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Abstract

TEX began its “childhood” with 7-bit-encoded fonts, and has entered adolescence
with 8-bit encodings such as the Cork standard. Adulthood will require TX
to embrace 16-bit encoding standards such as Unicode. Omega has debuted as
a well-designed extension of the TEX formatter to accommodate Unicode, but
much new work remains to extend the fonts and DVI translation that make up
the bulk of a complete TEX implementation. Far more than simply doubling the
width of some variables, such an extension implies a massive reorganization of
many components of TEX.

We describe the many areas of development needed to bring TEX fully into
multi-byte encoding. To describe and illustrate these areas, we introduce the
TRUETEXY Unicode edition, which implements many of the extensions using
the Windows Graphics Device Interface and TrueType scalable font technology.

Integrating TEX and Unicode

You cannot use TEX for long without discovering
that character encoding is a big, messy issue in every
implementation. The promise of Unicode, a 16-bit
character-encoding standard [15, 14], is to clean up
the mess and simplify the issues.

While Omega [5, 13] has upgraded TEX-to-DVI
translation to handle Unicode [3], the fonts and
DVI-to-device translators are far too entrenched in
narrow encodings to be easily upgraded. This paper
will develop the concepts needed to create Unicode
TEX fonts and DVI translators, and exhibit our
progress in the TRUETEX Unicode edition.

A fully Unicode-capable TEX brings many
substantial benefits:

e TEX will work smoothly with non-TEX fonts.
While TEX already has a degree of access to
8-bit PostScript and TrueType fonts, there are
many limitations that Unicode can eliminate.

e TEX will eliminate the last vestiges of its deep-
seated bias for the English language and US ver-
sions of multilingual platforms like Windows. It
will adapt freely and instantaneously to other
languages, not just in the documents produced,
but in its run-time messages and user interface.
This flexibility is crucial to quality software,

especially to a commercial product in an inter-
national marketplace.

e With access to Unicode fonts, the natural
ability of TEX to process the large character sets
of the Asian continent will be realized. Methods
such as the Han unification will be accessible.

e TEX will install with fewer font and driver files.
Many 8-bit fonts will fit into one 16-bit font,
and in systems like Windows, which treat fonts
as a system-wide resource, fewer fonts are an
advantage. Only one application will be needed
to translate from Unicode DVI to output device.

e TEX documents will convert to other portable
forms (like PDF, OpenDoc, or HTML) and will
work with Windows OLE, without tricks and
without pain.

o Computer Modern and other TEX fonts will be
usable in non-TEX Unicode applications. The
8-bit encoding problems have broken Computer
Modern on every variety of Microsoft Windows.

e When 16-bit encodings overcome the resistance
of the past —and we have every reason to hope
that they will — TEX will play a continuing role
in software of the future, instead of becoming
an antique.

Claiming these promises involves some trouble along

the way, but without 16 bits to use for encoding, we
will never have a solid solution.
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Let us survey in the rest of this paper what is
needed to achieve these various aspects of integrat-
ing TEX and Unicode.

Omega and Unicode

The goal of our work has been to create a Unicode-
capable DVI translator, and to reorganize the TEX
fonts into a Unicode encoding. TEX itself (that
is, the formatter) already has a Unicode successor,
namely Omega.

The chief advance of Omega is that it gener-
alizes the TEX formatter to handle wider encod-
ings. What Omega is less concerned with is the
DVI format (which has always provided for wider
encodings, up to 32 bits), the encoding of the exist-
ing TEX fonts, and the translation of .dvi files for
output devices. In fact, Omega has side-stepped DVI
translation altogether with its extended zdvicopy
translation, whereby Omega operates within the old
environment of 8-bit TEX fonts and the old DVI
translators. Since Unicode rendering is supported
on Windows but not on other popular TEX platforms
(UNIX, DOS, etc.), a devotion to Omega’s porta-
bility requires that Omega use the old fonts and
DVI translators. Lacking any compulsion to extend
the DVI translators for Unicode, the Omega project
has justifiably invested most of its effort into earlier
stages of the typesetting process [4, page 426].

Our Unicode TgX fonts and Unicode DVI
translator, while having a natural connection to
Omega, are capable of connecting TEX82 to Unicode
as well. Through the mechanism of virtual fonts [11],
TEX can access Unicoded fonts while using its old
8-bit encodings itself.

What’s the fuss?

Wishing for 16 bits of Unicode sounds like, hey
presto, we just widen some integer types, double
some constants, and type “make” somewhere very,
very high in a directory tree. The task is far from
this simple for several reasons:

One, TEX and TEXware is full of 256-member
tables which enumerate all code points. These
would have to grow to 65,536 members. While
Haralambous and Plaice want us to agree that
this is “impossible” for practical reasons [6], they
assume that we are not going to re-implement the
8-bit-encoded software for sparse arrays. Applying
sparse-array techniques to manage per-character
data will avoid an impossible increase in execution
time and/or memory, although it will require an
initial extra effort to upgrade the software.

Two, these tables have to be stored in files,
and we need to carefully and deliberately extend
the file formats to handle the extensions. Not only
could we come up with a bad design that limits us
unnecessarily in the future, but all the old TEXware
has to be upgraded, and then we have to port the
upgrades.

Three, we must rationalize the old ad-hoc
character sets into a big union set. Just cataloging
and managing this data is a large task: many
tens of thousands of items, where we used to have
only hundreds before. Some degree of database
management tools must be applied to get the codes
into a form which we can compile into software; it
is not enough to just type in some array initializers
here and there.

Encoding standards are necessarily incomplete
or imprecise in some aspects, and none fit the
TEX enterprise. While many of the Unicode math
symbols were taken from TEX, many of the TEX
characters are missing from Unicode. But Unicode
is about the closest encoding to TEX math that
we can expect from an unspecialized encoding, and
with Unicode we gain a powerful connection to
multilingual character sets.

Extending Computer Modern to Unicode

A “rational” encoding establishes a mapping of char-
acter names to unique integers, and this mapping
does not vary from font to font. The Computer
Modern fonts were not encoded rationally. For
example, code 0x7b is overloaded about 8 different
characters, and character dotlessi appears in differ-
ent codes in different fonts. Given an 8-bit limit
on encoding, this was inevitable. But this makes
for many troubles; moving up to a rational, 16-bit
encoding is a clean solution.

