
From SGML to HTML with help from TEX

Christopher B. Hamlin
American Institute of Physics, 500 Sunnyside Boulevard, Woodbury, New York 11797
chamlin@nassau.cv.net

Introduction

At this time there is still no fast and standard way
of presenting mathematics in HTML pages. Various
ideas have been tested and the W3C has just released
a draft math markup proposal. When combined
with freely available fonts containing the required
mathematical characters, we can see much potential
for the future.

For now it seems that there is only one common
denominator suitable for quickly browsing HTML

with lots of math: preprocess the mathematics into
images and embed links in the HTML that call in
the images.

The following describes work at AIP in convert-
ing physics research articles from SGML to HTML,
creating the needed images for math. This allows
us to present abstracts or full articles on the web.
The tools used are TEX, AMS-LATEX, dvips, Image
Alchemy (for image processing), various PostScript
(PS) fonts, gcc, and perl.

Source SGML

AIP uses a DTD based on the ISO 12083 DTD for
its abstracts and articles. Math is basically in the
12083 model, though there are minor extensions in
the AIP DTD. The AIP DTD also includes another,
simpler math model for backward compatibility with
older data. Deviations from standard 12083 math
are handled by transforming them into 12083 for-
mat, so they can be ignored for now.

Though it might be possible to just set all math
as GIFs, it seems that it should be possible to use the
ability of HTML in setting bold, italic, superscripts,
and subscripts, along with a handful of special char-
acters. First we look to see what the SGML math
looks like. Note that this discussion may include
some interpretation specific to the AIP use of SGML

math, but the ideas will probably be similar to other
uses. We will be mainly focusing on inline math; dis-
played equations will be set as single images using
the same techniques.

The 12083 math model can be simplistically
viewed as a string of items to be set. Each item con-
sists of a base followed by optional embellishments.
The base can be a character, entity, or element. The

embellishments can be a sup (superscript), inf (sub-
script), top, bottom, or middle. Together, sups and
infs will be called “scripts”. A script may be set ei-
ther before the base (the location attribute is “pre”)
or after the base (the location attribute is “post”).
Top embellishments are set over the base, bottoms
are set below, and middles are set as overprints on
the base.

It should also be noted that while sups and infs
can only be set explicitly with the use of the sup
or inf elements, there are a number of entities that
are implicit embellishments, either top, bottom, or
middle. Also, the order of the embellishments in
the SGML is used in rendering them: scripts are set
left to right, while top and bottom are set from the
inside out.

Here are a few examples to show how embel-
lishments work.

scripts:
a² gives a2

a² gives 2a

a²<inf>1</inf> gives a2
1

a²<inf arrange="stagger">1</inf> gives

a2
1

top (explicit, with <top> tag):
a<top>*</top> gives

∗
a

top (implicit, with entities):
a˙ gives ȧ

a¯˙ gives ˙̄a

middle:
a<middle>*</middle> gives a∗

bottom:
a<bottom>*</bottom> gives a

∗

combination:
a¯²<top>*</top><inf>1</inf>

gives
∗
ā 2

1

In considering the interactions between the base
and its embellishments, it can be seen that there
are three areas that can be set separately: the pre
scripts; the base and any tops, bottoms, or middles;
and the post scripts. There is little or no interac-
tion among these three zones other than using the

170 TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting

From SGML to HTML with help from TEX

height/depth of the base for setting the script base-
line. We will ignore this effect for in-line math since
it rarely has much effect. (Remember that the res-
olution of a computer screen is 72 dots per inch, so
the smallest unit on a screen is ≈1 pt.) We set dis-
play equations as a unit so this question does not
arise there.

Reading and processing the SGML

The controlling program in the SGML to HTML

translation is a C program called s2h. There are
three stages in the translation: read and parse the
SGML, apply transformations to the SGML, and fi-
nally produce the desired output. Splitting the pro-
cess up into these parts gives s2h some flexibility.
Input may come from standard input, a file, or a
database query. Tranformations may be applied de-
pending on the output desired or the type of input.
Output can be to standard output, a file, or to a
string for database insertion and can be in various
formats (ASCII, HTML, TEX).

The SGML input is read by s2h and parsed into
a simple tree structure that directly represents the
structure of the SGML. Nodes are elements, char-
acters, or entities. After the tree has been created,
several transformations are applied.

