated.

4. \discretionary{é}{}{ee} (Dutch)
Apart from character deletion another change
may occur: cafeetje becomes café-tje when hy-
phenated.

5. \discretionary{l}{l}{l·l} (Catalan)
In Catalan the word paral·lel is broken as
paral|lel, intel·ligencia as intel|ligencia. l·l is
considered as one character (trigraph). With
this hyphenation it changes to another two
characters.

Stability of a language. Another complication
is the fact that language is not fixed, non-evolving
entity, but it changes, sometimes quite rapidly. New
words, especially compounds, are being adopted
every day. An example of an adaptation of a
language to the technology—the typewriter and
telegraphy in this case—may serve different spelling
allowed for umlauted characters ä, ö, ü and ß
in German (ae, oe, ue, ss). Some compounds
are becoming percepted as base words. Thus the
idea of fixing hyphenation algorithm/patterns once
and forever is not a clever one.2 A solution may
consist in relatively easy generation of algorithm or
patterns from the updated dictionary or description
of changes.

Solutions

Compounds. It is obvious that we need to take
the burden of the manual markup of compound
word borders from the writer and leave it to the
machine (typesetting system). The proper solution
of this problem is a language module for every
language, with the ability of creating new words
by composition from others. This module, based
on the morphology of a language, is needed, e.g.,
in spellchecker for that language anyway. Most
probably, such language modules will become a part
of the language support of operating systems in near
future. Such dynamic libraries will be shared among
software applications. Building such a module,
however, is not a trivial task, because only some
of the compounds are meaningful words.

2 When storing document for later retypesetting with TEX

we also have to save the hyphenation patterns.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 291

Petr Sojka

Table 1: Example of discretionary hyphenation table for German

pre break post break no break left right discretionary example
text text text context context character
1 2 3 4 5 6 7
k k ck c k c1 Drucker
ek k äck äc k c2 Bäcker
ff f f f f c3 Schiffahrt
ll l l l l c4 Rolladen
mm m m m m c5 Programmeister
nn n n n n c6 Brennessel
pp p p p p c7 Stoppunkt
rr r r r r c8 Herraum
tt t t t t c9 Balettheater

Looking for a temporary TEX patch that will
help the current TEX users, especially those writing
in Germanic and Slavic languages, the following
algorithm may be used (compare with Sojka and
Ševeček, 1994):

1. For a particular language a special word-list is
created, which contains all word forms, but only
compound word borders are marked there.

2. Hyphenation patterns from this word-list are
created by PATGEN (Liang and Breitenlohner,
1991).

3. A special pass in TEX’s paragraph break-
ing algorithm (for detailed description consult
Knuth and Plass, 1981; Knuth, 1986a; Knuth,
1986b) is added after the first (no hyphen-
ation trial) pass. Words are hyphenated using
the compound word patterns. Then, an extra
penalty \compoundwordhyphenpenalty is asso-
ciated with these hyphenation points.

4. If \tolerance hasn’t been met by now, further
hyphenation points are added using the ‘stan-
dard’ patterns. These new hyphenation points
have associated \hyphenpenalty, allowing dif-
ferentiation between the two types of hyphen-
ation points.

5. Hyphenation points ‘near’ the word borders
(specified by \leftdiscretionaryhyphenmin
and \rightdiscretionaryhyphenmin are sup-
pressed (removed).

6. The algorithm now continues with the ‘old’ sec-
ond and eventually the third (\emergencystretch)
passes.

7. \compoundwordchar (as e.g. in Cork-coded
fonts \char‘027) is included at compound
word breakpoint in order to prevent ligatures
spanning over the word borders šéflékař ‘chief

doctor’ versus šéflékař which is wrong due to
the appearance of the fl ligature).

Discretionary hyphenation points. Manual in-
sertion of discretionary points is tedious and it is
usually forgotten3, leading to typographic errors.
One solution is as follows. For every language

a table of possible discretionaries is created (for a
German example see Table 1).
In the word-list, the words with these discre-

tionaries are added with the “discretionary charac-
ter” inserted between “left context” and “right con-
text”. From such extended word-list the patterns
are generated.
The hyphenation algorithm of TEX (for details

see Knuth, 1986a, parts 38–43, sections 813–965)
has to be extended. Roughly speaking

1. As a first step, “normal” hyphenation points in
the word in question are found.

2. The discretionary exception table is looked up
(similar to the \hyphenation list of excep-
tions). If the word is found there, a discre-
tionary is inserted and algorithm ends, other-
wise continue to step 3.

3. The discretionary table is looked up and at the
hyphenation points that match “left and right
context” strings (columns 4 and 5 in Table 1),
the “discretionary character” (column 6) is
inserted. Such a word is hyphenated once
again to check whether this discretionary really
applies at this position. If so, the corresponding
discretionary (columns 1–3 of Table 1) is
automatically inserted.

3 How many of you, English-speaking TEX users, remem-

ber to type eigh\discretionary{t}{t}{t}een instead of just

eighteen?

292 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Notes on Compound Word Hyphenation in TEX

4. “Normal” hyphenation points, which appear
‘near’ to “discretionary” hyphenation points
(within the ‘window’ specified by the values of
counters \leftdiscretionaryhyphenmin and
\rightdiscretionaryhyphenmin), are removed.

This approach takes the advantage of the data
structure used for storing the information about
the hyphenation points. The patterns are stored
using the trie data structure (Knuth, 1973, pp. 481–
505). This data structure allows effective prefix and
postfix compression. Because of that, the increase in
the size of the patterns is negligible, as the patterns
doublets share both prefix and postfix parts in the
trie.
Also, the look up time in the trie is linear with

respect to the word length of hyphenated words.
The time needed for looking up in the trie for the
second time is thus acceptable— it is only performed
sometimes—when the context of a hyphenation
point is matched in the discretionary table.
The algorithm is backward compatible in the

sense that if discretionary table is not present for
the current language, nothing changes with respect
to the standard TEX behaviour.

Exceptions. The exceptions can be reasonably
handled by the patterns. Although the generation
of patterns for languages with lots of exceptions may
lead to the complex patterns, it is much better to
regenerate the patterns with the exceptions than
maintaining huge lists of exceptions and to slow
down the processing considerably.
Because regenerating of patterns is not al-

ways possible, to allow enrichment of the knowl-
edge of discretionary hyphenation points compiled
into the patterns, it is wise to introduce new
\discretionaryhyphenation for this purpose.

Experiments

For experiments we had several databases of words
available. For flexive languages (Czech, German),
they were based on morphology, for English it was
just a list of word forms. We did our PATGEN exper-
iments with German word-list generated from the
full word-list by our stratified sampling technique
very similar to that we described on page 63 in (So-
jka and Ševeček, 1994) for Czech. We took German
because the problems there are the most serious.
Simple statistics show how the languages differ:

Non-uniformity of languages. In the Table 2
on page 295 there are histograms of word lengths
in our databases. Although it is clear that shorter
words are more frequent then the long ones, we see
that in German the average word is much longer

than in English and also in Czech. It is interesting
to compare the total number of words. As Czech
is very flexive language, from about 170 000 word
stems we got more than 3 300 000 word forms. One
can compare that with the best English dictionaries
and spellers, which have not more than 200 000 word
forms. Flexive number (ratio of total number of
word form and number of word stems) for German
is about 3 (we have about 120 000 word stems), but
for Czech it is almost 20.
The average word length depends on the word-

-list chosen, but in general our results are commen-
surable with the result published for Welsh (Hara-
lambous, 1993)—9.71 characters per word, but the
words like Llanfairpwllgwyngyllgogerychwryndrob-
wllllantysiliogogogoch were not taken into account
there.

Compounds (German). In the word-list, only
the compound word borders and prefixes were
marked. This lead to about 150 000 positions
in our German word-list. The words without
any breaks of this kind were not removed. The
results of PATGEN runs applied to this word-list
are summarised in tables 3 and 4. The efficiency
achieved (about 90% breaks covered) is pretty
sufficient, as ‘normal’ hyphenation pass follows and
the error when hyphenation point is classified as
‘normal’ instead of ‘compound’ reflects only different
penalty associated with this break. At the expense
of pattern size we can do even better (see Table 5).

Discretionary hyphenation points. In our Ger-
man word-list we had 1626 words with the c-k dis-
cretionary and 42 words with the discretionary hy-
phenation of type x-x, where x is a consonant—(see
Table 1, (Raichle, 1995) or (DUDEN, 1991) for a list
of possible discretionaries in German).
Then we created doublets of these words with

these discretionaries by inserting the discretionary
character (column 6) at the hyphenation position
and added them to our word-list. Then we applied
PATGEN at this new word-list. The results can
be compared in tables 6 and 7. The difference
in pattern size is small as expected—the size of
pattern file increased by less than 0.4 kB, which
makes a difference in the trie structure of about 100
bytes only.

Conclusions

We are claiming that the integration of language
modules with built-in knowledge about a partic-
ular language is a must in today’s top-rated sys-
tems for publishing. We have suggested extensions
of hyphenation algorithms of TEX that may help

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 293

Petr Sojka

with hyphenation especially in Germanic languages
with high frequency of compound words and dis-
cretionary hyphenation. Suggested extensions are
possible with limited changes to TEX—The Pro-
gram (Knuth, 1986a). Their implementation in
any conservative successor to TEX will be rather
straightforward and when the community is agreed
on their usefulness they will be implemented as
an independent change file. We remain undecided
on the extended syntax and primitives our approach
needs.

Acknowledgement

The presentation of this work has been made
possible due to the support of Czech Grant Agency
(grant Nr. 201/93/1269). The author would like to
thank Pavel Ševeček (Logos, Inc.) for providing
language word-lists to make the experiments and for
valuable discussions on these topics. I also thank
everyone who helped to improve the wording of this
paper.

References

DUDEN. Duden Band 1—Rechtschreibung der
deutschen Sprache. Dudenverlag, 20., neu be-
arbeitete und erweiterte Auflage edition, 1991.

Haralambous, Yannis. “Using PATGEN to Create
Welsh Patterns”. Submitted to TUGboat, 1993.

Jarnefors, O. “ISO-10646 email discussion list”.
1995.

Knuth, D. E. Sorting and Searching, volume 3 of The
Art of Computer Programming. Addison-Wesley,
Reading, MA, USA, 1973.

Knuth, D. E. The Art of Computer Programming.
Four volumes. Addison-Wesley, 1968. Seven vol-
umes planned.

Knuth, Donald E. The TEXbook, volume A of Com-
puters and Typesetting. Addison-Wesley, Read-
ing, MA, USA, 1986b.

Knuth, Donald E. TEX: The Program, volume B
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986a.

Knuth, Donald E. and M. F. Plass. “Breaking
Paragraphs into Lines”. Software—Practice and
Experience 11(11), 1119–1184, 1981.

Liang, Frank and P. Breitenlohner. “PATtern GEN-
eration program for the TEX82 hyphenator”.
Electronic documentation of PATGEN program
version 2.0 from UNIXTEX distribution at ftp.
cs.umb.edu, 1991.

Raichle, B. “‘Kurzbeschreibung – german.sty (Ver-
sion 2.5)”. 1995. Available from CTAN.

Rynning, Jan Michael. “Swedish Hyphenation for
TEX”. Received in electronic form from author
via email jmr@nada.kth.se, 1991.

Sojka, Petr and P. Ševeček. “Hyphenation in TEX—
Quo Vadis?”. In Proceedings of the 9th Euro-
pean TEX Conference, Gdańsk, 1994, edited by
W. Bzyl and T. Przechlewski, pages 59–68. 1994.

294 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Notes on Compound Word Hyphenation in TEX

Table 2: Available word-lists’ statistics

US English word-list (123 664 words), average word length 8.93 characters

0

2

4

6

8

10

12

14

16

1
5
2

9
7
5

��

. .

. .

. .

. .

. .

. .

. .

. .

3
4
2
0

��

.

. .

. .

. .

. .

. .

. .

. .
6
8
4
0

��

. .

. .

. .

. .

. .

. .

1
1
3
3
1

��

.

. .

. .

. .

. .

1
6
0
5
3

��

.

. .

. .

1
8
8
7
9

��

.

. .

1
8
1
4
2

����

. .

1
5
1
2
8

����

. .

1
1
8
0
5

����

. .

. .

8
3
7
4

����

. .

. .

. .

. .

5
5
9
8

����

. .

. .

. .

. .

. .

3
2
9
2

����

. .

. .

. .

. .

. .

. .

1
8
6
7

����

. .

. .

. .

. .

. .

. .

. .

9
3
9

����

. .

. .

. .

. .

. .

. .

. .

. .

5
1
3

����

. .

. .

. .

. .

. .

. .

. .

. .

1
7
8

������

. .

. .

. .

. .

. .

. .

. .

. .

1
0
0

������

. .

. .

. .

. .

. .

. .

. .

. .

3
2

������

. .

. .

. .

. .

. .

. .

. .

. .

1
4

������

. .

. .

. .

. .

. .

. .

. .

. .

5

������

. .

. .

. .

. .

. .

. .

. .

. .

1

������

. .

. .

. .

. .

. .

. .

. .

. .

����������

. .

. .

. .

. .

. .

. .

. .

. .

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

word length

percentage of total number of words in a word-list

��

����

..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.

Czech word-list (3 300 122 words), average word length 10.55 characters

0

2

4

6

8

10

12

14

16

1
2
8

2
3
4
3

������

. .

. .

. .

. .

. .

. .

. .

. .

1
2
2
5
0

��

. .

. .

. .

. .

. .

. .

. .

. .

4
4
4
8
9

��

. .

. .

. .

. .

. .

. .

. .

. .

1
1
0
8
8
2

��

. .

. .

. .

. .

. .

. .

. .

2
2
9
5
0
7

��

.

. .

. .

. .

. .

. .

3
6
2
7
0
0

��

.

. .

. .

. .

4
6
9
9
5
1

��

. .

. .

5
0
3
5
2
3

��

. .

4
6
6
9
6
0

����

. .

3
7
2
1
2
5

����

. .

2
7
0
6
8
2

����

. .

. .

. .

1
7
8
1
8
0

����

. .

. .

. .

. .

1
1
5
2
0
9

����

. .

. .

. .

. .

. .

. .

7
2
0
5
0

����

. .

. .

. .

. .

. .

. .

. .

4
2
0
4
9

����

. .

. .

. .

. .

. .

. .

. .

2
3
3
9
5

����

. .

. .

. .

. .

. .

. .

. .

. .

1
2
1
8
4

����

. .

. .

. .

. .

. .

. .

. .

. .

6
1
6
2

����

. .

. .

. .

. .

. .

. .

. .

. .

2
8
8
1

������

. .

. .

. .

. .

. .

. .

. .

. .

1
3
9
5

������

. .

. .

. .

. .

. .

. .

. .

. .
6
1
6

������

. .

. .

. .

. .

. .

. .

. .

. .

2
7
9

������

. .

. .

. .

. .

. .

. .

. .

. .

1
2
7

������

. .

. .

. .

. .

. .

. .

. .

. .

4
3

������

. .

. .

. .

. .

. .

. .

. .

. .

7

������

. .

. .

. .

. .

. .

. .

. .

. .

5

������

. .

. .

. .

. .

. .

. .

. .

. .

����������

. .

. .

. .

. .

. .

. .

. .

. .

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

word length

percentage of total number of words in a word-list

��

����

..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.

German word-list (368 152 words), average word length 13.24 characters

0

2

4

6

8

10

12

14

16

9
0

3
6
6

������

. .

. .

. .

. .

. .

. .

. .

. .

1
3
6
5

��

. .

. .

. .

. .

. .

. .

. .

. .

3
4
0
5

��

. .

. .

. .

. .

. .

. .

. .

. .

6
5
2
7

��

. .

. .

. .

. .

. .

. .

. .

. .

9
5
7
9

��
. .

. .

. .

. .

. .

. .

. .

. .

1
5
2
8
1

��

. .

. .

. .

. .

. .

. .

. .

2
2
0
5
1

��

. .

. .

. .

. .

. .

. .

3
0
7
7
2

��

. .

. .

. .

. .

. .

3
7
1
4
5

��

. .

. .

. .

. .

4
0
5
4
7

��

. .

. .

. .

3
9
3
6
1

����

. .

. .

. .

3
5
8
2
1

����

. .

. .

. .

3
0
5
0
0

����
. .

. .

. .

. .

2
4
8
4
4

����

. .

. .

. .

. .

1
9
8
2
1

����

. .

. .

. .

. .

. .

1
5
3
6
1

����

. .

. .

. .

. .

. .

. .

1
1
5
0
6

����

. .

. .

. .

. .

. .

. .

8
2
3
0

����

. .

. .

. .

. .

. .

. .

. .

5
4
3
9

����

. .

. .

. .

. .

. .

. .

. .

3
5
8
5

����

. .

. .

. .

. .

. .

. .

. .

. .

2
4
0
1

����

. .

. .

. .

. .

. .

. .

. .

. .

1
5
4
5

����

. .

. .

. .

. .

. .

. .

. .

. .

9
9
7

����

. .

. .

. .

. .

. .

. .

. .

. .

6
3
1

����

. .

. .

. .

. .

. .

. .

. .

. .

3
8
6

������

. .

. .

. .

. .

. .

. .

. .

. .

2
4
1

������

. .

. .

. .

. .

. .

. .

. .

. .

1
5
2

������

. .

. .

. .

. .

. .

. .

. .

. .

8
9

������

. .

. .

. .

. .

. .

. .

. .

. .

5
2

������

. .

. .

. .

. .

. .

. .

. .

. .

3
0

������

. .

. .

. .

. .

. .

. .

. .

. .

1
4

������

. .

. .

. .

. .

. .

. .

. .

. .

6

������

. .

. .

. .

. .

. .

. .

. .

. .

3

������

. .

. .

. .

. .

. .

. .

. .

. .

1

������

. .

. .

. .

. .

. .

. .

. .

. .

1

������

. .

. .

. .

. .

. .

. .

. .

. .

����������

. .

. .

. .

. .

. .

. .

. .

. .

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

word length

percentage of total number of words in a word-list

��

����

..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 295

Petr Sojka

Table 3: German compound word hyphenation with pattern size optimized strategy

level length param % correct % wrong # patterns statistics
1 1–3 1 2 20 62.41 13.38 + 472 good=134279
2 2–4 2 1 8 52.89 2.53 + 712 bad=676
3 3–5 1 4 7 87.11 4.05 +2951 missed=22636
4 4–6 3 2 1 85.57 0.43 +1506 patterns size=33.6 kB

Table 4: German compound word hyphenation with different (% of correct optimised) strategy

level length param % correct % wrong # patterns statistics
1 1–3 1 2 20 62.41 13.38 + 472 good=143478
2 2–4 2 1 8 52.89 2.53 + 712 bad=698
3 3–5 1 4 3 93.06 4.23 +6612 missed=13437
4 4–6 3 2 1 91.44 0.44 +1586 patterns size=56.5 kB

Table 5: German compound word hyphenation covering even more break points

level length param % correct % wrong # patterns statistics
1 1–3 1 3 1 60.43 9.87 +4819 good=149502
2 1–4 1 3 2 60.24 4.21 +1714 bad=888
3 3–6 1 2 1 98.76 10.82 +1939 missed=7413
4 3–7 1 1 1 95.28 0.57 + 353 patterns size=70.2 kB

Table 6: Standard German hyphenation patterns generation (slightly improved (size) Liang’s parameters)

level length param % correct % wrong # patterns statistics
1 1–3 1 2 20 94.25 23.72 + 449 good=485590
2 2–4 2 1 8 82.66 0.56 +1183 bad=48
3 3–5 1 4 7 98.59 1.08 +1737 missed=8047
4 4–6 3 2 1 98.37 0.01 +1333 patterns size=25.2 kB

Table 7: German hyphenation patterns generation with word-list with discretionary points added
(the same parameters as above)

level length param % correct % wrong # patterns statistics
1 1–3 1 2 20 93.90 23.40 + 456 good=492366
2 2–4 2 1 8 82.48 0.55 +1182 bad=60
3 3–5 1 4 7 98.60 1.13 +1760 missed=8155
4 4–6 3 2 1 98.37 0.01 +1388 patterns size=25.6 kB

296 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Literate plain Source is Available!

W lodek Bzyl
Instytut Matematyki

Uniwersytet Gdański

Wita Stwosza 57

80–952 Gdańsk

Poland

Email: matwb@univ.gda.pl

Abstract

Based on Norman Ramsey’s NOWEB system a new literate tool for the TEX
language has been built. The new system was used to create a ‘literate plain’
source. Although the resulting file is principally plain.tex code interleaved with
documentation, borrowed mainly from The TEXbook, it presents the whole code
from a different perspective. The documentation is organized around the macros
as they appear in the plain.tex file rather than around the topics as in The
TEXbook. This means that the typeset plain.dvi is not a user manual, even
though many notions are explained there.

