
A New Approach to the TEX-related Programs: A User-friendly Interface

Sergei V. Znamenskii and Denis E. Leinartas
Department of Mathematics Krasnoyarsk State University, Svobodnyi prospekt 79, 660041 Krasnoyarsk,
Russia
znamensk@math.kgu.krasnoyarsk.su, den@math.kgu.krasnoyarsk.su

Abstract

Various TEX-related programs such as TEX, METAFONT, BM2FONT, DVISCR,
DVIPS, BibTEX, and others have to use sophisticated command line options and
configuration files to work cooperatively. Modifying the configuration of such a
complicated system becomes a problem. A good solution is a hypertext-based
language based on an intellegent shell which provides an easy interface for TEX-
users.

The number of various configuration options to use
in a command line or in environment to start a
TEX-related program has become somewhat enor-
mous. The appropriate choice of an option set to
use depends in a rather sophisticated way on hard-
ware configuration, desirable interface and a lot of
installed software-specific features.

Therefore the proper modification of a TEX sys-
tem configuration becomes a problem to the ordi-
nary user even if he uses some shell to facilitate the
work. There exists a wide variety of TEX shells and
different users have different opinions on the sub-
ject of which shell is better. The TEXShell V2.7.1
by von Jörgen Schlegelmilch (available on CTAN) is
currently the most popular non-commercial shell in
Russia to run under DOS. It provides a convenient
user interface. For example, the user can change
printers by just selecting appropriate item in the
menu system; change any command line options;
save changed configurations completely or partially;
use various configurations for different directories;
to run TEX, preview or print a file; and other ac-
tions – by just hitting a ‘hot’ key from the inter-
nal editor. The user may find and correct errors
in a source file(s) easily and get complete hyper-
text help on LATEX and shell functions. The user
can switch the color selection of TEX commands and
control symbols, add any custom batch file or pro-
gram to the user menu from inside the editor, or use
his favorite external editor, etc. The shell supports
the new emTEX directory system under DOS and
OS/2 and uses less then 1k of memory when TEX
or the previewer is executing. The 4TEX shell (last
release 3.26) provides more-or-less similar features,
but TEXShell seems to be a bit more easy to use, es-
pecially with a set of different configurations. Does
anybody really need more?

The TEX user certainly can be happy working
with the TEXShell or any other convenient shell with
the same facilities. Problems arised in the case he
needs to:

• control, on the screen, the margins to be used
on printed paper;

• install another printer;

• use some new emTEX features (such as booklet
printing);

• use one of the very nice extra utilities such as
BM2FONT or MFPIC which depends on printer
font set; and/or

• repeat all the actions above simultaneously.

In such cases, the user will have to look into the
documentation and perhaps write new configuration
and batch files again and again without any hope of
getting a final version. If you only change printers,
for example, You usually have to change the path to
write BM2FONT and MFPIC .pk font files, recalcu-
late the extension set to start GFTOPK execution,
defining resolution, font directories, screen margins
and scaling options for the previewer. Moreover, in
order to determine the correct way configuration,
you need to collect information from a set of docu-
mentation files with the size of hundreds of kilobytes.

None of the existing shells can do it automati-
cally. It is a task for human intellect. And nobody
is able to “teach” any existing shell to perform this
kind of job. You should know all of the interre-
lations between a type of printer, a resolution set
and mode for METAFONT to make the whole system
work correctly. Moreover, the interrelations men-
tioned above may also depend on font directories,
existence of .pk files and other machine-dependent
conditions which you should check before you may

200 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

A New Approach to the TEX-related Programs: A User-friendly Interface

achieve success. The new version of the same pro-
gram usually handles the environment and the com-
mand line options in different way. It is really diffi-
cult.

The experimental TEX shell was designed as
emTEX-based, with the support of RFBR to make
the following extremely easy:

• the use of any TEX–METAFONT interface-based
packages such as MFPIC;

• the use of other packages such as BM2FONT;

• the change of printer driver or changing to an-
other svga mode;

• the ability to see the same margins on screen as
those on the printed page;

• different configurations for different kinds of jobs
(different journals for example);

• writing all temporary files (.log, .dvi, etc.)
to a special directory; and

• the support of all features of the current emTEX
distribution.

