
22 TUGboat, Volume 17 (1996), No. 1

Software & Tools

CAMEL: Kicking over the bibliographic
traces in LATEX

Frank G. Bennett, Jr.

1 Introduction

It gives me great pleasure to introduce readers to
a prototype citation manager called Camel. This
package, as it now appears on CTAN, is work in
progress of the LATEX3 bibliography team. The im-
plicit goal of this project is as simple as it is preco-
cious: to create a new citation interface for LATEX
that is simple, intuitively straightforward, and al-
lows the bibliographic style of a document to be
changed at will without major editing. In effect,
we are seeking to implement logical markup for ci-
tation styles, cross-referencing schemes, and biblio-
graphy formats. If the savings in editorial time that
this implies are of interest to you, read on.

While the long-term goal of our work is to pro-
duce a fresh standard bibliography package that will
be widely used and well supported, I am duty bound
to stress that Camel is currently a prototype. It
pains me slightly to say so, because I am only too
painfully aware of the dilemma that faces the would-
be bibliographic revolutionary:

1. The designer needs real-world trials to discover
what the world’s formatting requirements actu-
ally are. This is an inductive, not a deductive
process.

2. If the system is to be efficient, it must be tightly
integrated. It therefore often will not be suscep-
tible to quick fixes, and may undergo significant
change in the course of its development.

3. Automated bibliography management is useless
if it does not provide a complete solution to
formatting problems. Until the system is com-
plete, no one will use it for fear of holding up
production or sinking work into text that relies
on an unstable syntax.

4. Go to 1.

It remains to be seen whether Camel will break
out of this circle of reticence, but before it attempts
to do so it must mature further. That will require
feedback. And the solicitation of feedback is one of
the main purposes of this article.

That we have been able to overcome the first
hurdle at all — the drafting of a working prototype
of the new system — has been possible largely be-
cause of the diversity of inputs made by each of the



TUGboat, Volume 17 (1996), No. 1 23

core contributors to the bibliography team. Pedro
Aphalo, the first task coordinator for bibliography
support in the LATEX3 project, was first to propose
an integrated interface for handling bibliographic
formats. David Rhead carried out careful research
into the typesetting needs and available tools be-
yond the TEX world, the results of which appear in
(Rhead, 1993). I joined the team after writing the
LexITEX package, described in (Bennett, Jr., 1993),
to meet my own needs as a law lecturer. Prompted
in large part by new possibilities opened up by Oren
Patashnik’s commencement of work on BibTEX 1.0,
I sought to bring my then-existing code up to, or
at least close to, the standard that had been set by
Pedro and David. The result was been Camel; and
when the draft package hit CTAN, Matt Swift pro-
vided valuable feedback on the needs of editors of
critical editions and works of literary criticism.

Camel thus arose at the confluence of two dis-
tinct streams of development, one based on the iden-
tification of general “operational requirements” in
advance of code drafting, the other on the persis-
tent refashioning and honing of what, as the per-
son responsible for it, I can safely describe as ad
hoc TEX hackery. Although the code of Camel

was fashioned by me, incorporating my own pre-
ferred design choices and, no doubt, infelicities of
design, even this modest effort could not have been
accomplished without the groundwork and feedback
offered by the other members.

The next two sections of this paper provide a
descriptive overview of the LATEX and the BibTEX
user interfaces in the Camel prototype. This is
followed by a final section which discusses various
parts of the system which are either worthy of at-
tention because they attempt to do something new
and perhaps useful, or because they may be changed
significantly in future releases. In particular, read-
ers may wish to note the rather drastic structural
changes that may become possible, following dis-
cussions with Oren Patashnik about his work on
BibTEX 1.0.

2 The LATEX User Interface

In a 1993 article in this journal (Rhead, 1993), David
Rhead specified the fundamental requirements for
a new citation management system, and suggested
ways in which LATEX3 might address these require-
ments. I have entirely accepted the specification,
but have adopted a rather different method of ad-
dressing it from that recommended. The core of the
specification lists five reasonably common forms for
handling reference lists and cross-referencing:

1. Reference by number, with the reference-list in
alphabetical order of author’s names;

2. Reference by number, with the reference-list in
order of first citation;

3. Reference by author and date of publication,
with the reference-list sorted accordingly;

4. Short-form citations in footnotes, which refer
to a reference list sorted by author and date of
publication; and

5. Citation in footnotes, with the first citation giv-
ing full details.

He also noted two important capabilities that
are currently beyond the capacity of vanilla LATEX,
at least where documents are typeset as a unified
whole:

• The user should be offered the option of divid-
ing the reference list into categories; and

• A document should be able to have separate
reference lists for each section.