For example, the equation

b + 2x2
1 ± 3ä

could be input in SGML as

<bold>b</bold>+2x²

<inf arrange="stagger">1</inf>±3a¨

and would create a tree with <bold>, +, 2x,
<sup>, <inf>, ±, 3a, and ¨, on the first
level. Only the content of the elements would be on
a lower level.

Some transformations would normally be ap-
plied to the tree at this point:

1. Character transformations to normalize the in-
put. This is mainly to identify accented char-
acters that can be set in HTML.

2. The math is normalized to represent the older,
simpler AIP math model in the newer 12083
math model.

3. An older AIP font model is normalized to the
the 12083 model.

4. The structure of the tree is changed to directly
attach the embellishments to their bases and
to separate the various types of embellishments
into different lists. This takes the embellish-
ments out of the normal tree structure and as-
sociates them strictly with the base.

5. Contiguous character data is normally kept in
long strings rather than split up into separate
nodes, but it may need to be split up so that
a single character can be used as a base for an
embellishment.

In the transformed tree, 2x would be split up and
the sup and inf would be attached to the x on its
post script list. The 3a would also be split and the
a and ¨ would be combined into ä.

Now we have a tree where the top level consists
of just bases. The embellishments are out of the
normal structure and attached to the bases. They
are also sorted into separate lists for pre scripts, post
scripts, tops, middles, and bottoms, retaining their
relative ordering within each such list since this will
determine the order in which they are set.

Now, some output

To start, we look at how to output to HTML for
math that doesn’t need GIFs. This means there can
be no tops, bottoms, or middles, and complicated
bases — e.g., fractions or roots — are impossible.

To output to HTML we just move along the top
level of the SGML structure. For each base, first do
the pre list, then do the base, then do the post list.
In doing the base we can first do work on reaching
the base, then we output the base’s content, and fi-
nally we can also do work on leaving the base. When
we work on the content of the base (or an embellish-
ment) we just apply the same idea to the first level
of its contents. In other words, this simple left-to-
right processing just works recursively to format a
transformed SGML tree or subtree.

In outputing the bold element, the HTML tag
for starting bold () is output at the start and the
HTML for ending bold () is output at the end.
Whatever the contents are, they will be output in
between these tags and so will end up bold.

Here is our “simple” example output in HTML:

b+2<i>x</i>²

<inf>1</inf>±3<i>ä</i>

Notice that there is already the complication
of setting Latin letters in italic when they are in
math. This can be controlled because any math in
an article would be inside an SGML formula element.
When outputing character or entity data it is nec-
essary to check to see if you are in a formula, and if
so to put the character in italic if it is a Latin-based
letter.

We see that a fair amount of math can be set
with just the normal HTML facilities. However, even
the simplest math will run aground because of the

TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting 171

Christopher B. Hamlin

limited character set available in HTML. This is the
beginning of the use of TEX in the project.

GIF interlude

When including GIF images in-line in HTML text
there arises the problem of vertical alignment. By
using the alignment attribute of the HTML img tag,
one can align an image on the baseline by either
its bottom or middle. When setting a character or
math image that does not extend below the baseline
we just align the image by its bottom. For example,
α. However, what do we do if we wish to set a
β? Aligning by its bottom gives β . Aligning by its
middle gives β . One compromise is to align by its
middle after making sure that the top and bottom
halves of the GIF are equalized by adding in white
space. This gives β . Note that this can have a

very bad effect on the leading. However, leading
is already bad in HTML, and any in-line images or
superscripts just make it worse, so this may not be
such a high price to pay.

Setting special characters

Let us now work on creating simple GIFs to repre-
sent special characters (entities in the SGML).

1. First we keep a control table for all legal enti-
ties. This table will contain ASCII, TEX, and
(possibly) HTML translations of all entities.

2. When translating, if there is no HTML repre-
sentation then we use the TEX translation to
create a TEX file.

3. Since TEX knows the width, depth, and height
of all the boxes it sets, have TEX typeset the en-
tity and check the depth. If it is >1 pt, say, bal-
ance the height and depth by setting the lesser
of the two equal to the greater. Alignment info
is written to the log file to tell the translator
whether the final GIF should be bottom or mid-
dle aligned. The translator reads the log file
after TEX runs and sets the GIF alignment via
the align attribute of the HTML img tag.