Computer Modern is also “incomplete” in the
sense that if you made a table having on one axis
the list of all the specific styles (Roman, Italic,
typewriter, sans serif, etc.) and on the other axis
all the characters in all the fonts (A—Z, punctuation,
diacritics, math symbols, etc.), the table would have
lots of holes when it came to what METAFONT
source exists. Commercial text fonts have all of
these holes filled, or at least the regions populated
in the table are rectangular. In Computer Modern
the regions are randomly shaped.

Furthermore, the character axis of this (very
large) imaginary table is missing many characters
considered important in non-TEX encodings. For
example, ANSI characters like florin, perthousand,
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cent, currency, yen, brokenbar, etc., are not imple-
mented in Computer Modern. Certain of these sym-
bols can be unapologetically composed from exist-
ing Computer Modern symbols: a Roman multiply
or divide would come from the math symbol font,
trademark from the T and M of a smaller optical
size, and so on. But many other characters will
just have to be autographed anew in METAFONT
(at least one related work is in progress [6]).

The job of extending Computer Modern to be a
rational and complete set of fonts first requires that
we reorganize the existing characters into a clean,
16-bit encoding. Then we are in a strong position
to fill in the missing characters.

We not only want to give TEX access to 16-bit-
encoded fonts, we also want the converse: non-TEX
applications to have access to the Computer Modern
fonts in TrueType form. This mandates adherence
to the Unicode standard wherever possible, and
an organized method to manage the non-Unicode
characters in Computer Modern.

Here is a list of the components we consider
essential to a Unicode rationalization of Computer
Modern. In this list we take a different approach
from Haralambous’ Unicode Computer Modern
project [7], which is aimed at producing virtual fonts
which resolve to 8-bit .pk fonts from METAFONT.
Our aim is a set of Unicoded TrueType fonts.

e A METAFONT-to-outline converter, a very diffi-
cult although not impossible task, as illustrated
in MetaFog [9].

e A database system to treat the converted
Computer Modern glyphs as atoms, for input
to a TrueType font-builder.

e A database of character names which covers all
the characters in the TEX fonts and in Unicode.
We call the grand union TEX character set
TEXUNION, in the same way that we denote
the Unicode characters as the UNICODE char-
acter set. (We will use SMALL CAPS to indi-
cate a formal set.) TEXUNION contains 1108
characters by the present inventory. Produc-
ing this database involves some work because
there are no standards for TEX character names
(that is, single-word alphanumeric names such
as are used in PostScript encodings). The stan-
dard Unicode character descriptions are lengthy
phrases instead of single words, making them
unjoinable to the TEX names. For example, the
Unicode standard provides the verbose entry
for the code 0x00ab, “LEFT-POINTING DOUBLE
ANGLE QUOTATION MARK”. The PostScript
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namesl in common use come from an assort-

ment of sources, and they exhibit inconsisten-
cies, conflicts, and ambiguities which frustrate
computation of set projections and joins.

e A database of TEX encodings, which tells which
characters appear in which TEX fonts. TEX
uses a gumbo of no less than 28 (!) distinct
encodings (Table 1). This number may come
as a surprise, but has been hidden by the web
of METAFONT source files. The sum of all TEX
encodings constitutes a database of 3415 name-
to-code pairs, each name being taken from the
1108 members of TEXUNION. We designate
this set of encodings (that is, a set of mappings
of names to integers) as TEXENCOD.

As if the miasmic fog of encoding conventions
were not confused enough, small-caps fonts
present still more encoding problems. They
represent an axis of variation that is hardly
defined in the usual set of font parameters.
We must consider small-caps characters to be
different from their corresponding parents. If
this is not done, then there is no way to
compose virtual small-caps fonts from their
lowercase counterparts, because we would have
no way of knowing which characters are to
shrink (a jumbled set of letters and accented
letters) and which do not (punctuation and
all the rest). Thus, for each encoding used
anywhere by a small-caps font, we must make
a duplicate small-caps version (altering the
lowercase character names to small-caps names)
of the encoding in the list of all the encodings.
Thus we have a csc2 for roman2, tlcsc for t1,
and so on.

To produce these duplicate encodings, we
need a rule to convert lowercase names (both
letters a—z and diacritical letters) to small-caps
lowercase names and back. We have simply
been appending “sc” to the name (this works
because there are no collisions with names that
happen already to end in “sc”). For example, a
small-caps letter “a” is “asc”.

Adobe has been appending “small” to their
names (this often causes character names to
exceed a traditional limit of 15 characters in
length), as in the MacExpert encoding [2]. This
is done in an irregular manner by appending
to the uppercase character names (for example,

1 There is an attempt at standardization in PostScript-
style names from the Association for Font Information
Interchange (AFII), but the standard is proprietary and on
paper only. The names are serial numbers as opposed to
abbreviated descriptions.
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Table 1: TEX Single-Byte Encodings
(TEXENCOD). Covers all Computer Modern,
AMS math symbol, and Euler fonts. Each item
maps a set of 128 or 256 character names to

integers.
| Name | Description |
csc0 TEX caps and small caps (ligs = 0)
cscl TEX caps and small caps (ligs = 1)
euex AmS Euler Big Operators
eufb AnS Euler Fraktur Boldf
eufm ApS Euler Fraktur
eur AmS Euler
eus AmS Euler Script
lasy ITEX symbols
Icircle IATEX circles
line IATEX lines
logo METAFONT logo
manfnt TEXbook symbols font
mathex2 | TEX math extension
mathitl | TEX math italic (ligs = 1)
mathit2 | TEX math italic (ligs = 2)
mathsyl | TEX math symbols (ligs = 1)
mathsy2 | TEX math symbols (ligs = 2)
msam AMS symbol set A
msbm AnMS symbol set B
roman0 | TEX Roman (ligs = 0)
romanl | TEX Roman (ligs = 1)
roman2 | TEX Roman (ligs = 2)
tl ETEX NFSS T1 encoding
tlcsc T1 with small caps
texsetQ TEX “texset” encoding (ligs = 0)
textit0 TEX text italic (ligs = 0)
textit2 TEX text italic (ligs = 2)
title2 TEX 1-inch capitals (ligs = 2)

tA superset of eufm with two extra chars
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the Adobe small-caps for aacute is Aacutes-
mall, while ours is aacutesc); apparently some-
one mistook appearance for semantics. Fur-
thermore, Adobe has a small-caps version of
bare diacritics in their MacExpert encoding, al-
though the diacritical character name is irregu-
larly changed to an initial capital (for example,
Adobe small-caps for acute is Acutesmall).

