
DVIPDF and Graphics

Sergey Lesenko
Institute for High Energy Physics
Scientific Information Department
142284 Protvino, Moscow Region, Russia
lesenko@mx.ihep.su

Abstract

This paper describes how the dvipdf program inserts BMP, JPEG, PNG and EPS

graphics into its output. It also discusses geometric transformations of image,
text and rule objects.

Introduction

For today’s scientific publications, we have to pro-
vide for accessibility via the Internet, and need an ef-
fective presentation format for our documents which
supports a wide range of hypertext and graphic fea-
tures. One option is the Portable Document Format
(PDF) [1], probably the most popular system for dis-
tributing complex formatted documents. PDF per-
mits us to use color, geometric transformations and
included images (vector and bitmap). This paper
describes how a document in PDF with such graphic
features may be prepared using TEX and dvipdf.

Graphic commands

Although TEX has only a limited capability to deal
with graphics, it has the wonderful property of the
\special command, which allows us to perform ar-
bitrary tasks at the level of driver programs, which
include dvipdf. This is based on dvips [2], and it
would be preferable to support the same commands.
However, dvipdf is oriented to a more confined out-
put format, and a new set of \special commands
has been introduced to permit better performance.
The syntax for these has already discussed in [8], and
all the \special commands for graphics are listed
in Table 1

Only a minimal number of parameters for the
DVI file is required, and the full set needed in the
PDF output is computed by dvipdf. This means that
writing macros or incorporating the \special com-
mands into style packages is not difficult. The color
[3], graphics [4] and graphicx [4] packages, for in-
stance, have ‘dvipdf’ drivers which make use of the
appropriate \special commands.

A particular problem with inclusion of bitmap
graphic formats like BMP, JPEG and PNG is that
the user has to provide TEX with the image size
(directly or via an additional bb file). Encapsulated

Geometric
Begin rotation pdf: /ROT angle <<

End rotation pdf: /ROT >>

Begin scaling pdf: /SC hscale vscale <<

End scaling pdf: /SC >>

Color
Begin color pdf: /C Y ellow <<

End color pdf: /C >>

Page
Page color pdf: /BG Blue

Page rotate pdf: /ROTPAGE angle

EPS
Mode pdf: /IMAGE rgb16m

Resolution pdf: /RES 600

Insertion pdf: /GRAPH file llx lly urx ury

BMP, JPEG and PNG
Insertion pdf: /GRAPH file width height

Table 1: \special commands supported by dvipdf

166 TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting

DVIPDF and Graphics

PostScript files have a %%BoundingBox line which
TEX can read, but it cannot (easily) read binary
formats. Scaling and rotation can use the commands
of the standard LATEX graphics package.

For example, the following code inserts a JPEG

image, rotates it, and scales it. Note the optional
argument to \includegraphics to specify the orig-
inal image size:

\resizebox*{2in}{!}{%
\rotatebox{90}{%
\includegraphics[12cm,9cm]{photo.jpg}}}

Basic algorithms

Since geometric transformations in PDF are one of
its most powerful features, we will begin our descrip-
tion of dvipdf innards in this area.

To allow both single level transformations and
nested transformations, dvipdf supports a 16 level
stack. For each level eight parameters are recorded:
the initial coordinates (x, y) of the reference point
for the layer, offsets to its position after transfor-
mation (dx, dy) and factors (a, b, c, d) for the cur-
rent transformation matrix (CTM). Each new trans-
formation (or layer) pushes the current parameters
and calculates new parameters. Corresponding re-
turns from each layer pops the parameters. To de-
fine the coordinate of each point on current layer,
dvipdf computes its position (ddx, ddy) in relation
to the reference point and adds the coordinate of the
reference point (x + dx, y + dy).

The transformations for points apply equally to
other types of object (rule, text and image). Let us
consider the simplest object (a rule); this may be
dealt with as a rectangle or a region — a rectangle
is described with two points, and a region with four
points. To optimize the output, the two types of
rule (with rotating and without it) are treated differ-
ently. Rules without rotating are treated as rectan-
gles and described with two points A, B (Fig. 1(a)).
This requires four arguments (ulx, uly, w, h): base
point, width, and height. Rotated rules are treated
as regions with four points A, B, C, D (Fig. 1(b)).
This requires eight parameters: (llx, lly, lux, luy,
urx, ury, ulx, uly)

Apart from geometric transformation, there are
other PDF objects that use the same algorithm (al-
though they are used only during interactive view-
ing and are not printed). These objects are link
annotations and bookmarks. To specify a link an-
notation, and the destination for a link annotation
or bookmark, we need to know the rectangle of the
location. To compute the rectangle, we firstly utilise
the algorithm for the definition of a region, and then

A

B

(a)

D

C

A

B

(b)

B

A

(c)

Figure 1:

C

PNG
A B

(a)

A B

BMP
C

(b)

Figure 2:

calculate a bounding box (llx, lly, urx, ury) for
this region. This is defined using two points A, B
(Fig. 1(c)).

Now we can consider transformation of text and
images. These objects are managed using the PDF

page marking operators Tm (for text) and cm (for
images). They are supported in dvipdf in similar
ways, using the geometric figure of a parallelogram.
It is described by three points (Fig. 2(a)). The first
point is lower-left corner, the second point is the
lower-right corner and the third point is the upper-
left corner. The first point A is defined as a base
point (x, y) and other two points B, C as offsets
(a, b) and (c, d) from the base point. These six
parameters (a, b, c, d, x, y) allow us to do all the
transformations that are needed.

