
TUGboat, Volume 18 (1997), No. 4 309

A regression test suite for LATEX2ε

Frank Mittelbach

Abstract

This paper describes the history of the development
of a regression test suite for LATEX and its impor-
tance for the release of stable and reliable future
distributions of that software. A more detailed
description of the concepts and the implementation
of the test suite will be given in [1].

As experience shows that there can't be enough
test �les in such a suite, we make a plea to the TEX
community to help us in making LATEX distributions
even more reliable by joining a new volunteer group
working on the task of updating and adding to this
suite.

1 Introduction

Back in 1992 when the LATEX3 team took over
maintenance of LATEX and started to work on the
current LATEX version [3], also known as LATEX2ε,
I had the idea of producing a test environment for
LATEX that would help us in providing stable and
reliable distributions. My idea originated in the
trip test for the TEX program [2], a �xed test �le
which is run through TEX, containing code that
tries to exercise as many boundary cases as Don
Knuth could think of. The output of this run is
then compared with a set of �les certi�ed by Don
to contain the correct information. Only if a new
implementation of the TEX program produces the
same output (with well de�ned minor deviations
in certain places) is it allowed1 to be called TEX.
The idea behind this is to ensure that TEX behaves
identically on all implementations and the trip test
was the measure proving this.

With LATEX the idea was not to ensure that it
is identical on all platforms�this is automatically
the case if the standard installation is obtained
and the installation procedures are applied�but
to ensure that that new releases of LATEX do not
inadvertently modify the behavior of commands.
Since LATEX is a large and complex system, this
is de�nitely a non-trivial task: in `�xing' one bug,
it is often necessary to modify the de�nitions of
several `internal' commands, and these may in turn

1 An additional requirement according to the trip test
documentation is that the author of the TEX implementation
has to be satis�ed with the product. In other words, a simple
program that throws away all its input and always output
the �les needed to satisfy the trip test would be allowed to
call itself TEX as long as the author of that program is happy
with it.

a�ect many other commands which have no obvious
connection with the original problem.

We have had some pretty disastrous experiences
of this type, often �nding that harmless looking
corrections had e�ects on what seemed, at �rst
glance, completely unrelated areas. This is in part
due to the fact that LATEX is based on the macro
language of TEX, which allows reuse and rede�nition
of arbitrary code fragments.

For that reason we started working on a concept
for automated tests to detect such problems. When
that system was available, we asked for volunteers
to help us in building up a suitable test suite for
LATEX (which at that time was LATEX 2.09). Part of
the rationale behind this work was to ensure that
a future transition from LATEX 2.09 to LATEX2ε (for
which development was under way) would become
as painless as possible, i.e., these tests were also
supposed to ensure that the new code for LATEX2ε
would not change the user interface behavior with-
out detection.

This approach seems to us to have been very
successful; this is in large parts due to the quality
and quantity of the work of the volunteers helping
us at that time, in particular Daniel Flipo and
Chris Martin. Figure 1 shows an excerpt from the
volunteer task list from 1993 describing this task
(and my rather optimistic time requirements for it).

When LATEX2ε was released for the �rst time in
1994 we updated the regression test support macros
and tried to improve the test suite by adding new
test �les when we �xed bugs or when we added new
functionality to LATEX. However, being human, we
have not followed this practice as rigorously as we
should have: especially since the �rst releases it has
become more and more common for us to �x a small
bug without spending the additional time necessary
to also write a test �le that exhibits the correct
behavior.

Today our test suite has about 300 test �les
which are automatically executed and compared
before a new release hits the streets. And indeed,
these test �les have saved us from embarrassment
many times already.

2 This year's boo-boos!

However, results show that such a suite can never be
large enough to avoid the need for a patch release
once in a while. It is particularly important that
new features, such as the release of additional �les
or the correction of recently found bugs, get tested
and frozen within this suite so that there is no
unexpected change later on. For example, with the
December 1997 release we added the packages calc



310 TUGboat, Volume 18 (1997), No. 4

Validating LATEX2.09

Writing test �les for regression testing: checking bug �xes and improvements to verify that they don't
have undesirable side e�ects; making sure that bug �xes really correct the problem they were intended
to correct; testing interaction with various document styles, style options, and environments.
We would like three kinds of validation �les:

1. General documents.

2. Exhaustive tests of special environments/modules such as tables, displayed equations, theorems,
�oating �gures, pictures, etc.

3. Bug �les containing tests of all bugs that are supposed to be �xed (as well as those that are not
�xed, with comments about their status).

A procedure for processing validation �les has been devised; details will be furnished to anyone
interested in this task.

Estimated time required: 2 to 3 weeks, could be divided up.

Coordinator [25 August 1992]:
Daniel Flipo flipo@citil.citilille.fr

Other volunteers:

Chris Martin cs1cwm@sunc.sheffield.ac.uk

Figure 1: An excerpt from the volunteer task list 1993

and textcomp to the distribution but, due to time
constraints, did not add to the suite additional test
�les designed to exercise these packages; and, by
Murphy's law, textcomp did not contain a necessary
\ProvidesPackage command, with the result that
it claimed to be written for a future release2�
something that would have been caught by any test
�le exercising the package.

