
Dreamboat

ε-TEX V2: a peek into the future

Philip Taylor

Abstract

ε-TEX V1 was released towards the end of 1996, and
it was intended at the time that ε-TEX V2 should be
released approximately one year later. For various
reasons the release date has slipped a little, but V2
is in alpha-test and we confidently expect to release
it in the near future: indeed, it may well have
been released by the time that this article appears
in print. In this article the new features of V2
are reviewed, and we conclude by peeking a little
further into the future to see what will happen with
NT S.

Introduction

When the NT S project was first established in
1992, we hoped that work would commence fairly
quickly. Sadly it became all too obvious that a
project of that magnitude would require one or more
full-time workers, and none of the (volunteer) team
had that sort of time to spare. The team decided
that, until funding could be found, they would work
on the less-demanding but still worthwhile task of
extending TEX in its current (Pascal-web) form.
The first fruits of that work were revealed in late
1996, when ε-TEX V1 was released. This version
added approximately 30 new primitives to TEX and
a small adjunct macro library was also produced
which both extended the plain TEX format to
accommodate the new primitives and also added
new functionality such as natural language handling
and TEX module libraries.

Once ε-TEX V1 had been released, the group
were free to concentrate on the next version.
Originally intended to ship a year later than the
first, this version has slipped a little as pressure
of other commitments has forced members of the
team to invest less time in the project than they
would have wished. However, V2 is now in alpha
test, and we confidently expect to be able to make a
general release in the near future: release may well
have taken place by the time this article appears in
print. The majority of the remainder of this article
describes the features that we are fairly confident
will be present in that release.

TUGboat, Volume 18 (1997), No. 4 239

Ideas which are almost certain to appear in
ε-TEX V2. Although we do not wish to give an
absolute commitment at this stage, particularly as
many of the proposals are the process of being
tested at the time of writing, we do believe that
the ideas contained in the following section are very
likely to appear in ε-TEX V2. A subsequent section
discusses ideas which may appear in future releases.

Increasing TEX’s registers. TEX has 256 of the
most commonly used registers: counts, dimens,
skips, boxes, toks, etc., and whilst these are enough
for normal applications, advanced formatting sys-
tems really require more. In ε-TEX V2, we intend
to provide 32768 of each of these, which we hope
will be sufficient for the most demanding packages.
Insertion classes will still be restricted to 256
or fewer, and \box 255 will retain its special
significance. The “etex” format will allow both
local and global allocation of these registers (“plain”
allows only global), and for efficiency reasons a user
will be able to elect whether to allocate a register
from the dense (0..255) pool or from the sparse
(256..32767). To allow the allocation mechanism
to overflow from dense to sparse without risking
a conflict with the allocation of insertion classes,
the format allows a user or package to pre-reserve
a number of insertion classes. Facilities for block-
allocating a contiguous set of registers will be
provided.

Improved natural language handling. TEX
overloads the \lccode concept, using it both for
“real” lower-casing operations and also for purposes
of hyphenation. In ε-TEX V2 these operations are
unbundled, and the codes used for hyphenation can
be staticised as the patterns are read in (the current
set of lccodes is used). Thereafter, whenever a
particular language is used, the corresponding set
of hyphenation codes is loaded.

Arithmetic expressions. Although TEX can
perform simple arithmetic (addition, multiplication
and division), these operations are in general
“assignments” and therefore cannot be used in
expansion-only and certain other contexts. ε-TEX
V2 provides a set of arithmetic primitives which
evaluate an expression in such a way that the value
of the expression can be accessed in expansion-only
contexts, as well as being usable (for example)
when TEX is looking for a 〈number〉, 〈dimen〉, etc.
As TEX intentionally uses only integer arithmetic
wherever the results of a computation are accessible
to the user, floating-point arithmetic has not been
provided. There are four new primitives, \numexpr,



\dimexpr, \glueexpr and \muexpr, each of which
requires its operands to be of appropriate type (or
coercible to that type). Parentheses may be used
to indicate precedence wherever this will clarify or
disambiguate an expression. The normal arithmetic
operators “+”, “-”, “*” and “/” are allowed within
an expression.

