
Graphics

A METAFONT–EPS interface

Bogus law Jackowski

Do not explain too much.

W. Strunk Jr. and E. B. White,

The Elements of Style

Introduction

TEX is not a lion, TEX is an octopus. . .This sounds
like heresy, but it is my deepest conviction that one
of the most wonderful features of the TEX/META-
FONT system is its openness, i.e., the capability
of collaboration with other systems. Hence the
association with an octopus:

The paper illustrates this statement by pre-
senting a brief description of an interface for META-
FONT-to-PostScript, MFTOEPS. The kernel of the
package is a METAFONT program (MFTOEPS.MF)
which provides necessary definitions for translating
the description of graphic objects from METAFONT

to PostScript. The PostScript code is written to
a log file. It can be extracted from the log file
either manually or with the help of additional util-
ities. There are two programs in the package for
performing this task: an AWK program and a TEX
program, the latter a bit slower but more universal.

The PostScript files (specifically, Encapsulated
PostScript files) produced by MFTOEPS are read-
able by some popular graphics programs, namely, by
Adobe Illustrator (Macintosh and PC compatibles),
CorelDraw! (PC compatibles), and Fontographer
(Macintosh and PC compatibles). In other words,

388 TUGboat, Volume 16 (1995), No. 4

graphic objects programmed using METAFONT can
be further processed by these programs.

It should be stressed that it not the idea of
employing METAFONT to produce PostScript code
that is important here. A much better tool for
this purpose is J.D. Hobby’s METAPOST. It is
possibile to further process the objects generated
by MFTOEPS that makes this package worthy of
mention.

Overview of the MFTOEPS package

The MFTOEPS.MF program contains the definitions
of the following macros which are meant to be used
for generating EPS files:

eps_mode_setup fix_line_width

write_preamble fix_line_join

write_postamble fix_line_cap

find_BB fix_miter_limit

set_BB fix_dash

fill_C fix_fill_cmyk

draw_C fix_draw_cmyk

clip_C

Obviously, not all possibilities of PostScript are
exploited, but the main idea was to provide a simple
tool for producing output “eatable” by programs
which are not PostScript interpreters. Therefore
only a small subset of the PostScript language
can be taken into account. Nevertheless, these 15
commands are enough to produce an innumerable
variety of graphic objects.

METAFONT programs using MFTOEPS have
the following structure:

1. input mftoeps;

2. eps_mode_setup; % instead of mode_setup

3. 〈METAFONT code 〉
4. find_BB 〈 list of paths 〉;
5. write_preamble jobname;

6. 〈METAFONT code containing fill_C, draw_C,
clip_C, etc. 〉

7. write_postamble;
8. end.

The structure seems straightforward, except for
some notational details which will be explained in a
moment. Perhaps only the fourth line needs a few
remarks. A properly formed EPS file should contain
the coordinates of the corners of the bounding box
in a comment line at the beginning of the file.
Macro write_preamble needs to know the respec-
tive coordinates, as it is responsible for generating
the header of an EPS file. Macro find_BB simply
prepares the data for write_preamble.

As you can see, using the plain beginchar

and endchar commands is not essential, although
usually it is convenient to make use of them.

Synopsis of the interface of the MFTOEPS
package

Conventions: In the following I shall use the words
number, pair, string, and path as abbreviations for
numeric expression, pair expression, string expres-
sion, and path expression, respectively. The angle
brackets, 〈 and 〉, used for marking parameters
of macros, are “meta-characters,” i.e., they do not
belong to the METAFONT code.

Command:

eps_mode_setup

Usage:

eps_mode_setup 〈 an optional number (0 or 1) 〉;

Remarks:

This command should be used instead of the usual
mode_setup command. The forms eps_mode_setup
and eps_mode_setup 1 are equivalent. One of them
(preferably the former) should be used for normal
processing, i.e., for generating EPS files. Invoking
eps_mode_setup 0 is meant primarily for testing
purposes and is supposed to be used by experienced
programmers who know what they are doing. There
is a string variable, extra_eps_setup, similar to
extra_mode_setup; at the end of eps_mode_setup
the command scantokens extra_eps_setup is in-
voked, enabling user-oriented adjustments, e.g.,
changing the default resolution.