The BTEX T1 encoding, which was supposed
to have been uniform for all DC fonts, also has
an irrational aspect, in that the T1 encoding is
overloaded when it is applied to both lowercase
and small-caps fonts. Somewhere in the
IXTEX macros is buried something tantamount
to another small-caps encoding of T1, which

indicates which codes are letters or diacritics.
Another related limitation of T1 encoding is the
lack of small-caps accents.

A wealth of code positions does not exempt
Unicode from pecksniffian absurdities. The
Unicode committee will not provide encodings
for a small-caps alphabet (small-caps being a
matter of typography and not information con-
tent), although they provide encodings for some
small-caps characters (which appear in older
encoding standards subsumed by Unicode).

A rationalization of the TEX character sets into
their largest common subsets (Table 2). This
represents the relations between the TEX en-
codings and the character subsets as organized
in Knuth’s METAFONT sources. The first item
in each entry of Table 2 gives the TEX encoding
as given in Table 1, known by the .mf source
file used to generate the font; the remaining
items are the common subsets generated via the
METAFONT source files of the same names.

The relation set forth in Table 2 is not re-
fined for the distinctions regarding the ligature
setting. Certain of Knuth’s encodings appear
overqualified, namely, mathex2, mathit{12},
and mathsy{12} do not vary with the ligs set-
ting, although it is specified in the METAFONT
driver file.?

These decompositions of the various TEX en-
codings may be considered close to the “great-
est common” subsets, although we do not re-
quire a full decomposition here. To be com-
pletely decomposed, the {012}-numbered items
on the right should be further decomposed into
the unnumbered common set and the various
numbered differential sets. The sets on the right
column of Table 2 we will use below as the set
known as TEXPAGES. We have not yet made
the effort to elaborate the members of each
TEXPAGES set, which is needed to compute the
remaining work to complete the style axes of
Computer Modern.

A database giving the mapping of TEX fonts
to their encodings as known above (Table 3).
The table below lists TEX font names and their
encoding name; an N indicates a wildcard for
any optical point size integer, excluding sizes of
the same style already matched earlier in the
table. If a new optical size for a font name is
not in this table, the presumption should be

2 Also, the comments at the top of romsub.mf are in error
about what happens when ligs = 2. Apparently, no one has
tried any other ligs setting!
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Table 2: TEXENCOD Decomposition into
TEXPAGES. Set romanlsc is romanl with

small-caps semantics; it does not actually appear

in Computer Modern. Braced digits indicate

factored suffixes.
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Table 3: Mapping of TEXFONTS to TEXENCOD.
N indicates an optical point size; asterisk a suffix
wildcard.

| TEX Font | Encoding || TEX Font | Encoding |

cmb10 roman2 cmbsyb mathsyl
cmbsy N | mathsy?2 cmbx N roman2
cmbxsll0 | roman2 cmbxtilQ textit2
cmcescN cscl cmdunhl0 | roman2
cmex N mathex2 cmif10 roman2
cmfil0 textit2 cmfib8 roman2
cminch title2 cmitt10 textit0
cmmib mathitl cmmilNV mathit2
cmmibb mathitl cmmibN mathit2
cmmrl0 mathit2 cmmb10 mathit2
cmrb romanl cmrN roman2
cmslN roman2 cmsltt10 roman(
cmssN roman2 cmssbx10 | roman2
cmssdcl0 | roman2 cmssilNV roman2
cmssq8 roman2 cmssqi8 roman2
cmsyb mathsyl cmsy N mathsy2
cmtescl0 | cscO cmtex NV texset(
cmtiN textit2 cmtt N roman(
cmul0 textit2 cmvtt10 roman2
lasy™* lasy Icircle* Icircle
line* line logo* logo
manfnt manfnt msam10 msam
msbm10 msbm dcese N tlcsc
dctcscN tlcsc dc* t1
euex* euex eufb* eufb
eufm* eufm eurb* eur
eurm™ eur eusb* eus
eusm™ eus

— Inacron vs. overscore

TEXENCOD Covering TEXPAGES
Member Members

csc0 accent0 cscspu greeku punct
romand romanp romanu rom-
spu romsub0 romanlsc

cscl accent12 comlig cscspu greeku
punct romand romanp romanu
romspu romsubl romanlsc

mathex2 bigdel bigop bigacc

mathit{12} | romanu itall greeku greekl
italms olddig romms

mathsy{12} | calu symbol

roman( accent0 greeku punct romand
romanl romanp romanu romspl
romspu romsub0

roman] accent12 comlig greeku punct
romand romanl romanp ro-
manu romspl romspu romsubl

roman2 accent12 comlig greeku punct
romand romanl romanp ro-
manu romlig romspl romspu

texset punct romand romanl romanp
romanu tset tsetsl

textit0 accent0 greeku itald itall italp
italsp punct romanu romspu
romsub0

textit2 accent12 comlig greeku itald
italig itall italp italsp punct
romanu romspu

msam calu asymbols

msbm calu bsymbols xbbold
(...and so on for the rest ...)

that its encoding ought to be the lowest optical
size in the table of the same name. The wild
card “*” matches any suffix, such as variations
on style or optical size, for names which do not
match higher in the table. We designate the set
{cmbl0, ..., eusm*} as TEXFONTS.

e A fuzzy-matching operator which, when join-
ing, selecting, and projecting the above data-
bases, can resolve the redundancy, synonyms,
and ambiguities in the character names and
their composition. Here is an inventory of issues
known to date:

— bar (vertical bar) vs. brokenbar (vertical
broken bar)

minus vs. hyphen vs. endash vs. sfthyphen
vs. dash

grave vs. quoteleft in code 0x60

space (0x40) vs. nbspace (0xa0) vs. visi-
blespace vs. spaceopenbox vs. spaceliteral

rubout in code 0x7f
ring vs. degree

dotaccent vs. periodcentered vs. middot
vs. dotmath; Zdotaccent vs. Zdot, etc.