Discards are no longer discarded!. When
TEX performs page-breaking, so-called “discardable
items” which follow the chosen breakpoint are
discarded; whilst this is perfectly reasonable if the
page break is actually taken, recursive techniques
aimed at optimising the appearance of multiple
pages require the ability to “undo” a pagebreak
in order to try the effect of breaking elsewhere.
The discarded items are therefore required in
order to re-create the vertical list which TEX is
trying to break. In ε-TEX V2, we allow access
to these “discarded items” via a new primitive
\pagediscards. The discards which occur during
\vsplitting are also accessible via an analogous
primitive \splitdiscards. Both of these primitives
return a vertical list, similar to that obtained by
\unvboxing a box register.

Read-write access to \parshape. Although TEX
allows the user to create arbitrarily complicated
paragraph shapes through the use of the \parshape
primitive, it provides no way for the user to find out
which \parshape is currently active (although it
does allow the user to ascertain the number of lines
of the current \parshape specification). In ε-TEX
V2, we allow full read access to all the elements of
the current \parshape.

Interrogating the current conditional con-
text. In ε-TEX V1 we allowed users to make
environmental enquiries concerning the current
group, both as to its depth of nesting and to its
type. In ε-TEX V2, we generalise this concept and
allow analogous access to the current conditional
context through the use of \currentiflevel, \cur-
rentiftype, \currentifbranch and \showifs.

Access to information concerning font-
character combinations. Although it is possible
to gain some information about a particular
character in a given font by typesetting that
character in a box and then measuring the
dimensions of the box, not all the dimensions of
the character can be reliably obtained in this way,
and there is no way to ensure that the character
actually exists in the font before attempting to
typeset and measure it. In ε-TEX V2 we allow the
user both to check whether a particular character

240 TUGboat, Volume 18 (1997), No. 4

exists in a given font, using \iffontchar, and
(if it does exit) to measure the four fundamental
dimensions of that font/character combination using
\fontcharwd, \fontcharht, \fontchardp, and
\fontcharic (representing width, height, depth
and italic correction respectively). Furthermore,
we ensure that users are alerted to the existence
of missing characters in a font by causing lost
characters to be logged to the console as well as to
the log file if \tracinglostchars is set to a value
greater than 1.

Better debugging aids. In order to assist
in diagnosing mis-matched or runaway group
problems, ε-TEX V2 allows the user to opt to
be warned whenever a file is left in a group
or conditional other than that at which it was
entered. This may be accomplished by setting
\tracingnesting to a value greater than zero.

Subtle change to the semantics of \protected.
ε-TEX V1 introduced a new prefix, \protected,
which inhibited the expansion of the “protected”
macro in contexts in which expansion was unlikely
to be required. Further research into this area
suggested that at least one such case had been
missed, and “protected” macros are now inhibited
from expansion when TEX is scanning ahead while
processing alignments.

Optimisations. To improve the overall efficiency
of ε-TEX internal modifications have been made
to reduce the resources required when there are a
number of \aftergroups active for a single group,
and to eliminate the stack space wasted in setting a
register to the same value as it currently holds.

Access to the components of a glue quantity.
Whilst it is possible to gain access to the various
components of a glue value by clever macro
programming, the code required is sufficiently
arcane to suggest that a better method is much to
be preferred. Accordingly we are considering a set
of primitives \gluestretch, \gluestretchorder,
\glueshrink and \glueshrinkorder which will
give much-simplified access to these quantities. As
a part of the same process we are looking at two
conversion primitives, \mutoglue and \gluetomu.

Improved typographic quality. Whilst the
majority of the work in ε-TEX is aimed at providing
the ε-TEX programmer with more powerful tools, we
are aware that the real purpose of TEX is to generate
typeset output of the highest quality. During a
meeting in Brno with Prof. Knuth on the occasion
of his honorary doctorate, he suggested that we



might like to consider improving the typographic
quality of the last line of a paragraph. According
to Don, traditional (hot-lead) typesetters would set
the last line to the same tightness or looseness as
the immediately preceding line, and he thought that
ε-TEX should be capable of doing likewise. We are
looking into providing this but in a parameterised
manner, so that all possibilities between TEX’s
current behaviour and that suggested by Don can
be achieved. We think that this might be controlled
by a parameter called \lastlinefit.