Introduction

When it was introduced, literate programming was
synonymous with WEB, a system for writing literate
Pascal programs. Since then many different WEBs,
each aiming at a particular programming language
(or small group of related languages), have been cre-
ated. Each WEB is constructed of two separate parts,
one called TANGLE, the other WEAVE. Typically each
part consists of just one program performing many
tasks — it expands macros, prettyprints code, gener-
ates and sorts an index, etc. This makes adaptation
of the existing WEB to another language extremely
difficult.

Another approach to literate programming was
presented by Norman Ramsey, in NOWEB. He de-
signed and realized the TANGLE/WEAVE pair as UNIX
pipes. By extending and/or replacing parts of pipes
with programs, written in AWK, ICON, Flex, Perl, C,
TEXorMETAFONT, a new tool could be created with
relatively small effort. As a result, with NOWEB, it
was possible to create a simple TEX-WEB system by
writing an AWK script and a new TEX format.

WEB for everyone?

WEB is a powerful tool. The strength of literate
programs lies in their ability to produce high-quality
typeset documentation. The strength of literate pro-
gramming lies in allowing you to write code where
you are telling humans what the computer should
do, instead of telling computer what should be done.
Obviously we are more efficient and precise when

communicating with humans than computers. Thus
literate programs are more easily written and main-
tained than ordinary ones.

WEB is a complex tool. A literate program con-
sists of pieces of documentation and named chunks
containing code and references to other chunks. The
pieces are arranged in an order which helps to ex-
plain (and understand) the program as a whole. The
WEB system consists of two processors: TANGLE and
WEAVE.
TANGLE is used to extract a program by replac-

ing one named chunk by its definition. The pro-
cess of replacement is recursive; it continues until no
named chunks remain. From one WEB source many
programs could be extracted (by presenting TANGLE
with different chunks).
WEAVE is used to convert WEB markup into TEX

markup as described and coded in a separate for-
mat file. It handles numerous typographical details
of typeset documentation and provides support for
typical tasks such as cross-referencing, preparation
of indexes, bibliography. Formats for long and short
documents will be different. To typeset a converted
file you will need TEX running on your system. Er-
rors can creep into TEX code. Getting TEX code
working with other formats could end with a short
trip into the TEX language (this will be needed if
you plan your literate program to form part of an
article, a report, or a book).

We learn by reading: why not read ‘literate
books’? There are a few such books already and
more will appear. We learn by writing too: why

TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting 297

W lodek Bzyl

not try one of the existing tools? The C/C++/For-
tran programmer could try CWEB or FWEB. Pro-
grammers writing in other languages could check the
CTAN directory /tex-archive/web for other possi-
ble tools. If your language is not on the list, or you
are not able to express yourself within the style of-
fered, then you are welcome to join the province of
those who build their own tools. This territory is
growing fast due to the efforts of Norman Ramsey,
who established a base for creating simple and ex-
tensible literate tools.

Presenting a new tool: TEX-WEB

Norman Ramsey was the first to attempt to cre-
ate a generic literate tool, not aimed at a particular
language. Such a tool would (of itself) be useless
because of its generality — the key to the useful-
ness of NOWEB lies in its extensibility. The tasks
for TANGLE and WEAVE were divided among stand-
alone programs. To simplify tangling and weaving
a front end was introduced. It performs a kind of
lexical analysis of the source, a task previously per-
formed by both processors separately. The front end
provided with NOWEB is called markup because it
marks each line of source as line of text, as begin-
ning/end of code/documentation, as definition/use
of named chunks, etc.1

WEAVE

markup foo.tw |

awk -f web2tex.awk > foo.tex

With markup as its front end, WEAVE was built
as a pipeline where AWK, obeying commands from
the script web2tex.awk, reads a marked source line
by line and performs actions depending on the line
type. Most of the time it inserts a bunch of TEX
macros, for example inserting index macros.

The format tweb.sty provides support for cross
references, indexes, and multicolumn output. There
you find macros \chapter, \[sub[sub]]section,
\paragraph2, \printcontents, \title.

TANGLE

markup foo.tw | nt > foo.sty

markup foo.tw | nt -R’Chunk B’ > foo.sty

markup foo.tw | mnt ’Chunk B’ ’Chunk A’

Here we have several possibilities. We can extract
code beginning from the chunk named ‘<<*>>’, or
from ‘Chunk B’ (see template file below). Finally,

1 There is unmarkup which works in the opposite way. I
also borrowed two more programs: nt (tangle) and mnt (mul-
tiple tangle) from NOWEB.

2 These macros should not be overused. Usually the chunk
name alone is a better choice.

‘Chunk A’ and ‘Chunk B’ could be simultaneously
extracted to the files with the same names.

TEX

tex foo.tex

makeindex -s dnd.ist -o foo.dnd foo.ddx

makeindex -s und.ist -o foo.und foo.udx

makeindex -s chn.ist -o foo.chn foo.chk

tex foo.tex

Indexes are sorted by makeindex. Three very short
index style files provide formatting of the different
indexes. (MSDOS makeindx breaks on large indexes.)

Sample Makefile. To ease work with tools a sim-
ple Makefile is provided. Type make on the com-
mand line, press the Enter key, and the following
lines will appear on a terminal:

Tangling: make foo.sty

Texing: make foo.dvi

Weaving: make foo.tex

Making archive: make archive

Cleaning: make clean or veryclean

Since there are many different conventions for
where to store files in a file system, three variables
are defined in the Makefile:

• SCRIPTDIR— where web2tex and other scripts
are stored (defaults to BIN),

• INDEXDIR— where index styles are stored (de-
faults to IDXSTY),

• NOWEBDIR— where the programs markup, nt,
mnt are stored (defaults to /usr/local/lib/
noweb).

Also:

• MAKEINDEX— the name of the makeindex pro-
gram (defaults to makeindex),

deals with the fact that the command has a different
name on MSDOS systems.

Template of TEX-WEB source. The structure of a
TEX-WEB file is shown in the example below.

File name: foo.tw

\title{foo.tw -- template file}

\printcontents % if you want TOC

@

The skeleton of the file foo.tw

<<*>>=

<<Chunk A>>

<<Chunk B>>

@

Documentation for Chunk A.

<<Chunk A>>=

(TEX code / references to other chunks)

298 TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting

Literate plain Source is Available!

@

Documentation for Chunk B.

<<Chunk B>>=

(TEX code / references to other chunks)

Documentation chunks begin with the line that
starts with @ followed by space or newline. Code
chunks begin with <<Chunk name>>= on a line by
itself. Chunks are terminated by the beginning of
another chunk or end of file.

Making changes/updates. The change file mech-
anism is not needed in the case of the TEX language.
Change files are used to incorporate system depen-
dent code into a source file, but TEX code is already
system independent: TEX code could only be ‘for-
mat dependent’. Another feature of the format file
is that it evolves with time, but the intermediate
versions are used for preparation of books, articles
etc. All these versions and configurations must be
kept well organized, otherwise you are bound to be
lost. The Revision Control System (RCS) is an ap-
propriate tool to assist with these tasks. With RCS
it is possible, with small overhead, to preserve all
the revisions which evolved from a given text docu-
ment, to merge changes made by others, to compare
different versions, and to keep a log of changes.

RCS

ci foo.tw (check-in latest version)
co foo.tw (check-out latest version)
co -r〈rev〉 foo.tw
rlog foo.tw

rcsdiff -r〈rev〉 foo.tw
rcsmerge -r〈later rev〉 -r〈earlier rev〉 foo.tw

When the first command is executed foo.tw is stored
in a group file (with default name foo.tw,v on UNIX
machines, or foo.tw% on MSDOS) as a new revi-
sion. For each revision you deposit, ci prompts for
a log message. The file foo.tw is deleted unless you
ask otherwise (ci -l foo.tw). The message “ci
error: no lock set by (login)” tells you that
RCS was configured with the ‘strict locking feature’
enabled. Locking prevents clashes between different
users’ modifications if several are working on the
same file. This feature is disabled b the command
rcs -U foo.tw; it is unnecessary if only the owner
of the file is expected to deposit revisions into it.

The next two commands are used to extract
the latest, or the specified, revision from the group
file. rlog is used to print log messages. Differ-
ent revisions of a document may be compared using
rcsdiff. The command rcsdiff foo.tw compares
the latest revision with the contents of the working
file. The differences themselves are found by the

program diff; if you do not like diff’s default out-
put, change it by passing appropriate switches to
rcsdiff. The last command undoes the changes be-
tween revisions; the file foo.tw will be overwritten.
rcsmerge incorporates changes between two revi-
sions into the working file. A similar effect could be
achieved with a stand-alone program called merge.
If files being compared are mine, older, yours then
given the command

merge mine older yours

merge tries to add to mine the result of subtracting
older from yours; if overlap occurs, i.e., both files
mine and yours have changes to the same segment of
lines in older, then merge delimits the alternatives
with

<<<<<<< mine

(lines in) mine

=======

(lines in) yours

>>>>>>> yours

and writes above to mine. Now it is up to you which
set of changes you adopt. merge -p ... sends the
result of merging to the standard output.

To keep the working directory uncluttered, all
RCS files are usually stored in the subdirectory with
the name RCS. RCS commands look first into this
directory when searching for files.

Concluding remarks

It seems that the TEX language constitutes a good
starting point for exploring the idea of literate pro-
gramming. The system is simple, because many fea-
tures present in other WEBs are not needed. The sys-
tem is extensible, which means that it is possible
to try different styles and features. And finally, pro-
grams written in TEX are not too long — plain.tex
is about 1000 lines of code — which means that you
can print the documentation of real programs your-
self and share it with others.

For those convinced by the analysis above, the
literate source of plain.tex has been submitted to
the CTAN archives, in directory web/tweb; please
read it and enjoy.

TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting 299

Teaching CS/1 Courses in a Literate Manner

Bart Childs
Department of Computer Science

Texas A&M University

College Station, TX

USA

Email: bart@cs.tamu.edu

Deborah Dunn
Department of Computer Science

Texas A&M University

College Station, TX

USA

Email: debbie@cs.tamu.edu

William Lively
Department of Computer Science

Texas A&M University

College Station, TX

USA

Email: lively@cs.tamu.edu

Abstract

The first course in Computer Science is often called ‘CS/1’ based upon the desig-
nation in curriculum recommendations. The content of CS/1 courses often shows
that it should include a significant amount of documentation, problem solving,
problem formulation, . . . Experience has shown that instructors often slide into
almost total emphasis on language syntax. Ask the student who has taken such
a class as to its content and the answer usually comes back like “It was a C (or
Pascal or . . .) course.”
We will report on an experiment of teaching the honors section of our first

course at Texas A&M University using Knuth’s WEB. The primary advantage we
saw in the use of the system is that the WEB system would enable the progression
through the problem solving methodology by editing and extending the same
document.
Our analysis of data obtained by tracking the students in later semesters

shows significant benefit from the use of literate programming. We found little
or no problem using emacs, TEX, WEB, and requiring documentation after the
initial scares in the course. We will describe how we taught the course, present
performance statistics, and outline our recommendations for pursuit of similar
goals. Finally, we will outline our longer range goals with the use of similar
systems.

Introduction

We embarked on a project to teach the first com-
puter science course (CS/1) (Denning, Comer, Gries,
Mulder, Tucker, Turner, and Young, 1989; Tucker,
1990) using literate programming (Knuth, 1984) and
still covering all the topics covered in the usual sec-

tions (Dunn, 1995). The parallel sections used Turbo
Pascal and its supporting environment.
CPSC 110 is entitled “Programming I”. The

catalog description does not specify the languages
to be used, but we normally use English and Pas-
cal. A few years ago we tried C instead of Pascal

300 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Teaching CS/1 Courses in a Literate Manner

but have never tried any substitutes for English ex-
cept TEXian (although some students may argue the
point). The reasons that the C experiment were a
failure will not be addressed in this paper.
An inherent part of these CS/1 courses is to

develop the student’s skills in problem solving. In-
deed, in many course outlines, that is part of the
title and the main emphasis in the description of
the course contents. A problem solving methodol-
ogy is often stated in CS/1 courses which generally
has steps like:

1. State the problem completely!

2. Develop all necessary assumptions.

3. Develop an algorithm and test data set(s).

4. Code the problem.

5. Analyze the results (and iterate?).

Literate programming is a style in which the
design of the code reflects that the human reader
is as important as the machine reader. The human
reader is often associated with the expensive process
of maintenance and the machine reader is the com-
piler/interpreter. Literate programming is a pro-
cess which should lead to more carefully constructed
programs with better, relevant ‘systems’ documen-
tation. We think that the first sentence in this para-
graph should be particularly relevant to students be-
cause the human reader (the one who assigns grades)
is obviously the most important reader.
The features of literate programming that gave

us the confidence to expect positive results are:

1. top-down and bottom-up programming since it
is a structured pseudo-code,

2. programming in small sections where most sec-
tions of code and documentation (section in this
use is similar to a paragraph in prose) are ap-
proximately a screen or less of source,

3. typeset documentation (after all, Knuth was
rewriting TEX),

4. pretty-printed code where the keywords are in
bold, user supplied names in italics, . . . , and

5. extensive reading aids are automatically gener-
ated including a table of contents and index.

We offer these comments about the above list
We repeat the item numbers for clarity:

1. these topics are usual in CS/1 books but they
generally lack the integration to make them re-
ally effective for the student,

2. divide and conquer is also espoused but the
larger examples that are furnished in many
books forsake the principle,

3. it may be argued that this is ‘feeding pearls to
the swine’ but we like the cognitive emphasis
that comes from logical substitution of words
for key-words . . . ,

4. the fact that weave breaks lines based on its
parsing is another cognitive reinforcement,

5. encouraging/requiring students to review their
programs as documents makes them think
about readability.

Problems with ‘Problem Solving’

Researchers have found that many of the difficulties
experienced by novice programmers are not a result
of misunderstanding the language constructs, but a
result of problems with “putting the pieces together”
(Spohrer and Soloway, 1986). Thus, the process by
which programs (and documentation) are developed
should be examined.
Linn and Clancy (1992) state that a good pro-

grammer needs both a knowledge of the program-
ming language and good problem solving skills. In-
troductory courses tend to emphasize programming;
that is, the product of good design and develop-
ment. Although this is obviously an important as-
pect of programming, the real problems exist in
the design of problem solutions (Linn, Sloane, and
Clancy, 1987). Few textbooks used in the introduc-
tory courses actually emphasize teaching the stu-
dent how to develop good design solutions (Linn and
Clancy, 1992), regardless of the university catalog
description.
Linn, Sloane, and Clancy (1987) found, in teach-

ing program design, that teachers who discuss how
they solve problems, including their interpretation
of the problem statement, are more effective than
those who present just the subject matter. Studies
have shown that explicit teaching of problem solv-
ing strategies greatly influences learning (Linn and
Dalbey, 1985; Linn, Sloane, and Clancy, 1987).
Soloway (1986) states that goals and plans are

the two key components in the task of representing
problems and solutions to a problem. Problem solv-
ing, and hence learning to program, requires that
students learn to construct mechanisms and expla-
nations for those mechanisms. Students are led to
believe that programs are the output from the pro-
gramming process. Rather, they must be made to
understand that programming is a design discipline.
Instead of the programming process being viewed as
a program, it should be viewed as “an artifact that
performs some desired function” (Soloway, 1986).
Soloway and colleagues (Soloway, Ehrlich,

Bonar, and Greenspan, 1982; Spohrer and Soloway,

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 301

Bart Childs, Deborah Dunn and William Lively

1986) have studied bugs – errors in programs– and
misconceptions –misunderstanding in the minds of
novice programmers– in an attempt to identify the
needs of novice programmers by understanding the
kinds of mistakes they are likely to make. Be-
cause there are many ways to solve a given prob-
lem, bugs are identified using a goal/plan analysis.
Goals are what is to be accomplished and plans are
those stereotypical sections of code that are used
to achieve the goal. Thus, bugs are the differences
between the correct plans and the incorrect imple-
mentations used by novices (Spohrer and Soloway,
1986).
Soloway believes a program has two audiences

(Soloway, 1986), as shown in Figure 1. Soloway uses
this to conclude: “learning to program amounts to
learning how to construct mechanisms and how to
construct explanations” (Soloway, 1986).

The Audiences for a Program
♦The computer, which, based on instructions
is a mechanism for how a problem is solved.
♦The human reader, who needs an expla-
nation for why the program solves the
problem.

Figure 1: Program Audience

“Are You Crazy!?”

The title of this section was frequently shouted at
us because, everybody in the world knows:

• emacs is impossible to learn and use,

• TEX is impossible to learn,

• WEB’s steps make it too many steps to learn, and

• there is a reason for all those Aggie jokes.

and therefore our project was doomed!
Well, we are Aggies and we decided to try teach-

ing CS/1 using all those horrible things. We exer-
cised a little judgement and did it on the smallest
sections of the course, namely the honors sections.
The next four subsections are the things that we

did that are different from our usual CS/1 course.
They are presented in the order that the students
saw them.

Testing The first meeting of the laboratory in-
cluded some quizzes that did not affect the grade but
were done to determine the students’ backgrounds.
During the semester there were some different

questions on tests that addressed problem solving
more than usual.
Introductory computer science students have

difficulty viewing programming as a means by which

we solve problems. Computer science instruction,
at the introductory level, tends to emphasize pro-
gramming, which is the product of problem solution
design (Linn and Clancy, 1992). Most textbooks
give examples of programs, rather than demonstrate
the method by which the given solution was derived
(Linn and Clancy, 1992).
It has been said the use of literate program-

ming allows us to associate a given design step with
its consequences, that is, the resulting code (van
Ammers, 1993). Students should be taught that
problem solution design leads directly to the result,
which is the program. The use of literate program-
ming encourages the inclusion of the design step in
the source of the resulting program.
The results of the research were used to deter-

mine whether improvements in problem solving and
programming skills can be attributed to the use of
literate programming. An evaluation of the teaching
methodology was made based on several factors:

1. Completion of a pre-test which was developed
to indicate the students’ problem solving ability
and computing background as they entered the
course.

2. Periodic tests which were designed to indicate
the change in problem solving ability and pro-
gramming skills.

3. An evaluation of the programs and documen-
tation produced and the consistency between
code and its corresponding documentation.

4. Completion of a post-test which indicates the
students’ ability to solve problems and write
programs at the end of the test period.

5. An evaluation of the students’ performance in
the subsequent Programming II course.

6. An evaluation of the students’ performance in
the subsequent Data Structures course.

The results were expected to indicate an
increase in problem solving ability over time.
Programmers who use the literate programming
paradigm were expected to be more problem-
oriented rather than program-oriented.

Emacs and web-mode We decided to use Mark
Motl’s web-mode environment (Cameron and Rosen-
blatt, 1991; Motl, 1990). This keeps the neophyte
(and expert) user from making a number of sim-
ple mistakes that are easily committed. It relieves
the user of knowing how and where to insert that
necessary TEX mumbo-jumbo that WEBs start with;
it ensures matched @< and @> pairs (complete with
the “=” when needed); and allows selection of ex-
isting section names (rather than having to type it
identically).

302 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Teaching CS/1 Courses in a Literate Manner

At a later time, it will help them in other ways
by allowing navigation in terms of WEB terminology.
Emacs was introduced with a one page hand-

out and a modified version of the ‘Emacs Reference
Card’. The reference card is printed on 8.5′′ × 11′′

paper, two sided, with three panels on each side.
The modifications were to remove some of the more
advanced features of Emacs and replace them with
web-mode features. Emacs was covered in one hour
of laboratory time with some questions and answers
at the start of subsequent periods.

Knuth’s WEB The subsequent courses in our cur-
riculum are based upon having some use of the Pas-
cal language in CS/1. Thus, we selected a cur-
rent implementation of Knuth’s original WEB (Knuth,
1983), which is Pascal based.
The current implementation means that we did

not convert the output of tangle to all upper case,
shorten variable names, nor remove underscores.
The resulting output of tangle is still relatively “un-
fit for human consumption”.
The rules of WEB were covered by the use of a

five page “memo” from the WEB distribution, Knuth’s
“WEB User’s Manual”.

