FALEX

A LATEX Tour, part 2: The Tools and Graphics distributions

David Carlisle

Introduction

In the previous article in this series I started by giving a description of the files in the 'base' LATEX distribution. In part 2, I shall cover the 'tools' and 'graphics' distributions. These are distributed in the tools and graphics subdirectories of the CTAN directory macros/latex/packages. Although these files are not part of the minimal base distribution they should normally be included in the LATEX installation at any site. The LATEX book assumes that at least the graphics distribution is installed.

The primary source for LATEX is the 'CTAN'¹ network of archives, so if I refer to path names of files this relates to the CTAN file structure. Note however that if you obtained LATEX as part of a 'prepackaged' TEX distribution, then these files may have been moved (typically documentation files may be separated from TEX source files). I hope this will not cause any confusion.

The Tools Distribution

The tools distribution consists of packages written by individual members of the LATEX3 project. They are supported by the same mechanism as the base LATEX distribution, that is, any problems should be reported using latexbug.tex and the LATEX bug report database, as described in part 1. Note that this bug report system should *not* be used for 'contributed' packages that one may find in the macros/latex/contrib area of the CTAN archives.

Packages Extending the array and tabular

Environments The first group of packages extends the functionality of the standard IATEX array and tabular environments. These are all described in Chapter 5 of *The IATEX Companion*, as well of course as in the source '.dtx' files which may be processed by IATEX to produce typeset documentation, and optionally code listings.

array Extended versions of the array, tabular and tabular* environments. The principal advantage of the versions provided by this package is that you can specify typesetting instructions to apply to a whole column of the table. As well as the usual clr column specifiers, one may add commands at the beginning of each entry with > and at the end of each entry with <. So a column specifier of >{\bfseries}c would produce a bold, centred column of a table.

The array package also provides a command \newcolumntype for defining new column specifiers, in addition to the standard ones. This is used by some of the packages described below.

- dcolumn Alignment on 'decimal points' in tabular entries. Requires array. This package provides a new column specifier D which may be used to produce columns of numbers aligned on a decimal point '.' or some other symbol, such as '.' or ','.
- delarray This package requires the array package. It provides a mechanism for specifying 'large delimiters' around arrays. This is most convenient for putting brackets around arrays that are to be aligned on their top or bottom row (when the 'obvious' construction with \left and \right does not work). Compare the standard

```
\left(
\begin{array}[t]{c}a\\b\end{array}
\right)
\left(
\begin{array}{cc}a&b\end{array}
\right)
```

$$\left(\begin{array}{c}a\\b\end{array}\right)\left(\begin{array}{c}a&b\end{array}\right)$$

with the effect produced using the delarray syntax.

\begin{array}[t]({c})a\\b\end{array}
\begin{array}({cc})a&b\end{array}

$$\left(egin{array}{c} a \\ b \end{array}
ight) \left(egin{array}{c} a & b \end{array}
ight)$$

hhline Finer control over horizontal rules in tables. Requires array. Standard LATEX's \hline\hline construction produces a double rule across a table, but the user has no control over how this rule interacts with vertical rules. Using the \hhline command provided by this package gives 'corners' where a double horizontal rule meets a double vertical rule, and other similar effects.

Compare the first, standard, construction with the following **\hhline** sample:

¹ ftp.tex.ac.uk in the UK, ftp.dante.de in Germany, and ftp.cdrom.com in the US

longtable Standard LATEX tables (i.e., the tabular environment) produce 'boxes' that cannot be broken across a page. This has advantages in that the table can then be positioned just like a large 'character' (say centred by the center environment), but has the disadvantage that large tables need to be broken by hand to fit on the page. The longtable environment is essentially the same as tabular but produces tables that break at page boundaries, and has some additional commands to control 'head' and 'foot' lines of the table that are added to each page. If the array package is also loaded, then the extra features may also be used in longtable column specifications. Note that longtable can deal with very long tables, longer than can be stored in memory by T_FX's primitive \halign command.

The longtable package has a few quirks and features that mean that it is not suitable in all cases. An alternative package (currently maintained by Johannes Braams, but as a contributed package, not as part of the tools distribution) is the package supertab which provides a similar supertabular environment.

tabularx Defines the tabularx environment which is similar to tabular* but modifies column widths, not inter-column space, to achieve a desired table width.

One common request is to combine the features of tabularx with longtable, i.e., have a table across multiple pages, in which the widths of the 'parbox' columns are calculated automatically. This functionality is not provided by the standard packages in the tools distribution, but the experimental contributed package ltxtable does provide such an environment. (ltxtable is written by the same author as longtable and tabularx; however, problems with ltxtable should *not* be addressed to the LATEX bugs system.) An alternative to ltxtable is Anil Goel's contributed package, ltablex, a similar merger which is simpler to use than ltxtable, but not quite as powerful.

