
T1part: Printing TEX Documents with Partial Type 1 Fonts

Sergey Lesenko
Institute for High Energy Physics
Scientific Information Department
Protvino, Moscow Region, Russia, P.O. Box 35
Email: lesenko@desert.ihep.su

Abstract

A large fraction of the scientific papers available on the Internet have been created
by TEX and dvips. Most of these papers use Computer Modern fonts at 300 dpi,
and thus neither preview well with a typical screen resolution of less than 100 dpi,
nor take advantage of the higher resolution of current laser printers. This paper
presents T1part, a set of subroutines that decompose Type 1 PostScript fonts,
including only those characters needed in a particular document. This package,
in conjunction with a high-quality freely available set of Computer Modern fonts,
can provide for the distribution of compact PostScript files that preview legibly
and print beautifully. In addition, this package allows the printing of much more
complex documents using more fonts than have previously been available in dvips.
The T1part subroutines are modular and can be easily incorporated into other
drivers.

Introduction

Using Type 1 PostScript fonts in TEX documents has
been problematic for a number of reasons. Not least
among these problems is the requirement that ei-
ther the fonts be included in the document itself, or
that the fonts be available to all potential recipients
of the document. Including such fonts in the doc-
ument itself raises serious copyright issues, as well
as causing the resulting file to be large and slow to
print. In this paper, we present T1part, which al-
lows such fonts to be included in PostScript output
in a partial form. It is currently integrated with
Tomas Rokicki’s dvips program (Rokicki, 1994).

While commercial programs with this feature
have been available for a number of years, this is
the first freely available integrated implementation
of this functionality.

The idea for this paper was suggested by Basil
Malyshev’s paper (Malyshev, 1994). The program is
based on information available in the Adobe “Black
Book” (Adobe Systems, 1990). In addition, I found
work by Rajeev Karunakaran (1994), Chris B. Sears
(1991), and Al Stevens (1994) to be useful.

This paper discusses the interface, algorithms,
and finally the efficiency of using the T1part pro-
gram.

Interface

T1part, as a subroutine, needs to be told what fonts
and what characters in each font to include. The
fonts are indicated by a file name pointing at a PFB

or PFA Type 1 font. The set of characters to include
can be specified either by a list of glyph names or
by a set of character codes. In the latter case, the
character codes must be translated into glyph names
through the font’s encoding vector.

The resulting output of the program is a partial
font in PFA format. As integrated into dvips, the
program inserts this font directly into dvips’ output
stream.

Algorithm

Before we present how T1part works, we must de-
scribe the format of a Type 1 font. We will first
consider a font in PFB format; the PFA format is a
simple modification of this. A Type 1 font in PFB

format has the following structure and relevant key-
words in each part:

• ASCII part

– keyword /Encoding

• BINARY part (eexec encryption)

– keyword /lenIV

– keyword /Subrs

– keyword /CharStrings

• ASCII part

TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting 265

Sergey Lesenko

By “ASCII”, we mean the portion of the file that is
not eexec encrypted.

Since the font contains three different parts,
each part has its own parsing process. The minimum
set of keywords listed above allows us to quickly
parse the input at a high speed and with a simple
parser.

The parsing process is as follows. First, we
read the initial ASCII portion and search for the
Encoding keyword. After finding it we define its
type with the help of the next token. If the next
token is StandardEncoding, we will assume that
the Adobe Standard Encoding is the default font
encoding vector.

If a reencoding has been specified for this font
in the dvips psfonts.map file, then we use that
reencoding to translate the character codes to glyph
names. Otherwise, we try to parse an encoding from
the input stream by searching for index and glyph
name pairs. If we do not find such an encoding, we
search for and parse an AFM file associated with the
font.

Next, we parse the BINARY portion of the font.
We start by performing the eexec decryption and
loading the result directly and entirely into memory.
We then scan the decrypted section for the keywords
/lenIV, /Subrs, and /CharStrings. Each of the
sections separated by these keywords has a similar
structure.