How The Course Was Taught The focus of the
semester was on problem solving. The students were
taught Pascal syntax, but the emphasis was on prob-
lem solving using the WEB style of programming. A
portion of the class was spent on learning (and eval-
uating) problem solving skills for the design and
development of programs. One method by which
problem solving was taught was by example. The
students were given several examples of how to de-
sign solutions to a problem. This technique of prob-
lem solving with examples was used throughout the
semester as the difficulty of the problems increased.
An important part of learning problem solving

was to practice iteration in the design of a solution.
An iteration of the students’ problem solution was
evaluated by the teaching assistant. The students
received feedback regarding their iterative process,
such as whether they were approaching the details
of the problem at an acceptable level and whether
they were considering all aspects of the problem.
The final measurement in the design and devel-

opment phase was made upon completion of the pro-
gram assignment. Each program was examined and
an evaluation made as to the correctness of the so-
lution, the consistency of documentation and code,
and the quality of the documentation. The intent
was to determine if the documentation portion of a
section was, in fact, an explanation of the code.

Do All Labs Twice We were particularly fortu-
nate that when the curriculum was revised and a
formal laboratory was added, the professor in charge
decided that the laboratory meeting would not be
one extended period, but two one hour periods with
a day in between.
We used this to great advantage to require that

each lab to be turned in for grading twice:

• Do the first three parts of the problem solving
procedure outlined above without any code!
We wanted the student to document that the
problem was understood! WEB can be consid-
ered to be a structured system of pseudo-code
and is therefore ideal for this purpose.

• The 47 hour lapse between laboratory meet-
ings enabled the grading of those important first
steps of problem solving to assist the student in
understanding what is to be converted to code.

Initial Reactions and Thoughts

Students in first year courses are often rather intim-
idated but generally ready for any challenges that
might arise. Of course we have that same experi-
ence. It is interesting to note those that were not
‘the usual’.
CS/1 courses will often have a number of stu-

dents who have had one to five years of computer
experience, much of it unstructured. We certainly
had our share.
There were a number of students who had at

least one year of the use of Turbo Pascal in sec-
ondary school and who had obviously used it signif-
icantly outside that educational environment. Test-
ing showed these students to have two general char-
acteristics:

• a lack of understanding of how to state a prob-
lem;

• a great desire to do nothing other than use
Turbo Pascal.

It was also common for these students to react in
rather vigorous ways. We think that it is a charac-
teristic of those in the programming professions to
resist change unless it is change that they tried to
start.
Nearly half the class indicated no programming

background from their secondary training. (They
may have had word processing, spread sheets, and
computer math; but they indicated no program-
ming. Further, they were frequently not CS majors.)
Thirty-eight students enrolled in the honors

class during the Fall 1993 semester. The adminis-
tration of a pre-test provided information regarding

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 303

Bart Childs, Deborah Dunn and William Lively

the general background and experience of the partic-
ipants. The purpose of the pre-test was to establish
that these were, in fact, novice programmers. The
results of the problem solving portion of the test
provided a basis for measuring the initial problem
solving skills of the participants.
The students entered the course with a vari-

ety of backgrounds in computer science. Only one
student had never taken a computer science course
and one student had taken only a computer liter-
acy/computer history course. Few of the students
had any background in computer science at the col-
lege level. Table 1 is a summary of the college level
experience of the participants.

Table 1: Unusual or Exceptional Computer
Experience of Subjects

Count Exceptional Experience
1 C course at a Junior College
4 University level Fortran course

The majority of the students had some type of
computer science class in high school. Table 2 is a
summary of the high school experience of the par-
ticipants. Although there were thirty-eight students
enrolled in the class, many of the students had ex-
perience in more than one of the areas listed.

Table 2: High School Computer Experience of
Subjects

Count Computer Experience
8 Microcomputer applications,

typically including DOS, WordPerfect,
Lotus 1-2-3, and/or dBase

8 Computer Math, which may or may not
include some experience in
BASIC and/or Pascal

12 BASIC course
21 One or more semesters of Pascal

Despite the appearance of having a significant
background in computers, these students must still
be considered novice programmers. Although a sig-
nificant number had some background in Pascal pro-
gramming, fifteen felt they could program without
the use of a reference manual. Even so, their knowl-
edge of advanced Pascal constructs cannot be con-
sidered to be comprehensive. None of the students
had experience as a professional programmer.
One student had limited experience with the

emacs editor. The remaining thirty-seven had no

experience with emacs. None of the students had
heard of WEB programming; therefore, none of the
test study participants had previous experience with
literate programming.
The pre-test included a question designed to

provide some measurement of the students’ initial
problem solving ability. The students were asked
to state the steps necessary to solve a given prob-
lem. They were instructed to give detailed answers
in complete English sentences and paragraphs. The
problem was stated as follows:

You are the manager of Aggie Lawn Service.
Alvin is your new employee. You must explain to
Alvin the process of calculating an estimate for a
potential customer. (Of course, in the future this
may use a hand-held computer.) The quote will
include a cost statement and estimated time to
complete the job.

This estimate is based upon the area of the lawn
and a standard (confidential) charge per square
foot. Grass can be cut at the rate of 2 square feet
per second. You may assume that a rectangular
house is situated in a rectangular yard. Give the
details of the process and itemize all assumptions
you have made.

It is difficult to measure a person’s problem
solving ability. For example, if it is easily seen that
the problem is a basic input-process-output prob-
lem, then each subject should receive points if the
necessary inputs and the required outputs were de-
scribed. In terms of the processing, many students
felt it was sufficient to merely give the formula for
the area of a rectangle. They then subtracted the
area of the house from the area of the lawn (some-
times shown, again, as a formula).
In general, most of the students were able to

give an answer which solved the problem. However,
several exceptions were noted as follows:

• some participants simply gave the necessary for-
mula(s), omitting any description of the inputs
and/or outputs;

• some participants failed to describe their solu-
tion using complete English sentences and para-
graphs;

• some participants described the necessary in-
puts and the required processing, but failed to
produce a result; and

• some participants made and described addi-
tional assumptions or expressed a need for ad-
ditional information regarding items such as
driveways, sidewalks, trees, flower beds, etc.

304 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Teaching CS/1 Courses in a Literate Manner

The students’ solutions were scored based on
their ability to solve the problem. Table 3 is a sum-
mary of the minimal set of problem solving issues
that should have been addressed or noted, with their
associated point value.

Table 3: Problem Solving Issues

Points Problem Solving Issue
2 Obtain dimensions of yard
2 Obtain dimensions of house
2 Calculate area for house and yard
2 Calculate area for lawn to be cut
3 Calculate total cost to cut the lawn
3 Calculate the time for completion
2 Convert the time to minutes or hours
2 Produce the final cost for cutting lawn
2 Produce the time for completion

A final score of twenty indicates that the stu-
dent adequately described the required inputs, cal-
culations, and necessary outputs. A student lost
points for omitting information or not describing the
process in sentence form. A student could earn ex-
tra points by addressing issues that were not explic-
itly mentioned, but might be a factor in solving the
problem.

Table 4: Initial Problem Solving Ability

Percent of
Students Problem Solving Ability
31.6 Excellent (18+ points)
15.8 Above average (16-17 points)
21.1 Average (14-15 points)
13.2 Below average (12-13 points)
18.4 Poor (below 12 points)

Table 4 is a summary of the results of measuring
the students’ initial problem solving ability. There
are 47.4% above and only 31.6% below average. The
grade of “C” is described as average, yet it is rare
that a class will have as many D’s and F’s as A’s
and B’s. The distribution of the data in Table 4
is consistent with grade distributions for the CS/1
course over the last few years.

Results

We feel the background of the students is not atyp-
ical of many CS/1 type courses. The majority of
the class are majoring in computer science, but a
significant number are using the course as a minor

elective, a basis for deciding if they want CS as a
major, or other reasons.
Some results will be presented with this diver-

sity as an identifying factor. Results will also reflect
the tracking of the students in subsequent courses
and differences between other semesters of the same
course.

Performance during the semester The actual
scores received by the test group on the problem
solving portion of each test are included in Ap-
pendix D. The mean of the scores for the problem
solving portion of each test are shown in Table 5.

Table 5: Mean Problem Solving Scores – Tests
(Percent)

Test Overall Majors Non-Majors
Pre-Test 72.6 74.0 68.3
Test 1 78.8 79.7 76.1
Test 2 66.6 65.7 71.6
Test 3 80.9 80.3 82.7
Post-Test 76.6 76.2 77.8

It is difficult to determine whether or not the
problem solving skills for the test group increased
over the course of the semester. The class, as a
whole, experienced a decrease in scores on the sec-
ond test, although there was a greater decrease for
computer science majors. This decrease in scores
for the second test may be attributed to the fact
that the problem for that test was significantly dif-
ferent and more difficult than any of the problems
encountered previously during the lab or on a test.
The scores also decreased on the post-test, or final
exam, as compared to the third test; however, they
still improved as compared to the scores on the pre-
test.
The problem solving scores, as a whole, were

higher on the labs than they were for the exams.
This was to be expected since the problem solving
portion of the lab was not developed under stressful
situations, as in the test-taking scenario. Another
reason for having higher scores in the lab is that
measuring problem solving skills is not something
we are used to doing on a test. It is much easier to
evaluate someone’s problem solving skills developed
through iteration during lab than it is to evaluate
one-time problem solving skills on a test.
Table 6 is a summary of the overall grade dis-

tribution for students completing the CS/1 course
for the subject and comparison classes (in percent
form).
The percentage of students that passed the

CS/1 course was similar for each of the classes. A

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 305

Bart Childs, Deborah Dunn and William Lively

Table 6: Overall Grade Distribution (Percent)

Semester A B C D F
Fall 90-H 20.6 50.0 14.7 5.9 8.8
Fall 92-H 51.3 20.5 20.5 2.6 5.1
Fall 93-H 24.3 40.5 21.6 5.4 8.1

grade of “A”, “B”, or “C” is considered passing.
The Fall 1990 and the Fall 1992 comparison groups
had 85.3% and 92.3% of the students, respectively,
pass the course. The test group had 86.4% of the
students pass the course.

Performance in CS/2 Approximately 65-70% of
the honors CS/1 students enrolled in the CS/2 course
(73.5% of the Fall 1990 class, 66.7% of the Fall 1992
class, and 67.6% of the Fall 1993 class).
Table 7 is a summary of the overall grade dis-

tribution for the subsequent CS/2 course for those
students in the subject and comparison classes in
percent form.

Table 7: Overall CS/2 Grade Distribution
(Percent)

Semester A B C D F
Fall 90-H 68.0 28.0 4.0 0.0 0.0
Fall 92-H 73.1 19.2 7.7 0.0 0.0
Fall 93-H 52.0 40.0 4.0 0.0 4.0

At first glance it appears that the students in
the Fall 1990 honors and the Fall 1992 comparison
classes performed much better than the students in
the test study group in the CS/2 class. Both of
the comparison groups had a higher percentage of
students make “A”s in the subsequent course. How-
ever, all of the classes had over 90% of the students
make an “A” or a “B” in the course.
Table 8 is a comparison of the average grades

in the CS/1 class and the subsequent CS/2 class
for those students in the subject and comparison
classes. The grade point shown is out of a total
possible grade of 4.0. The Mann-Whitney U-test
was used to conclude that there is not a significant
difference in average grade point ratio for any of the
groups.
This may still not be a good representation of

how the students in the subject and comparison
classes performed in the subsequent course. These
grades can be evaluated in terms of the particular
section and semester the class was taken and the
instructor that taught the class.
Table 9 is a summary of the average difference

in grades between the subject class, the comparison

Table 8: Average Grade for CS/1 and CS/2
Courses

Semester CS/1 CS/2
Fall 90-H 2.676 3.640
Fall 92-H 3.103 3.654
Fall 93-H 2.676 3.360

classes, and the other CS/2 classes. This summary
is itemized by section, instructor, and semester.

Table 9: Average Difference in Grade for CS/2
Classes

Semester Difference Difference Difference
Semester in Section in Instr. in Semester
Fall 90-H +0.02 +0.01 +0.01
Fall 92-H +0.03 +0.01 +0.01
Fall 93-H +0.06 +0.05 +0.09

With these figures, it is shown that the stu-
dents in the CS/1 comparison classes scored some-
what higher than their peers in the same section of
the CS/2 course. However, those students in the
CS/1 test group scored even higher than their peers
in the same sections of the CS/2 course. This data
was also analyzed including the CS/2 instructors
and semester. The same results held.
When the performance of the students in the

test study group was compared with the performance
of their peers, it was determined that the students in
the test study group actually scored higher than the
students in the comparison groups (and the other
students) in the CS/2 course.

Performance in Data Structures Approxi-
mately 45-55% of the honors CS/1 students enrolled
in the Data Structures course (55.9% of the Fall 1990
class, 56.4% of the Fall 1992 class, and 45.9% of the
Fall 1993 class).
Table 10 is a summary of the overall grade dis-

tribution for the Data Structures course for those
students in the subject and comparison classes in
percent form.

Table 10: Overall Data Structures Grade
Distribution (Percent)

Semester A B C D F
Fall 90-H 21.1 63.2 15.8 0.0 0.0
Fall 92-H 50.0 13.6 22.7 9.1 4.5
Fall 93-H 52.9 35.3 11.8 0.0 0.0

306 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Teaching CS/1 Courses in a Literate Manner

Not only did the test study group have a larger
percentage of students make an “A” in the course,
but a larger percentage of students made an “A” or
a “B” in the course.
Table 11 is a comparison of the average grades

in the CS/1 class, the CS/2 class, and the Data
Structures class for those students in the subject and
comparison classes. Again, the grade point shown
is out of a total possible grade of 4.0. Using an un-
paired t-test, with α = 0.10, it was concluded that
there is a significant difference in average grade for
the Data Structures course between the Fall 1993
test group and both the Fall 1990 and the Fall 1992
comparison groups.

Table 11: Average Grade for CS/1, CS/2, and
Data Structures Courses

Semester CS/1 CS/2 DS
Fall 90-H 2.676 3.640 3.053
Fall 92-H 3.103 3.654 2.955
Fall 93-H 2.676 3.360 3.412

A chi-square test of independence was con-
ducted to determine if the grade and CS/1 semester
variables are related (or dependent). The critical
value of X2 for α = 0.10 and degrees of freedom = 8
is 13.36. The computed value, 15.368, exceeds 13.36,
so we conclude that the two variables are dependent.
That is, the proportion of students receiving a par-
ticular grade varies depending on the semester in
which they took CS/1.
When the performance of the students in the

test study group was compared with the performance
of their peers in a course which requires extensive
problem solving skills, it was determined there is a
significant difference in the performance of the stu-
dents in the test study group compared with the per-
formance of the students in the comparison groups.
Too bad that few (if any) were still using lp.

Student Evaluation of CPSC 110 Teaching
Methodology Upon nearing completion of the
CS/1 course, the students were asked to submit a
paper reflecting their feelings and attitudes towards
the WEB programming methodology. It was stressed
that statements made would in no way affect their
grade in the course. This was to be written as a
typical one-page technical note.
Three people evaluated the reaction of the test

subjects. None of the people had prior training in
rating. A rating scale (Meister, 1985) was developed
and the reports were evaluated in order to appraise
the students’ reactions to the WEB programming pro-

cess. The scale consisted of five categories, rated 1-5
and a 0 value that was taken to mean no response.
Below is a summary of the results of the rat-

ing process. The mean of the scores (columns R-1,
. . . , R-3) for each of the three volunteers who rated
are shown in Table 12. Kendall’s coefficient of con-
cordance (Meister, 1985) was used to test agreement
between the ratings. The result was a value of 0.673,
which indicates there was a modest level of agree-
ment between the evaluations of the questionaire re-
sults.

Table 12: Evaluation of Fall 1993 CPSC 110H
Students’ Reactions

Question R-1 R-2 R-3 Overall
1 3.21 2.81 2.52 2.85
2 3.20 1.60 3.25 2.67
3 2.69 2.64 1.87 2.43
4 3.44 3.14 1.67 2.88
5 3.41 3.28 2.90 3.20
6 3.54 2.87 3.57 3.31

The questions and some comments of interpre-
tation were:

1. What was your original reaction to being told
you were going to learn something called WEB?
Although a few of the students were enthusi-

astic about the idea, many were unhappy with
the fact that they were going to be using a
different methodology. Much of the unhappi-
ness was due to the fact that many of the stu-
dents entered the course with prior expectations
about what is taught in the class.

2. What was your expectation of the course?
Most students entered the course under the

impression that CPSC 110H was a course in
Turbo Pascal, despite the course description.

3. What was your reaction to emacs?
Many of the students objected to the use

of the emacs editor. This may be due to
the fact that the user interface is not ex-
tremely user-friendly, especially to the novice
user. The students were required to use prede-
fined keystrokes, rather than pull-down menus.
(This was apparently because the question was
asked. It did not show up on the course evalu-
ation.)

4. What was your reaction to TEX?
Although a minimal amount of TEX knowl-

edge is required, the students seemed to find
the language difficult. Although several exam-
ples were provided, with a variety of TEX com-
mands, they students did not seem to adapt

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 307

Bart Childs, Deborah Dunn and William Lively

well to the use of TEX. Despite the lack of TEX
knowledge, the students seemed to adapt to the
WEB environment. (Same comment?)

5. What was your reaction to WEB programming?

The evaluators of the students’ reaction seem
to believe this response was a bit above average.
The lack of enthusiastic response may have been
due to their overall difficulty in understanding
the WEB process and concepts.

6. What was your reaction to the overall WEB pro-
cess/concepts?

Generally, the students’ understanding was
average to good. Many of the students contin-
ued to have difficulty separating the concepts
of editor, WEB files, TEX commands, etc. Some
seemed overwhelmed in the beginning with hav-
ing to learn more than just ‘a language’.

There were certainly a number of students
who can code but did not catch the ‘big pic-
ture’. Comments like “why document when you
have the code to read” were not uncommon.

For the purposes of table 12, answers to the
questions (except question 2) were ‘not discussed’;
poor; fair; average; good; and excellent, receiving
numeric values of 0, . . . , 5 respectively. The answers
to question 2 varied from ‘unknown ≡ 0’ to ‘Turbo
Pascal ≡ 3’ to ‘Problem Solving and Programming
≡ 5’.

Conclusions

We taught an honors section of a CS/1 course in a
different manner than usual, namely using literate
programming. The students used an editor, a for-
matting system, and a coding style that was new
to all. The students’ performance in subsequent
courses was not hurt and may have been helped
with the different methodology. The results of using
the program development methodology in the CS/1
course indicate that the methodology is successful in
teaching novice programmers good problem solving
skills.
These are the results of the experiment:

• The students showed an increase in their prob-
lem solving skills.

• Those students unfamiliar with the Pascal pro-
gramming language, or any other programming
language, were more successful then those fa-
miliar with Pascal at using the literate pro-
gramming paradigm to capture and document
their problem solving process.

• The students were able to learn the WEB rules,
the web-mode environment, GNU Emacs, and

TEX rules, as well as the Pascal syntax and con-
structs.

• Those students exposed to the program devel-
opment methodology utilizing the literate pro-
gramming paradigm were as successful in the
subsequent CS/2 course as those not exposed
to the methodology.

• Those students exposed to literate program-
ming were significantly more successful in the
Data Structures course than those not exposed
to the methodology.

• The subject program development methodol-
ogy may lead to an improved software devel-
opment process; however, more tests should be
conducted.

Norman Ramsey (author of Spider and
NoWEB) has recently presented a position paper at
an ICSE ’95 workshop entitled “Literate Program-
ming should be a model for Software Engineering
and Programming Languages”, dated March 1995.
While we are in agreement with the obvious philos-
ophy, we are concerned that it is too late because we
have observed first year students are already like the
professionals: “No, I do not want to learn anything
new if I already have some knowledge in the area”.
We think it should appear early in the curriculum
and repeatedly.

Recommendations and Future Use

In teaching a CS/1 course, you can do darned near
anything and succeed. You just have to keep your
eye on the goal, don’t apologize, and push! We have
known of real problems because the professor (as-
signed to the class at the last minute) often is less fa-
miliar with the specifics of ‘Turbo Pascal’ than many
of the students. The lesson from that is “give them a
new challenge”. We feel that there is a real benefit to
the use of literate programming and requiring that
students practice writing, using of pseudo-code, and
documenting their programs. It is a new challenge
to them.
The following is a list of things we wish we had

or recommend to similar projects:

1. It sure would be nice if we have some video
training on how to do some of these things, par-
ticularly simple TEX, emacs, and DOS.

2. Now that we have MetaPost and other drawing
packages, we think that more diagrams should
be included in the first lab attempts.

3. Make students write! Repeat “Make students
write!”

4. This is a natural for “cooperative learning”;
have the students do extensive peer review.

308 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Teaching CS/1 Courses in a Literate Manner

5. It would be easier if we had some tools that
would extract a component of the grade based
upon “user supplied” index entries, long vari-
able names, variable names made of words from
the dictionary, . . . Then the person should add
significant markup from reading the English.