The test version of the shell was created based
on the TX sources by Ricard Torres (torres@upf.es)
and which are available on CTAN (a very simple and
effective shell for work with TEX under DOS) and
successfully tested in the Krasnoyarsk State Uni-
versity, several institutions at Krasnoyarsk and in
the Information and Publication Centre of Steklov
Mathematical Institute (Moscow). After we replace
the temporary Russian fonts with the standard set
and probably some other changes as proposed by
the project, the shell will be freely available from
the RFBR Russian TEX server ftp.tex.math.ru via
anonymous ftp as an add-on package to the current
emTEX distribution.

Though it is not the purpose of this paper to
describe our shell completely, we need to give some
information on it. It contains an extremely small
menu, which saves screen space allowing the user
to see a maximum of the program finished before
output. The menu size depends on the number of
files to work with and the number of currently avail-
able commands. One available command is Set (hit
the “S” key) to call a set configuration menu in
which you can select (change) a printer resolution,
svga mode, portrait or landscape mode, output di-
rections, or printer behavior (for two-side printing,
etc.). The format is normally selected automatically,
but you can change it if Hit the <E> key (Edit) to
call the default editor; hit <T> to TEX a file; hit
<V> to preview the file; and so on. Usually the shell
gives a prompt for the next command, and you can
just press <SPACE> to approve the command. If you
work with LATEX files, the default sequence for the

first time to run will be <T> <T> <V> <E>. With
MAKEINDEX the sequence will be <T> <M> <T> <V> <E>

and with MFPIC <T> <F> <T> <V> <E> where <F>

starts METAFONT in the appropriate mode, starts
GF2PK and generates the correct output files. Un-
fortunately there is no on-line help available in our
shell at this time.

As soon as we announced that we were about
to place this shell into the base of a non-commercial
“Russian TEX” distribution, the biggest disagree-
ment became what set of packages was to be sup-
ported. Almost everybody wanted to restrict the
number or packages to use as much as possible, but
insisted upon the inclusion of the packages he know
best. How to resolve this discussion? The only way
we can see is to make a TEX shell to use a widely
variable set of packages which are easy to install
and use – “unpack an play”. The TDS (TEX direc-
tory structure) standard gives us a chance to make
the packages extremely independent upon operating
systems. The more we try to configure the shell for a
new package, which is complex yet still easy-to-use,
the more time we spend checking and correcting all
of the places in the configuration files which affect
the package behavior.

Thus we need a new approach to the shell and
user interface. It should be a shell with some fea-
tures of the human mind, or an “intelligent” shell.

What does that mean? Are we to develop a sys-
tem of artificial intellect only to start TEX-related
programs? Of course not! But we want our shell to
be able to check logical conditions and change the
behavior according to the current situation. This
may be useful not only in the configuration but in
the interface too. It isn’t necessary to have a menu
item “Print” if there is no .dvi file, as well as there
is no need to run METAFONT if an .mf file does not
exist. It would also be better if the shell would lead
us through the menus, choosing the next reasonable
item; i.e., after running TEX, the next action is pre-
viewing and after that it is another edition in the
most cases. The user can agree with the shell by
pressing <ENTER> or choosing something else if he
wants. We believe such advantages makes work a
bit more convenient.

In addition to this, we consider a fully detailed,
context-dependent HELP as a very important part
of the shell. Being concerned with TEX for about
three years we have come to the conclusion that
users sometimes want to have a more detailed expla-
nation of every menu item than the existing shells
support.

How can we improve this service? Nowadays
hypertext structures are very much appreciated in

TUGboat, 17, Number 2 —Proceedings of the 1996 Annual Meeting 201

Sergei V. Znamenskii and Denis E. Leinartas

user guides on computer systems. Many shells pro-
vide reference information organized as hypertext.
TEXShell has only the HELP mentioned above. But
this is not context-dependent, so sometimes it is
quite difficult to find the information you want. Be-
sides, this is a separate part of the shell and the
user would need to interrupt work to study what he
needed to do next.

So we can say that the help is laid down into
the base of the future shell described here. This is
a hypertext-based shell. Each hypertext page con-
tains all reference information about marked words.
Every such word means an action. It may be run-
ning a program or changing its configuration as a
new hypertext page which allows one to take the
next step. To avoid this information, you are able
to enter an “expert” mode and see nothing except
for hypertext references. This seems to be quite easy
to use such shell.

The other task this shell will have to solve is
installation of any additional package which needs
to be integrated into the current conglomeration of
programs. There are many such packages for TEX
now and there’ll be many more in future. Each of
them presupposes its own way of installation and
configuration. Thus, any package which can use the
common directory structure may be installed just
by unpacking the appropriate archive containing a
configuration file for our shell. This file should in-
clude all information about behavior of this package
and have some machinery for configuring the pack-
age. The shell definitely cannot know all packages’
names. That is why the configuration files should
have a special extension, say TXC (for TEX Config).