This was further supplemented by Matt Swift,
commenting on the current release of Camel:

• The user should be free to place the reference
list before or after the place at which the cita-
tions occur.

David’s suggestion in 1993 was that (a) ample
provision should be made for formatting both ci-
tation tags and the reference list using commercial
bibliography support software, rather than BibTEX;
and (b) unorthodox citation styles with special re-
quirements, such as in-footnote citations without a
reference list, should be treated by a separate “plug-
in module” to reduce the bulk of the code, and the
volume of documentation.

The arguments in support of these suggestions
were pragmatic; David was concerned that the bur-
den of supporting a wide variety of styles might over-
whelm the voluntary efforts of LATEX’s maintainers.
Nonetheless, Camel seeks to offer a unified interface
for all bibliographic styles: one set of commands,
one list of options, one user’s guide. And BibTEX
is at the core of its functions. Since bibliographic
management involves the manipulation of data by a
series of tools, it seems to me that the simpler and
the more well-defined the interfaces for the exchange
of data between those tools can be made, the more
flexible the package will ultimately be. I therefore
settled on an approach that diverges from David’s
original suggestions.

Much work has gone into the streamlining of
the LATEX user interface for Camel. In it, all re-
quirements are met with just eight commands:

\citationstyle{<style_name>}



24 TUGboat, Volume 17 (1996), No. 1

\citationdata{bib1,bib2...}

\bibliographymanager{<manager_name>}

\citationsubject[<opts>]{<subj>}{<header>}

\source[<opts>]{<nickname>}[<pages>]

\forcefootnotes

\newinterword{<word>}{<text>}

\printbibliography{<subj>}

The use and effect of these commands are ex-
plained in the Camel manual; I will give only the
briefest of descriptions here to indicate their func-
tion.

The \citationstyle command is required in
all documents. Much like \documentclass, it tells
the bibliography manager what package of code to
use in its formatting work. Currently only one style,
law, exists. This command is accepted only within
the scope of the document environment, and it may
be used repeatedly, to change bibliographic styles on
the fly for different sections of a document.1

The user may specify a database either us-
ing the \citationdata command or, alterna-
tively, by using the \bibliographymanager com-
mand. The former serves a function similar to the
\bibliography command in standard LATEX bib-
liography processing; it tells BibTEX which *.bib

files it should search for citation entries. The
\bibliographymanager command accepts one ar-
gument, which is the name of an external biblio-
graphy manager that is used for the citations in the
document. Currently, the command will accept the
names of the “main 4” identified by David Rhead
(1993, p. 27): EndNote, Papyrus, ProCite and Ref-
erence Manager. When this command is in force,
LATEX will write citation keys, delimited in the way
required for the designated bibliography manager, to
a special file.2 The bibliography management soft-
ware must then be used to perform a simple “find
and replace” operation, to replace the keys with
*.bib entries for the designated keys. This adds
another step to processing, but requires a minimum
of special setup in the alien management software
and can be covered by generic documentation.

The \citationsubject command is used to
create classified bibliographies. More than one such
command may be issued for each bibliography. The
mandatory arguments are the nickname of the sub-
ject category, and the actual text to use as a header
when the subject category is printed in the biblio-
graphy. Best practice is to place the \citation-
subject commands at the top of the document, in
the order in which you wish the subject categories

1 This function is not yet available in the prototype.
2 The naming convention for this file has not yet been

fixed. Currently it is always called camel.bib.

to be produced in the bibliography.3 The optional
argument may mark a subject as a sub-category of
the immediately preceding subject. It may also in-
dicate whether or not page references — to instances
of the citation in the current document — should be
included. In the latter case, input and output ex-
tensions must be given, to allow the data produced
to be processed using \makeindex.

In Camel, the new \source command replaces
the \cite command in the standard LATEX biblio-
graphy interface. In its simplest form, the command
can be invoked with the nickname of a command in
the BibTEX nickname of the desired citation as its
sole argument. The page number of the citation can
be placed in square braces immediately after the ci-
tation. Page numbers may be separated by commas,
ampersands or single hyphens (spaces are ignored).
Alphabetic characters may be included, but the page
or section prefix is supplied by the style; the user
only needs to worry about providing the numbers.