6. Assign some labs that are extensions of previ-
ous work to let them see what maintenance is.
If you have time, let them work on programs
done with and without literate programming.
Otherwise, they will never learn! This can be
difficult in a first course, but should always be
part of later courses.

References

D. Cameron and Rosenblatt, B. Learning GNU
Emacs. O’Reilly & Associates, Inc., Sebastopol,
CA, 1991.

P. J. Denning, Comer, D. E., Gries, D., Mulder,
M. C., Tucker, A., Turner, A. J., and Young,
P. R. “Computing as a discipline”. Communica-
tions of the ACM 32(1), 9–23, 1989.

D. L. B. Dunn. Literate Programming as a Mech-
anism for Improving Problem Solving Skills.
Ph.D. thesis, Texas A&M University, College
Station, TX, 1995.

D. E. Knuth. “The WEB system of structured docu-
mentation”. Stanford Computer Science Report
CS980, Stanford University, Stanford, CA, 1983.

D. E. Knuth. “Literate programming”. Computer
Journal pages 97–111, 1984.

M. C. Linn and Clancy, M. J. “The case for case
studies of programming problems”. Communi-
cations of the ACM 35(3), 121–132, 1992.

M. C. Linn and Dalbey, J. “Cognitive consequences
of programming instruction: Instruction, access,
and ability”. Educational Psychologist 20(4),
191–206, 1985.

M. C. Linn, Sloane, K. D., and Clancy, M. J.
“Ideal and actual outcomes from precollege Pas-
cal instruction”. Journal of Research in Science
Teaching 24(5), 467–490, 1987.

D. Meister. Behavioral Analysis & Measurement
Methods. John Wiley & Sons, Inc., New York,
1985.

M. B. Motl. A Literate Programming Environment
Based on an Extensible Editor. Ph.D. thesis,
Texas A&M University, College Station, TX,
1990.

E. Soloway. “Learning to program= learning to con-
struct mechanisms and explanations”. Commu-
nications of the ACM 29(9), 850–858, 1986.

E. Soloway, Ehrlich, K., Bonar, J., and Greenspan,
J. “What do novices know about program-
ming?”. In Directions in Human-Computer
Interaction, edited by B. Shneiderman and
A. Badre, pages 27–54. Ablex Publishing Corp.,
Norwood, NJ, 1982.

J. C. Spohrer and Soloway, E. “Novice mistakes: Are
the folk wisdoms correct?”. Communications of
the ACM 29(7), 624–632, 1986.

A. B. Tucker. “Computing Curricula 1991– Re-
port of the ACM/IEE-CS Joint Curriculum Task
Force”. Technical report, Association for Com-
puting Machinery, New York, NY, 1990.

E. W. van Ammers. “Communication on July 16,
1993 at 7:05 CDT”. Literate Programming Mail-
ing List, 1993. Email: ammers@rcl.wau.nl.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 309

An Audio View of (LA)TEX Documents—Part II

T. V. Raman∗

Digital Equipment Corporation

Cambridge Research Lab

One Kendall Square, Building 650

Cambridge, MA 02139, USA

Email: raman@crl.dec.com

URL: http://www.cs.cornell.edu/Info/People/raman/raman.html

Abstract

ASTER—Audio System For Technical Readings— is a computing system that
produces audio renderings from the same (LA)TEX source used to produce the
printed document. Raman (1992) described our preliminary work on this project.
At the time, correct handling of user-defined (LA)TEX macros was described as
one of the key issues in building a fully extensible audio rendering system. ASTER
(Raman, 1994) has now been fully implemented. This paper reports on the
approach used in ASTER to handle user-defined macros.
The approach used not only makes ASTER fully extensible; it points out

a unique advantage of (LA)TEX—the ability of the author to encode semantic
meaning into the markup by extending the document model in ways appropriate
to the specific document instance that is being encoded.

Introduction

ASTER

ASTER—Audio System For Technical Readings—
is a computing system that aurally renders elec-
tronic documents marked up in the (LA)TEX fam-
ily of markup languages (Raman, 1994). ASTER
uses the structural markup present in the electronic
source to advantage in producing high-quality, in-
teractive audio renderings. This paper focuses on a
specific aspect of the problem; namely that of flexi-
bly rendering the extended document logical struc-
ture encapsulated in a (LA)TEX document.
One primary advantage of (LA)TEX is the flexi-

bility it provides the author in defining logical struc-
tures that are specific to a particular document in-
stance. In this sense, the class of logical structures
that can be encapsulated in a (LA)TEX document is
extensible. (LA)TEX macros allow an author to ab-
stract away the layout details. At the same time,
they provide a powerful mechanism for defining new
constructs that are not already present in the doc-
ument style (DTD in SGML parlance) in use. As a
consequence, when introducing a new piece of math-

∗
Now at: Adobe Systems, Advanced Technology Group,

1585 Charleston Road, Mountain View, CA 94039-7900;
Email: raman@adobe.com

ematical notation, an author can first define a new
(LA)TEX macro that produces a desired layout, and
then use this newly defined construct throughout
the document.
The flexibility of the (LA)TEX macro facility ini-

tially proved a major stumbling block in building a
fully extensible audio rendering system. A system
that attempts to produce aural renderings by map-
ping the builtin (LA)TEX commands to an equivalent
aural representation faces the severe shortcoming of
not being able to render documents that contain
user-defined macros. At the same time, it is impos-
sible to translate such user-defined (LA)TEX macros
into a suitable aural representation. This is because
TEX in its full glory is a Turing-complete program-
ming language, and saying “we can translate a gen-
eral TEX macro to audio” is equivalent to saying that
“Given a TEX program, we can predict the result”.
Being able to achieve the above without actually
running TEX on the program (document fragment)
would amount to being able to solve the Halting
problem!
In the rest of this paper, we describe the solu-

tion used in ASTER to circumvent this difficulty. The
solution we used in fact turns the presence of user-
definable (LA)TEX macros into an advantage. Such
user-defined constructs allow ASTER to glean even
more information about the document logical struc-
ture than would be possible if the document were

310 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

An Audio View of (LA)TEX Documents—Part II

encoded using only the built-in (LA)TEX operators;
as a consequence, the audio renderings produced are
also significantly better.

Document Models in ASTER

ASTER produces audio renderings by first extract-
ing the document logical structure. In this model,
all forms of rendering, i.e., visual, aural, etc. are re-
garded as a projection of the structure present in the
information being conveyed onto the medium being
used to communicate the information. Thus, type-
setting a document requires visual formatting—
projecting the information structure onto a two-
dimensional visual tablet; aural rendering requires
presenting the structure using various features of the
auditory display.
The recognizer used in ASTER extracts logi-

cal structure present in documents encoded in the
(LA)TEX family of languages. An important feature
of this recognizer is that it works on the entire gamut
of encodings, ranging from plain ASCII documents,
i.e., no explicit markup, up to documents contain-
ing completely unambiguous encodings of the logical
structure.
The basic document model used in ASTER is

the attributed tree. Each hierarchical level of the
document is modeled as a node in this tree. Each
node can have content, children and attributes. Us-
ing object-oriented terminology, each different kind
of node of the tree is called an object and represents
a document element. Thus, “chapter”, “section”,
“paragraph”, and “sentence” are all objects. If a
document contained five sections, its representation
in ASTER would have five instances of object “sec-
tion”. This object-oriented terminology is used be-
cause ASTER actually uses CLOS objects in this fash-
ion. The use of an object-oriented language was in-
strumental in allowing us to develop and implement
the ideas in ASTER incrementally and effectively.
This attributed tree structure is augmented to

represent mathematical content; we call this aug-
mented representation the quasi-prefix form, (see
figure 1 above). Expressions that are completely
unambiguous, e.g., x+ y, are captured in their pre-
fix form. In addition to linearizing the underlying
tree structure, mathematical notation uses visual at-
tributes such as superscripts and subscripts, whose
interpretation is context-dependent. We extend the
prefix form to capture such visual attributes—hence
the name quasi-prefix.
The next section describes how this model is

extended to encapsulate the use of user-defined con-
structs in (LA)TEX.

Extended Logical Structure

The (LA)TEX facility can be used to extend the doc-
ument logical structure by defining new constructs.
Thus, an author preparing a manuscript on inference
logic might define

\newcommand{\inference}[2]{{#1\over#2}}

and write

\inference{x}{y}

and use this construct throughout the document.
Notice that defining the \inference as shown

above and using it to encode inference statements
is distinct from and more powerful than just using
the TEX builtin operator \over throughout the doc-
ument. A commonly mentioned advantage in this
context is that using the newly defined construct
\inference will permit the author to easily change
the notation used to denote inference. Notice, that
this is in fact the same as saying that

If distinct elements in a document instance
are marked up using distinct constructs, then
it is possible to recognize and process these
elements in a multiplicity of ways.

In ASTER, the (LA)TEX facility of defining a second
\inference macro that produces a different layout
for inference can be generalized to the notion of dif-
ferent audio renderings for inference.
As explained above (“Document models”),

ASTER achieves its aural renderings by building a
rich internal representation of the document con-
tent. In this representation, each document ele-
ment1 E is represented by an instance of object OE .
ASTER provides a predefined type OE for each of the
builtin constructs in (LA)TEX. Thus, we could repre-
sent the use of \inference defined above in terms
of object Oover. However, notice that this would
mean losing valuable information. When building
up the internal representation, the additional se-
mantic information provided by the author’s use of
the \inference construct is very useful. In ad-
dition, expanding all (LA)TEX macros results in a
pure layout representation, which is not appropri-
ate for producing aural renderings (Raman, 1992).
If we were to represent instances of \inference
in terms of Oover, ASTER would be forced to ren-
der \inference the same as the \over construct.
Though the author in this particular example may
have chosen to use the same visual rendering for in-
ferences that is normally used for fractions, the same
may not carry over well to the aural domain.

1 We use the term element loosely to mean a logical unit
of the document.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 311

T. V. Raman

left-superscript accent superscript
տ ↑ ր

math object

ւ ↓ ց

left-subscript underbar subscript

Figure 1: A math object with attributes. Each of the attributes themselves contain math objects.

Representing Extended Logical Structure

ASTER solves the problem of representing and ren-
dering the extended logical structure arising from
user-definable macros by considering each macro
definition as introducing a new object type. In-
stances of a macro M , are represented by instances
of object OM . Thus, in the example shown above,
the definition of the construct \inference intro-
duces a new object type Oinference. The (LA)TEX
macro consists of two parts; a declaration, and a se-
ries of TEX commands that the macro expands into.
The macro expansion is nothing but a visual ren-
dering rule that specifies how TEX should display
instances of the object represented by the macro.
ASTER provides an equivalent mechanism for ex-

tending the class of logical structures that are rec-
ognized. Once ASTER has been told about a user-
defined macro, audio rendering rules for the new
object type introduced by this macro can be defined
in AFL (Audio Formatting Language). Notice that
such audio rendering rules have to be defined by
the user, just as the (LA)TEX macro is defined by
hand. It is not possible in general to translate the
TEX macro into a set of audio rendering rules. This
is because the TEX macro is capable of performing
any arbitrary computation permitted by the opera-
tors present in the TEX language (Knuth, 1984)—a
Turing-complete programming language.

Rendering Information

ASTER renders information by applying rendering
rules to the internal representation described above
(“Document models”). The system of rendering rules
used in ASTER and the language in which they are
written (AFL—Audio Formatting Language) are de-
scribed in detail in (Raman, 1994). In a sense, AFL
is to audio formatting as Postscript is to visual for-
matting, although AFL is a much smaller language.
Here, we show a small example of such a render-

ing rule for a user-defined macro. In the following,
we use CLOS generic function read-aloud. For the
present, let us assume that function read-aloud exe-
cutes the necessary actions to render its argument.

After extending ASTER to process the (LA)TEX
macro \inference shown above (“Logical struc-
ture”), we can define

(defmethod read-aloud((inference inference))

"Sample rendering for object inference."

(read-aloud (argument 1 inference))

(read-aloud "implies")

(read-aloud (argument 2 inference)))

Given A
B
, this produces “A implies B”.

If we wished to produce a rendering that in-
verts the order in which the arguments to macro
\inference are rendered, we would define:

(defmethod read-aloud((inference inference))

"Renders inference with arguments reversed."

(read-aloud "We know that ")

(read-aloud (argument 2 inference))

(read-aloud "because")

(read-aloud (argument 1 inference)))

which produces “We know B because A”.
Switching between these two rendering rules has

the effect of inverting a proof-tree! Notice that writ-
ing a new rendering rule for an object OE has the
same effect as redefining the (LA)TEX macro that
corresponds to E.
ASTER makes it easy to write several rendering

rules for the same object and also allows rendering
rules to be partitioned into rendering styles. Such
styles can be thought of as being analogous to LATEX
styles, but with one important difference. Due to
the non-interactive nature of traditional paper doc-
uments, a paper is typically typeset in a given style.
It is not possible for the reader to change the style
in which the document is typeset. Typically, we do
not feel the shortcoming of not being able to change
the way a mathematical expression is rendered when
reading a printed paper because the eye is capable
of reading the various parts of an expression in any
order that is convenient. However, when listening to
an aural presentation, the listener does not have this
flexibility. In other words, an active reader peruses
a printed paper, a passive display, whereas in the
case of audio, these roles are reversed—the aural
display scrolls actively past a passive listener.

312 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

An Audio View of (LA)TEX Documents—Part II

ASTER overcomes these difficulties by being a
fully interactive system. It is possible for the lis-
tener to interrupt the rendering, change the render-
ing style in use, and listen to the document. In an
interactive session with ASTER, switching between
rendering styles (a collection of rendering rules for
different objects) and invoking individual rendering
rules can be done with a few keystrokes, making it
easy for a listener to obtain many different views of
a document. This facility enables active listening.
ASTER derives its power from representing doc-

ument content as objects and by allowing multi-
ple user-defined rendering rules for individual object
types. These rules can cause any number of audio
events (ranging from speaking a simple phrase, to
playing a digitized sound). The pitch of the voice,
the physical head-size of the virtual speaker, the vol-
ume, and many other parameters can be changed
by rendering rules, making it easy to create sound
cues to help display structure. In fact, the design
of ASTER does not restrict the system to produc-
ing purely aural renderings; there is nothing to pre-
clude us from defining renderings that produce truly
multimodal output; i.e., renderings where the tradi-
tional visual rendering is augmented with aural feed-
back. We conjecture that such multimodal render-
ings may prove very useful for persons with learning
impairments.
To give an example of a multimodal rendering,

the logo for ASTER is

ASTER

and is produced by (LA)TEX macro \asterlogo. Af-
ter appropriately extending ASTER to recognize this
macro, we can define an audio rendering rule for ob-
ject asterlogo that produces a bark when rendering
instances of this macro. Thus, the same piece of
markup \asterlogo produces the picture of Aster2

when rendered visually, and an appropriate sound3

when rendered aurally.
This feature was exploited to advantage when

producing the audio formatted version of the au-
thor’s thesis. The dedication page of the thesis con-
tains a large picture of Aster, and the audio for-
matted version4 contains a verbal description of the
picture, accompanied by the sound of Aster panting

2 Aster is my guide-dog.
3 The bark is that of a generic dog, Aster is too well

trained to bark, and could not therefore be recorded.
4 An audio formatted version of the thesis produced by

ASTER (about 6 hours) is being distributed by RFB—Record-
ings For The Blind—as the first fully computer-generated
talking book.

in the background. You can listen to this example
on the WWW—visit the ASTER home page by fol-
lowing the link to the ASTER demonstration from my
home page5 and clicking on the picture of Aster.
Several ideas come together to make all this

possible. First, logical structure is of paramount
importance—not its display on any one particular
medium. The more a document makes structure ex-
plicit, the better the document can be displayed on
(projected onto) several different mediums.
Next, the use of (LA)TEXmacros to encode struc-

ture makes it possible to have a system like ASTER, in
which the internal structure can be extended to fit a
document. This allows the encoding of the structure
in a flexible, uniform, and consistent representation
such as an attributed tree, with the addition of the
quasi-prefix form for dealing with mathematics.
Finally, providing different rendering rules and

styles and a flexible way to switch among themmakes
it possible to obtain multiple views of a document
in an interactive fashion.

Conclusion

The approach used in ASTER to exploit the ad-
ditional semantic information present in the elec-
tronic encoding in the form of user-defined con-
structs points to an important feature of markup
systems like (LA)TEX that is currently missing to a
certain extent in systems like SGML. When ASTER
as at its inception, I firmly believed that one should
use a semantic-oriented DTD to encode a document
in order to be able to produce high-quality audio
renderings. I still believe this; however the work
on ASTER does point out one shortcoming with the
fixed document DTD model. Given that mathemat-
ical and technical notation is being invented all the
time, a fixed DTD forces the author to encode new
constructs using only primitives that are provided
by the DTD. As a consequence, authors end up
using a presentation-oriented encoding even though
the DTD in use is one that is semantically oriented.
To make this concrete, consider the case of the

inference construct described above (“Logical struc-
ture”). If the document were being encoded using a
fixed non-extensible DTD that only provides a frac-
tion element, the author would be forced to encode
inference using this element.
Since in general it is not possible to define an

all-encompassing DTD that covers every possible kind
of math notation (those currently known and those

5 http://www.research.digital.com/CRL/personal/

raman/raman.html

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 313

T. V. Raman

yet to be discovered) extensibility of the DTD as
provided by (LA)TEX is of vital importance.
Another good example of this facility in (LA)TEX

being put to good use is the HyperTEX system—
an extension to TEX that allows the user to view
his legacy (LA)TEX documents as online hypertext.
Conceptually, we can think of \ref and \label as
being object types; traditionally, these cause specific
marks to appear on paper when rendered visually by
TEX; to a system like HyperTEX these turn into ac-
tive links that a user can follow interactively.
The ability to produce multiple renderings of

the same object provided by ASTER was introduced
in the context of aural presentations. However, such
multiple presentations become equally relevant when
interactively perusing online documents visually. For
instance, when reading a document that presents a
complex proof, a user may wish to have the same
proof displayed as an outline in one window, and as
a proof-tree in another (Lamport, 1993). In the case
of paper documents, the user has to use her imagina-
tion to achieve such multiple views—though she is
aided in this by the visual notation. In the interac-
tive scenario presented by electronic documents, the
previewer can provide some additional functionality
to aid in this process.

References

D. E. Knuth. The TEXbook, volume A of Comput-
ers and Typesetting. Addison-Wesley, Reading,
Massachusetts, 1984.

L. Lamport. “How to write a proof”. Technical Re-
port 94, DEC Systems Research Center, Palo
Alto, CA, 1993. To appear in American Math-
ematical Monthly.

T. V. Raman. “An audio view of (LA)TEX docu-
ments”. TUGboat 13(3), 372–379, 1992.

T. V. Raman. Audio System for Technical Readings.
Ph.D. thesis, Cornell University, 1994.

314 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Another Look at LATEX to SGML Conversion

Sebastian Rahtz
Elsevier Science Ltd

The Boulevard

Langford Lane

Kidlington

Oxford OX5 1GB

UK

Email: s.rahtz@elsevier.co.uk

Abstract

Publishers are starting to use SGML as their permanent form of storage for doc-
uments. How can LATEX files be converted to an SGML instance? This paper
discusses possible strategies, and describes an implementation by Elsevier Sci-
ence of a system based on conversion in TEX itself, and extraction of SGML code
from the dvi file.

The problem

The work outlined in this paper concerns the trans-
lation of LATEX files into SGML. “Why,” the TEX
user asks, “do you want to do this? LATEX produces
nice typeset pages, it’s a worldwide convention for
document interchange, and TEX’s math markup is a
standard.” But “Why,” the SGML people ask, “do
you want to use LATEX at all? SGML is a real, ISO,
standard, with much stronger validation and porta-
bility than TEX, and with a growing set of excellent
tools.” The problem arises for us at Elsevier Sci-
ence because we are caught between two camps. On
the one hand, many of our authors use plain TEX or
LATEX to prepare articles, and we are asked to use
their files. On the other hand, the majority of our
papers come to us in a wide variety of markup and
word-processor formats. We must therefore have a
common markup format to convert them all into.
We could simply use each file in its native format,
be it TEX, Word or Quark Xpress, but then there
are serious practical difficulties:

1. We recognise, like any serious publisher, the
long-term potential of an electronic archive of
material, and we want our ultimate archive to
conform to the most rigorous standards. We
want all our files in the same markup system,
so that we can develop tools for alternative pub-
lishing media, and tools to quality-check the
markup.