Another embarrassing example of a missing test
�le in that release was the \t error. To better
support language �les from the Babel suite, some of
which make the " character active, we changed all
internal de�nitions of characters and accents from
hexadecimal notation, such as "7F, to decimal, i.e.,
to 127 in that case. Unfortunately in the de�nition
for \t we did this wrong and "7F became 79, giving
very strange e�ects when the accent was used.3 An
error like this would have been automatically caught
if we had, for each output encoding, a test �le to
check that each de�nition in the encoding results in
the `right' glyph or glyphs.

2 The technical reason for this behavior, for those who
wonder, was that the release date of the package, which
is an optional argument to the (missing) \ProvidesPackage

command, was there but was mistakenly picked up the
\NeedsTeXFormat which then produced a warning as the re-
lease date of textcomp was later than the nominal release
date (of 1997/12/01) for the format of the distribution.

3 Both errors got found and reported several times within
two days after the release, so the patch release came out quite
quickly this time.

3 Call for volunteers

Thus to make the LATEX system even more reliable
we call on you for help! What we hope to �nd is a
new group of volunteers that is interested in working
on an extension of the LATEX test suite system.
There is no need to be an expert TEX or LATEX
programmer for this task though some experience
with LATEX and its inner workings will be necessary.

If you are interested in joining this e�ort,

please contact Daniel Flipo at

Daniel.Flipo@univ-lille1.fr

who kindly agreed to act as a coordinator

between the individual volunteers.

There are a number of areas in which further
test �les would improve the system enormously.
They are outlined in the following sections.

3.1 Testing existing interfaces

Testing existing interfaces is a very important task,
one not so far, for several reasons, adequately cov-
ered by the test suite. This will not only help
us to detect problems when �xing errors in LATEX
but, more importantly, it will help one day in the
transition to a new system since these test �les
will then clearly identify which interfaces are com-
promised (deliberately or by mistake) by the new
system. This in turn will then help to produce,
if necessary, procedures to automatically translate
source documents from LATEX to its successor.



TUGboat, Volume 18 (1997), No. 4 311

What we are looking for are test �les that
describe and test the current interfaces on all levels.
This is certainly an ambitious task, but perhaps
also one of the most interesting and rewarding ones
within this list.

3.2 Testing corrected bugs

As described above, several of the bugs reported to
us have been �xed and a test �le showing the correct
behavior has been added. But for many this is not
the case.

What we are looking for is the provision of
test �les for all bugs reported and �xed, so that
future releases will not by mistake revert any of these
�xes without alerting the maintainers. This means
working through our bug database and devising
test �les showing the correct behavior. As we ask
submitters of bug reports to send in a test �le that
shows the incorrect behavior, and they usually do
so, it is often possible to start from the submitted
�le and modify it slightly so that it �ts into the
regression suite concepts.

3.3 Testing new extensions

What is important for the kernel interfaces is also
important for the core packages and extensions:
these interfaces should be exercised in such a way
that any future changes will be automatically de-
tected. Again this provides interesting mental ex-
ercise since it isn't always easy to decide what is
pertinent for the interface and how to exercise it so
that enough (but not too much) information ends
up in the .log �le.

3.4 Testing contributed packages

A �nal area which is important is the testing of
packages which lie outside the control of the LATEX
maintainers. Although we cannot in all cases guar-
antee that corrections to the kernel software will
not harm any such package, we are, of course, very
much concerned to avoid making any change that
makes third party packages invalid. In the past,
whenever we noticed (or even suspected) such a
problem we tried either to avoid it, by choosing a
di�erent solution, or, if that was not possible for
some reason, to �nd the maintainers of the package
and give them notice of a possible clash so that such
problems could be avoided.

There is a problem with testing the interfaces
of third party packages: changes by the package
author, to either the interface or the implementa-
tion of the package, can upset the test suite as
easily as can changes to the LATEX kernel by the
LATEX3 project team. Thus, to avoid our limited

time resources being used up in chasing after errors
introduced in this way (being neither our fault nor
being correctable by us), it would be necessary to
develop clear protocols for how this part of the test
suite should be maintained, e.g., what requirements
a package must ful�ll to be included into it, what
obligations an author of such a package agrees to,
etc. This is not yet done and so it is part of the
volunteer e�ort.

We close our plea for help with a quote taken
from [2] which shows how the Grand Wizard sees
the task of writing such test �les (which does not
mean you have to follow his advice):

To write such a �endish test routine, one
simply gets into a nasty frame of mind and
tries to do everything in the unexpected way.
Parameters that are normally positive are set
negative or zero; borderline cases are pushed
to the limit; deliberate errors are made in
hopes that the compiler will not be able to
recover properly from them.

Donald Knuth 1984

References

[1] David Carlisle and Frank Mittelbach. The LATEX
regression test suite: concepts and implementa-

tion. TUGboat; to appear.

[2] Donald E. Knuth. A torture test for TEX.
Report STAN-CS-84-1027, Stanford University,
Department of Computer Science, Stanford, CA,
USA, 1984.

[3] Leslie Lamport. LATEX: A Document Prepara-

tion System. Addison-Wesley, Reading, Massa-
chusetts, second edition, 1994.

� Frank Mittelbach

LATEX3 project

Frank.Mittelbach@eds.com