quotesingle vs. quoteright

slash vs. virgule

star vs. asterisk

oneoldstyle vs. one, etc.
diamondmath vs. diamond vs. lozenge
openbullet vs. degree

nabla vs. gradient
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— cwm vs. compoundwordmark (a T1 prob-
lem) vs. zeronobreakspace

— perzero vs. zeroinferior vs. perthousand-
zero para perthousand

— slash vs. suppress vs. polishlslash, as in
Lslash and Lsuppress

— Ng vs. Eng (and ng vs. eng)

— hungarumlaut vs. umlaut, as in Ohun-
garumlaut vs. Oumlaut

— dbar vs. thorn

— tilde vs. asciitilde

— tcaron transmogrifies to tcomma, et al.
— mu vs. mul vs. micro, code 0xb5

— Dslash vs. Dmacron, code 0x0110; dslash
vs. dmacron, code 0x0111

— florin (not in Unicode) vs. fscript, code

0x0192

— fraction vs. fractionl vs. slashmath, code
0x2215

— circleR vs. registered, circlecopyrt vs.
copyright

— arrowboth vs. arrowlongboth

— aleph vs. alef vs. alephmath

— Ifractur (eus, mathsyl, mathsy2) vs. Ifrak-
tur (Unicode) vs. Rfractur (eus, mathsyl,
mathsy2, and Unicode); the spelling
should uniformly be “fraktur”

— smile vs. smileface vs. invsmileface vs.
Unicode 0x263A (unnamed)

— Omega vs. ohm, Omegainv vs. mho

— names not starting with letters: Oscript
(0x2134), 2bar (0x01bb)

We represent these items in a text file hav-
ing the following format: FEach line of the
file gives character name synonyms, one group
of synonyms per line. Any of the names on
one line are synonyms, and can be freely ex-
changed. For example, the line “visiblespace
spaceliteral” means that the character names
visiblespace and spaceliteral are com-
pletely equivalent names. (The former was used
in the TEX DC fonts [10], while the latter was
the PostScript name used in the Lucida Sans
Unicode TrueType font of Windows NT'.)

A special case of “synonym” is the Unicode
fall-back. This is a code number which is
a “synonym” for TEXUNION members not in
UNICODE, and is our assignment of the Unicode
“private zone” codes for the misfits. For exam-
ple, the line “ff 0xf001 0xfb01” (Microsoft
fonts have an undocumented usage like this)

means that the character £f (which is a lig-
ature not to be found in Unicode) carries a
recommended private-zone code assignment of
0x£001 or 0xfb01. Omne or more such recom-
mended codes may appear, in order of pref-
erence. In resolving a private-zone conflict,
a font-building program may take the recom-
mended codes in order until a non-conflicting
code is found. Only after the recommended
codes are exhausted should the program make
a random private-zone assignment. Codes may
be given in decimal, octal (leading 0), or hex
(leading 0x) formats. Programs using these
tables take care to distinguish character codes
(which contain only hexadecimal digits if start-
ing with 0x, otherwise only octal digits if start-
ing with a leading zero, otherwise only decimal
digits) from names (anything else, including
names which start with digits). Lucida Sans
Unicode contains some names like “2500” (for
code position 0x2500); if this presents a prob-
lem we might have to prefix a letter to these
names.

A name may appear in more than one
synonym group, although such groups do not
join within the matching algorithm. The first
name in any group is the “canonical” name.
The canonical name is the name which should
be output by programs which compute set
operations on the encoding sets. This helps
to achieve a “filtered” result which does not
contain troublesome synonyms. For example,
if the synonym file contained the lines:

joseph jose yosef josephus 0xfbl0
joseph joe joey

the names jose, yosef, and josephus would
have fall-back code 0xfb10, the names joe and
joey would have no fall-back code, and all the
names above would invariably be transformed
to joseph on output.

The TRUETEX filter accessory program,
joincode, performs a relational join on two
font encoding sets, making a new encoding.
It resolves the issues of a given synonym file
according to the rules we have stated.

A database of non-TEX encodings, which tells
which characters appear in various encoding
standards such as ANSI or Unicode. This list
presently constitutes a database of 3523 entries
from a set of 1814 characters. Some of the
common examples of commercial importance
today are given in Tables 4 and 5. Having these
sets allows us to export virtual fonts for any of
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Table 4: Some Non-TEX Encodings.

| Name | Description |

ase Adobe PostScript “Adobe-
StandardEncoding”, the
built-in encoding of many
Type 1 fonts

belleek | Belleek [8] scheme for BTEX T1
encoding on 8-bit TrueType

belleekc | Belleek with small-caps

latinl Latin 1 (ISO 8859-1)

latinlps | Adobe PostScript “ISO-
LatinlEncoding” (which is not
ISO Latin-1!)

mac Macintosh

macexp | Adobe  PostScript “Mac-
Expert” encoding (used by

Acrobat in PDF [2]), containing
ligatures, small caps, fractions,
typesetting niceties

mre3 Adobe PostScript “Macin-
toshRomanEncoding”  (used
by Acrobat in PDF), a subset
of “mac”, which omits some
math characters and the Apple
trademark

Adobe PostScript “PDFDo-
cEncoding” (used by Acrobat
in PDF), an ad-hoc encoding
used in PDF outline entries,
text annotations, and Info dic-
tionary strings, consisting of a
remapped set = {ase U mre U
wae}

16-bit Unicode (Windows NT
and 95, AT&T Plan 9)

pdfdoc

unicode

the encodings represented, so we can virtualize
non-Unicode, non-TEX fonts.

A TrueType-font-builder that takes the con-
verted outlines from various TEX fonts, orga-
nizes sets of them based on an output encod-
ing, and builds binary TrueType fonts from the
reorganized glyph data.

A sub-tool for the font-builder incorporates
a redundancy-elimination feature that allows
you to specify a table listing which characters
in a given TEX font may be taken from other
TEX fonts without repeating a costly METRA-
FONT glyph conversion. One example of such a
redundancy is how DC fonts largely replicate
the Computer Modern fonts; it would be a

Extending TEX for Unicode

Table 5: Some Encodings Used in Windows.

Name | Description |

wae Adobe  “WinAnsiEncoding”
(used in Acrobat in PDF),
“winansi” with bullets in
the .notdef positions, some
semantic synonyms

Windows ANSI 8-bit
(US/Western Europe code
page) (Includes certain non-
ANSI characters in 0x80-0x9f
range of codes.)

Windows ANSI Unicode
(US/Western Europe code
page) (Same characters as
are present in the winansi
encoding, except the non-ANSI
characters are in their Unicode
positions.)

Windows Multi-Lingual
Unicode (Windows 95/NT)
(655 characters supporting all
Latin  alphabets, Greek,
Cyrillic, OEM screen
characters.)

Windows (for code pages num-
bered NNNN)

winansi

winansiu

winmultu

win NNNN

waste of effort to convert the glyphs twice.
Another example is that many font variants are
slanted versions of the upright face, and the
geometric slant is easily applied to an already-
converted glyph rather than slanting in META-
FONT and repeating the glyph conversion. This
technique is also used to compose accents and
letters for “purely” accented characters (where
the accent and letter do not overlap), since
the MetaFog conversion is applied only to
the accent part of such glyphs, allowing the
redundant letter conversion to be done only
once.

Another sub-tool builds these redundancy
tables by comparing the encoding tables for
sets of fonts against a target font.  For
example, a DC font combines punctuation
and symbol characters spread across several
Computer Modern fonts.

In our system, we actually produce textual
versions of the binary fonts and convert them
to Type 1 and TrueType formats with separate
tools. This allows a general conversion to be
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Table 6: DC fonts in BTEX (Rev. 1/95). The
“funny” fonts (Fibonacci Roman, etc.) are
omitted. This list is made by examining names in
*.fd from the IWTEX distribution.

Font 5
dcb °
[ )
[ )

—_
o
—_
[\

17

dcbx
dcbxsl
dcbxti
dccesc
dcitt
der e o o
dcsl

desltt

dcss

dcssbx

dcssdc

dcssi o o
dctesc

dcti °

dctt

dcu °

optimized for the ultimate binary format. For
example, Type 1 glyphs require knot-pivoting,
following by combing, to insert extrema tangent
points. The hinting methods also differ between
Type 1 and TrueType.

Once a binary version of a font is prepared,
containing all the glyphs, a re-encoding tool
(TRUETEX accessory program ttf_edit [17],
which is a stack-oriented TrueType font encod-
ing editor) must be applied to finish the font
for real-world use. The re-encoding stage not
only re-encodes, but can optionally adjust the
metrics and kerning information. By making
these aspects “afterthoughts” we can fine-tune
fonts without going back into the detailed con-
version process. The re-encoding stage can also
upgrade any 8-bit-encoded TrueType font to an
arbitrary Unicode encoding, which is important
since many commercial font editors can only
output 8-bit TrueType fonts.

e A notion of what TEX fonts we want to convert.
If we consider the DC fonts a good target, we
come up with quite a list (Table 6).

Rationalizing TEX fonts in Unicode sets

Let us consider the shuffling and dealing needed to
reorganize Computer Modern into a Unicode encod-
ing. With the luxury of thousands of code positions,

we can un-do the “scattering” of characters amongst
the TEX fonts. For example, the math italic set
(mathit{12}) contains the regular (not italic) low-
ercase Greek letters. Conversely, we are going to
have to scatter a few TEX fonts that happened to
combine dissimilar styles into one 7-bit font, such as
the math symbol fonts (mathsy{12}) which contain
calligraphic capitals.

In set-theoretic terms, the rationalization task
involves the following steps:

e Begin with the union of all TEX characters, the
set we have called TEXUNION. Remember that
this is the set of character names, not the glyphs
themselves.

e Partition this union set into the largest subsets
which do not cross encodings. This partitioning
is a set of proper subsets of TEXUNION; we
call this set TEXPAGES. For example, all
the uppercase letters A—Z make such a subset.
A combination of all upper- and lowercase
letters A-Z and a—z do not, because the
small-caps fonts do not contain the lowercase
letters. These subsets are equivalent to Knuth’s
Computer Modern METAFONT “program” files,
because this was the highest level of source file
nesting in which he did not make conditional
the generation of characters.

e Encode the TEX character union set for a new,
universal 16-bit encoding. That is, we invent
a mapping of TEXUNION members to unique
16-bit integer codes. Most of the members
of TEXUNION appear in UNICODE and so
have a natural encoding already determined.
For the TEXUNION members not in UNICODE
(which includes all the small-caps letters), we
shall promulgate (by fiat) assignments to the
Unicode private-zone codes. We designate this
subset of TEXUNION as TEXPZONE; this subset
finds its concrete representation in the private-
zone codes expressed in the character synonym
table. We have the relation

(UN1cODE U TEXPZONE) D TEXUNION,

since UNICODE contains many characters not
used in TEX. We can compute a mapping;:

TEXUNION — (UNICODE U TEXPZONE)

by matching character names from the left
to the names on the right; in this way we
arrive at a Unicode code number for each TEX
character. We designate this mapping (a 16-
bit number for each member of TEXUNION)
as TEXERU (“IEX encodings rationalized to
Unicode”, rhymes with “kangaroo”). This
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mapping is the key result of rationalizing
Computer Modern into Unicode.

e We can think again of a large table having, on
one axis, the TEX fonts, on the other, the mem-
bers of TEXPAGES, and bullets wherever Com-
puter Modern implements METAFONT glyphs.
This table will be sparsely and irregularly pop-
ulated. The sparseness reflects the fact that
the TEX fonts cover a wide range of characters,
while the variations in style mostly are typo-
graphic distinctions on alphabets and punctu-
ation; in other words, TEX provides more than
a few symbols sets, in contrast to the simple
ANSI/Symbol set distinction in 8-bit Windows
fonts. The irregularity in this imaginary table
results from the ad-hoc arrangment of TEX-
PAGES among TEXFONTS. The sparseness is
not a deficiency, but we ought to have some goal
in mind for the rational extension of Computer
Modern and the other TEX fonts to populate
areas of this table for the sake of regularity.
Realizing this goal would require drafting of
new METAFONT code and translation to out-
lines. This is similar to how the DC font project
extended Computer Modern to the rational T1
encoding.

e At this stage we are ready to determine a list of
actual Computer Modern Unicode fonts which
will cover TEXFONTS. While Haralambous
retained 8-bit PK fonts as the actual fonts for
virtual Unicode fonts [7, 6], we will create a
converse realization, namely Unicode TrueType
fonts as the actual fonts for virtual CM, T1, or
UT1 encodings.