2. We do not, by and large, do our own typeset-
ting, but send electronic files to a range of ex-
ternal firms, most of whom prove to be very
reluctant to accept TEX files. We can however
achieve efficient handling of our electronic files

by the typesetters if we supply a single type of
fully-tagged file which contains all the informa-
tion the typesetter needs.

3. We publish over 1000 journals, and a single
LATEX article may arrive for any of several hun-
dred of these; it is not practical or logical to
train all our production editors to deal with
LATEX in a sophisticated way, and it can frus-
tate the process if we have to push occasional
articles onto LATEX-experienced staff.

4. On a purely day-to-day basis, we cannot main-
tain all the possible hardware and software con-
figurations at all production sites, or even keep
all our production editors trained to use the
many different systems and platforms.

The only possible solutions are therefore either to
adopt an ad hoc, temporary, workaround like doing
all our work in Word or Quark, or to invest in a total
conversion to SGML, flexible enough to meet all our
known and perceived future needs. Elsevier Science
made their decision to adopt SGML some years ago,
has developed its own DTDs, and is now engaged in
the mammoth task of converting its journal produc-
tion environment to a system which produces totally
electronic files for typesetting or electronic publica-
tion. The standards and practices adopted are de-
scribed in [3].
Consequently, to achieve a complete rigorous

quality-controlled archive, LATEX files have to be
converted to SGML. But SGML is merely a lan-
guage for describing markup, and ‘conversion’ could
mean little more than syntactic conversion, whereby
all LATEX macros were changed to a corresponding
SGML tag; thus \section is changed to <section>.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 315

Sebastian Rahtz

This is, in effect, the approach adopted by some of
the apparent LATEX⇔ SGML systems — constrain-
ing the DTD to mimic LATEX. What it does not
do is solve the problem of parsing the general TEX
syntax.
Another approach for the particular case of

mathematics is to declare a single SGML element
<texmath>, and leave the math markup exactly as
is. This is attractive, but has two drawbacks:

1. Many authors have dependencies in their
markup on their own definitions, or external
style files; it is not trivial to totally ‘flatten’ all
these references, but if they are left in, it is irri-
tating to have to work around it when the doc-
ument is used later (possibly much later, when
the style files may have changed. . .). An even
worse case is when the author changes defini-
tions half-way through the paper, so that \MyX
expands to X_x^y for the first few equations,
but to X_a^b for the rest — quite legal, how-
ever inelegant.

2. If our archive is to still be useful in 20 years,
it needs to be totally internally consistent and
complete. The <texmath> notation assumes the
existence in 20 years of a program able to parse
it in the same way as TEX does now — likely,
but not under our control.

We are left with having to genuinely translate
arbitrarily-complicated TEX code into ‘real’ SGML;
i.e., our DTD may bear no relation to the logical
structure of LATEX, and we have to deal properly
with mathematics and tables. The remainder of this
paper discusses possible solutions, and describes the
one we have adopted.

Possible solutions

There are four technologies we can adopt:

1. Throw away the electronic file, and retype the
entire text from the printed copy direct into
SGML.

2. Strip out all TEX coding, and treat it like an
unknown word-processor — leave all the words
intact, but re-key all the markup, maths and
tables.

This approach and the first are not as ridiculous
as they sound to TEX experts; they may well be
the cheapest, quickest, most reliable solution for a
small quantity of material. The startup cost is zero,
and the unit cost may be high — but this may be
preferable to a large development cost for a system
which is not heavily used and needs maintenance.
The reasons not to adopt it include the probable
gain in processing time of an automatic conversion,

author satisfaction at decreased proof-reading, and
the potential high cost of this approach for complex
mathematics.

3. Write a new program to parse the LATEX, and
write SGML. The advantages are:

• Writing parsers is a well understood pro-
cess, although the ‘traditional’ lex and
yacc tools are necessarily not suited to
macro languages like TEX;

• We get an efficient, portable program
which (if written well) can be maintained.

• Nothing gets into the output that we do
not understand.

but there are the following disadvantages:

• Parsing TEX is notoriously hard, because
its interface is a macro programming lan-
guage, and thus the syntax is extensible.

• There are no fully-successful implemen-
tations known, although there are many
partial relevant solutions (such as Julian
Smart’s tex2rtf).
• We would have to assume ‘normal’ LATEX,
and hand-fix any strange files.

This approach could involve a two-stage pro-
gram, the first attempting (a more or less im-
possible aim) to regularise the TEX by expand-
ing macros, and the second doing the parsing
and translating. Aspects of this are encapsu-
lated in the Perl script for latex2html (dis-
cussed in useful detail in [1]), but the philos-
ophy of that system is to convert anything it
cannot understand into a picture (via TEX and
PostScript to GIF), which means that it does
not really try to be a robust TEX parser.

4. Work with TEX itself, to take advantage of
the entire macro-processing language and input
parser, but fix the output to produce SGML
instead. Joachim Schrod [4] has exposed the
myth that TEX cannot be recoded in a more
open system, and his implementation would be
a good starting point for a TEX-like program.
We can also, however, simply write a special
purpose TEX format which defines all the in-
teresting TEX and LATEX constructs as SGML
commands, and extracts the information from
the dvi file after processing. This is the basis of
the approach we are considering using. It has
some considerable advantages:

• The task of parsing the TEX language (ex-
panding the macros) comes ‘for free’;

• The conversion from LATEX construct to
SGML construct is done in the same lan-
guage as the original definition; it can also

316 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Another Look at LATEX to SGML Conversion

be customised by existing LATEX-trained
staff;

• The system is portable, easily modu-
larised, and can cope with any form of
TEX (with the appropriate macro pro-
gramming);

while on the downside

• The output is not regularised, since only
some items (those foreseen) are trapped;
everything else passes through TEX’s pro-
cesses, which can be both good and bad;

• Writing sophisticated programs in TEX is
not easy, or well-understood, constraining
future contract programmers to be TEX-
qualified;

• Some things may not be possible at
the macro redefinition stage, notably in
maths;

• Extracting material from the dvi file is far
from easy.

The third approach has been tried and tested by
Bart Wage (Elsevier Amsterdam) for a very large
number of relatively simple documents (the front
matter of articles), but the program was becoming
unwieldy when trying to extend it to the full range
of papers we publish. This then was the impetus for
the system described in this paper. The approach of
rewriting TEX innards has been largely completed by
ICPC (Dublin)1 with a reworking of the basic WEB
code, and this is certainly the most reliable plan
of attack; however, it still requires extensive macro
programming to get the most from the system, and
so the majority of our work is unaffected.

A practical solution

Given the advantages and disadvantages outlined
above, we decided to experiment with a TEX-based
approach; we knew that we had the existing tradi-
tional parsing program to fall back on, and we knew
that ICPC were working on a radical solution alter-
ing TEX. The main reason for wanting TEX to do
the parsing was that our author LATEX markup is
extremely variable, and essentially beyond our con-
trol; maximum flexibility and ease of ad hoc quick
fixes was therefore important. It must be stressed
that this is a solution tailored to a particular setup;
it is not necessarily the best universal solution!
The general outline of our system is shown in

Fig. 1. The steps, which are discussed in detail in
the next section, are:

1 Contact Seamus McCague (seamus@icpc.ie) for details.

1. Roughly clean up the LATEX, and impose some
standard markup;

2. attach the lat2cap package, and run LATEX
(twice, for cross-referencing);

3. extract the SGML text from the DVI file;

4. clean up the SGML and parse it against an in-
termediate DTD;

5. transform to the final Elsevier article DTD, and
parse again.

The justification for the extra stage of inter-
mediate DTD is very dependent on the relationship
between the LATEX markup in use, and the DTD. In
our case, we found that although we could match up
most structures directly, some of the LATEX was not
amenable to a one-pass program.

Details of the system

Cleaning the LATEX Since our approach is to re-
define TEX macros to produce SGML tags, we could
in theory cope with any dialect of TEX; in prac-
tice, however, our articles are structured in a clear,
but complicated way, and it is preferable to get the
information right before we look at converting it.
We have maintained a set of LATEX style files for
some years for internal typesetting of many journals,
which are used in conjunction with a single public
preprint style, which implements all the constructs
in a typographically simple way. The complexity is
largely in the front matter, as shown in Figs. 2 and
3, where we present the input markup, and one style
of typeset output. Almost all author files need some
work in this area, so it makes sense to concentrate
the translation assuming the editing has been done.
A more important consideration is the richness

of the LATEX. In theory, a valid LATEX file:

\documentclass{article}

\begin{document}

ABOUT CATS

by

Seroster

once upon a time...

\end{document}

could be correctly translated to

<article>ABOUT CATS<p><p>by<p><p>

Seroster<p>once upon a time...

</article>

but this is hardly useful. For an article to have some
value in an electronic warehouse, we must minimally
identify in an unambiguous way the following ele-
ments:

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 317

Sebastian Rahtz

DVI file dvi to SGML clean SGML

‘latart’ SGML

Parse SGML

Valid SGML

fails

correct macro package

error

Edit & Clean

Run lat2cap

Normal LATEX

Run LATEX

Printed proof

Author file

Transform to

DTD
Elsevier article valid SGML

Figure 1: Processing scheme for LATEX to SGML

1. the authors and their addresses;

2. the title, abstract and keywords;

3. section headings;

4. bibliographical references and citations;

5. figure references.

We may find it useful, in fact, to distinguish 4 ‘types’
of LATEX file:

Bad It passes through LATEX, but very low-
level visual markup is used; this file says
Figure {\cmbxten 66}

Clean Composed according to the commands in
the LATEX manual, but without utilizing the
abstract features like cross-referencing, floating
figures etc.; this file says Figure~\textbf{66};

Rich Uses all the commands of the LATEX manual,
at the highest level possible for the context; this
file says \figname~\ref{fig66}

Over-ripe This file has no spelling or grammatical
mistakes and has not used any visual markup;
it says \FIG{66}, with a single definition in a
separate macro package allowing the caption to
be placed above or below the figure.

It is clear that only ‘rich’ LATEX or better can be
translated to useful SGML; the alternative is to do
all the cleanup at the SGML stage, but this has the
disadvantage that we have no macro language; a 100
page LATEX article with generic, but wrong, markup

may require a single change, the SGML output needs
hundreds. This is discussed further below (“Where
in the work-flow?”).

The macro package The bulk of our work consists
in redefining every possible LATEX command, at as
high a level as possible. We present below selections
from the macro package, showing those which are
less than obvious.
Basic tools In order to simplify the TEX output,
our first aim is to constrain and nullify the vast ma-
jority of low-level visual markup code. We set ev-
erything in LATEX2ε’s T1 encoding, in a single font
which is completely monospaced and allows no hy-
phenation. The use of T1 means that LATEX will
automatically translate all accented and non-ASCII
characters, which may be entered with TEX macros,
into 8-bit characters in the output. Our dvi proces-
sor will translate these into the appropriate SGML
entities or accent tags.

1 \def\baselinestretch{1}

2 \DeclareFontShape{T1}{sgml}{m}{n}{<-> sgml}{}

3 \DeclareFontShape{OT1}{sgml}{m}{n}{<-> sgml}{}

4 \fontencoding{T1}\let\fontencoding\@gobble

5 \fontfamily{sgml}\let\fontfamily=\@gobble

6 \fontseries{m}\let\fontseries=\@gobble

7 \fontshape{n}\let\fontshape=\@gobble

8 \fontsize{10}{10pt}\let\fontsize=\@gobbletwo

9 \global\let\mathversion\@gobble

10 \global\let\getanddefine@fonts\@gobbletwo

318 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Another Look at LATEX to SGML Conversion

\begin{document}
\volume{33} \issue{4} \ssdi{93}{E0045F}
\accepted{4 Kal 44} \received{2 Kal 44}
\firstpage{101} \runauthor{Cicero, Caesar and Vergil}
\runtitle{In Catilinam}
\begin{frontmatter}
\title{In Catilinam IV: A murder in 5 acts\thanksref{X}}
\author[Paestum]{Marcus Tullius Cicero\thanksref{Senate}}
\author[Rome]{Julius Caesar}
\author[Baiae]{Publius Maro Vergilius}
\thanks[X]{This is the history of the paper, etc etc}
\address[Paestum]{Buckingham Palace, Paestum}
\address[Baiae]{The White House, Baiae}
\address[Rome]{Senate House, Rome}
\thanks[Senate]{Partially supported by the Roman Senate}
\begin{abstract}
Cum M.~Cicero consul Nonis Decembribus senatum in aede
Iovis Statoris consuleret, quid de iis coniurationis Catilinae
sociis fieri placeret, qui in custodiam traditi essent, factum
est, ut duae potissimum sententiae proponerentur, una D.~Silani consulis
designati, qui morte multandos illos censebat,
altera C.~Caesaris, qui illos publicatis bonis per municipia
Italiae distribueudos ac vinculis sempiternis tenendos existimabat. Cum
autem plures senatores ad C.~Caesaris quam ad
D.~Silani sententiam inclinare viderentur, M.~Cicero ea, quae
infra legitur, oratione Silani sententiam commendare studuit.
\end{abstract}

\begin{keyword}
Cicero; Catiline; Orations
\end{keyword}
\end{frontmatter}

Figure 2: Example Elsevier front-matter markup

A Journal Of Research 33 (1995) 101–105
c© Elsevier Science Limited

Printed in Great Britain. All rights reserved
0 0 0 0 – 0 0 0 0 (0 0) X X X X X – X X 000–0000/95/$9.50

InCatilinamIV:Amurderin5acts 1

Marcus Tullius Cicero ∗,2 Julius Caesar‡ Catullus ‡ Publius Maro Vergilius †
∗ Buckingham Palace, Paestum
† The W hite House, Baiae
‡ Senate House, Rome

(Received 2 Kal 44; accepted 4 Kal 44)

Cum M. Cicero consul Nonis Decembribus senatum in aede Iovis Statoris con-

suleret, quid de iis coniurationis Catilinae sociis fieri placeret, qui in custodiam tra-

diti essent, factum est, ut duae potissimum sententiae proponerentur, una D. Silani

consulis designati, qui morte multandos illos censebat

Altera C. Caesaris, qui illos publicatis bonis per municipia Italiae distribueudos

ac vinculis sempiternis tenendos existimabat. Cum acautem plures senatores ad

C. Caesaris quam ad D. Silani sententiam inclinare viderentur, M. Cicero ea, quae

infra legitur, oratione Silani sententiam commendare studuit.

Key words: Cicero; Catiline; Orations

Figure 3: Elsevier front-matter typeset

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 319

Sebastian Rahtz

11 \selectfont

12 \def\selectfont{}

Within our SGML DTD there is no requirement
for typesize markup, so for authors who use size-
changing commands we simply nullify them:

1 \let\normalsize\relax

2 \let\tiny\relax

3 \let\scriptsize\relax

4 \let\footnotesize\relax

5 \let\small\relax

6 \let\large\relax

7 \let\Large\relax

8 \let\LARGE\relax

9 \let\huge\relax

10 \let\Huge\relax

Writing SGML tags \SGML is a special command
to emit SGML tags; it is important to do this, rather
than use the actual <, > and & characters, as those
will be translated to entities by the later processing.
Note that our dvi processor will emit the parameter
of the \special command as literal text.

1 \def\ENT#1{\leavevmode\special{&}#1;}

2 \long\def\SGML#1{\leavevmode

3 \special{<}#1\special{>}}

Headings Headings are treated differently to
LATEX in the Elsevier DTD; there is only one head-
ing tag, but nesting is used to indicate hierarchy. We
need to trace the section depth and close open levels
at the right time. The actual title of the section is
not an attribute or context of the tag, but comes in
a separate section title tag. We therefore define a
single macro which takes each sectioning command,
with a level, and keeps track of what level we are at,
ending and starting heading elements as needed.

1 \def\@dblst#1#2{{\@Section{*}{#1}{#2}}%

2 {\@Section{}{#1}{#2}}}

3 ...

4 \def\section{\expandafter\secdef

5 \@dblst{2}{section}}

6 ...

7 \def\@Section#1#2#3{%

8 \@ifnextchar[%

9 {\@@Section{#1}{#2}{#3}}%

10 {\@@Section{#1}{#2}{#3}[]}%

11 }

12 \newcount\current@sectionlevel

13 \current@sectionlevel=99

14 \def\@@Section#1#2#3[#4]#5{%

15 \ifnum\current@sectionlevel=99\else

16 \loop

17 \ifnum\current@sectionlevel>#2

18 \typeout{Section level #2 inside

19 \the\current@sectionlevel}%

20 \advance\current@sectionlevel by -1

21 \SGML{/sec}%

22 \repeat

23 \ifnum\current@sectionlevel=#2

24 \SGML{/sec}

25 \fi

26 \fi

27 \global\current@sectionlevel#2

As we will see later, the cross-referencing mechanism
is altered to use unique tags for all sections, not just
those labelled with \label.

1 \refstepcounter[secr]{#3}%

2 \SGML{sec id=#3.\@currentSlabel}%

3 \SGML{st}#5\SGML{/st}%

4 \SGML{p}%

5 }

List environments These can be dealt with
straightforwardly, as the match between the DTD
and LATEX is almost 100%.

1 \def\item{%

2 \@ifnextchar [{\@item}{\SGML{li}}%

3 }

4 \def\@item[#1]{\SGML{li id=#1}}

5 \renewenvironment{enumerate}

6 {\SGML{l type=ord}}{\SGML{/l}}

7 \renewenvironment{itemize}

8 {\SGML{l type=unord}}{\SGML{/l}}

9 \renewenvironment{description}

10 {\SGML{l type=def}}{\SGML{/l}}

11 \def\quote{\SGML{qd}}

12 \def\endquote{\SGML{/qd}}

13 \let\quotation\quote

14 \let\endquotation\endquote

15 \def\\{\SGML{p}}

Font changes The Elsevier DTD supports a wide
range of typeface changes in the same way as LATEX
does:

1 \def\it{\SGML{it}\aftergroup\ENDTAG}

2 \def\bf{\SGML{b}\aftergroup\ENDTAG}

3 \def\sl{\SGML{it}\aftergroup\ENDTAG}

4

5 \def\ENDTAG{\SGML{/}}

6 \let\/=\relax

7 \def\textrm#1{\SGML{rm}#1\SGML{/}}

8 \def\textsf#1{\SGML{ssf}#1\SGML{/}}

9 \def\texttt#1{\SGML{ty}#1\SGML{/}}

10

11 \def\emph#1{\SGML{it}#1\SGML{/}}

Bibliographic citations

1 \def\@citex[#1]#2{%

2 \SGML{bbr id="bib-#2"}#1%

3 }

4 \def\check@bb{%

5 \if@in@bb\SGML{/bb}\@in@bbfalse\fi

6 }

7 \def\@lbibitem[#1]#2{%

8 \check@bb

9 \SGML{bb id="bib-#2"}%

10 \global\@in@bbtrue

320 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Another Look at LATEX to SGML Conversion

11 }

12 \def\@bibitem#1{%

13 \check@bb

14 \SGML{bb id="bib-#1"}%

15 \global\@in@bbtrue

16 }

17 \def\thebibliography#1{%

18 \SGML{bm}\SGML{bibl}%

19 \let\\\relax

20 }

21 \def\endthebibliography{%

22 \check@bb

23 \SGML{/bibl}%

24 }

Cross-referencing Anything which can be refer-
enced advances some counter; we overload this to
put in an SGML id, and make a note of that for
later use in \label. An extra parameter is writ-
ten to the .aux file, adding an identifier to the lit-
eral page number and section number. This will fail
badly if \theS<name> does not expand to a sensible
reference. This means that classes or package which
introduce new elements need to define an equivalent
\theS<name> for every \the<name>
These shenanigans are to make sure sec-

tion numbers, etc., are always arabic, separated
by dots. Who knows how people will set up
\@current label? If they put spaces in (quite le-
gal) then the processor will get upset.

1 \def\pageref#1{\SGMLWarning{pageref}}

2 \let\vref\ref

3 \long\def\footnote#1{%

4 \refstepcounter[fnr]{Sfootnote}%

5 \SGML{fn id=Sfootnote.\@currentSlabel}%

6 #1\SGML{/fn}%

7 }

8

9

10 \def\@setref#1#2#3{%

11 \ifx#1\relax

12 \protect\G@refundefinedtrue

13 ??

14 \@latex@warning{Reference ‘#3’ on page

15 \thepage \space undefined}%

16 \else

17 \special{<}%

18 \expandafter\@secondoftwo#1{%

19 \expandafter#2#1\null}%

20 \special{>}%

21 \fi}

But all this is very flaky, and open to abuse.
Styles like subeqn will mess it up, for starters. Ap-
pendices are an issue, too. We just hope to cover
most situations. We can at least cope with the stan-
dard sectioning structure, allowing for \part and
\chapter.