Further options may be put in square braces be-
tween the \source command itself and the braced
nickname. These options may be used to suppress
the author’s name or the title of the work where ap-
propriate,4 to append a volume number for a multi-
volume work by a single author, to specify a cita-
tion subject category by its nickname, and so forth.
The citation subject category must be given for the
\source command if, at that point in the document,
one or more \citationsubject commands are in
force.5

The \source command can be given a list of
keys, as in:

\source{item1,item2,item3}

In this case, leading options and trailing page num-
bers will be ignored, and a default syntax for join-
ing characters is used. Alternatively, \source com-
mands may be joined using a single bridging word:

\source{item1} but-see \source{item2}

A chain of \source commands joined in this way will
expand as a single macro, and the bridging words
will expand into a phrase with text, punctuation
and typefaces determined by the style package in
force at the time.6

3 A sample is included in a test file contained in the
Camel distribution.

4 These options will, of course, only take effect in a short-
form citation style.

5 The plan at the moment is to make the assignments
relating to citation subjects local, so that their scope can be
limited by enclosing them in an environment.

6 This facility is available in the prototype. A facility for
providing easy access to the list of bridging words is not yet
in place, and needs to be installed.



TUGboat, Volume 17 (1996), No. 1 25

The \forcefootnotes command causes LATEX
to push the expanded text of all \source commands
into footnotes. This will be useful, for example, for
authors who wish to be able to submit an article al-
ternatively to a social science journal that requires
an author-date reference list, or to a law journal
that requires in-footnote citations with no reference
list; printed output in both forms can be produced
from a single source file, simply by changing the
\citationstyle declaration — assuming, of course,
that a Camel style package for each journal’s style
exists!

The \newinterword command is used to create
bridging words and matching text output that are
not built into the Camel distribution. Existing def-
initions can also be overridden using this command.

Finally, the \printbibliography command is
used to explicitly place the bibliography at a partic-
ular location in the document. This command takes
a single argument, which is either the word all, or
the nickname of a subject category. Any categories
which have been associated with an input and out-
put extension will be read from the designated file.

The eight commands of the Camel user inter-
face open the possibility of logical citation markup of
LATEX documents, with the reduction in time spent
on wheel-reinvention and the training of oneself or
one’s staff that that entails. All that will be re-
quired (he said) is the development of Camel style
packages for all users’ requirements.

3 The BibTEX User Interface

Camel uses BibTEX to generate a reference list that
is carried in memory throughout the LATEX run.7

BibTEX is applied to the *.aux file in the normal
way, following the first LATEX run; but each entry
written on the *.bbl file is written as arguments to
a special control macro. To handle certain special
requirements, the path of least resistance was to re-
draft a *.bst style file for Camel from scratch. In
the course of doing so, I introduced certain enhance-
ments, some of which are essential features of the
new system, while others are optional extras which
may or may not survive the test of community crit-
icism.

3.1 New Entry Types

A new entry type, @CASE, has been added, for use
in citing reported law cases. Because the content
of citations to case reporters varies widely between
jurisdictions, Camel uses only this one entry type,

7 The harvard bibliography package works in a similar
way.

and varies the format of the citation according to
its content. A result of this approach is that there
are no ‘required’ fields in the usual sense for @CASE
entries — BibTEX will not complain if something is
missing. Instead, there is a set of ‘core’ fields for
each of four different formatting styles. For someone
familiar with legal resources, this is actually quite
intuitively straightforward.

For reported United States law cases, the core
fields are title, volume, journal, pages and year.
In addition, you may wish to specify court.8 Proce-
dural histories cannot be represented in the BibTEX
entry; this must be done explicitly in the text of the
LATEX document.

For reported Commonwealth cases, use number

instead of volume. The effect of this will be to place
the year at the front of the citation in square braces,
with the number and journal following it. Again,
you may specify court optionally.

For cases reported in ephemeral media such as
newspapers, leave out volume and number, and give
the full date in the year field instead (see below
for the formatting of dates). The formatting of the
citation will adjust accordingly.

For cases reported in those jurisdictions, such as
Japan, which refer to cases by date rather than by
title, the citation should include casedate, court,
journal, volume, pages and year. Optionally, you
may also wish to include divno and division, to
specify the exact identity of the deciding court.

There is a @STATUTE entry type, but support
for statutes is still in its infancy. You need, at mini-
mum, to enter title, year and jurisdiction. Ju-
risdictions supported in this entry type so far in-
clude japan, singapore and england. The present
arrangement is not particularly satisfactory; and I
am certainly open to suggestions on how best to
manage this type of entry.

3.2 Parsing of Fields

The entry of dates has been considerably simplified
in Camel BibTEX entries. Always use the year field
(or, if appropriate, the casedate field). Months may
be entered as numbers or as a three-character string.
The following date forms are all valid:

year = {10 jun 1995},

year = {jun 10 1995},

year = {jun 1995},

year = {1995},

year = {10/06/95},

The prototype reads only the year field, and
ignores month; this will be repaired in due course.