Command:

write_preamble

Usage:

write_preamble 〈 string 〉;

Remarks:

This command initializes the process of writing
the PostScript code. The string expression is
the name (without extension) of the resulting EPS

file; the extension is always EPS. METAFONT is
switched to batchmode in order to avoid slowing
down the process by writing mess(ages) to the
terminal. Inspection of the log file is thus highly
recommended.

Command:

write_postamble

Usage:

write_postamble;

TUGboat, Volume 16 (1995), No. 4 389

Remarks:

This command ends the writing of the PS code,
switches METAFONT back to errorstopmode, and
performs necessary “last minute” actions (see be-
low).

Commands:

set_BB find_BB reset_BB

Usage:

set_BB 〈 four numbers or two pairs
separated by commas 〉;

find_BB 〈 a list of paths separated by commas 〉;
reset_BB;

Remarks:

The commands set_BB or find_BB should be in-
voked prior to invoking write_preamble. set_BB

sets the coordinates of the corners of the bounding
box of a graphic object; it is useful when the bound-
ing box of a graphic object is known in advance or
if it is required to force an artificial bounding box.
find_BB computes the respective bounding box for a
list of paths; if several find_BB statements are used,
the common bounding box is calculated for all paths
that appear in the arguments. The result is stored in
the variables xl_crd, yl_crd, xh_crd, and yh_crd.
There are two functions, llxy and urxy, return-
ing pairs (xl_crd,yl_crd) and (xh_crd,yh_crd),
respectively. The last command, reset_BB, makes
xl_crd, yl_crd, xh_crd, and yh_crd undefined
(the initial situation); reset_BB is performed by
the write_postamble macro, which is convenient
in the case of generating several EPS files in a single
METAFONT run.

Commands:

fill_C draw_C

Usage:

fill_C 〈 a list of paths separated by commas 〉;
draw_C 〈 a list of paths separated by commas 〉;

Remarks:

These commands are to be used instead of the
usual METAFONT fill and draw ones. They
cause a list of paths followed by the PostScript
operation eofill (fill_C) or stroke (draw_C) to
be translated to a PostScript code. The list of paths
constitutes a single curve in the sense of PostScript.

Command:

clip_C

Usage:

clip_C 〈 a list of paths separated by commas,
possibly empty 〉;

Remarks:

The macro clip_C with a non-empty parameter
works similarly to the fill_C command, except that
the eoclip operator is issued instead of eofill.
This causes an appropriate change to the current
clipping area. According to PostScript’s principles,
the resulting area is a set product of the current
clipping area and the area specified in the argument
of the eoclip command. The empty parameter
marks the end of the scope of the most recent clip_C
command with a non-empty parameter. In other
words, nested clip_C commands form a “stack”
structure. If needed, the appropriate number of
parameterless clip_C commands is issued by the
write_postamble macro, thus the user does not
need to worry about it. Warning: files produced
using clip_C are interpreted properly by Adobe
Illustrator (provided path directions are defined
properly) but not by CorelDraw! (ver. 3.0).

Commands:

fix_line_width fix_line_join

fix_line_cap fix_miter_limit

fix_dash

Usage:

fix_line_width 〈 a non-negative number
(dimension) 〉;

fix_line_join 〈 a number (0, 1 or 2) 〉;
fix_line_cap 〈 a number (0, 1 or 2) 〉;
fix_miter_limit 〈 a number ≥ 1 〉;
fix_dash (〈 a list of numbers (dimensions)

separated by commas,
possibly empty 〉)
〈 a number (dimension) 〉

Remarks:

These command are to be used in connection with
the draw_C command. fix_line_width fixes the
thickness of the outline. The other four commands
correspond to PostScript operations setlinejoin,
setlinecap, setmiterlimit, and setdash (see
the PostScript Language Reference Manual for
details). All commands should be used after
write_preamble, as write_preamble sets the de-
fault thickness (0.4pt), default line join (0), default
line cap (0), default miter limit (10), and a solid
line as a default for stroking (fix_dash () 0).

Commands:

fix_fill_cmyk fix_draw_cmyk

Usage:

fix_fill_cmyk 〈 four numbers separated
by commas 〉;

fix_draw_cmyk 〈 four numbers separated
by commas 〉;

390 TUGboat, Volume 16 (1995), No. 4

Remarks:

These commands define the colours of the in-
teriors of graphic objects (fix_fill_cmyk) and
colours of outlines (fix_draw_cmyk) using the cyan-
magenta-yellow-black model (the basic model of the
MFTOEPS package). They should be used after
write_preamble (because write_preamble defines
the black colour as a default for both macros) and
prior to invoking the corresponding fill_C and
draw_C commands. There are also (just in case)
macros fix_fill_rgb and fix_draw_rgb using red-
green-blue model; the argument to both of these
macros is a triple of numbers. (The user can control
the process of conversion from RGB to CMYK by
the redefinition of macros under_color_removal

and black_generation.) The numbers forming the
arguments of the macros are supposed to belong to
the interval [0 . . .:1].