1 \@ifundefined{thepart}{}{%

2 \newcommand\theSpart{\arabic{part}}}

3 \@ifundefined{thechapter}{%

4 \newcommand\theSsection{\arabic{section}}

5 \newcommand\theSfigure {\arabic{figure}}

6 \newcommand\theStable {\arabic{table}}

7 }{%

8 \@ifundefined{thepart}%

9 {\newcommand\theSchapter

10 {\arabic{part}.\arabic{chapter}}}

11 {\newcommand\theSchapter

12 {\arabic{chapter}}}

13 \newcommand\theSfigure

14 {\theSchapter.\arabic{figure}}

15 \newcommand\theStable

16 {\theSchapter.\arabic{table}}

17 \newcommand\theSsection

18 {\theSchapter.\arabic{section}}

19

20 }

21 ...

22 \newcommand\theSequation

23 {\theSsection.\arabic{equation}}

24 \newcommand\theStheorem

25 {\theSsection.\arabic{theorem}}

26 \newcommand\theSthm

27 {\theSsection.\arabic{thm}}

28 \newcommand\theSenumi

29 {\theSsection.\arabic{enumi}}

30 ...

31 \newcommand\theSSfootnote

32 {\arabic{Sfootnote}}

33 ...

34 \let\theSHmpfootnote\theSSfootnote

35 \let\S@refstepcounter\refstepcounter

36 \def\refstepcounter{\@ifnextchar[%

37 {\@refstepcounter}%

38 {\@refstepcounter[]}}

39 \def\@refstepcounter[#1]#2{%

40 \ifx\\#1\\\edef\@sgmlname{#2}%

41 \else

42 \def\@sgmlname{#1}

43 \fi

44 \S@refstepcounter{#2}%

45 \S@makecurrent{\@sgmlname}{#2}%

46 }

47 \def\S@makecurrent#1#2{%

48 \edef\@currentSlabel{%

49 \csname theS#2\endcsname}%

50 \global\edef\@currentSref{%

51 #1 id="#2.\expandafter\strip@prefix

52 \meaning\@currentSlabel"}%

53 }

54 \def\label#1{%

55 \@bsphack

56 \protected@write\@auxout{}%

57 {\string\newlabel{#1}{%

58 {\@currentSref}}}%

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 321

Sebastian Rahtz

59 \@esphack

60 }

Mathematics and tables Surprisingly, the ma-
jority of mathematics requires fairly trivial redefini-
tion; powerful and complicated as TEX’s math type-
setting is, we simply ignore it.

1 \catcode‘\^=13 % circumflex for superscript

2 \catcode‘_=13 % underline for subscript

3 \def\frac#1#2{\SGML{fr}\SGML{nu}#1

4 \SGML{de}#2\SGML{/fr}}

5 \def _#1{\SGML{inf}#1\SGML{/inf}}

6 \def ^#1{\SGML{sup}#1\SGML{/sup}}

The real implementation of ^ in our package is ac-
tually rather more complicated than presented here,
because it has to cope with markup like this:

x^\frac{a}{b}

which is in fact only barely tolerated in LATEX. In
this situation, the parameter to ^ ends up as \frac
unless we take special precautions.2 Many macros
just output the right SGML entity.

1 \def\alpha{\ENT{alpha}}

2 \def\beta{\ENT{beta}}

3

4 \def\vartriangleleft{\ENT{vartriangleleft}}

5 \def\vartriangleright{\ENT{vartriangleright}}

6 \def\vartriangle{\ENT{vartriangle}}

7 \def\veebar{\ENT{veebar}}

8 \def\left#1{\SGML{fen}\SGML{cp style="#1"}}

9 \def\right#1{\SGML{/fen}}

The remainder of the mathematical work, includ-
ing equation labelling and numbering, and tables,
involves quite straightforward macro programming,
albeit somewhat byzantine at times.
TEX accentuation is handled by a similar

scheme in our DTD.

1 \def\acute#1{\SGML{a}\SGML{ac}#1

2 \SGML{ac}\ENT{acute}\SGML{/a}}

3 \def\grave#1{\SGML{a}\SGML{ac}#1

4 \SGML{ac}\ENT{grave}\SGML{/a}}

5 ...

DVI to ASCII We have now written a typeset
page of text in a monospace font interspersed with
\special commands relating to < and > characters;
we are not at all interested in the layout, we just
want the words, and all vertical and horizontal spac-
ing turned to simple spaces. There have been a vari-
ety of ‘dvi2tty’ programs written over the years, but
most of them are aiming to produce crude ASCII lay-
out; after some experimentation, Geoffrey Tobin’s
excellent dv2dt program was found. This, and a

2 We owe the solution to Alan Jeffrey, David Carlisle,
Chris Rowley and Michael Downes, almost simultaneously.
Seldom can such a concentration of LATEX brain-power have
been used to crack such a small nut.

companion dt2dv, provides a reliable, and easy to
understand, text representation of a dvi file which
can even be edited and turned back to dvi. Work-
ing with an ASCII representation means that it is
easy to check and debug one’s work, and writing a
parser in Flex is simple. A flavour of the ‘dt’ lan-
guage can be gleaned from this example; text is in
round brackets, and the w commands are horizontal
spacing.

special1 1 ’<’

(fn)

(id=Sfootnote.1)

special1 1 ’>’

(Everyone)

w3 218453

(likes)

w0

(cat)

w0

(meat)

special1 1 ’<’

(/fn)

special1 1 ’>’

w0

special1 1 ’<’

(li)

special1 1 ’>’

(dogs)

w0

special1 1 ’<’

(/l)

special1 1 ’>’

Our parser needs to read this, output the words and
\special commands, insert spaces, and convert any
non-ASCII characters to SGML entities. Readers fa-
miliar with Flex will see from the following fragment
how trivial this is:

<SKIP>"\(" BEGIN TEXT ;

<SKIP>"special1 "[0-9]+" ’"

{ BEGIN SPECIAL ; } ;

<SPECIAL>"[^’]*" { printtext(yytext); };

<SPECIAL>"’" BEGIN SKIP ;

<TEXT>"\)" BEGIN SKIP ;

....

<SKIP>"s1 249"

printtext("<a><ac>u<ac>`") ;

....

<SKIP>^z { printtext("<P>"); };

<SKIP>^[rwy] { printtext(" "); };

<SKIP>. |

<SKIP>\n { } ;

Cleaning the SGML Unfortunately, LATEX has a
strange way with paragraphs (as indeed do SGML
DTDs), and understanding the vertical and horizon-
tal spacing in a dvi file is slightly fraught; there-
fore we run a simple cleanup to remove extraneous

322 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Another Look at LATEX to SGML Conversion

<p>s and empty tags, and add some miscellaneous
markup.

Transforming the SGML Now to the crux of any
LATEX to SGML program— what is the target DTD?
Do we go for a translation all the way, or adopt the
strategy of the ‘Rainbow’ tools, and work to an in-
termediate DTD from which we can transform to
the desired result? It is important to distinguish
between transforming, and upgrading; if we write
‘poor’ SGML, we cannot reliably upgrade it to ‘rich’
SGML, whereas ‘rich’ SGML in dialect A can cer-
tainly be transformed to dialect B with no problem.
This is one of the tasks for which DSSSL will be
useful in the longer term, but for this purpose we
use a public domain Perl5 module for manipulating
SGML instances. To ensure that the output is cor-
rect, the file is parsed using James Clark’s nsgmls,
and the standard ESIS output from that program is
then read by the transformer, writing the final out-
put. This is of course again parsed against the real
DTD before the program run is deemed successful.
A simple example may suffice to show why this

last transformation stage is necessary. A typical
piece of LATEX often contains eqnarray structures,
or multi-line equations. In LATEX, lines end with a
\\, and only then do we find if they are numbered.
In the Elsevier DTD, this would be represented as
a series of math displays nested inside an outer dis-
play. No doubt one could program this in LATEX,
but it is simpler to convert the end of line \\ to a
special tag, and transform the result later.
A harder problem, which we do not in fact face

(since we know it can be fixed in the editing phase),
is to deal with

1 {A \over B} 2

with TEX programming, since in the simple redefini-
tion of macros we do not realise we are in a ‘fraction’
until the group has started, and we have no way of
back-tracking to put in a tag at the start of the con-
struct. By contrast, the LATEX notation

1 \frac{A}{B} 2

is easy to transform immediately to

1<fr><nu>A<de>B</fr>2

Where in the work-flow?

Once the technical problem is solved, we still have to
consider where in the work-flow it is used. These are
some of the issues we have to face in a production
environment:

1. Who runs the converter? Disk administrator,
desk editor or special LATEX editor? Do we send
it all to an outside contractor?

2. What if it goes wrong? Are problems fixed in
LATEX or SGML? Does the SGML editing tool
permit illegal SGML to be imported?

3. Is copy-editing done in SGML or LATEX? Some
regular markup by the author may well be far
easier to change once in LATEX than the ex-
panded form in SGML.

There are also some miscellaneous issues to con-
sider:

1. What about author graphics created in TEX?
These can be very sophisticated. The best so-
lution would be to run the article through LATEX
and extract the pages as PostScript output, but
this requires some confidence with, and knowl-
edge of, TEX.

2. What do we do with LATEX constructs which
have no corollary in the Elsevier DTD? Two
obvious examples are chemical structures, and
the the formal Z schemas used in computer sci-
ence, like this:

Shape

colour : Colour

perim : R

perim > 0

This class has 2 constants colour

and perim.

x , y : R

INIT

x = y = 0

Translate

∆(x , y)
dx?, dy? : R

x ′ = x + dx?
y ′ = y + dy?

Conclusions

There remain, of course, three questions:

1. Does this approach work, other than as a toy?

2. Are we actually using it?

3. Where can it be found?

In our experience, no TEX-related project works
100% reliably without manual intervention; this one
is no exception. The approach works, but it is likely
that a sophisticated TEX programmer could quickly
produce a file which produced inappropriate output.
However, we do claim that it succeeds in its aim,

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 323

Sebastian Rahtz

and that we have a usable, maintainable, and flexi-
ble tool.
To enable the generation of SGML from LATEX,

we are now seriously testing this tool, and using it
in pilot projects; it remains to be seen whether or
not it will move into full production, or whether the
maintenance implications will be deemed too ineffi-
cient for the potential volume of material.
The approach outlined in this paper relies al-

most entirely on TEX programming, and the princi-
ples followed are all demonstrated above. The com-
plete style file has not been placed in the public
domain, because it represents a not inconsiderable
(ongoing) investment by Elsevier Science, and be-
cause it is not a general-purpose tool to translate
LATEX to arbitrary DTDs. However, those interested
in discussing this approach are invited to contact Se-
bastian Rahtz directly. TEX wizards will learn that
many problems are still to be solved, or dealt with
in a considerably more elegant way.

Acknowledgements

The genesis of this project was work done by Michel
Goossens at CERN in 1993 to convert LATEX docu-
ments to HTML, using the ‘dvi to ASCII’ program
of Alexander Samarin and Basil Malyshev. At El-
sevier, detailed discussion with Bart Wage turned
the idea into reality, and he wrote the second half
of the system. The LATEX package shares material
with the author’s hyperref package (see [2]). Peter
Flynn and Jonathan Fine, in their different ways,
have made contributions to the TEX and SGML re-
lationship which impacted on this work. Joachim
Schrod read this paper and gave extremely helpful
feedback on it, and the subject in general. Later ver-
sions of the package will hopefully take advantage of
his many good suggestions.

References

[1] Michel Goossens and Janne Saarela, “From
LATEX to HTML and Back”, TUGboat, 16(3),
1995.

[2] Yannis Haralambous and Sebastian Rahtz,
‘LATEX, hypertext and PDF, or the entry of
TEX into the world of hypertext’, TUGboat,
16(2), 1995.

[3] Martin Key, ‘Theory into Practice: working
with SGML, PDF and LATEX at Elsevier Sci-
ence’, Baskerville 5 (2), 1995.

[4] Joachim Schrod ‘Towards interactivity for
TEX’, TUGboat 15(3), 1994 (Proceedings of the
1994 TEX Users Group Annual meeting), 309–
317.

324 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Omega—why Bother with Unicode?

Robin Fairbairns
University of Cambridge Computer Laboratory
Pembroke Street
Cambridge CB2 3QG
UK
Email: rf@cl.cam.ac.uk

Abstract

Yannis Haralambous’ and John Plaice’s Omega system employs Unicode as its
coding system. This short note (which previously appeared in the UKTUG mag-
azine Baskerville volume 5, number 3) considers the rationale behind Unicode
itself and behind its adoption for Omega.

Introduction

As almost all TEX users who ‘listen to the networks’
at all will know, the Francophone TEX users’ group,
GUTenberg, arranged a meeting in March at CERN
(Geneva) to ‘launch’ Ω. The UKTUG responded to
GUTenberg’s plea for support to enable TEX users
from impoverished countries to attend, by making
the first disbursement from the UKTUG’s newly-
established Cathy Booth fund. The meeting was
well attended, with representatives from both East-
ern and Western Europe (including me; I also at-
tended with UKTUG money), and one representa-
tive from Australia (though he is presently resident
in Europe, too).
The speakers at the meeting were Michel Gooss-

ens (the president of GUTenberg1), as host for GUT-
enberg and as an expert on background to, and the
use of Unicode), and Yannis Haralambous and John
Plaice, Ω’s two developers.
The meeting can be accounted a success; all

that attended enjoyed themselves, and also learnt a
lot.
This paper is a minor revision of an article I

wrote for the UKTUG magazine Baskerville, vol-
ume 5, number 3, and outlines some of my views of
(and support for) the choices that Haralambous and
Plaice have made. I will consider the arguments for
using Unicode as a foundation for future text pro-
cessing, in particular (of course) TEX-related pro-
cessing.

What is Ω?

Ω (Haralambous and Plaice, 1994) is an extension
of TEX and related programs that has been designed

1 And now (at the time of writing) president-elect of TUG
itself.

and written by Yannis Haralambous (Lille) and John
Plaice (Université Laval, Montréal). It follows on
quite naturally from Yannis’ work on exotic lan-
guages (see, among many examples, Haralambous,
1990; 1991; 1993; 1994), which have always seemed
to me to be bedevilled by problems of text encoding.
Simply, Ω (the program) is able to read scripts

that are encoded in Unicode (or in some other code
that is readily transformable to Unicode), and then
to process them in the same way that TEX does.
Parallel work has defined formats for fonts and other
necessary files to deal with the demands arising from
Unicode input, and upgraded versions of METAFONT,
the virtual font utilities, and so on, have been writ-
ten. Ω itself is based on the normal Web2C distribu-
tion that is at the base of most modern Unix imple-
mentations, and of at least one of the PC versions
that is freely available.

Why Unicode?

There are something between 3000 and 6000 lan-
guages in use in the world, for which a writing sys-
tem exists. (The set of languages is shrinking all the
time as the deadening effect of cultural intrusion,
primarily through the electronic media, overwhelms
the desire to support existing cultures to the extent
of teaching their language to the young.) The distri-
bution of languages is by no means even throughout
the globe (Michel showed us a map), and there are
many that have not been and will presumably now
never be formally recorded.
When we come to writing systems, we find al-

most every variation imaginable in use somewhere
in the world. The Latin-like system (written left
to right with modest numbers of diacritics simply
arranged) has very wide penetration, not least be-
cause so many languages were first written down by

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 325

Robin Fairbairns

Western European missionaries or other explorers.
Languages such as Vietnamese are classified as ‘com-
plex Latin-like’, with ≥ 2 diacritics per character; an
artificial example of the same effect is IPA (the In-
ternational Phonetic Alphabet) which has sub- and
super-scripts and joining marks. Languages such as
Hebrew and Arabic are written right to left, and con-
stitute another class. Then there are the multiple-
ligature writing systems typified by the Indic lan-
guages such as Devanagari (of which we had a fasci-
nating exposition at the 1993 UKTUG Easter meet-
ing on ‘non-American’ languages, from Dominik Wu-
jastyk), and finally the syllabic scripts (such as Ko-
rean Hangul and Japanese Hiragana and Katakana),
and the ideographic scripts (Chinese and Japanese
Kanji).
Encodings are needed for computer operations

on language of any sort. There are differences be-
tween the coded representation and the written (or
printed) representation. Everyone who’s read about
TEX at all will know about ligatures (the CM fonts,
and most PostScript fonts, implement ligatures so
that, for example, ‘fl’ typed appears as ‘fl’ printed).
More significantly, almost all adults in Western cul-
tures write ‘joined-up’, which is in itself application
of a form of ligature. All these ligatures are for pre-
sentation, not for information, and so it is unrea-
sonable for them to be represented in a character
set. Other ligatures, however, form real characters
in some languages (examples are æ in Danish and
Norwegian, and œ in French).
Each encoding represents a ‘character set’ that

is to be used by the computer; the history of how
these character sets have developed is long and sorry
indeed. In the ‘dark ages’ (in fact, as recently as the
early 1960s, when I started computing), every make
of computer system had its own character code, many
of them based on the 5-bit teleprinter codes used in
telex printers. Eventually, the rather more sophisti-
cated teletypes appeared, which used seven bits of
an eight-bit code; this 7-bit codification was stan-
dardised as ASCII (the American Standard Code for
Information Interchange), which was (in the area of
application it was designed for) an excellent code. It
had all the properties needed for many of the signif-
icant development of computers in the 1960s, but it
had one serious flaw: it was not able to encode dia-
critics, which are used in almost every language (but
which your all-American information interchanger
would seldom have a need for).
To regularise the resulting mess, ISO adopted

the ASCII standard as the basis for an international
7-bit character set, ISO 646. ISO 646 is identical to
ASCII in the code points that it specifies; however,

some of the characters that ASCII does specify are
left “for national variation” in ISO 646; ASCII itself
then became the USA national variation of ISO 646.
An example of national variation is defined for the
UK, which specifies that the code point that holds
‘#’ in ASCII should hold a pounds sign ($). There
are versions for various Nordic languages that in-
clude characters such as æ or å in place of braces, a
version for French with acute, grave and circumflex-
accented letters, one for German that offers letters
with umlauts and ‘sharp s’ (ß).
There were various attempts at mechanisms to

assign different character sets for use by those who
need to use characters from several different sets (for
example, someone writing a Swedish-English Dictio-
nary); an example is ISO 2022, which defines escape
sequences for such switches. These efforts proved
impractical (at least they seemed so to me), and 8-
bit developments of ISO 646 arose, with the ability
(comfortably) to express more than one language.
Thus were born the ISO 8859 character sets.

The commonest of these (at least in the ken of most
English speakers) is ISO Latin-1 (ISO 8859-1, that
is, part one of the multi-part standard), which was
designed for use by Western Europeans. As well
as the ‘basic ASCII set’ in the first 128 characters,
it has diphthongs and vowels appropriate to most
Western European languages. Oddly, it omits the
œ dipthong that French uses, and (perhaps less sur-
prisingly2) it omits some of the accent forms used by
Welsh. ISO 8859 didn’t stop with part 1, though;
there are variants that accommodate Cyrillic (for
Russian, Serbian, and several other languages of the
old Soviet Union), Arabic, Hebrew, and so on.
This is all well and good, but it doesn’t an-

swer the needs of a writer preparing multilingual
documents, except in the case that the multiple lan-
guages are accommodated in the same part of ISO
8859: it will happen some of the time, but most ‘in-
teresting’ combinations will require switches of char-
acter set whenever the language changes.
So ISO (by this time, jointly with IEC) started

development of an all-encompassing character set, to
be numbered ISO/IEC 10646 (the difference of 10 000
is no accident). ISO/IEC 10646 was to accommodate
every possible language in the world by the simple
expedient of allowing 32-bit characters. Of course,
no-one can comprehend a 32-bit character set, and
so the set was to be structured, as a hypercube of
different repertoires; the (0, 0, 0, ∗) repertoire would

2 Given that Wales would have been represented by the
BSI in the standardisation process.

326 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Omega—why Bother with Unicode?

be the same ISO-Latin 1, but all the other sets could
be accomodated, too.
Independently, Apple andMicrosoft got together

to found the Unicode consortium, whose aim was
to define 16-bit characters that would cover all the
economically important world. This criterion of eco-
nomic importance could easily have brought down
the whole edifice: the (increasingly important) lan-
guages of the Far East are at best syllabic (e.g., Ko-
rean; Korea claims 11 000 of the code points in Uni-
code), or even one character per word (e.g., Chinese;
a full classical Chinese repertoire would require well
in excess of 65 536 characters, thus sinking a 16-bit
code single-handedly).
Unicode’s sponsors therefore enforced a process

called ‘Han unification’, which aims to put the ‘same’
character in any of Chinese, Japanese and Korean
in the same slot in the table. This unification is
a distinctly dubious exercise: the same character
may have different significance in the different lan-
guages, but they are all represented by the same
code point. Contrariwise, the Latin ‘H’, the Russian
‘H’ (which sounds as Latin ‘N’) and the Greek ‘H’
(capital ‘η’) all get different code points despite hav-
ing the same paper representation. For this reason
(among others), there remain doubts as to whether
the Japanese, in important particular, will adopt
Unicode as a long-term replacement for their own
national standards.
In the shorter term, however, there remained

the possibility that there would be two conflicting
standards for the future of character codes – a de
facto one (Unicode) and ISO/IEC 10646. The ISO/
IEC standard reached its (nominal) final ballot with-
out addressing the relation to Unicode . . . but (for-
tunately) it failed at that hurdle, and for that rea-
son. Standards people are notorious for ignoring
the real world3, but this time, they conceded de-
feat. ISO/IEC 10646 was edited to have the whole
of Unicode as its (0, 0, ∗, ∗) plane, and it has thus
passed into the canon of published standards.
So we may now discuss Unicode without run-

ning out against the ISO/IEC standard: a splendid
example of the behaviour known as “common sense
prevailing”.