4. dvips is run to create a PS file from the dvi
file. The PS file can then be rendered into GIF

format using Image Alchemy. But it’s a prob-
lem to keep the extra white space needed to
balance the top and bottom of the GIF for mid-
dle alignment. Image Alchemy can autocrop a
PS file when creating a GIF, but then it (cor-
rectly) throws away the white space. dvips can
be told to create an EPS file with a Bounding-
Box comment. This comment gives the lower-
left and upper-right points of a box that con-
tains all the printing on the page. This com-

ment can be used by Alchemy for cropping if
present. Unfortunately, dvips (correctly) does
not include white space in the bounding box.
But TEX knows the height, depth, and width
of the box being output, including white space.
Since each GIF is set separately, and all we care
about is the one piece of math we are setting,
we can further customize the TEX run:
(a) Have TEX write into the log file the dimen-

sions of the math output box.
(b) Override \output to do nothing but ship

out the box, which then comes out with
the upper-left point of the box 1 inch in
and down from the upper-left corner of the
dvi page.

From this information accurate bounding-box
values are calculated and then inserted into the
PS BoundingBox comment. Telling Alchemy to
clip to the bounding-box dimensions then gives
(fairly) accurate clipping and lets us retain the
white space inserted by TEX.

Reusing stock GIFs for special characters

Since we don’t want to recreate character entities
each time, we can create them before creating any
HTML. Then the same GIF will be called in each
time the character is shown on the screen and no
computation needs to be done at translation time.
We can do this as follows:

1. Go through the control file to get all the entity
names and their TEX translations.

2. Render all the characters to GIFs. Collect the
names of all the entities that need to be middle
aligned.

3. When translating, call in the stock GIF with an
img tag. Set the alignment using the informa-
tion collected in the preceding step.

How we store and recall the GIF files may change ac-
cording to the final product requirements, but stor-
ing them according to entity name is convenient
since it is already a unique identifier in AIP’s SGML.

In building the s2h program the alignment in-
formation is stored in an alignment control file as a
simple list of entities that are to be middle aligned.
In creating the s2h executable this control file is run
through a perl script that creates C source code.
This code is then compiled into s2h so that it knows
how to align all the stock entity GIFs when it calls
them in.

Scripts complicate the use of stock GIFs since
the GIFs we have created will be the wrong size for a
script. Therefore we create scriptsize versions of all
the characters and using these smaller versions when

172 TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting

From SGML to HTML with help from TEX

characters are set in scripts. The use of images in
scripts works well in HTML, fortunately. For ex-
ample, the SGML x^{α} would be
translated to x<sup><img align = "bottom" src =
"alpha-script.gif"></sup> in HTML.

Custom GIFs for math

We have seen that all the special characters can be
created beforehand and much can be done with stan-
dard HTML tagging. What can’t be done, and how
does the translator actually decide what to do in
HTML and what to send through TEX at transla-
tion time?

Certain elements cannot be done in HTML at
all. This includes roots, overlines, fractions, and
arrays. We call these bad elements. Entities that
can normally be shown using our stock GIFs can
present a problem if occurring inside bold or bold
italic. Such entities are called bad entities. When
scripts are kerned or contain bad elements or enti-
ties, they are bad scripts.

With the preceding definitions, and remember-
ing our notion of a base with various attached em-
bellishments, we can now define an algorithm:

When translating SGML, move along the top
level of the tree. For each item you encounter, do
the following:

1. If any of the pre script embellishments are bad
scripts, do all the pres with TEX. Otherwise do
them all via HTML.

2. If the base is a bad element or entity, or if it
has top, bottom, or middle embellishments, do
the base and its embellishments and contents in
TEX. Otherwise do the base element in HTML

and apply this algorithm on the contents of the
base.

3. Apply rule 1 to the post embellishments.
Note that the alignment mechanism outlined

for special characters works fine for more compli-
cated math. Display math (the <dformula> ele-
ment) is simply defined as a bad element so that
the entire equation is done as a GIF. GIFs for dis-
play math are always bottom aligned with no height
or depth adjustment.

Reusing custom GIFs

After all this, it would be nice to be able to reuse the
GIF for M̄ , or for the script combination 1

2. In fact,
using just a few base and script GIFs can produce
a lot of different math since the bases may be used
with any of the script GIFs or with HTML scripts,
and the script GIFs may be used with any of the
base GIFs or with HTML bases.