Missing File Error Control Files Although these files (which are all generated from the same source file, fileerr.dtx) are distributed as part of the LATEX distribution, they are possibly of more use when used with *other* formats. The primitive TEX behaviour if asked to input a non-existent file is to offer a prompt:

Please type another input file name:

You must type a valid file name to this prompt or $T_{E}X$ just repeats the request. On some systems you can use a mechanism to abort the job (e.g., control-C or control-Z) but there is no way to tell $T_{E}X$ to skip the input or do any other error recovery.

To avoid this unpleasant loop, IATEX always checks that a file exists before trying to input it (unless you use the primitive \input filename syntax with no { } around the argument).

If you do encounter this loop using a different format, or with LATEX, by mistyping the file name on the command line, then the following .tex files provide valid filenames that you can easily remember to type at the missing file prompt. The actions that each of these .tex files takes is designed to mimic the actions that are possible after a TEX error.

- h Typing h (return) to the missing file prompt will cause TEX to input h.tex. This produces a helpful message, and then produces the normal 'error prompt' i.e., ? so you can hit (return) to move on, or x to quit, or whatever.
- s Typing s (return) inputs s.tex which puts T_EX into 'scroll mode'. This means that it will scroll past future errors without stopping.
- x Typing x (return) causes the current T_EX run to be aborted.
- e The file e.tex is in fact the same as x.tex but allows e to be given as an answer to the missing file prompt similar to the e response to the error prompt (which is supposed to start up an editor but usually is the same as x).
- If the operating system allows there will also be a file .tex which does nothing, this will mean that just hitting $\langle return \rangle$ in response to the missing file prompt inputs .tex and allows TEX to proceed with the original file. Some operating systems object to a file with only an extension and no filename before the '.' so this option may not be available to you. Most TEX distributions include a file null.tex which is also empty, so if you do not have the option of installing the file .tex you may type null $\langle return \rangle$ in response to the missing file prompt, which will also allow TEX to proceed.

Miscellaneous **Tools** Packages

afterpage Defines an \afterpage command that saves up its argument and executes it after the current page (i.e., at the top of the next page). IATEX's output routine was *not* designed with the idea that packages might want to play this kind of trick, so this package is particularly fragile. In fact it was only written as a kind of private joke; I noticed the comment "Output routines are always protected by enclosing them in groups, so that they do not inadvertently mess up the rest of T_EX " in the T_EXbook , and wanted to answer² the question, "Where do you end up if you jump out of that group with \aftergroup?" Despite this, judging by reactions, people do seem to find the package useful...

- enumerate Extended version of the enumerate environment. The environment is given an optional argument which controls how the counter is printed. For example \begin{enumerate}[a]] would produce items labelled 'a)' ' b)' ' c)'.
- ftnright Place footnotes in the right hand column in two-column mode. Normally IATEX places footnotes at the bottom of each column. This package causes the footnotes for both columns of a page to be set in the normal text area at the end of the second column on each page. It currently works only with the standard two column mechanism, not with the mechanism of the multicol package.
- indentfirst Indent the first paragraph of sections etc. This very small package just suppresses the usual LATEX mechanism which ensures that the first paragraph of each section is not indented.
- multicol Typeset text in columns (up to 10 columns per page), with the length of the final columns 'balanced'. *Baskerville* uses this package to balance the columns at the end of every article. Unlike the standard \twocolumn command, this package allows changing the number of columns part way down a page. It does have some restrictions on the use of floats which means that it is not suitable for all purposes. Also (uniquely for the files in the core IATEX distribution) this package has special conditions on commercial use.
- rawfonts Preload fonts under the old internal font names of IAT_EX 2.09. Not recommended for new packages, but may help when updating old files.
- somedefs This package is not intended to be called directly by a document, but may by used (via \RequirePackage) to build a package in which you want the default behaviour to be to execute all possible options, but that the user may execute just some of the options by specifying options in the \usepackage call. This is used in the rawfonts package above to allow just some

of the 'old' font names to be defined rather than all of them.