Besides the fifteen basic macros there are two
functions and two control variables that may be of
some interest for a virtual user of the MFTOEPS

package:

Additional functions:

pos_turn neg_turn

Usage:

pos_turn (〈 path 〉)
neg_turn (〈 path 〉)

Remarks:

Each function returns the path passed as the
argument, except that the orientation of the
path is changed, if necessary: pos_turn returns
paths oriented counter-clockwise, neg_turn— ori-
ented clockwise. This may be useful for creating
pictures which are to be processed further by Adobe
Illustrator, because this program is sensitive to the
orientation of paths.

Control variable:

yeseps

Remarks:

No EPS file will be generated unless the variable
yeseps is assigned a definite value. It is advis-
able to set this variable in a command line (see
section “Examples”).

Control variable:

testing

Remarks:

If the variable testing is assigned a definite value,
the whole PostScript code is flushed to the termi-
nal, thus slowing down significantly the process of
generating an EPS file (cf. the description of the
write_preamble command).

Examples

All sample programs in this section are presented
in extenso. The reader is not supposed to study the
code thoroughly. Nevertheless, I prefer to leave the
reader to decide which parts of the code are to be
skipped.

Let us start with a trivial example of a “pure”
METAFONT program:

1. beginchar(48, % ASCII code

2. 2cm#, % width

3. 1cm#, % height

4. 0cm# % depth

5.);

6. fill unitsquare xscaled w yscaled h;

7. endchar;
8. end.

The program, obviously, generates a font
containing one character: a darkened rectangle
2cm×1cm. In order to generate an EPS file con-
taining the same figure, a few modifications are
necessary:

1. input mftoeps;

2. eps_mode_setup;
3. beginchar(48, % just something

4. 2cm#, % width

5. 1cm#, % height

6. 0cm# % depth

7.);

8. set_BB 0,-d,w,h; % coordinates

9. % of the corners

10. % of the bounding box

11. write_preamble "rectan";

12. fill_C unitsquare xscaled w yscaled h;

13. write_postamble;

14. endchar;
15. end.

Four new commands have appeared: eps_mode_
setup, set_BB, write_preamble and write_post-
amble; moreover, fill has been replaced by fill_C.
This is a usual routine for converting an “ordinary”
METAFONT program to a form suitable for generat-
ing EPS files. Obviously, draw should be replaced by
draw_C, and filldraw— with the two operations
fill_C and draw_C. In the latter case the order of
the operations fill_C and draw_C is significant if
the drawing and filling colours are different.

Having made this change you can easily gener-
ate the respective EPS file, provided you are a DOS

user. Assume that the modified program is stored
in the file RECTAN.MF. In the package MFTOEPS

you will find a DOS batch, M2E.BAT (subdirectory

TUGboat, Volume 16 (1995), No. 4 391

PROGS), which — perhaps after slight adjustments —
can be used for this task. It is enough to write

m2e rectan

(no extension, please) from the command line in
order to obtain the required RECTAN.EPS file. The
batch makes use of AWK for extracting the Post-
Script code from the log file. There is also an
alternative batch, M2E-ALT.BAT, that employs TEX
for this purpose. In both batches METAFONT is
called in the following way:

mf386 &plain \yeseps:=1; input %1

Observe the assignment yeseps:=1. In fact, as-
signing a definite (arbitrary) value to the yeseps

variable triggers the action of generating an EPS

file.
I hope that making scripts for other operating

systems is not found to be extremely difficult.
I would be very much obliged if others could
contribute such scripts to the package.