In order to track the GIFs an array of pointers
into the SGML tree is maintained. Before render-
ing a subtree it is checked against the subtrees in
the array and a previously rendered GIF is used if
one exists. It is also necessary to compare the font
contexts since this can have an important effect on
the subtree’s rendered appearance (see following sec-
tion).

The ideal solution would be to “stringize” the
SGML subtree (along with its font context) into a
key that uniquely describes the GIF. Then com-
monly used math fragments could actually be reused
for many articles, producing further efficiency. This
idea has not been implemented.

Font handling

s2h sets all TEX fragments in math mode. This was
done because it was rare to set nonmath through
TEX. Only a few text-mode accents and a hyphen
had to be provided in order to set all the usual TEX
characters in math mode. Font-style changes are
used in AIP’s SGML instead of entities for each let-
ter. For example, script M is input as <script>M
</script>, not &scrM;, and bold script M is set as
<bold><script>M</script></bold>.

It took a little while to realize how easy it is
to implement this font scheme in LATEX 2ε, thanks
to its designers’ forethought. Everything maps sim-
ply: math is set with \mathnormal (the default), ro-
man with \mathrm, italic with \mathit, script with
\mathcal (using Y&Y’s MathTime script, which
includes lowercase letters), etc. Bold is set with
\boldsymbol. If bold in math implies upright
Latin letters, as it does for AIP’s SGML, merely use
\boldsymbol{\mathrm{...}}. Note that the differ-
ence between math and italic is obvious in TEX —
in HTML it is necessary to look at characters and
entities output from math to see if they must be set
in italic with HTML’s <i> tag, while leaving num-
bers, punctuation, and other characters and entities
in the default roman.

The algorithm for deciding what needs to go
through TEX seems to work generally but its re-
cursive nature means that we may be several lev-
els deep before TEX is invoked. So small pieces of
math may be set without their normal font con-
text. For example, a small piece of math may be
<bold>x−α</bold>. There is no need
to set the x or minus via TEX, but the bold alpha
cannot be set with HTML and so must be set with
TEX (it is a bad entity, according to our algorithm).
But it is not enough to set α since it will not
be set bold. It is necessary to create a font context in
TEX that matches that of the small piece of math we

TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting 173

Christopher B. Hamlin

are setting. In the case of the above we would need
to set $\boldsymbol{\mathrm{\alpha}}$. The
\mathrm is not needed for this case but would be
necessary if a Latin letter occurred.

A special case is the occurrence of special ac-
cents outside math; for example, for names. The
character ż is not uncommon but is not available in
HTML. If this occurs in an author’s name then it
should not be set in italic. Thus it is necessary to
assume a roman font context if the math fragment
being set is not inside math in the SGML. So if you
had z˙ outside math you would set the z˙
in TEX as follows: $\mathrm{\Dot{z}}$.

A further complication is that the HTML tag-
ging can impose a font context that may or may not
be known when the SGML is converted. Perhaps the
authors’ affiliation will be set italic in HTML, per-
haps not. It may be possible to control this effect
when known beforehand.

Customizing TEX

As mentioned, LATEX 2ε is an excellent base for such
work, especially in its font handling. Though the
number of fonts and families is a potential prob-
lem, it never has been in practice. Using the AMS-
LATEX package for its math and font handling pro-
vides most of what one needs for math typesetting.
The \underset and \overset macros can be used
to implement bottom and top embellishments, re-
spectively. AMS-LATEX also does a nice job of set-
ting combinations of the most common accents. The
amssymb package provides many predefined sym-
bols from the AMS Fonts.

After using the AMS packages a few hundred
characters were still missing, about half of which
were phonetic characters. These characters already
existed in PS fonts used by AIP’s composition sys-
tem so two virtual fonts were created — one for pho-
netic characters and one for other characters. Sev-
eral characters were created with TEX macros (e.g.,
lambda-bar).

After the fonts were created there was still some
work to do in defining accents that TEX doesn’t nor-
mally provide. A simple overprinting macro was
defined for middle embellishments. \mathaccent
was used for overaccents where actual accent char-
acters already existed in fonts. \overset was used
to implement overaccents where only normal-sized
characters exist (e.g., harpoon overaccents). Simi-
larly, underaccents were implemented by using ei-
ther \ooalign (e.g., for a math-mode cedilla) or
\underset.

Though the interaction between top, middle,
and bottom embellishments could be a factor, it
never really is. The different types rarely get used
together, and the quality that can be achieved via
GIFs is already generally low.

174 TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting

