
416 TUGboat, Volume 16 (1995), No. 4

Macros

New Perspectives on TEX Macros

Jonathan Fine

Abstract

Using the TEX macro language as an example, this
article indicates how SGML can be used the specify
the source file syntax for literate programming.
(This is part of the philosophy behind the author’s
SIMSIM project, which will allow TEX to typeset
SGML documents.) Some of the advantages are
shown. The problems of implementation are not
discussed.

Introduction

This article is about TEX macros, SGML and
literate programming. It also explains some of the
philosophy behind the author’s SIMSIM package,
which will provide a basis for the formatting by
TEX of SGML documents. The author hopes for a
first release to selected test sites by the end of 1995.

Knuth implemented literate programming by
defining the WEB file format, and producing two aux-
iliary programs, WEAVE and TANGLE, which transform
a WEB file into TEX and Pascal files respectively.
This was done in the early 1980s. Today it might
be better to use an SGML document type definition
in the place of the WEB file format. This would
allow existing and future SGML tools to process the
program source code.

TANGLE can also reorder the code, so that the
programmer can present the code the program in
an order which suits the programmer (and reader)
rather than the compiler. This is considered by its
practitioners to be an essential feature of literate
programming. (The author thanks the referee for
pointing this out.)

Consider now TEX macros. Here is a macro
definition, written in an unspecified SGML DTD.

<mac n=echo> <par n=Token> writes the

|Token| to the console.

message { string Token }

</mac>

Its meaning should be clear. The intention is to
define a macro, whose name is echo. It takes
a single parameter, which the author is calling a
Token. The replacement text is given by the lines in
the <mac> element that begin with a leading space.
Notice that there are no backslashes. Instead, the
character string message is standing for the control
sequence whose name is message (and which is
usually referred to by \message). As usual, { and
} stand for characters with category code 1 and 2
respectively. Finally, Token stands for #1, as Token
was the first parameter to be declared.

Compare this definition to the text

\def\echo#1{\message{\string#1}}

that would be used in an ordinary macro file to
express the same meaning.

Here is another example.

<mac n=gobble> <discard> takes a

token (or balanced list) and

throws it away.

</mac>

which has empty replacement text. Here

\def\gobble#1{}

is the ordinary form for this definition.
The SGML form requires more effort to write,

but that is because it is more expressive. For
complicated macros, it is a great help, to have
named rather than numbered macro parameters.

TUGboat, Volume 16 (1995), No. 4 417

More examples

The benefits of the SGML approach grow, the larger
and more complicated the macros are. Here is an
example. (The closing </mac> is to be understood.
The SGML omitted end tags feature will supply it
if the next tag is also a <mac>, or any other element
that cannot occur within a <mac> element. In the
same way, the short reference feature can recognise
a leading blank and within the <mac> element,
translate it into <code-line>. Similarly, within
<code-line> the carriage return can be translated
into the end tag </code-line>.)

<mac n=show> <par n=Token> is like

the \show primitive of &TeX except

that it is not like an error message.

immediate write 16

{

> ~~~ string Token =

meaning Token

}

The ~ stands for an ordinary space character.
Dirty tricks are required to get a sequence of such
characters into the replacement text of a macro.
TEX runs more efficiently if numeric constants
such as 16 are replaced by tokens that have been
\chardef’d to the appropriate value. It is much
easier to write (and read) 16 than it is the control
sequence \sixt@@n that is used in the source file
for plain and LATEX. The characters > and = stand
for themselves, as ‘other’ characters.

The replacement text of a TEX macro is a
sequence of tokens. The syntax and semantics of the
source code file format should allow the programmer
to specify, perhaps implicitly, the sequence of tokens
desired. The analog of TANGLE should produce a
file from which TEX can produce (at high speed)
the specified macro definition. The technical means
to accomplish this are not discussed in this article.
Suffice to say that everything described here is
known to be possible.

From SGML tags to TEX actions

As an SGML document is parsed, information
becomes available to the text processing application.
Typesetting (or any other processing) of an SGML

document consists of linking actions to the start
and end tags, and to other events. Suppose the
document to be processed has an element called
<tag-name>, with an attribute called text. The
code below

1. <gi n=tag-name> This tag has a text

2. attribute, whose value will be typeset

3. in a box.

4. begingroup

5. // some code is omitted

6. let end-element endgroup

7. hbox { (tag-name*text) }

specifies processing for such an element.
Line 4 tells us that once the tag has been

parsed, a group is begun. Line 5 is a comment.
Line 6 says that \endgoup is the action to be
performed when the element comes to an end. Note
that because SGML allows hyphens, periods and
digits to occur in a name, it is convenient to allow
the same for control sequences. Incidentally, it is
much easier to type and to read a hyphen, than it
is an underscore.

It is line 7 that sets the value of the text
attribute in a horizontal box. The sequence of
characters

(tag-name*text)

stands for a single token, whose expansion will
be the current value of the text attribute of the
<tag-name> element. Thus, the text

<tag-name text="This and that">

will cause the SGML parser to define the token
referred to by

(tag-name*text)

to be a macro whose expansion is the sequence

This and that

of letters. Just quite what that token is, should be
of no concern to the programmer. Indeed, it should
not be possible for the programmer to access this
token, except throught the (tag*att) construct.

In the same way

<ent n=TeX> typesets the &TeX logo.

’T kern <dim v=-.1667em>

lower <dim v=.5ex> hbox { ’E }

kern <dim v=-.125em> ’X

specifies the action to be linked to the SGML entity
&TeX. By way of explanation, the right quote ’ is
an escape character. Thus, ’T stands for a letter
T with (for technical reasons) category code ‘other’.
The <dim> element in the macro definition should
be translated, by the TANGLE equivalent, to an
appropriate quantity. So long as the semantics are
well defined, the translation can be made.

Conclusion

In the humanities, it is becoming more widely ac-
cepted that structured documents should be stored

418 TUGboat, Volume 16 (1995), No. 4

with a rigorous syntax, and that SGML provides
a means of specifying that syntax. In addition,
a growing collection of SGML software tools are
becoming available.

Literate programming (which if not in the
humanities is at least an art) also requires a rigorous
document syntax. There is a strong case for using
SGML in this context also. For this to succeed,
there must be available suitable typesetting tools,
that will accept SGML documents. The author’s
SIMSIM project is intended to provide such.

� Jonathan Fine
203 Coldhams Lane
Cambridge CB1 3HY
UK
Email: J.Fine@pmms.cam.ac.uk