Virtual Metafont and Fonts to

Support Unicode

It is known that TEX is a general-purpose program-
ming language. In ‘plain’ text, we would type "hello
world". For TEX output we would type ‘‘hello

3 The author has spent an unconscionably long period of
his life on these things, and is therefore in a position to know.

world’’, which would be transparently converted
to “hello world”. Thus, the two grave accents and
the two single quotes constitute ‘programming’. In
the last analysis, you can “do everything with TEX”.
When English is typeset, the convention is that

the space, after the full stop is the end of a sentence,
is expanded; TEX makes provision for this to happen
by way of the \sfcode mechanism. When French
is typeset, the convention is that the space is not
expanded; the \sfcode mechanism can provide this
style of typesetting, as well (cf. the \frenchspacing
macro of plain TEX).
Other features of French typesetting are more

difficult to provide in TEX. For example, an excla-
mation mark is separated from the sentence: “en
français !”; to program this, the exclamation mark
needs to become an ‘active character’, which is al-
ways a tricky thing to do.
Setting the French quotation marks (known as

guillemets) becomes even more tricky; the guillemets
look like little << and >>, and the natural way to pro-
gram them is by using repeated < or > characters;
Bernard Gaulle’s french.sty does this (also setting
a space between the text quoted and the guillemets),
but it’s becoming more and more complicated; even
more so when we consider the French rules for quotes
within quotes.
More problems arise when we consider the ques-

tion of diacritics. English rather infrequently has
diacritics, so it’s not surprising that TEX’s method
of dealing with them isn’t perfect. To typeset an ac-
cented character, e.g. ä, one must type \"a; which is
typeset as two little boxes stacked on top of one an-
other, rather like

..
a . This does work, but these com-

posite glyphs no longer qualify (to TEX) as some-
thing that it’s willing to hyphenate –TEX only hy-
phenates ‘words’ made up of sequences of letters.
A language such as German, with hyphenation sup-
pressed for many words, is hardly a language at all.
These observations are what led to the definition
of the Cork font encoding, in which a goodly pro-
portion of Western European letters with diacritics
appear as single characters; if they are thus repre-
sented, words containing them may be hyphenated.
With the Cork encoding, which is in effect an

output encoding, we encounter a further problem re-
lating to the nature of communication. The problem
arises from the nature of character sets; while there
are many well-established character sets, there are
seriously different camps into which they fall. For
example, the character ‘Þ’ (Thorn), appears in Mi-
crosoft Windows’ character set but not in the Mac-
intosh set, while ‘Ω’ appears in the Macintosh set
but not in the Windows set; both of these sets are

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 327

Robin Fairbairns

based on ASCII. To solve this problem, of encoding
everything that appears in any character set, there
has to be a super-encoding. This can be either a
multi-character representation, as in the www en-
coding, html (for example the encoding would for é
would be é), or a super-character set, as in
Unicode.
In the present arrangement of typesetting tech-

nology, we have the situation where non-English users
sit at a computer, and express their own language
via a local layer in ASCII or a derivative of it – i.e.,
we have a picture like this:

local
layer

ASCII

- typography

In this arrangement, the human interface allows the
use of local characters, and the display will show
what’s typed. The typography does the display job
again (possibly differently); however, communica-
tion of the text to be typeset is difficult, because
of the local nature of the interface.
The information to be transmitted needs to be

encoded. There is no limit to the number of lo-
cal encodings that may exist; equally, there is no
constraint on the representations used by the typo-
graphic system. However, to facilitate the transmis-
sion of information, a common schema of its repre-
sentation in the coded date must exist.

local
layer

ASCII

- information - typography

� - use for
communication

The ultimate mechanism for ensuring that such
a schema exists is to require that everything be trans-
mitted in a common encoding scheme; Ω employs
ISO/IEC 10646/Unicode for this. Input text is trans-
formed into Ω’s internal ‘information’ by an Omega
Translation Process (OTP); OTPs may also be used
to transform the information during its processing
withing Ω, and an OTP is also used to derive the
coding of the font, to be used for typesetting, from
the Unicode-encoded information within Ω:

Input
encoding

- information
(Unicode)

- typography

� �

6

OTP OTP

OTP

Conceptually, at least, this is exactly what one
wants. In practice, the usefulness of Ω remains to
be seen; the implementors are promising a version
(‘soon’) that progresses from the status of pre-test.
I, for one, am eagerly awaiting its appearance.

References

Y. Haralambous. “Arabic, Persian and Ottoman
TEX for Mac and PC”. TUGboat 11(4), 520–
524, 1990.

Y. Haralambous. “TEX and those other languages”.
TUGboat 12(34), 539–548, 1991.

Y. Haralambous. “The Khmer script tamed by the
Lion (of TEX)”. TUGboat 14(3), 260–270, 1993.

Y. Haralambous. “An Indic TEX preprocessor—
Sinhalese TEX”. TUGboat 15(3), 301–301, 1994.

Y. Haralambous and Plaice, John. “First appli-
cations of Ω: Adobe Poetica, Arabic, Greek,
Khmer”. TUGboat 15(3), 344–352, 1994.

328 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Introduction

Nothing in the design of TEX
limits it to the American alphabet.

Fine printing is obtained
by fine tuning to the language

or languages being used.

— D. E. Knuth, The TEXbook (1990)

The widespread use of TEX and LATEX in Cata-
lan universities is causing the adoption of alien
typographical conventions within documents writ-
ten in Catalan. Even the catalan option of the
babel package in LATEX advocates some typograph-
ical conventions which are foreign to Catalan. On
the other hand, language-specific options in babel
for languages such as German and French, which
have well-established typographical conventions, ac-
curately reflect such conventions.
There are not yet any standard encompass-

ing typographical conventions for scientific writing
in Catalan. While existing manuals of style deal
with orthographic and typographical conventions
for journalism (Coromina, 1993) and for literature
(Joseph, 1991; Solà, 1990), books dealing with sci-
entific writing focus primarily on linguistic aspects
(Riera, 1993) and perhaps the most commonly ac-
cepted reference to scientific writing style is the way
it is realized in an encyclopedia (DIGEC, 1989). A
style book for authors who are themselves editors,

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 329

Modern Catalan Typographical Conventions

Modern Catalan Typographical Conventions

Gabriel Valiente Feruglio
University of the Balearic Islands

Mathematics and Computer Science Department

E-07071 Palma de Mallorca (Spain)

Email: valiente@ps.uib.es

Abstract

Many languages, such as German, English and French, have a traditional
typography. However, despite the existence of a well-established tradition in
scientific writing in Catalan, dating back to 1273 in the writings of Ramon Llull,
and despite the early introduction of the Gutenberg printing press in Catalonia,
where the first printed book in Catalan appeared in 1474, there are not yet any
standard encompassing typographical conventions for scientific writing.
Typographical rules are proposed in this paper which reflect the spirit found

in ancient Catalan scientific writings while conforming to modern typographical
conventions. Some of these typographical rules are realized as a set of TEX
definitions, and they are meant to be incorporated in Catalan extensions of
TEX and LATEX. In addition, the proposal is also expected to contribute to the
development of standard rules for scientific writing in Catalan.

however, has just appeared (Pujol, 1995) and an-
other style book is about to appear (Mestres, 1995)
which may soon become another accepted reference
source for scientific writing style as well.
A critical review of the degree of support

of the Catalan alphabet in TEX, as well as in
international encoding standards, is presented in
the following section. Different aspects of Catalan
scientific writing style are discussed in the following
sections, in the light of their (lack of) support
in TEX and LATEX, and they are grouped under
the headings of spacing, quoting, hyphenation, and
punctuation conventions. The paper concludes with
a discussion of foreign typographical conventions
currently encoded in the catalan option of the
babel package in LATEX.

The Catalan alphabet

All Catalan characters belong to the ISO 8859-
1 coding scheme, known as ISO Latin-1, with
the only exception (Valiente, 1993) of the digraph
latin letter l middle dot latin letter l in
its uppercase (L.L) and lowercase (l.l) forms.
The digraph is not a letter of the Catalan

alphabet, and it is not a ligature, although it could
in principle be obtained in TEX using ligatures as
an input encoding mechanism; that is, ligatures L.L
and l.l could be defined which would pick up the
L.L digraph and the l.l digraph. It must be noted,

Figure 1: ISO/IEC 10646 prototypical glyphs

however, that the corresponding hyphenation point
would then be missed.
Hyphenation of the l.l digraph is l-l, that

is, it is replaced by two letters, and a similar
phenomenon happens in other languages. For
instance, in German Drucker becomes Druk-ker,
in Swedish tillaga becomes till-lage, in Dutch
latje becomes lat-je but laatje becomes la-
tje, etc. All these cases fit in TEX’s discretionary
hyphenation mechanism.
Actually the characters are defined as special

digraphs, with a raised dot as diacritic mark.

Encoding. The Cork encoding (Haralambous,
1992), an early attempt at extending the 7-bit
Computer Modern encoding described in the five
volumes of Computers and Typesetting to an 8-bit
font encoding, covers the accented characters used
in European languages, among them Catalan. It
does not, however, include a character position for
the l.l digraph (Valiente, 1993).
An approximation to the l.l digraph, the char-

acter combinations latin capital letter l with
middle dot and latin small letter l with
middle dot, appears for the first time in the 32-bit
encoding ISO/IEC 10646, in positions 0000013F and
00000140 (ISO, 1993, p. 20–21). Figure 1 shows the
prototypical glyphs found therein.
The corresponding entity names Lmidot and

lmidot already appear in ISO 8879 (ISO, 1986,
p. 116) as Latin alphabetic characters used in
Western European languages.
Furthermore, in Unicode, a 16-bit encoding

which is a proper subset of the ISO/IEC 10646
32-bit encoding, the character combinations latin
capital letter l with middle dot and latin
small letter l with middle dot appear again,
in positions 013F and 0140 of the European
Latin block (Unicode, 1991, pp. 180–182). The
prototypical glyphs found therein are shown in
figure 2.
Strictly speaking, these ISO character combi-

nations are not characters of the Catalan alphabet,
and they should soon be replaced by the l.l digraph,
before they get implemented in the next generation
of HTML browsers and in the next generation of

330 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Gabriel Valiente Feruglio

Figure 2: Unicode prototypical glyphs

Figure 3: Diversity of graphical representation

typesetting systems. As a matter of fact, the Ω
system (Haralambous, 1994) already implements
the Unicode standard. A proposal for modification
has been dealt with at length at the ISO 8859 and
ISO 10646 discussion lists, and it will be submitted
to ISO and Unicode as soon as it is agreed by aca-
demic authorities throughout the Catalan-speaking
countries.

Protypical rendering proposal. Parallel to the
discussion of the best name for denoting such a
digraph with a diacritic mark, is the definition of a
corresponding graphical representation or glyph.
The standard which established the glyph to be

used for representing the digraph was rather loose in
the definition, only stating that “it will be written
by putting a raised dot between the two letters”
(Actes, 1906, pp. 194–200). Neither the distance
between the two letters nor the raise and size of the
middle dot were established by the standard.
Such an ambiguity, probably caused by the

provisional character of the standard, has originated
a great diversity in the practical application which
can still be found nowadays, as can be seen in
the samples of figure 3. Orthographic mistakes
are not unusual: text processing systems lacking
a discretionary hyphenation mechanism produce a
wrong hyphenation of the l.l digraph, while the
use of a centered dot as middle dot may lead to
unexpected results when changing fonts, as can be
seen in the samples of figure 4.
Already in 1923 Pompeu Fabra complained

about the excessive separation between the two
letters being used by printers (Fabra, 1984, pp. 310–
312) and interpreted the standard in the sense that
the separation had to be the same as the normal

Figure 4: Non-TEX text processing

Figure 5: Early graphical representation

Figure 6: First standard proposal

separation between the two letters when they are not
written with a middle dot. The same interpretation
can be found in Pujol (1995, pp. 339–340). As a
matter of fact, this interpretation prevailed until
digital typography displaced traditional typography.
Figure 5 shows samples of some of the first

printed representations of the digraph, taken from a
1909 edition (Guasp Printer, Palma de Mallorca), a
1926 edition (Alcover Printer, Palma de Mallorca),
and from a 1934 edition (Calatayud Printer, Sóller,
Mallorca) of Alcover (1896–1931).
The lack of a clear standard has motivated

two additional proposals. In the first one (Mestres,
1990) the size and raise of the middle dot is
discussed, although the exact place where it should
go is not established (see figure 6). In the second
standard proposal (Valiente, 1993) the raise of the
middle dot is established, but the distance between
the two letters is not discussed.
The present proposal consists of defining the

character as a digraph formed by two letters, with a
middle dot as diacritic mark. The middle dot has to

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 331

Modern Catalan Typographical Conventions

AL.LOT

al.lot
Figure 7: Proposed prototypical rendering

be located between the two letters and equidistant
from their stems. In order to facilitate reading, the
middle dot has to be centered at half the height of
uppercase letters. This is due to the fact that the
digraph only appears between vowels. Moreover,
between the two letters there has to be the same
distance as there is between the two letters when
they are not written with a middle dot, in order not
to break continuity of words containing the digraph.
There seems to be no definitive need for the

middle dot to be smaller than a period, contrary to
the proposal in Mestres (1990). Boldface fonts are
the only ones out of 27 standard TEX fonts where
a smaller middle dot would be, to the author’s
taste, aesthetically more pleasant. As a matter
of fact, most (if not all) old and modern printed
representations of the digraph share the fact that
the middle dot and the period have the same size.
A prototypical glyph reproducing the standard

proposal is presented in figure 7 and also in Ap-
pendix I for the main TEX text fonts used in
LATEX.

Implementing the proposal. In order to produce
the L.L and l.l digraphs in TEX, an input mechanism
is first needed. Reasonable choices involve the
definition of active characters, font ligatures, and
control sequences.

• Type L.L and l.l and make the dot (pe-
riod) active. This approach was developed by
Claudio Beccari in the POLYGLOT package.
Although such an input convention would be
quite natural for most Catalan users, making
the period (or any other punctuation mark)
active is rather dangerous since it may have
unexpected consequences when in math mode.
• Type L·L and l·l and make the raised dot
active. This approach was developed by Xavier
Gràcia and is another natural input convention
for Catalan users, but it hinders portability,
since the raised dot does not belong to the set
of ASCII visible characters.

• Type L.L and l.l and define corresponding
ligatures in all text fonts, which pick up the
L.L digraph and the l.l digraph. Although
being again a natural input convention for
Catalan users, it also lacks portability and
the corresponding hyphenation point would be
missed when using this approach.
• Type a control sequence. The names \LL
and \ll were proposed in Valiente (1993) as
standard control sequence names for producing
the L.L digraph and the l.l digraph, where it is
discussed that \ll is already assigned to the
≪ (much less than) relation in plain TEX and
LATEX and that it only occurs when in math
mode, while the l.l digraph is not supposed
to be typed in math mode. Although these
control sequence names could eventually be
mapped to a more natural input convention in
a local installation, Donald Knuth suggested
preemption of the \L and \l macros (since it
is not usual to have to include more than an
occasional phrase in Polish into Catalan text)
and to rewrite \L and \l as delimited macros
with . as the delimiter. This solution is a quite
natural input convention for Catalan TEX users
(it suffices to type a\l.lot in order to get al-
lot) and it is robust, in the sense that the user
gets a warning if the delimiter is omitted or if
it is followed by anything other that L or l.

Typesetting the l.l digraph involves either as-
sembling together three characters, or picking up
an existing l.l character from a (real or virtual) font.

• Packing up three characters to form the l.l
digraph makes it quite difficult to get the right
kerning, because the only metric information
available about the characters in a font is the
height, depth and width of the box enclosing
them. For instance, the relative position of
the stem of the two “l” letters within their
enclosing box is needed in order to place the
middle dot equidistant from the two stems,
but this information can only be found in the
METAFONT source code for the font. Even the
actual diameter of a period is not guaranteed
to be equal to the width of the box enclosing
it.
• Since there is no l.l character in any TEX text
font, not even in the DC fonts, which were sup-
posed to cover all European languages, making
a special text font for these two characters, as
well as replacing some character in all text fonts
by the l.l digraph, would also hinder portability.

332 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Gabriel Valiente Feruglio

• Virtual fonts represent instead a portable so-
lution, but the difficulty in getting the right
kerning still exists.
• The technique of virtualMETAFONT (Haralam-
bous, 1995) comes then to rescue, since it allows
to get the metric information needed for placing
the middle dot at the exact position, according
to the proposed prototypical rendering.

Assembling the l.l digraph from three characters
was the solution presented in Valiente (1993) and
an improved version is given here, as a kind of
poor man’s solution meant to be used at least until
the techniques related to virtual METAFONT are
available.
Implementing the rendering proposal at the

TEX or LATEX level, as opposed to the METAFONT
level, means defining appropriate \L.L and \l.l
control sequences that (a) produce the right hy-
phenation, (b) keep the normal separation between
the two letters, (c) place the middle dot at half the
distance between the stems of the letters, and (d)
raise the middle dot to half the height of uppercase
or lowercase letter L minus half the height of the
middle dot.
Correct hyphenation is obtained by introduc-

ing appropriate discretionary break points, and
normal separation between the two letters can be
approximated by the definition

\newskip\zzz

\def\allowhyphens{\nobreak\hskip\zzz}

\edef\Lslash{\L} % save Polish \L

\def\L.L{\allowhyphens

\discretionary{L-}{L}{%

\hbox{L}%

\hbox to 0pt{\hbox{.}\hss}%

\hbox{L}}%

\allowhyphens }

and similarly for lowercase, where the horizontal
and vertical displacement can be determined by
trial and error for each particular font, after storing
the component characters in boxes in order to
know their dimensions at macro expansion time.
By expressing such displacements in terms of, say,
the width of letter L, displacements will be scaled
together with the font and then the rendering
proposal can be implemented for any font at any
magnification.
Since such displacements depend on the current

font in use at macro expansion time, appropriate
values for \leftdim (horizontal displacement) and
\raisedim (vertical displacement) can be deter-
mined and tabulated for each text font, and they
have already been computed by the author for all

TEX standard text fonts. However, a test is still
needed in order to choose the right displacement
values based on the file name of the current font.
An intermediate solution, in the spirit of Valiente
(1993), is the use of \fam (font family) values
in the test, which are set by plain TEX but no
longer by LATEX, and it is the solution adopted for
typesetting this article. A provisional solution for
LATEX is also given in Appendix II which tests in-
ternal \f@family, \f@series and \f@shape values
to deduce which font is in use.

Spacing conventions

French typographical conventions dictate that a
little white space should be added before the so-
called double punctuation characters (Gaulle, 1995),
as for instance in:

Comptava que l’illa de Mallorca tenia
unes 300 milles que la circüıen en torn ;
i Menorca era cap a la banda de Sardenya.

These characters are colon, semicolon, ex-
clamation mark and question mark. Similar
conventions can be found in old Catalan texts (for
instance in Reixac, 1749; Alcover, 1896–1934), also
surrounding apostrophe with extra white space.
These conventions, however, are of no use in modern
Catalan writing and they should not be encouraged
by any Catalan style file.