Let us consider now a more complex example.
Suppose that the file POLYGON.MF contains the
following definitions:

1. vardef regular_polygon(expr n) =

2. % n is the number of vertices;

3. % the diameter of the circumscribed

4. % circle is equal to 1, its centre

4. % is in the origin

5. (up % first vertex

6. for i:=1 upto n-1:

7. -- % next vertices:

9. (up rotated (i*(360/n)))

9. endfor

10. -- cycle) scaled .5

11. enddef;
12. vardef flex_polygon(expr n,a,b) =

13. % n is the number of vertices,

14. % a, b are the angles (at vertices)

15. % between a tangent to a ‘‘flex side’’

16. % and the corresponding secant

17. save zz;

18. pair zz[]; % array of vertices

19. for i:=0 upto n-1:

20. zz[i]:=up rotated (i*(360/n));

21. endfor

22. (zz[0] {(zz[1]-zz[0]) rotated a}

23. for i:=1 upto n-1:

24. .. {(zz[i]-zz[i-1]) rotated b}

25. zz[i]

26. {(zz[(i+1) mod n]-zz[i]) rotated a}

27. endfor

28. .. {(zz[0]-zz[n-1]) rotated b} cycle)

29. scaled .5

30. enddef;

The first function, regular_polygon, returns
a closed path that is — as the name suggests — a
regular polygon with a given number of vertices.
The second function, flex_polygon, returns a
curve that is in a sense a “generalized polygon” —
the following examples show why this epithet is
appropriate:

1 2 3

4 5

The first picture was generated by the following
program:

1. input polygons;

2. input mftoeps;

3. eps_mode_setup;
4. beginchar(0,16mm#,16mm#,0);
5. path P[]; % ‘‘room’’ for two polygons

6. % preparing:

7. P[1]:=regular_polygon(7)

8. scaled w shifted (.5w,.5h);

9. P[2]:=flex_polygon(7,0,0)

10. scaled w shifted (.5w,.5h);

11. % exporting:

12. find_BB P[1], P[2];

13. write_preamble jobname;

14. % 25 percent of black for filling:

15. fix_fill_cmyk 0,0,0,.25;

16. fix_line_width 1pt;

17. fill_C P1; draw_C P2;

18. write_postamble;

19. endchar;
20. end.

The remaining four figures can be obtained by
simple modifications of line 9 of the program:

P[2]:=flex_polygon(7,-180/7,180/7) % 2

P[2]:=flex_polygon(7,45,45) % 3

P[2]:=flex_polygon(7,-45,45) % 4

P[2]:=flex_polygon(7,45,-45) % 5

These fairly trivial objects can be used to
achieve some rather non-trivial effects (METAFONT
sources are included in the MFTOEPS package):

392 TUGboat, Volume 16 (1995), No. 4

So far the examples have contained fill_C

and draw_C commands with arguments being single
paths. PostScript, in contrast to METAFONT,
accepts groups of paths as a single curve. Therefore
the fill_C and draw_C commands were defined to
accept the lists of METAFONT paths as arguments.
In the resulting PostScript code they constitute
a single object. The main reason is that such
objects may contain transparent holes. This enables
achieving such effects as:

It is a transparent hole.
It is a transparent hole.
It is a transparent hole.
It is a transparent hole.
It is a transparent hole.

The graphic object was generated by the fol-
lowing simple program:

1. input mftoeps; eps_mode_setup;

2. w#=4cm#; h#=2cm#; define_pixels(w,h);

3. set_BB origin, (w,h);

4. write_preamble jobname;

5. % 25 percent of black for filling:

6. fix_fill_cmyk 0,0,0,.25;

7. fix_line_width 1pt;

8. for oper:="draw_C", "fill_C":

9. scantokens oper

10. % outer edge:

11. fullcircle

12. xscaled w yscaled h

13. shifted (.5w,.5h),

14. % inner edge:

15. reverse fullcircle

16. xscaled .7w yscaled .7h

17. shifted (.5w,.5h);

18. endfor

19. write_postamble;
20. end.

One innocent trick was used in order to shorten
the code: the loop in the combination with the
scantokens command (lines 8 and 9). It is
advisable to have paths that form transparent
holes appropriately oriented — therefore the opera-
tor reverse is used in line 15. A TEX code for
obtaining the above figure is obvious: it is enough

to put the picture on top of a text box, using, for
example, the \llap command.

Removing the command fix_fill_cmyk (line 6)
and replacing the command fill_C (line 8) by
clip_C gives the opportunity to obtain yet another
effect:

It is a clipped text.
It is a clipped text.
It is a clipped text.
It is a clipped text.