When initially parsing the Subrs section, we
simply identify what subroutines exist by number
and keep track of the number of tokens in each sub-
routine definition. We do not initially send out any
subroutines.

When we parse the CharStrings section, we
initially identify what subroutines are associated
with each character. We parse the subroutines
for each used character, recursively diving into the
Subrs entries as necessary, marking which subrou-
tines are actually used. If there are multiple Subrs
sections, as is the case with some hybrid fonts, we
consider all such sections.

If a required character is a composite character,
then the component characters will be marked and
processed as above.

For efficiency, all selected subroutines are de-
crypted only once; a flag associated with each sub-
routine is used to indicate whether that subroutine
has already been decrypted.

After finishing the scanning phases, the size of
the Subrs and CharStrings arrays must change to
reflect the deleted subroutines. The new values are:

• Subrs size — largest selected subroutine plus
one

• CharStrings size — number of selected char-
strings

We retain the indices of the subroutines for simplic-
ity (so we do not need to rescan and modify each
subroutine) and to easily guarantee that each sub-
routine only refers to those with a lower index (an
Adobe requirement that prevents recursive subrou-
tines).

Finally, the selected portions of the scanned
memory are eexec encrypted and directed to the out-
put in hexadecimal (PFA) form.

To finish up the font, the final ASCII portion is
sent to the output without changes.

If the input font is in PFA format, the keywords
that define the beginning of the hexadecimal eexec
section are currentfile eexec; a line of all zeros
marks the end of the section.

Results

T1part was tested by integrating it into dvips and
running it over a number of files using the BaKoMa
collection of Computer Modern fonts, as well as the
Acrobat Reader selection of Adobe fonts. The re-
sults of these tests are:

• Size of output file. The total size of the resulting
PostScript file when using T1part and PS fonts
was compared with that when using bitmap PK

fonts under both 300 dpi and 600 dpi. Usually,
the bitmapped font output was slightly smaller
at 300 dpi, but slightly larger at 600 dpi. Thus,
using partial Type 1 fonts is practical from the
perspective of final file size.

• Reduction in PS fonts. In our tests, we found
that usually less than half of the characters
from body text fonts were used, and a very
small fraction of special fonts were used. On
average, the size of the partial PostScript font
created by T1part was less than 30% of the size
of the original font.

The figures are given in detail in tables 1–3.
The output of the program has been tested with

GhostScript (Deutsch, 1993), and the time and mem-
ory required to view documents created with partial
fonts was less than those with the whole fonts.

It is clear that the popular paradigm of TEX —
dvips — GhostScript will be more efficient when us-
ing the integrated T1part functionality.

Acknowledgements

I would like to thank Tomas Rokicki for his helpful
discussion and suggestions.

266 TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting

T1part: Printing TEX Documents with Partial Type 1 Fonts

References

Adobe Systems. Adobe Type 1 Font Format, version
1.1. Addison Wesley, 1990.

L. P. Deutsch. “Aladdin Ghostscript version 2.6.1”.
Electronic distribution from ftp.cs.wisc.edu

via CTAN, 1993.

R. Karunakaran. “PFB2PFA program”. Electronic
distribution via comp.sources.postscript,
volume 03 issue 51, 1994.

B. K. Malyshev. “Problems of the conversion of
Metafont fonts to PostScript Type 1”. In Pro-
ceedings of TUG94, edited by M. Goossens,
Santa Barbara, CA. 1994.

T. Rokicki. “Dvips: A TEX Driver”. Electron-
ically distributed from labrea.stanford.edu

via CTAN with dvips, version 5.58, 1994.

C. B. Sears. “CHARS program”. Electronic distri-
bution via comp.sources.misc volume 19 issue
94, 1991.

A. Stevens. “Quincy: a C interpreter”. ‘Dr. Dobb’s’
journal (09), 1994. Electronic distribution as
ftp://ftp.mv.com/pub/ddj/1994/1994.09/

qnc41.zip.