Using the imaginary table just described, we
can take the union of row subsets such that
columns are not overlapped. If we want to
maintain stylistic uniformity within individual
fonts, we merge rows subject to a personal
decision as to which rows “belong together”
in a stylistic sense. On the other hand, if we
want to minimize the number of actual fonts
and don’t mind different styles in a single font,
we can make a “knapsack” optimization to pack
the rows as tightly as possible. (Indeed, if we
discard the Unicode conformity, we could put
all of Computer Modern into a single Unicode
font!) In any case, this collapsing of rows
involves imprecise judgments to arrive at an
optimized reduced set of fonts.

Implicit in this reduction is the factoring of
wildcarded optical sizes that was introduced
in TEXFONTS; we call this reduced set of
fonts TEXINUNI, which will have a similar

Extending TEX for Unicode

wildcarding to its parent TEXFONTS, but fewer
members in parallel with the reduction.

e To produce each real Unicode font (a member
of TEXINUNI), we assemble the glyphs and
metrics from TEXFONTS and install them via
TEXERU into each code of the mapped-to
TEXINUNI member.

e We must finally produce Omega virtual fonts
(that is, .xvp files) which will map 8-bit DVI
codes from the old TEX fonts into TEXERU
codes in TEXINUNI members. For this we use
the TRUETEX metric exporter to generate an
.xvp file, and XVPtoXVF to convert this to an
.xvf file; the .xfm file also produced contains
the same information as the METAFONT .tfm
and may be discarded if only TEX82 is to be
used for formatting.

Generating Unicode virtual fonts for
non-TEX fonts

Let us consider a converse task: instead of con-
verting single-byte-encoded Computer Modern fonts
into Unicode fonts, let us assume we have a Unicode
font in TrueType form, and want to make it usable
with TEX or Omega. To use a font TEX (and Omega)
require a .tfm (or .xfm) metric file and a .vf (or
.xvf) virtual font file. The virtual font is neces-
sary only if a remapped encoding or composition is
needed (usually the case).

To generate metric and virtual font files for
Unicode fonts in Windows, TRUETEX provides a
File + Export Metrics item which takes the user
through several steps which illustrate the elements
of such a translation:

e First, the user selects the font from the Win-
dows standard font-selection dialog. For exam-
ple, in Windows, standard fonts include Arial
(a Helvetica clone), Courier, and Times New
Roman (a Times Roman clone), together with
their bold and/or italic variations. Windows
will also install other TrueType fonts or (with
Adobe Type Manager) Type 1 fonts. After the
user selects a font, TRUETEX has a “font han-
dle” with which it can access all the geometric
information needed to calculate global and per-
character metric quantities for the font.

e Second, the user must select names for the
output .xvp file. Font names in Windows are
verbose strings containing several words (such
as, “Times New Roman Regular (TrueType)”),
while TEX insists on a single-word alphabetic
name; therefore TRUETEX selects a TEX-style
name for the font based on the TrueType file
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name (such as “times”). The metric output in
this case would be a file times.xvp.

e Third, the user must specify the “input” and
“output” encodings for the virtual font. The
input encoding is the encoding of the actual
font, typically ANSI or Unicode. The output
encoding is the virtual encoding which the
user desires to construct for TEX’s point of
view, and is typically a member of TEXENCOD.
TRUETEX uses encodings in the form of .cod
files (each line contains a hex code field followed
by the character name field) or .afm (Adobe
Font Metric [1]) files* To select an encoding, the
user selects an item from a list which TRUETEX
presents, each item giving a description of
the encoding (for example, “TEXRoman with
ligs = 2” corresponds to the roman2.cod file).

The user can also browse for encoding files in-
stead of selecting from the canned list. The user
can edit custom encoding files (which are just
text files in afm format), and thereby gains com-
plete flexibility of input versus output encoding
in the virtual fonts, including automatic pro-
duction of composites for missing input charac-
ters. The ttf_edit [17] program originates afm
encoding tables from existing TrueType fonts,
allowing maximal compatibility with randomly-
encoded fonts.

e User input is now complete. TRUETEX begins
analysis of the information provided by forming
in-memory encoding tables from the encoding
files (using sparse-array techniques to manage
large, sparse code ranges). TRUETEX sorts and
indexes the tables for fast content-addressibility
by either code or character name, assembles the
global metrics in xvp terms for the font, and
visits each input code in the font to build a table
of per-character metrics and ligatures. xvp file
building may now begin.

e For each output character name, TRUETEX
determines if an exact match exists to an
input name, and thus to an input code.
If there is such an exact match, TRUETEX
emits xvp commands which give the character’s
metrics and which re-map the TEX PUT/SET
commands to the Unicode positions.

e For output characters which have no exact to
input characters, TRUETEX invokes the “com-
position engine.” If the composition engine can

4 .afm files need not contain metrics; they can simply
define an encoding for a dummy font, using only the C, CH,
and N fields of the CharMetrics table. We thus maintain
compatibility with other afm-reading software and avoid
inventing yet another file format.

compose or substitute a glyph for the character,
it emits the xvp commands for the metrics and
other actions. If the composition engine is
“stumped”, TRUETEX emits an xvp comment
to note that the character is unencoded.

Note that virtual fonts can use more than one
input font to produce a virtual output font. This
would allow, for example, a text font, an expert font
(such as might contain ligatures), and a symbol font
(such as might contain math symbols) to contribute
to a single TEX Unicode font. Another use for this
technique would be the assembling of a Unicode
font from the old bit-mapped PK fonts. TRUETEX
supports all of the TEX and Omega-extended virtual
font mechanisms, but does not yet directly support
multiple input fonts for metric export (or bit-
mapped fonts, for that matter), although an expert
user can merge multiple virtual-property-list files to
produce such a virtual font.

Composing missing characters

The UNICODE and TEXUNION sets are disjoint, but
the virtual font mechanism allows users to create
virtual TEXUNION characters missing from a UNI-
CODE font with various composition or substitution
methods. TRUETEX uses this technique to create
completely populated virtual fonts when the under-
lying TrueType fonts are missing accented charac-
ters or ligatures.