Quoting conventions

Both double quotes (also called saxon quotes) and
latin quotes (also called guillemets) find widespread
use in modern Catalan texts, where their use is
justified in solving the case of quotations inside
quotations. While some authors prefer double
quotes to latin quotes (Solà, 1990, p. 102; Pujol,
1995, p. 330), and only use latin quotes within text
that is already enclosed in double quotes, other
authors recommend their use the other way around,
even suggesting the use of single quotes to enclose
words which are already enclosed in double quotes
(Joseph, 1991, pp. 149–150).
Although authors usually refer to particular

aesthetic criteria justifying their choice of quoting
conventions, an important aesthetic criterion seems
to have been overlooked. Opening quotes may
appear right after an apostrophe, and in such a case
the apostrophe clashes with double quotes or with
single quotes but not with latin quotes.
Therefore, the best choice in Catalan texts

would be that of latin quotes, using double quotes

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 333

Modern Catalan Typographical Conventions

only within text already enclosed in latin quotes,
and using single quotes only within text already
enclosed in double quotes already enclosed in
latin quotes. Maybe the development of French
guillemets was already an answer to the aesthetic
question of having an apostrophe being immediately
followed by double quotes or by single quotes.

Hyphenation conventions

Catalan grammar, as well as current typographical
conventions, establishes that syllables consisting of
a single vowel should not be left alone at the
beginning or end of a line, thereby reducing the
number of possible break points in all but the
smallest words. One exception to this rule is the
case of a word preceded by an apostrophe, in which
case hyphenation is allowed after the vowel.
Hyphenation of a word before or after an apos-

trophe has to be avoided, while keeping the break
point after the vowel following the apostrophe. The
solution given in Valiente (1993) is to set \cat-
code‘\’=11 in order to include the pattern ’2h in
the language-specific pattern file, and to set \left-
hyphenmin=1 and \righthyphenmin=3. It is clear
that such a solution is not sufficient, even when set-
ting \lefthyphenmin=2 and \righthyphenmin=2.
Another important exception to consider, found

in modern publications but not yet covered by any
style book, is the case of a word preceded by opening
quotes or followed by closing quotes. In such a case
the quotes should count as another character in the
account for \lefthyphenmin, in such a way that,
for instance, ‘‘u-na’’ could also be broken.

Punctuation conventions

When in math mode, TEX treats the comma as a
punctuation mark and the period (decimal point)
as an ordinary symbol, putting a little extra space
after the comma. In order to get the right spacing
in a large decimal number such as 1,234,567.89

$1{,}234{,}567.89$

has to be written (Knuth, 1990, p. 134) instead of
just

$1,234,567.89$

According to Catalan orthography, however,
the roles of the comma and the decimal point
are reversed, and a similar phenomenon happens
in other European languages, among them Czech,
French, German and Polish. The same number
is expressed in Catalan by either 1.234.567,89 or
1 234 567,89 and would have to be written

$1.234.567{,}89$

or

$1\,234\,567{,}89$

in order to get the right spacing. This does not
seem to be a practical solution, given the wider use
of the comma as decimal separator in Catalan than
as separator for large numbers in English.

Foreign typographical conventions

The catalan option of the babel package (release
3.4) in LATEX supports several typographical con-
ventions that have been taken from the spanish
option but which do not reflect modern Catalan
typographical conventions.
Masculine and feminine ordinal indicators,

which consist of a raised symbol such as “1o”
or “1a” in Spanish, correspond to abbreviations by
contraction, without the final period, of their re-
spective names in Catalan (Solà, 1990, p. 75; Pujol,
1995, p. 227), as shown in the following table.

Ordinal Name English Spanish Catalan

first primer primera 1st 1o 1a 1r 1a
second segon segona 2nd 2o 2a 2n 2a
third tercer tercera 3rd 3o 3a 3r 3a
fourth quart quarta 4th 4o 4a 4t 4a
fifth cinquè cinquena 5th 5o 5a 5è 5a
sixth sisè sisena 6th 6o 6a 6è 6a

The letter n tilde does not belong to the
Catalan alphabet. Whenever it appears in a Spanish
word, for instance, temporarily switching to that
language makes the right typographical conventions
apply to that word. Hyphenation is perhaps the
most important one of such conventions; switching
to Spanish would produce the right hyphenation
for the first last name of the author, Va-lien-te,
and switching to Italian would produce the right
hyphenation for the second last name of the author,
Fe-ru-glio, instead of Va-li-en-te and Fe-ru-
gli-o which would be produced under Catalan
hyphenation rules.
Uppercase and lowercase mappings differ from

language to language. For instance, in French
and Spanish latin small letter e with acute
accent may map to latin capital letter e.
In Catalan, however, diacritic marks have to be
preserved in uppercase form, although the influence
of Spanish press in Catalan-speaking countries has
resulted in non-accented uppercase characters found
in Catalan texts as well (Joseph, 1991, pp. 103–132).

334 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Gabriel Valiente Feruglio

In TEX the argument of \uppercase and \low-
ercase is converted to uppercase form or to lower-
case form using the \uccode and \lccode tables,
which only cover characters from a font and not
composite characters obtained with macros such as
\‘a. In the latest versions of TEX, however, \upper-
case{\‘a} becomes \‘a but \uppercase{\‘{\i}}
and \lowercase{\’I} both become \’i instead of
\’{\i}. The situation does not really get solved
unless fonts containing accented characters are used,
which constitutes just another reason to switch to
DC fonts.

Typographical rules

The previous discussion can be summarized in the
following ten typographical rules.

1. Do not type l.l or l·l for the l.l digraph. Use
the control sequences \L.L (for uppercase) and
\l.l (for lowercase) instead.

2. Do not add extra white space before colon,
semicolon, exclamation mark, question
mark and apostrophe.

3. Use French guillemets as quotation marks,
leaving double quotes and eventually also single
quotes to quote words which already belong to
a quotation.

4. Hyphenate accented and diacritized words as
well. Either use the multilingual TÊX patch or
switch to the T1 font encoding in LATEX.

5. Do not use the period as decimal separator.
Use the comma instead, as in 3{,}14159.

6. Do not use foreign ordinal indicators. Type 1r,
2n, 3r, 4t, 5\‘e, 6\‘e, etc. to get masculine
ordinal indicators, and type 1a, 2a, 3a, 4a, 5a,
6a, etc. to get feminine ordinal indicators.

7. Switch languages to get hyphenation and par-
ticular typographical conventions apply to for-
eign words.

8. Do not forget accents and diacritics in upper-
case words.

9. Check out style manuals when in doubt. Au-
thors are increasingly becoming editors and
sometimes even printers ourselves.

10. Join the CATALA-TEX discussion list to further
discuss these typographical rules and to get
them implemented at your local site. Send the
message

SUBSCRIBE CATALA-TEX Name Surnames

to the address

LISTSERV@CESCA.ES

and an introductory message will be sent back
to your account.

Some of these typographical rules are illus-
trated by the following chapter of the Libre dels
feits del rei En Jacme, the book of facts by Jaume
the Conqueror (1208–1276):

E fo la nostra cavalleria en sancta Maria
de l’Horta de Taraçona, que, öıda la missa
de sent Espirit, nós cenyim l’espasa que
prenguem de sobre l’altar. E pod́ıem llaora
haver dotze anys complits e entràvem en lo
tretzè, śı que un any estiguem ab ella que
no pod́ıem fer ço que els hòmens han a fer
ab sa muller, car no hav́ıem l’edat.

The quotation has been taken from a modern
edition (Jaume I, 1982), whereas the oldest pre-
served manuscript dates back to 1343. Compare it
with the printed edition presented in figure 8, taken
from (Chronica, 1557).

Acknowledgements

Much of the material related to the Catalan alpha-
bet resulted from discussions with Francesc Come-
llas and Xavier Gràcia (Universitat Politècnica de
Catalunya), Josep M. Mestres (Institut d’Estudis
Catalans), Joan Solà (Universitat de Barcelona),
Josep M. Pujol (Universitat Rovira i Virgili), and
Joan Alegret (Universitat de les Illes Balears). Last,
but not least, Pierre MacKay has presented this pa-
per at the 16th Annual Meeting of the TEX Users
Group. Sincere thanks to them all.

Bibliography

Actes del Primer Congrés Internacional de la Llen-
gua Catalana. Barcelona, 1906. Facsimile edition
by Vicens-Vives, Barcelona, 1985.
Alcover, A. M. Rondaies Mallorquines d’en Jordi
des Racó. Palma de Mallorca, 1896–1931.
Badia, L. Rudiments de tipografia. Ed. Patronal
d’Assistència Social, Barcelona, 1934.

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 335

Modern Catalan Typographical Conventions

Figure 8: Medieval Catalan writing

Chronica, o commentari del gloriosissim e invic-
tissim Rey en Iacme. València, 1557. Facsimile
edition by Ajuntament de València, 1994.
Coromina, E. El 9 Nou: Manual de redacció i estil,
3rd Edition. Ed. Eumo, Vic, 1993.
DIGEC. Gran enciclopèdia catalana, 2nd Edition.
Ed. Enciclopèdia Catalana, Barcelona, 1989.
Fabra, P. Converses filològiques II. EDHASA, Bar-
celona, 1984.
Gaulle, B. Notice d’utilisation du style french multi-
lingue. Electronic document distributed with the
french package, Version 3.36, 1995.
Haralambous, Y. “TEX Conventions Concerning
Languages.” TEX and TUG NEWS 1(4), 1992,
pp. 3–10.
Haralambous, Y. and Plaice, J. “Ω, a TEX Extension
Including Unicode and Featuring Lex-like Filter-
ing Processes.” In EuroTEX Proceedings, 1994,
pp. 154–167.
Haralambous, Y. and Plaice, J. “Ω + Virtual
METAFONT = Unicode + Typography.” Cahiers
GUTenberg, 21, 1995, pp. 1–13.
ISO, International Organization for Standardiza-
tion. Information processing — Text and office
systems — Standard Generalized Markup Lan-
guage (SGML). Geneva, Switzerland, 1986. Inter-
national Standard ISO 8879.
ISO, International Organization for Standardiza-
tion. Information technology — Universal Mul-
tiple-Octet Coded Character Set (UCS) — Part
1: Architecture and Basic Multilingual Plane.
Geneva, Switzerland, 1993. International Stan-
dard ISO 10646-1.
Jaume I. Crònica o llibre dels fets. Ed. 62,
Barcelona, 1982.
Joseph, M. Com es fa un llibre. Ed. Pòrtic,
Barcelona, 1991.
Knuth, D. E. The TEXbook. Addison-Wesley, Read-
ing, Massachusetts, 9th printing, 1990.

Mestres, J. M. “A l’entorn de la ela geminada.”
Escola Catalana, 2(66):7–8 and 2(70–72):7–10,
1990.
Mestres, J. M., Costa, J., Oliva, M. and Fité, R.
Manual d’estil. Ed. Eumo, Barcelona, 1995. To
appear.
Pujol, J. M. and Solà, J. Ortotipografia. Ed.
Columna, Barcelona, 1995.
Reixac, B. Instruccions per la ensenyança de mi-
nyons. Anton Oliva, Girona, 1749. Facsimile edi-
tion by Edicions de la Universitat de Barcelona,
1983.
Riera, C. Manual de català cient́ıfic, 2nd Edition.
Ed. Claret, Barcelona, 1993.
Solà, J. and Pujol, J. M. Tractat de puntuació, 2nd

Edition. Ed. Columna, Barcelona, 1990.
The Unicode Consortium. The Unicode Standard:
Worldwide Character Encoding. Version 1.0, Vol-
ume 1. Addison-Wesley, Reading, Massachusetts,
1991.
Valiente, G. and Fuster, R. “Typesetting Catalan
Texts with TEX.” TUGboat 14(3), 1993, pp. 252–
259.

336 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Gabriel Valiente Feruglio

TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting 337

Modern Catalan Typographical Conventions

Appendix I

Prototypical rendering in font cmr10.

L.L l.l
Prototypical rendering in font cmti10.

L.L l.l
Prototypical rendering in font cmsl10.

L.L l.l
Prototypical rendering in font cmbx10.

L.L l.l
Prototypical rendering in font cmtt10.

L.L l.l
Prototypical rendering in font cmss10.

L.L l.l
Prototypical rendering in font cmcsc10.

L.L l.l

338 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Gabriel Valiente Feruglio

Appendix II

Horizontal displacement values for LATEX font-switching internals

\f@family \f@series \f@shape file name uppercase lowercase
\rm cmr m n cmr10 0.44 0.50
\it cmr m it cmti10 0.32 0.40
\sl cmr m sl cmsl10 0.36 0.30
\bf cmr bx n cmbx10 0.39 0.48
\tt cmtt m n cmtt10 0.73 0.50
\sf cmss m n cmss10 0.50 0.59
\sc cmr m sc cmcsc10 0.43 0.51

Poor man’s L.L and l.l definitions for LATEX

\newskip\zzz \def\allowhyphens{\nobreak\hskip\zzz}

\newdimen\leftdim \newdimen\raisedim

\def\LDOTL#1#2#3{%

\setbox0\hbox{#1}%

\setbox1\hbox{#2}%

\leftdim=0pt

\raisedim=0pt

\advance\leftdim by -#3\wd0

\advance\raisedim by \ht0

\divide\raisedim by 2

\advance\raisedim by -0.5\ht1

\allowhyphens \discretionary{#1-}{#1}{\copy0

\hbox to 0pt{\hskip\leftdim\raise\raisedim\copy1\hss}\copy0}\allowhyphens

}

\makeatletter

\edef\cmtt@family{cmtt} \edef\cmss@family{cmss} \edef\bx@series{bx}

\edef\it@shape{it} \edef\sl@shape{sl} \edef\sc@shape{sc}

\edef\Lslash{\L} \edef\lslash{\l} % save Polish \L and \l

\def\L.L{%

\ifx\f@family\cmtt@family \LDOTL{L}{.}{0.73}% cmtt10

\else\ifx\f@family\cmss@family \LDOTL{L}{.}{0.50}% cmss10

\else\ifx\f@shape\sc@shape \LDOTL{L}{.}{0.43}% cmcsc10

\else\ifx\f@series\bx@series \LDOTL{L}{.}{0.39}% cmbx10

\else\ifx\f@shape\sl@shape \LDOTL{L}{.}{0.36}% cmsl10

\else\ifx\f@shape\it@shape \LDOTL{L}{.}{0.32}% cmti10

\else \LDOTL{L}{.}{0.44}% cmr10

\fi\fi\fi\fi\fi\fi }

\def\l.l{%

\ifx\f@family\cmtt@family \LDOTL{l}{.}{0.50}% cmtt10

\else\ifx\f@family\cmss@family \LDOTL{l}{.}{0.59}% cmss10

\else\ifx\f@shape\sc@shape \LDOTL{l}{.}{0.51}% cmcsc10

\else\ifx\f@series\bx@series \LDOTL{l}{.}{0.48}% cmbx10

\else\ifx\f@shape\sl@shape \LDOTL{l}{.}{0.30}% cmsl10

\else\ifx\f@shape\it@shape \LDOTL{l}{.}{0.40}% cmti10

\else \LDOTL{l}{.}{0.50}% cmr10

\fi\fi\fi\fi\fi\fi }

\makeatother

The 17th Annual TEX Users Group Meeting

ΠOΛΥTEX =

Polytechnic

Polymath

Polyglot

The Joint Institute for Nuclear Research

July 28 –August 2, 1996

The TEX Users Group would very much like to
invite you to take part in our seventeenth annual
meeting ΠOΛΥTEX to be held at the Joint Insti-
tute for Nuclear Research (Dubna, Russia) between
July 28th –August 2nd, 1996. This is the second an-
nual TUG meeting outside North America, and the
first meeting that takes place in a country with a
non-latin alphabet. TUG, CyrTUG, and the Confer-
ence Committee hope to see a variety of techniques,
knowledge and use of different languages presented
at the meeting. As usual, courses will be offered in
the days before or after the conference.
The Conference Committe foresees a cost in the

range $550–600 USD. This sum includes the regis-
tration fee, lodging (6 nights with 6 breakfasts, 6
lunches, 6 dinners), coffee/tea breaks, social events,
and transport between Sheremetsevo Airport and
Dubna. The payment can be made in the following
way: $100 of the payment will be transfered via a
bank before June 1st, and the rest will be payable
upon arrival at the Conference. We hope to get sup-
port from some funds sponsoring participants from
Eastern Europe and students.

Dubna: what is it?

Dubna was founded in 1956 when the Conven-
tion establishing the Joint Institute for Nuclear Re-
search was signed. The town is situated on the pic-
turesque banks of the Volga river and the Moscow
sea 120 km to the north of Moscow.
There is no harmful environmental impact of

the plants, this together with the large tracts of for-
est in the environs of Dubna, vast water area with
small islands is quite favorable for the sphere of
tourism and rest. The Volga embankment is one
of the prettiest parts of the town that was built in
the midst of a forest. It takes just a few minutes to
get to the forest from the shopping centre on foot.
Small as it is, Dubna is a real scientific metropo-

lis. The Joint Institute for Nuclear Research (JINR)
plays an important role as a coordinator of the in-
vestigations of the scientists from 18 JINR member-
state institutes. The wide international scientific
and technical cooperation is one of the fundamen-
tal concepts of the JINR. The town has great ex-
perience in holding international conferences, and
the exchange of delegations between countries in the
sphere of science, education and culture . . .
There will be more information about Russia,

the town of Dubna itself, and the Conference in the
TUGboat 16(4).

340 TUGboat, Volume 16 (1995), No. 3—Proceedings of the 1995 Annual Meeting

Information about these services can be obtained

from:

TEX Users Group

1850 Union Street, #1637

San Francisco, CA 94123, U.S.A.

Phone: +1 415 982-8449

Fax: +1 415 982-8559

Email: tug@tug.org

North America

Anagnostopoulos, Paul C.

Windfall Software,
433 Rutland Street, Carlisle, MA 01741;
(508) 371-2316; greek@windfall.com

We have been typesetting and composing high-quality
books and technical Publications since 1989. Most of the
books are produced with our own public-domain macro
package, ZzTEX, but we consult on all aspects of TEX and
book production. We can convert almost any electronic
manuscript to TEX. We also develop book and electronic
publishing software for DOS and Windows. I am a
computer analyst with a Computer Science degree.

Cowan, Dr. Ray F.

141 Del Medio Ave. #134, Mountain View, CA 94040;
(415) 949-4911; rfc@netcom.com

Twelve Years of TEX and Related Software Consulting:

Books, Documentation, Journals, and Newsletters

TEX & LATEX macropackages, graphics; PostScript language
applications; device drivers; fonts; systems.

Hoenig, Alan

17 Bay Avenue, Huntington, NY 11743; (516) 385-0736
TEX typesetting services including complete book
production; macro writing; individual and group
TEX instruction.

NAR Associates

817 Holly Drive E. Rt. 10, Annapolis, MD 21401;
(410) 757-5724

Extensive long term experience in TEX book publishing
with major publishers, working with authors or publishers
to turn electronic copy into attractive books. We offer
complete free lance production services, including design,
copy editing, art sizing and layout, typesetting and
repro production. We specialize in engineering, science,
computers, computer graphics, aviation and medicine.

TUGboat, Volume 16 (1995), No. 3 345

TEXConsulting &Production Services

Ogawa, Arthur

40453 Cherokee Oaks Drive,
Three Rivers, CA 93271-9743;
(209) 561-4585

Experienced in book production, macro packages,
programming, and consultation. Complete book production
from computer-readable copy to camera-ready copy.

Quixote Digital Typography, Don Hosek

555 Guilford, Claremont, CA 91711;
(909) 621-1291; Fax: (909) 625-1342;
dhosek@quixote.com

Complete line of TEX, LATEX, and METAFONT services
including custom LATEX style files, complete book
production from manuscript to camera-ready copy;
custom font and logo design; installation of customized
TEX environments; phone consulting service; database
applications and more. Call for a free estimate.

Richert, Norman

1614 Loch Lake Drive, El Lago, TX 77586;
(713) 326-2583

TEX macro consulting.

Type 2000

16 Madrona Avenue, Mill Valley, CA 94941;
(415) 388-8873; Fax: (415) 388-8865
pti@crl.com

$2.50 per page for 2000 DPI TEX and PostScript camera
ready output! We provide high quality and fast turnaround
to dozens of publishers, journals, authors and consultants
who use TEX. Computer Modern, PostScript and
METAFONT fonts available. We accept DVI and
PostScript files only and output on RC paper. $2.25 per
page for 100+ pages, $2.00 per page for 500+ pages; add
$.50 per page for PostScript.

Outside North America

TypoTEX Ltd.

Electronical Publishing, Battyány u. 14. Budapest,
Hungary H-1015; (036) 11152 337

Editing and typesetting technical journals and books with
TEX from manuscript to camera ready copy. Macro writing,
font designing, TEX consulting and teaching.