Now we want to consider the system of config-
uration files for our shell in more detail. Besides the
packages’ configuration files mentioned above, the
system must comprise the main read-only file.

It should be emphasized here that this file is the
shell itself. We mean that the shell is only a program
written for an interpreter of a new language which
allows creation of hypertext with the functions of a
shell.

The next standard file is a file which contains in-
formation about the current state of a shell. This in-
cludes some variables and technical data. The other
file is user-defined, where one can put the name of
the work directory, necessary format, type of printer
and so on. One more file of the same type is the job
configurations file. Here are the common options for
a group of users which do similar work. Another im-
portant file describes various devices used by print-
ers and some programs. And last, but not least, the
station-independent file where common commands

for all supported platforms options are collected.
Having these files, one can be comfortable working
on any station where this shell is installed. You can
prepare your text on one station, compose it on the
server, view on another station and print somewhere
else.

We are not yet ready to describe the program-
ming language which allows creation of such shells;
we can just say that it was developed for purposes
like this and we are still working on it. We only
show one example of a very simple configuration file.
It isn’t a complete shell;however, it gives a glimpse
of the new language under creation: As you can
see from this example, this language is quite similar
to TEX but digits and other special TEX signs are
referred to as strings. One-line remarks preceded
by % are allowed. The command \newpage defines
the highlighted words in hypertext, followed by page
and the hot-key which one can press as well as the
‘Enter’ key to achieve the next page. Language’s
devices provides various detail levels of reference in-
formation which one may use in the shell. It may be
whole pages for a novice or simply highlightings for
an expert. \def looks like TEX’s and is very easy
to understand. It defines new hypertext pages as
are used in \newpage. There are some logical prim-
itives for \if in addition to \exists. They give one
an opportunity to compare dimensions like textttpt,
in, cm and so on as well as numerals and strings.
Standard environment variables defined above are
available as $name$. For example $mfmode$ means
canonbj if you use Cannon Bubble Jet printer in
your system. The command \addnewpack finds the
configuration file of new package and reads it con-
tents. This file should include everything about the
package itself and all interrelations with other pack-
ages too.

The package configuration file can contain spe-
cial commands describing what must be done before
execution of the main commands of some other pack-
age(s) and after it. This looks like a possibility to
avoid user problems of installation. Only unpack-
ing will be required, even for a rather complicated
package such as MFPIC.

We did not have the intention to describe a
completed thing. The aim of this paper was to dis-
cuss a new approach to this problem. In a year we
plan to put the first version of a new shell with a
sources on a Russian TEX server to be freely avail-
able at least for non-commercial usage by anony-
mous ftp.

202 TUGboat, 17, Number 2—Proceedings of the 1996 Annual Meeting

A New Approach to the TEX-related Programs: A User-friendly Interface

%%% A simple configuration file for the shell

\def{\TheHomePage} Now you can compose your file using

\newpage{TeX}{\TeXpage}{T}

\if \exists{$name$.dvi}

or view composed file by \newpage{DviScr}{\dviscrpage}{V}

and print it on the printer \newpage{Print}{\printpage}{P}

\fi

\if \exists{$name$.aux}

\if \infile{$name$.aux}{\bibdata}

And now you can call \newpage{BibTeX}{\bibtexpage}{B} to

complete the bibliography.

\fi

\fi

%%% Below the approximate scheme of adding new packages is shown

%%% the command \addnewpack adds found in the directory ../texmf/txc/

%%% files <package_name>.txc to the page \packages

\addnewpack

From the moment of the latest upgrade of our shell the

\newpage{New Packages}{\packages}{}

is appeared.

}

%%% The Home Page definition is completed.

%%% Now we should define the pages mentioned in it

\def{\TeXpage}{By pressing the word \newpage{\TeX}{\runshellscript}{}

you run TeX and provided there are no mistakes new file $name$.dvi will

appear.

\if \exists{$name$.dvi}

And you can \newpage{View}{\dviscrpage}{V} it.

\fi

You can configure TeX on the page

\newpage{configuration}{\texconf}{}}

...

Figure 1: Sample configuration shell

Acknowledgements

This work was supported by Russian Foundation of
Basic Research grant 95-07-19400v.

TUGboat, 17, Number 2 —Proceedings of the 1996 Annual Meeting 203