To allow for easy upgrading, the “composition
engine” in TRUETEX uses a user-modifiable script
in a PostScript-like language to control the compo-
sition and substitution process. By changing the
script, the user can add new composition methods or
substitution rules, or adapt the methods to various
typographic conventions. TRUETEX, using its own
mini-PostScript interpreter, interprets this script at
metric-export time, which means that users who
speak PostScript and know a bit of font design
can customize the composer. A good script yields
a much better TEX virtual font, since commercial
fonts are typically missing characters that TEX con-
siders important, and the script can fill in most of
the missing pieces.

When the composition script receives control
from TRUETEX, all the encoding and metric infor-
mation for the font and input and output encodings
are defined as PostScript arrays and dictionaries.
The standard composition script in TRUETEX im-
plements the following techniques:

e Accent-plus-letter composition: if the name
implies that the character is an accented
letter, the script decomposes the name into
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Table 7: Composable Accent Characters.

| Name | Position | Example

umlaut top-center o)
acute top-center 6
breve top-center o)
caron! top-center o)
cedilla bottom-center Q
circumflex top-center o)
comma top-right L
dieresis top-center o)
dotaccent top-center o)
grave top-center 0
hungarumlaut | top-center 6
macron top-center o
ogonek? bottom-right

period top-center o}
ring? top-center

1For D/d/L/1, changes to comma at top-right.
2 Accent is not present in the Computer Modern
fonts used in this portable document.

the letter and accent components, and (when
the letter and accent exist in the input font)
uses the geometric information and typographic
conventions to overlay the accent onto the letter
in a virtual accented character, as shown in
Table 7. Since the composer has detailed
geometric information on the glyph shape,
which is more elaborate than the bounding-box
metrics TEX uses, it can do a careful job of
placing accents.

e Ligature composition from sequence of letters:
A ligature character (not to be confused with
the ligature rules of the exported TEX metrics,
a different topic) such as the T1 character
“SS” will not usually exist in a TrueType font.
Code positions for ligatures are not part of the
Unicode standard,® so even common ligatures
are often not present. The composition script
forms these by concatenating the component
letters within the bounding box of the TEX
character. This is applied to the ligatures: ff,
fi, fl, fi, fil, 1J, ij, SS, A&, &, (E, and ce.

e Remapping of certain names: The synonym
table shows the problems of character names
which are not standardized. An ad-hoc section
of the composition script fixes up any ambi-

5 Unicode does contain ligatures which are phonetic
letters in certain languages, but this does not include
typographic ligatures such as the f-ligatures
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guities by recognizing ambiguous names and
making the appropriate substitutions.

e Future extensions: Several more exotic com-
position methods are possible for an upgraded
composition script. A novel idea is an “emer-
gency fall-back” character generator: as a last
resort for a missing character, the script could
have a table of low-resolution renderings for
all of TEXUNION, consisting of (for example)
an 8 x 16 dot-matrix or a plotter-style stick
font; virtual font commands would render these
with rules. In this method we could render any
TEX document in a crude but accurate fashion
without any fonts or special’s at all!®

Another idea would use the ability of virtual
fonts to call upon the TEX \special command.
A Bézier curve special could draw and fill
glyphs without the need for operating system
support for fonts. This would not be efficient,
and hinting would be missing on low-resolution
devices, but it would place all the scalable font
information in an XVF file.

Projecting ligature rules into TrueType
fonts

The TrueType fonts in Windows do not supply any
ligature rules such as are contained in Computer
Modern. To export metrics containing the usual
TEX ligature rules, TRUETEX considers the rules
in Table 8 when exporting the global vpl (xvp)
metrics, when the target ligatures exist in the font,
or when the ligatures can be produced by the
composition engine.

Supporting metric export formats

TRUETEX supports both .vpl (TEX Virtual Prop-
erty List) and .xvp (Omega Extended Virtual Prop-
erty List) file formats when exporting font metrics.
This is more than merely a variation in format;
when exporting to .vpl format, the encodings are
truncated to 8 bits, so that the composition process
for missing characters will likely be more intensive.
TEXware programs VPtoVF and XVPtoXVF trans-
late the property list files to their respective .tfm,
.xfm, .vf, and .xvf binary formats for use with
TEX and Omega. TRUETEX launches the appro-
priate translator after the property-list export is
complete.

TRUETEX metric export also supports the older
.pl (TEX Property List) metric file format, and the
companion program PLtoTF, should it be needed

6 This could solve the problem of rendering TEX docu-
ments in HTML browsers.
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Table 8: Ligature Rules Applied to Exported Fonts.

| First | Second | Result | Description |
Dashes
hyphen hyphen endash -- to endash
endash hyphen emdash endash- to emdash
Shortcuts to national symbols
comina comma quotedblbase , » to quotedblbase
less less guillemotleft << to left guillemot
greater greater guillemotright | >> to right guillemot
exclam quoteleft exclamdown ¢ to exclamdown
question quoteleft questiondown | 7¢ to questiondown
F-ligatures
f f ff ff to ff
f i fi fi to fi
f | fl fl to fl
ff i i ffi to fh
ff 1 il ffl to i
Paired single quotes to double quotes
quoteleft quoteleft quotedblleft ¢ ¢ to quotedblleft
quoteright | quoteright | quotedblright | ’’ to quotedblright

for use with older TEX software. In this case the
user can specify only an input font encoding, and the
property list reflects this encoding as applied to the
TrueType font selected, without virtual remapping.

While exporting .xvp files will connect the
TRUETEX previewer to Windows’ Unicode fonts,
the TEX82 formatter requires .tfm metric files, not
Omega .xfm files. If the output font has an 8-bit
encoding, the resulting virtual font is nevertheless
compatible with the original TEX formatter’s 8-bit
character codes, and will not require the Omega
formatter. To create a .tfm file for such a font,
a TRUETEX filter program xvptovpl truncates the
virtual codes in the .xvp file and produces a
truncated .vpl file, and via VPtoVF, a .tfm file
for use with TEX. The .vf file created in this
process is discarded, since it does not properly map
the 8-bit characters to Unicode. The .xfm and
.tfm files produced by this process will contain the
same information; the .xfm format is needed only if
Omega is to be used. TRUETEX uses the .xvf file to
map the 8-bit TEX characters to Unicode positions.