T
a
b
le

1
:

D
v
ip

s’
o
u
tp

u
t*

w
it

h
va

ri
o
u
s

m
o
d
es

o
f

u
se

d
fo

n
ts

(d
v
ip

s.
d
v
i,

v
er

si
o
n

5
.5

8
,

u
se

d
a
s

in
p
u
t)

.

F
o
n
t

ty
p

e
P

S
T

y
p

e
1

P
K

M
o
d
e

o
f

fo
n
t

em
b

ed
d
in

g
F

u
ll

P
a
rt

ia
l

P
a
rt

ia
l

O
u
tp

u
t

re
so

lu
ti

o
n

(d
p
i)

3
0
0

6
0
0

1
0
1
6

1
2
0
0

1
8
0
0

O
u
tp

u
t

si
ze

(b
y
te

s)
7
6
2

9
8
1

3
9
8

3
5
8

4
2
4

5
2
9

1
0
1
2

1
9
5

3
0
8
2

2
1
5

4
4
8
7

1
6
8

1
4

9
3
3

0
9
5

O
u
tp

u
t

w
it

h
co

m
p
re

ss
ed

b
it

m
a
p

fo
n
ts

–
–

2
7
4

2
0
5

3
3
5

9
8
1

4
1
8

8
9
5

4
8
0

0
8
3

6
2
2

4
0
5

(b
y
te

s)

D
is

k
sp

ac
e

re
q
u
ir

ed
fo

r
fo

n
ts
∗∗

2
7
7

5
7
9

2
7
7

5
7
9

1
0
4

0
3
6

2
5
1

7
5
6

4
7
9

0
8
0

5
8
8

6
9
6

9
4
7

6
8
4

(b
y
te

s)

*
D

v
ip

s’
o
u
tp

u
t

si
ze

w
it

h
o
u
t

em
b

ed
d
in

g
o
f

fo
n
ts

—
2
2
8

9
1
8

b
y
te

s

*
*

P
F

B
fo

rm
a
t

is
u
se

d
fo

r
P

S
T

y
p

e
1

fo
n
ts

TUGboat, Volume 16 (1995), No. 3 — Proceedings of the 1995 Annual Meeting 267

S
er

ge
y

L
es

en
k
o

Table 2: Efficiency of partial font downloading for each used font (dvips.dvi used as input)

Font name cmbx10 cmr10 cmr8 cmsl10 cmti10 cmtt10 cminch cmmi10 cmsy10 cmsy7 logo10 Total

Font version ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗∗

Percentage characters used 55 75 14 27 28 72 19 6 7 7 99 32

Partial font (bytes) 28 757 40 675 7 314 14 903 18 382 37 908 4 438 3 628 3 862 3 929 5 301 169 097

Full font (bytes) 52 768 53 960 53 360 54 870 65 948 52 915 23 211 63 752 52 613 54 951 5 372 533 720

Table 3: Results of using DC instead of CM fonts

Font name dcbx10 dcr10 dcr8 dcsl10 dcti10 dctt10 cminch cmmi10 cmsy10 cmsy7 logo10 Total

Font version ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗∗ ∗∗ ∗ ∗ ∗ ∗∗

Percentage characters used 34 44 9 18 17 44 19 6 7 7 99 23

Partial font (bytes) 25 766 34 039 6 732 14 555 15 827 36 450 4 438 3 628 3 862 3 929 5 301 154 527

Full font (bytes) 75 311 77 211 76 871 80 687 92 105 83 261 23 211 63 752 52 613 54 951 5 372 685 345

* BaKoMa/CM Fonts Collection (1.3, (Level-C), January 95)

** Paradissa Fonts Collection (1.0-prerelease, 1993)

*** BaKoMa/DC Fonts Collection (1.0, (Level-B), 1994)

2
6
8

T
U

G
b

o
a
t,

V
o
lu

m
e

1
6

(1
9
9
5
),

N
o
.

3
—

P
ro

ce
ed

in
g
s

o
f

th
e

1
9
9
5

A
n
n
u
a
l

M
ee

ti
n
g