Since a BMP image has a bottom-to-top order
and it is saved during the initial parse, its parallelo-
gram is described by other points (Fig. 2(b)), where
the base point A is the upper-left corner.

Color management for text (here ’text’ includes
rules too) is nested. The Current version of the color
stack permits us to reverse the order of pages and
to produce separated pages.

Images

It is usually impossible to know exactly with which
resolution our document will be viewed or printed by
its eventual receiver. So when we deal with bitmap
image formats like BMP, JPEG and PNG, the best

TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting 167

Sergey Lesenko

\setres{300}

\setimage{rgb16m}

\fboxsep = 0 cm

\fboxrule = 0.6cm

\baselineskip = 0pt

\def\epsm{\textcolor[named]{Green}{\fbox{%

\scalebox{-1}[1]{%%

\includegraphics{tiger.eps}}}}}

\def\new{\scalebox{-1}[1]{%

\rotatebox{30}{\resizebox*{2in}{!}{\epsm}}}%

\rotatebox{30}{\resizebox*{2in}{!}{\epsm}}}

\def\newt{\scalebox{1}[-1]{\new}}

\resizebox*{8cm}{!}{%

\textcolor[named]{ForestGreen}{\fbox{%%

\vtop{\hbox{\new}\hbox{\newt}}}}}

Figure 3:

we can do is preserve the original resolution in the
PDF output. This allows us to avoid getting con-
cerned with intermediate conversion of resolution.
The same principle is also applied to the mode of
the image, which is simply preserved (i.e., mono,
gray, RGB, CMYK and Indexed).

Dealing with EPS images is a different matter.
This type of vector image is inserted after processing
with GhostScript [6]. Ghostscript allows us to create
a bitmap image, with appropriate settings of mode
and resolution. How do we establish those settings?
To work them out, we need to set the appropriate
resolution (R)and mode via \special commands.
dvipdf can then compute the real resolution Rx and
Ry for Ghostscript:

Rx = R · Wactual

Woriginal

Ry = R · Hactual

Horiginal

where Woriginal and Horiginal are the width and
height, (as derived from the BoundingBox in the
EPS file), and Wactual and Hactual are the sizes of
the parallelogram sides. In some images the form
may not be a rectangle, so they are calculated as
the distance between corners.

Using the current version of Ghostscript, bitmap
images are produced corresponding to the page size,
so the possibility has been added of producing them
with the rectangle as the BoundingBox.

At present we ask Ghostscript to produce tem-
porary files, and these are then placed in the output
(in future versions it should be possible to merge
Ghostscript’s output stream directly into dvipdf ’s
output). We can select an option to save the tem-
porary files and to re-use them for the next run of
dvipdf, if the same parameters are used for images.
The unique parameters for each image are recorded
as EPSF structured comments (file name, date, time
and file size, and parameters for for Ghostscript pro-
cessing, i.e., mode and X , Y resolutions). We can
generate these parameters and compare them during
the next processing by dvipdf , and name temporary
files accordingly. We adopt the simple solution of
computing a Cyclic Redundancy Check value (CRC)
[7] on the basis of the parameter set and use this
CRC as the basis for naming temporary files. We
can thus avoid calling Ghostscript wherever possi-
ble, and so reduce the time taken to prepare our
PDF document.

Repeated images (for example a logo on every
page of a document) are organized as references to a
common object with just one instance. For bitmap
images the basis of deciding if something can be
stored as a common object is just the name of graph-
ics file — rotating and resizing are done at the time
of the object instance. For EPS images, we also need
to consider resolution and mode. To illustrate this
use of common objects, four tigers are placed to-
gether in Fig. 4, with the TEX code used to produce

168 TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting

DVIPDF and Graphics

the picture. Only one copy of the graphics file is
included in the output.

Acknowledgements

I would like to thank Michel Goossens and Mimi
Burbank for their support of this project, Laurent
Siebenmann for test samples, David Carlisle and Se-
bastian Rahtz for adapting their graphics and hy-
pertext packages to dvipdf, and Sebastian Rahtz for
editing this paper and helping with the English.

I am very grateful to Tim Bienz for his patient
explainations of PDF, and Peter Deutsch for his use-
ful remarks.

Finally thanks to Tomas Rokicki for his won-
derful dvips which has been the starting point for
this project.

References

[1] Tim Bienz and Richard Cohn, Portable Doc-
ument Format Reference Manual, Adobe
Systems Incorporated, 1993, Addison-
Wesley Publishing Company. ISBN 0-201-
62628-4. This document is available from
http://www.adobe.com/supportservice/
devrelations/PDFS/TN/PDFSPEC.PDF

[2] Tomas Rokicki, Dvips: A TEX Driver, dis-
tributed with dvips , version 5.58, 1994. elec-
tronic distribution from labrea.stanford.
edu.

[3] David Carlisle, The color package (on CTAN)
[4] David Carlisle and Sebastian Rahtz, The graph-

ics package (on CTAN)
[5] David Carlisle and Sebastian Rahtz The graph-

icx package (on CTAN)
[6] L. Peter Deutsch, Aladdin Ghostscript ver-

sion 4.03, 1996 electronic distribution ftp.cs.
wisc.edu://pub/ghost/aladdin

[7] L. Peter Deutsch, RFC 1952: GZIP 4.3 spec-
ification, ftp://ftp.uu.net/graphics/png/
documents/zlib/zdoc-index.html

[8] Sergey Lesenko, The DVIPDF Program, TUG-
boat 17, 3, September 1996, pages 252–254.

TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting 169