8 This is not yet implemented, but can be and will be.



26 TUGboat, Volume 17 (1996), No. 1

For @CASE entries, it is possible to enter multi-
ple citations in a single BibTEX entry using a short
form of citation in a field called cites, separating
entries with an = character. The syntax of this field
is rather flexible. There must be a core of one or
more words, giving the name of the journal. This
must be followed, at least, by a page number. The
journal name must be preceded either by a volume
number standing on its own, by a volume number
followed by a slash and an issue number, or by a
year in braces, followed by an issue number for that
year. Where the year is not given in braces before
the citation, it should be give in parens at the end.
For the citation of mainstream case reports, these
forms closely follow the citation conventions used in
law journals:

cites = {[1995] 1 All ER 25

= [1995] 2 WLR 125}

cites = {123 Cal.3d 237 (1995)

= 124 S.W.2d 235 (1995)}

You can string together an arbitrary number of
parallel citations in this way. The law style will cor-
rectly insert any page pinpointing information given
to the \source command into the citation in the ap-
propriate places.

4 The Future

This section discusses some of the features of the
Camel system that are most interesting, or most in
need of further attention before a proper production
version is released. I will not delve into the specifics
of the code — Camel is on CTAN for anyone who
wants to take a look at it — but will indicate why
I feel a particular portion of the code is worthy of
examination, or in need of further attention. This
will, I hope, give the reader a clear sense of how
settled or unsettled the code is at this phase of its
development.

4.1 Things unlikely to change

The most complex set of code in Camel is the ex-
pansion of the \source command. Apart from in-
cidental concerns about the code used for parsing
options (see below), I am very happy with the per-
formance of \source and its friends. The key to its
robustness is a hidden command which I have named
\@ifoverword, which was developed for Camel on
the basis of the \@ifnextchar command in standard
LATEX2ε. This command, like \@ifnextchar, takes
three arguments: a comparison token, an argument
to execute if the comparison is true, and an argu-
ment to execute if it is false. The macro absorbs all

text following itself, up to a space. It then reads the
following token, and returns true if it matches the
comparison token, false otherwise. Within the true-
text and the false-text arguments, the string that
is swallowed to get at the text token used in the
comparison is available in the macro \@overword.

This command is combined with a set of rou-
tines that iteratively store nickname keys and their
matching arguments to list macros, so long as addi-
tional \@ifoverword matches continue to be found.
These list macros are then expanded in one go, after
the last match. Thus a string of source commands
behaves in all respects as a single macro. Without
this facility, the \forcefootnotes command would
not be sufficiently robust in its effect to be of use in
real-world typesetting.

Page number parsing is, I think, pretty satis-
factory as written. The optional page number ar-
gument is scanned character-by-character. Each is
compared with the keys in a parsing list. Those that
do not match are pushed onto the end of a string,
while those that do (i.e. commas, ampersands and
single hyphens) are replaced with an appropriate
macro before being pushed. Handled in this way,
these characters behave as if they were active, but
without any change to their category codes. The
\source command is therefore robust, and should
not break — unless some other style alters the cate-
gory code of these characters.

I am also happy with the error handling rou-
tines in Camel. For a complex facility like biblio-
graphy support, detailed and specific error messages
are important, and Camel does provide these where
I felt help to be most clearly needed. The one qual-
ification to this is that the error message macros do
use up a large number of tokens — this while the
core LATEX3 team have been working overtime try-
ing to reduce, one by one, the number of tokens used
in the LATEX2ε kernel. This problem will eventually
be solved when the planned facility for drawing help
text from external files is introduced.

For legal citations, Camel must be capable of
identifying the logical context of the citation. Is
this its first occurrence in the document? Is there
another citation by the same author in this docu-
ment? Was the immediately preceding citation to
the same work? If that immediately preceding ci-
tation was in a different footnote, was it the sole
citation in that footnote? And so forth. These rou-
tines have been specified with great care, and are
now reasonably reliable. The intention is to embed
these routines in the “kernel” of the final Camel

system, so that the result of their evaluation can be



TUGboat, Volume 17 (1996), No. 1 27

drawn upon by any style that requires information
concerning the context of a citation.

Finally, the structure of the Camel code has
improved considerably over time. Further work is
required, particularly in adding and updating com-
mentary, but the functions performed by the pack-
age have been clearly divided into sub-units, and
the internal interfaces between those units are well-
defined. Further clarification of the code will be car-
ried out, because I must involve other people in the
code itself if Camel is to grow.