In this case, however, the TEX code is somewhat
complicated, since macros for inclusion of an EPS file
(I use Tomas Rokicki’s EPSF.TEX) embed the code
of the EPS file into a PostScript save–restore
group. A clipping path is subjected to such a
grouping, contrary to the state of the currently
painted picture. Therefore some \special hackery
is needed (the respective TEX source is included
with samples in the MFTOEPS package).

The distinction between single and multiple
paths in the context of drawing outlines (draw_C)
is meaningless.

The final example shows how to use clipping to
generate a geometric figure known as “Sierpiński’s
carpet”. In order to construct the “carpet” you
start with a square with a central hole; this hole
is a square with each edge one-third the length of
the edge of the original square. Now you divide
the original figure into nine squares and replace all
filled small squares with a copy of the square with
the central hole, scaled down to fit the area of the
small square. Then you apply the same procedure
to the smaller squares, an so on, ad infinitum.

Here you have the program accomplishing this
task (infinity “equals” three):

1. input mftoeps; eps_mode_setup;

2. % ---

3. def ^ = ** enddef; % syntactic sugar

4. primarydef i // n = % ditto

5. (if n=0: 0 else: i/n fi)

6. % why not to divide by 0?

7. enddef;
8. def shifted_accordingly(expr i,j,n,D)=

9. shifted ((i//n)[0,w-D],(j//n)[0,w-D])

10. enddef;
11. % ---

12. w#=16mm#; h#=16mm#; define_pixels(w,h);

13. for N:=1,2,3: % 4, 5, 6, ..., infinity

14. set_BB 0,0,w,h;

15. write_preamble jobname & decimal(N);

16. D:=3w;

17. for n:=

TUGboat, Volume 16 (1995), No. 4 393

18. 0 for q:=1 upto N-1: , 3^q-1 endfor:

19. % i.e.:

20. % ‘‘for n:=0, 3^1-1, ..., 3^(N-1)-1:’’

21. path p[], q[]; D:=1/3D; k:=-1;

22. for i:=0 upto n: for j:=0 upto n:

23. k:=k+1;

24. p[k]=unitsquare scaled D

25. shifted_accordingly(i,j,n,D);

26. q[k]=reverse unitsquare scaled 1/3D

27. shifted (1/3D,1/3D)

28. shifted_accordingly(i,j,n,D);

29. endfor; endfor;

30. clip_C p0, q0

31. for i:=1 upto k:

32. , p[i], q[i]

33. endfor;

34. endfor;

35. fill_C unitsquare scaled w;

36. write_postamble;

37. endfor;
38. % ---

37. end.

The program is lengthy mainly because of
technical details that are not especially interesting;
however, there are three points worthy of comment.
First, observe that a couple of EPS files are produced
in one METAFONT run (the loop in line 13 is relevant
here); second, loops are used to form arguments to
the loop in line 18 and to the clip_C command in
line 30 — it is a very useful feature of METAFONT
that loops behave exactly like macros; and third,
observe that the operation fill_C is used only once.
The resulting EPS files are shown in the following
picture:

You may argue that such a figure can be
generated easily in a simpler way, without clipping.
True, yet I like this approach — can you imagine a
straightforward method for generating a “circular
carpet” without clipping? Moreover, one can use

clipping in more complicated situations, not only
for filling. But, on the other hand, finding the
precise bounding box for a clipped figure becomes
a non-trivial task. You must remember, moreover,

that clipping consumes a lot of the resources of a
PostScript interpreter, thus it should be used with
great care.

Final remarks

The MFTOEPS package was not devised as a com-
petitor to such giants as Adobe Illustrator or
CorelDraw!. On the contrary, it can be regarded
as their little ally. Interactive programs don’t cope
particularly well with tasks that bear logical struc-
ture. In such cases METAFONT— with its wealth
of programmable path operations, absent “by defi-
nition” from the menus of interactive programs— is
certainly a preferable tool.

One of the advantages of the applied approach
is its portability — the only software needed is
METAFONT and either AWK or TEX. Another
advantage is its flexibility. It is not particularly
difficult to modify the MFTOEPS package to pro-
duce another PostScript dialect, if for some reason
the dialect of Adobe Illustrator is inconvenient.
MFTOEPS can also be modified to produce out-
put in other lingos, e.g., HP-GL (Hewlett-Packard
Graphic Language).

There is still a lot of work to be done. Of course,
every program can be improved, but perhaps more
important would be preparing a library of META-
FONT routines useful for creating objects with a
vector representation.