- theorem Flexible definition of 'theorem-like' environments. The standard \newtheorem command gives some control over the title and numbering of 'theorem-like' declarations, but is not very flexible. The theorem package provides an enhanced declaration scheme which gives control over the fonts used in the heading and theorem body, and such details as whether the numbering is 'Theorem 1' or '1 Theorem'. Recently this package has acquired a close cousin, the amsthm package, part of the 'AMS-LATEX' collection. The AMS variant has perhaps slightly simpler user-syntax but is used in much the same way.
- varioref Provides \vref and related commands. \vref is like a combination of \ref and \pageref which produces references such as 'Figure 2 on page 3'. However, it omits the page number if it is on the current page, and replaces it by phrases such as 'on the facing page' when appropriate.
- verbatim Flexible version of verbatim environment. The standard LATEX verbatim environment can not easily be used in the definition of other environments as typically the \end of the newly defined environment is not recognised as such, but is treated as verbatim text. This package re-implements verbatim such that (with some restrictions) it can be used in the definition of other environments and commands. It also defines some such derived environments, for inputting and writing files verbatim, and for adding line numbers, and also a comment environment that ignores all the environment body.
- xr The xr (external references) package allows one IATEX document to access the .aux file of another. So if file fileA has a section marked with \label{xyz} then file fileB may refer to that section using \ref{xyz} just as if it were part of the same document. This requires the file fileA.aux created when fileA was processed to be still available when fileB is processed. (This package was originally by Jean-Pierre Drucbert, but was recoded and adopted into the tools distribution.)
- xspace One of the more common errors in TEX
 documents is to use a command such as \TeX
 within text, but forget to follow it with \□ or
 {}. This package defines a command \xspace
 which may be used at the end of the definition
 of such a 'text command'. It looks ahead

 $^{^2}$ The answer incidentally is not at the top of the next page, but rather any of the places where the T_EXbook uses the magic phrase "exercises the page builder".

and adds a space unless the next token is a punctuation character.

Packages for Drafts and Tests

- fontsmpl Package and test file for producing 'font samples'. The base distribution contains a file nfssfont.tex that shows some small samples, and a character table for a given font. fontsmpl.tex produces a much more extensive test showing examples of all the fonts in a given family. If you want to devise your own similar test suite you may use the fontsmpl package, following the examples in fontsmpl.tex.
- layout Defines a \layout command that produces a half size 'picture' of the document page settings such as \textwidth, \oddsidemargin, ... together with a table of their values. This is quite useful when designing a new class file, as it gives a visual representation of how the various areas of the page for headlines, body text, marginal notes, etc., relate to each other.
- showkeys LATEX's automatic numbering and cross referencing feature is one of its strongest points, as it makes editing a document (and thus potentially changing the numbering throughout the rest of the file) quite painless. However, one disadvantage is that when reading a printed draft, one sees 'final' numbers rather than the symbolic names that are used in the source file's \label and \ref command. This package makes these symbolic names, or 'keys', ap-
- [b] pear in the margin in the case of \label and \bibitem or raised above the number, like this [b], in the case of \ref and \cite. Some people find the raised labels above cross references distracting and so a package option turns them off, just leaving the marginal notes showing the \label and \bibitem keys.

The Graphics Distribution

TEX (and the dvi format) is only designed to deal with rectangular boxes consisting of text, white space or rectangular rules. However it has an 'escape mechanism', the **\special** primitive command that allows processing instructions to be passed straight from TEX (via the dvi file) to the 'driver' program that is used to process (e.g., preview or print) the dvi file. TEX places essentially no restrictions on what instructions may be passed via **\special**, and so the possibilities are unlimited...

Most modern drivers can import 'graphic' files of various sorts. Those drivers that are producing PostScript can often do more extensive manipulations of the typeset text, such as scaling or rotation of the text, or even writing text along an arbitrary curve. Many of these drivers can also support colour to some extent. Unfortunately as all these features require that the dvi file stores processing instructions for the driver, it means that the dvi file is not portable to a site that uses a different driver program. There have been many attempts over the years to coordinate the \special syntax used by the different drivers, so that they would all accept a common core of processing instructions, but there has been notable lack of success in such efforts to date...

As a 'next best thing' to having portability at the dvi level, LATEX supplies a suite of standard graphics commands provided by the packages described in this section, so that at least T_FX source files should be reasonably portable. At a given site the graphics packages will be customised to use a suitable 'back end' file that converts the LATEX syntax into the form required by the local driver. This should mean that as long as both drivers support some feature, such as including PostScript graphics, a file just needs to be re-processed with LATEX to use the \specials at the new site; the LATEX file does not need to be edited. Although this suite of programs was devised as part of LATEX, users of other T_FX formats may use them by way of the interface available from CTAN hosts in macros/ generic/graphics.

Documentation All the packages in this distribution are, as usual, distributed as documented sources in dtx form, however the documentation in these package sources is rather technical. A separate 'User Guide' is available as IATEX source in grfguide.tex and also in pre-formatted form in the PostScript file grfguide.ps.