Implementing sparse metric tables

In implementing programs which use metric data,
we must take care to apply sparse-matrix techniques
to avoid enormous memory demands from nearly-
empty font-metric tables. Sixteen-bit encoded fonts
are typically sparsely populated. For example,
the Windows NT text fonts contain about 650
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characters each; most codes are in the range 0—
0x2ff, with some symbols in the 0x2000 vicinity
and a few odd characters in the private zone at
0xf001 or 0xfb0l. We would expect such a
segmented locality in a typical font.

One technique is to use a segmented table with
binary-search lookup; this is close to the method
used in TrueType fonts. A hash table for the two-
byte keys may be used instead of the binary search.
Segmented tables will require the least storage,
at the expense of a possible hashing performance
problem in the event of degenerate tables. Since
all Unicode-capable operating systems are advanced
enough to support virtual memory, the performance
risk does not justify the memory savings.

TRUETEX uses a 2-level pointer technique:
metrics for a 16-bit code table consist of a table of
256 pointers to metric tables with 256 entries each.
In this way a typical font having perhaps 6 or 7
contiguous code populations has very little wasted
space. The worst-case and best-case performance
are both acceptable. The lookup time is accelerated
by avoiding a null-pointer test by pointing unen-
coded pages to a dummy table of zero-width metrics.

A time-bomb of a problem looms with Omega’s
.xfm format [12], which recklessly ignores any
sparse-array issues. An .xfm file, like the older
.tfm format, keeps an unpacked char_info array
which spans the smallest to largest codes (that is,
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the interval [bc,ec]). Since the Unicode private-
zone population typically extends through 0xfb00,
practically all fonts will have a char_info of about
126 KB, almost all wasted space. This will result in
a typical .xfm file being 130 KB, instead of about
4 KB that a simple sparse-array technique would
provide. It is imperative that we upgrade the .xfm
format and xfm-reading programs to better handle
sparse encodings.”

Summary

Let us review the areas of development needed to
extend all of TEX to Unicode:

e Extending the .tfm file format and its run-
time forms to large, sparsely populated fonts,
without sacrificing backward compatibility and
without exploding file lengths. We have
seen that the .xfm format can represent the
information, although it needs improvement for
sparsely populated fonts.

e Extending Computer Modern and other meta-
fonts to fully populate the appropriate Unicode
positions. A complete Unicode text font re-
quires about 500 symbols. While it is unlikely
that all the styles of Computer Modern will re-
ceive the attention to fill the tables completely,
we can at least insert legible placeholders.

e Creating a formal database of TEX character
names, joinable to the Unicode official names.
Some standard is necessary for any develop-
ment, and there is no reason to favor anyone’s
favorite names. What is crucial is that the
registry be initiated now, so that TEX software
authors have an early start on making inter-
changeable fonts and documents. While TEX
users cannot themselves dictate the standard
Unicode names, we can at least make a stand-
in version for our own use (since none seem to
exist at present), and if an acceptable set of
Unicode names comes along, we can adopt it
later.

e Creating a formal database of all 28 TEX
font encodings and their 31 greatest common
subsets, joinable to Unicode and other encoding
standards. The TRUETEX tables are available
to all for examination and use [16]. Once these
are improved by public usage and scrutiny, they
should be adopted as a formal standard for

TEX.

7" The .vf and .xvf virtual font formats have always
packed sparse per-character information, so they need no such
attention.
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e Identifying and assigning non-Unicode TEX

character names to the Unicode private zone,
thereby promoting inter-operability of Unicode
TEX implementations. These should be con-
cretely represented in a synonym table, which
also needs to be published. There are many
potential conflicts, and taking counsel from as
many different users of TEX as possible is the
only way to maximize the compatibility of the
result. The Omega project has already started
to stake out claims on the virgin Unicode real
estate [4, Table 4, page 425] for 2-Babel. There
are no doubt synonyms and ambiguities outside
our own experience; one can only hope there is
sufficient room for all interested parties.
Extending DVI translators to accommodate
the extended .tfm, .vf, and .dvi formats,
including sparse-array techniques for efficient
run-time performance. The Omega project has
issued this call to “DVI-ware developers” [4,
page 426, Conclusion], although with surprising
aplomb for the implications. We hereby
respond with our implementation in TRUETEX,
and invite others to build on our experience.
Promulgating the ongoing TEXERU, the TEX-
in-Unicode mapping, based on a seasoned reg-
istry. An ongoing authority for additions and
corrections will be vital. This authority will be
responsible for registering new TEX character
names and avoiding Unicode conflicts.
Changing the plain TEX and LaTEX macros to
accommodate the 16-bit encoding extensions,
while maintaining backward compatibility from
a single source. This is a tall order, and one we
have not touched.

Extending \special handling for 16-bit char-
acter sets. Now we open up the carousing com-
mand of TEX to a whole new vista of revelry,
with the gift of tongues. This is another item
that we shall put off for now.

Implementing TEX and DVI translation user in-
terfaces in selectable languages. While Omega
processes in Unicode, it talks to the user in the
old 8-bit fashion. Perhaps it is a bit much to
expect a Web2C TEX change file to incorporate
wchar_t and other Unicode constructs of the C
programming language. But DVI translators
for Windows NT and other Unicode-capable
platforms should have this designed in from
the start. A properly designed application can
be reimplemented for another language by any
non-programmer who knows the application
and can translate the messages; no program-
ming or recompilation is required.
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Establishing provisions for orderly extension
of the fonts and character sets, so that new
TEX fonts, characters, and encodings may be
incorporated into later versions. Having made
the effort to retrofit METAFONT output for
an altogether different way of encoding, we
would hope that font designers recognize the
shortcomings of the 7- and 8-bit encodings and
keep the promises of Unicode in mind.
Rationalizing the TEX fonts into orthogonal
styles and weights (such as cmmb10 and cmmr10,
for example). As TEX users we don’t care about
this, but if Computer Modern is to be accepted
in non-TEX applications, the style axes will
have to be fully varied and populated along the
conventional ranges.

Providing a means for creating virtual fonts
for non-TEX Unicode fonts in TrueType or
Type 1 format. Although this capability is
available now only in the commercial TRUETEX
Unicode edition, a new TEXware stand-alone
tool could interpret TrueType font files (or
whatever typeface technology is supporting
Unicode rendering) and join the encoding and
other information into an .xvp file.
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