For example, it would be convenient to have a
procedure which, for a given set of graphic objects
finds a single curve (outline) filling of which would
give the same optical result. In other words, such
a procedure would perform the task of finding
an outline for a set union of graphic objects.
Such a procedure is known as removing overlaps.
The example of the “circular carpet” (see above)
illustrates a similar problem: to find an outline for
a set intersection of a group of graphic objects.

If the carpet is generated using clipping, the
PostScript file contains, in fact, the following ele-
ments:

They are partially invisible because of clipping,
still they are there. In some contexts, e.g., if the
figure is to be cut on a cutting plotter, it is crucial
to replace such a multiplicity of objects by a single
object:

394 TUGboat, Volume 16 (1995), No. 4

Note that routines for finding the outline of a
set union or a set intersection of a group of graphic
objects are not MFTOEPS-oriented. A package
providing tools for programming such operations,
ROEX, is already available. Perhaps it is most
useful in the context of exporting to EPS, however,
it can be used with plain METAFONT, and — I
guess — with METAPOST as well.

Universal routines of this kind are important
from the point of view of the openness of the
TEX/METAFONT system, and its openness — as was
already mentioned — is one of the most powerful
features of the system.

Note also that the openness of a system con-
cerns both output and input. MFTOEPS accom-
plishes the first part of the conjunction, but one
can think also about an export from PostScript
to METAFONT. A package accomplishing this task,
PS_CxONV, has been recently released as a public
domain contribution. Its kernel is a converter,
written in PostScript and using the Ghostscript

interpreter of PostScript, which translates a gen-
eral PostScript code into a canonical EPS form
(there exists a similar program in the standard
Ghostscript distribution, namely, PS2AI, written
by Jason Olszewski, but it does not fit this par-
ticular problem); the result of such a conversion
can be translated to a METAFONT program using
the AWK-based utility, EPSTOMF, also recently re-
leased into the public domain. This would complete
a link between METAFONT and PostScript. I do
believe that providing such links is one of the most
efficient routes towards a limitless development of
the TEX/METAFONT system.

Glossary

AWK: a simple yet powerful batch text processor.
Bounding box: the smallest rectangle surrounding

the glyph of a picture; coordinates of its lower
left and upper right corners (in big points)
should appear in a structural comment in a
header of an EPS file.

EPS file: Encapsulated PostScript file; a single-page
PostScript document; the purpose of the EPS

file is to be included (“encapsulated”) as a part
of other PostScript programs and to exchange
graphic data among applications.

Even-odd rule: a rule that specifies the interior
of a (multiple) path in the following way: if

for a given point and for any ray drawn from
this point to infinity, the number of intersection
points of the ray and the path is odd, the point is
inside; if the number is even, the point is outside;
command eofill and eoclip operators follow
this rule.

Path orientation: nodes of a closed single path
are ordered; if traversing a path following the
order of its nodes results in a counter-clockwise
turn(s), the path is positively oriented, if it
results in a clockwise turn(s), its orientation is
negative; the number of turns (signed) is called a
turning number (METAFONT) or a winding num-
ber (PostScript); the operators fill and clip

make use of a winding number, the operators
eofill and eoclip ignore it.

Availability

The packages MFTOEPS, EPSTOMF and PS_CONV

can be found at
ftp.pg.gda.pl

in the directories
/pub/TeX/GUST/contrib/MF-PS/MFTOEPS

/pub/TeX/GUST/contrib/MF-PS/EPSTOMF

/pub/TeX/GUST/contrib/PS/PS_CONV

References

[1] Adobe Systems Inc. PostScript Language Refer-
ence Manual. Reading, Mass.: Addison-Wesley,
1991.

[2] Aho, A.V., B.W. Kernighan, P.J. Weinberger.
The AWK Programming Language, Reading,
Mass.: Addison-Wesley, 1988.

[3] Jackowski, B., M. Ryćko. “Labyrinth of META-
FONT paths in outline.” Proceedings of the
Eighth European TEX Conference (Sept. 26–30,
1994, Gdańsk, Poland), pages 18–32.

[4] Knuth, D.E. The METAFONTbook. Reading,
Mass.: Addison-Wesley, 1992. D. E. Knuth:
The METAFONTbook, Addison-Wesley, 1992.

� Bogus law Jackowski
BOP s.c., Gdańsk, Poland

TUGboat, Volume 16 (1995), No. 4 395