The color package (which produces colours despite the strange spelling) and the graphics package are also described in Lamport's IAT_EX manual. An alternative to grfguide.tex as a free source of documentation is Keith Reckdahl's Using EPS Graphics in $IAT_EX 2_{\varepsilon}$ Documents distributed from CTAN sites in the file info/epslatex.ps and published in TUGboat 17, no. 1-2. This document covers the graphicx package in some depth, and also related contributed packages for controlling figure placement and captions, and the psfrag system for overlaying IATEX text over a PostScript diagram.

Colour

color Produce coloured effects in your document. The \color{red} declaration would make all the following text red, the similar \textcolor command takes an extra argument that specifies the text to be coloured (by analogy with \rmfamily and \textrm).

One may also produce boxes with coloured backgrounds using the \colorbox command.

Accurate treatment of colour is probably the feature that requires the most 'help' from the driver program. If your driver was not specifically written to support colour then probably the color package will not work at all, or will be limited to regions of colour that fall on one page, and all the current colours will be 'forgotten' at a page break.

pstcol The pstricks package of Tim van Zandt provides a very powerful interface to PostScript. Unfortunately the package has some slight incompatibilities with the color package. If a document loads pstcol, both color and pstricks are loaded, and then a few internal pstricks functions are redefined to repair the incompatibility.

Rotation, Scaling and Graphics Inclusion

- graphics This is the core LATEX package for rotation (\rotatebox), scaling (\scalebox and \resizebox) of text, and the inclusion of graphics images (\includegraphics). Unlike the old LATEX 2.09 packages such as psfig the \includegraphics command is not restricted to PostScript graphics, but can include any graphics formats that your driver supports.
- graphicx Often when including graphics files one needs to specify combinations of scaling and rotation and other special effects. The graphics package uses standard IATEX 'positional' optional arguments which means that it is not practical for any command to support more than a couple of optional arguments. The graphicx package calls the graphics package internally, but offers a more powerful and friendly 'named argument' interface in which an arbitrary number of optional keys may be set in one [] argument. For instance to include a graphic scaled to half size, and rotated through 90°, one can specify

\includegraphics[scale=.5, angle=90]{file}

To do the equivalent with the graphics package would require nested calls of \includegraphics inside \scalebox inside \rotatebox.

1scape Provides a landscape environment within which the body of every page is rotated through 90° . The page head and foot are not rotated, but stay in their usual positions. It requires the graphics package which is used to handle the rotation.

epsfig The obsolete $\[Mathbb{A}TEX 2.09\]$ did not come with a standard graphics package. Two popular contributed packages to include PostScript graphics were psfig (T. Darrell) and epsf (T. Rokicki). Sebastian Rahtz merged and extended these to produce the package epsfig. The epsfig package became very popular, especially after it was given extensive coverage in The $\[Mathbb{LATEX}\]$ Companion. For this reason the current distribution contains a package called epsfig so that old documents do not need converting to the new system. However this epsfig is just a wrapper that converts the old syntax into calls to the new \includegraphics command and so should not now be used for new documents.

Driver Files As mentioned above, these packages all require customisation to a particular driver. This may be specified either in a site configuration file, or as a package option in the document. The code for these drivers is all stored in '.def' files, so for instance the code for the *dvips* driver (and also for xdvi which uses the same \special syntax) is stored in dvips.def. All these driver files are derived from the same source, drivers.dtx, except for the Textures file which is currently distributed as a separate textures.def contributed by Arthur Ogawa. One special .def file does not correspond to a driver, dvipsnam.def predefines the 60+ colours that are 'known' to the *dvips* driver. It may be used with other drivers as well, as described in the color package documentation.

Other Graphics Packages The remaining two packages do not have code that is specific to dvi driver programs, and so in some sense do not really belong in the graphics distribution; they are used by the graphics and graphicx packages. In fact the code of either of these packages may be extracted and used in any format based on plain T_EX . They do not use any LATEX specific features.

- keyval The graphicx package makes use of a 'named argument' or 'key equals value' syntax as described above. Keyval provides a general parser for such a syntax, so this package is unlikely to be directly called within a document, but may be loaded by \RequirePackage by any package or class file that needs to define commands with such a syntax.
- trig This package provides functions for calculating the trigonometric functions sin, cos and tan. These are used by the graphics package for determining the amount of space a rotated box will take up.

Coming Soon

Part 3 of this tour will describe the files of Johannes Braams' babel distribution of packages for multilingual typesetting, the psnfss distribution of Post-Script font related packages, and mfnfss distribution of packages for loading 'Pandora' and 'Old German' fonts.

David Carlisle
 Mathematics Department
 Manchester University
 Oxford Road
 Manchester, England M13 9PL UK
 carlisle@ma.man.ac.uk