4.2 Possible minor changes

Options are currently specified using parsing rou-
tines that I cooked up in ignorance of the keyval

package by David Carlisle. In due course, I plan to
shift to keyval-based parsing. This will slightly al-
ter the interface, by allowing mnemonic names for
options to be used, instead of the single-character
flags in the current prototype.

There has been some criticism of the placement
of page numbers after the citation nickname in the
\source command. I have set things up in this way
because special parsing routines must be applied to
page number strings. Commas, in particular, have a
special significance, and would clash with the func-
tion of commas in keyval options unless the page
number string were enclosed in braces. On balance,
I feel that the current arrangement is less cluttered
and easier to use. I am open to suggestions and criti-
cism on this, however, and would welcome feedback.

4.3 A possible major change

The drafting of BibTEX 1.0, the final release, is cur-
rently being carried out by Oren Patashnik. Ver-
sion 1.0 will include significant enhancements, some
of which are outlined in (Patashnik, 1994). There is
a possibility (at present no more than a possibility)
that the finished BibTEX 1.0 will include a facility
for producing “citation listings”. If this facility be-
comes available, it will lay the groundwork for dra-
matic simplification and efficiency improvements in
the Camel system. All that will be required (he
said) is the complete rewriting of large sections of
its code.

In order to cope with legal citations, Camel

must alter the form of citations depending upon cer-
tain conditions, as described above in Section 4.1.
The way this functions at present is for LATEX first to
pass a list of citations to the *.aux file, for BibTEX
to generate a *.bbl file containing “\lexibib” com-
mands and arguments including pre-parsed citation
elements. The \lexibib commands are read in by
LATEX during the next run. Their effect is to create

a set of list macros in TEX’s memory, one for each
citation. Each \source command is then expanded
into the form appropriate to its logical context, us-
ing the details stored in these list macros.

This approach is wasteful of memory. A cita-
tion that occurs only once will be carried in memory
throughout the second LATEX run. For works, such
as a legal textbook, that may contain thousands
of citations, the cost in memory will be excessively
large. And on machines with limited memory capac-
ity, Camel will simply break on large jobs. Unfortu-
nately, this situation cannot be avoided with current
tools; BibTEX is designed to produce reference lists,
writing one entry on output for each unique citation
key. To use that information more than once — to
be able to refer to a source more than once — all
of the details that might be used must be stored in
memory. In a short-form citation style, that means
that everything must be stored in memory.

If a facility for producing citation lists were in-
troduced into BibTEX, a style could instruct it to
produce, in addition to ordinary pre-sorted biblio-
graphy listings, a listing of citations, one per line,
marked up ready for immediate printing through
LATEX, without the need for any further parsing or
post-processing. The latter would be read in one
line at a time by the \source commands contained
in the document.

This implies that (a) most of the context-identi-
fication and selective formatting work currently car-
ried out in LATEX would need to be recast in BibTEX
code, and (b) there must be a method for passing
the essential information concerning context from
LATEX to BibTEX. This is not as daft as it may at
first seem; the interaction of BibTEX and LATEX is
quite difficult to grasp in standard LATEX. It is even
more difficult, if anything, in Camel. My work on
the *.bst library for Camel suggests that the post-
fix stack language used by BibTEX can be tamed by
the introduction of a library of high-level functions.
And if all text formatting is carried out in a sin-
gle forum governed by a single language, it will be
much easier to see what it going on, and to work out
bugs that appear in the course of the system’s use.
Apart from this, such an approach would have the
following advantages:

• The bulk of the Camel style code in LATEX
would be substantially reduced. All of the code
relating to the selection of citation elements and
bridging punctuation would be eliminated.
• The marginal cost in memory and TEX tokens

of each additional citation would be zero — less
even than in the standard bibliography config-
uration of current LATEX2ε.



28 TUGboat, Volume 17 (1996), No. 1

References

Bennett, Jr., Frank G. “LexITEX: context-sensitive
legal citations for LATEX”. TUGboat 14(3), 187–
195, 1993.

Patashnik, Oren. “BibTEX 1.0”. TUGboat 15(3),
269–273, 1994.

Rhead, David. “The “operational requirement” for
support of bibliographies”. TUGboat 14(4), 425–
433, 1993.

� Frank G. Bennett, Jr.
Law Department
School of Oriental and African

Studies
University of London
Thornhaugh Street
London WC1H 0XG
U.K.
fbennett@rumple.soas.ac.uk