Improved typographic quality, cont.. In the
same vein, we are looking into ways of allowing bet-
ter parameterisation of the page-breaking process
by having not just one penalty for (say) a club-
or widow line but a whole array of such penalties
which can reflect the undesirability of leaving one,
two, three to n lines at the top or bottom of a page.
Other related penalties are also candidates for this
process.

Ideas still under discussion

The following ideas are all under discussion but are
very unlikely to find their way into ε-TEX V2: some
may be deferred to ε-TEX V3, and some may never
appear at all. Although the group have some idea
into which category each of these ideas may fall, it
is probably not helpful to go into too much detail
here, and so they are all lumped together as “under
discussion”.

Can TEX find this font?. In “the good old days”,
a TEX program could count on finding all 76 of the
standard TEX fonts no matter where it was run in
the world. These days, with many documents being
set in exotic fonts from a myriad of sources, it is no
longer certain that, just because site A has font F,
site B will have the same font. We are therefore
considering providing an \iffont primitive which
will allow ε-TEX to ascertain at run-time whether a
particular font exists on the system on which the
document is being processed. It is not certain at
this stage whether this would be a simple “does this
font exist?” test, or a more complex “does it exist
and is the TFM file for it valid?”. \tryfont has
also been suggested as an alternative approach.

Maths alignments. Peter Breitenlohner, the
implementer of ε-TEX, probably typesets more
mathematics than the rest of the group put together,
and he believes that there is a case for a maths
alignment primitive. He has not yet finished his
research on this topic, and all that can be said at

TUGboat, Volume 18 (1997), No. 4 241

this stage is that we are considering implementing
some form of \malign.

Typesetting on a grid. Whilst TEX is excellent
at typesetting in designs where variable quantities
of white space can be allowed to occur, trying to
coerce it to set on a regular grid (something at
which packages such as Quark Xpress excel) is far
more difficult. The various macro-based solutions
which have been tried do not seem to address
the underlying problems, and we are looking at
providing an entirely new paradigm within ε-TEX
whereby material being typeset can be caused to
“lock on” to a grid at some point in the page-
building process. Although at first sight it might be
thought that it is the reference points of the lines
making up the page which need to lock to this grid,
we are fairly certain that this is not always the case,
and we are therefore looking at ways of associating
one or more “handles” with a particular box. In
the degenerate case there will be one handle which
is coincident with the reference point of the line,
but in more complex cases there may be two, three
or ever more handles, each of which will lock on
to one line of the raster. Even so, there are also
situations in grid-based designs where the grid-lock
contraints just have to be violated, and one topic
still unresolved is whether it is then better simply
to allow the box to float free, or whether it is better
to constrain it in some way, perhaps by associating
with the handle(s) a degree of flexibility which is
in some way analogous to TEX’s current use of the
“glue” concept.

More on improved typographic quality. An-
other point made by Don during his stay in Brno is
that there are situations in which TEX’s (vertical)
positioning of elements of mathematical formulæ
is less than ideal. He points out that even in
typesetting the TEXbook he had to make use of
kludges such as \sub \strut in order to achieve
the best visual effect. We are investigating ways
in which the effect (and related effects) could
be achieved by better parameterisation of the
mathematical typesetting process.

NTS

In the introduction to this paper it was mentioned
that the NT S project proper had been put “on
ice” until the group had sufficient funds to allow a
programmer to be employed full-time to work on
the project. It is with great pleasure that I can
now report that, as a result of the generosity of
DANTEeV the group has DM 30 000 which can be



used for this purpose. On the recommendation of
Jǐŕı Zlatuška, we have made an offer to Karel Skoupy
of the Czech Republic, which he has accepted, and
Karel will be starting work on NT S during late
February 1998. It has been agreed that the
language of implementation will be Sun’s JAVA,
and Karel’s first task (apart from becoming a JAVA

expert. . . ) will be to draw up a specification for
NT S. Provided that the group agree with his
design, he will then start work on implementing
NT S, and we hope to be able to review his
work after a further six months. Within one
year of commencement we hope to have a working
implementation of NT S not simply a port of TEX
to JAVA but a total re-design intended to emphasise
the deep structure of TEX whilst avoiding the
design features which make the present system
rather difficult to extend or change.

The group are still determined that NT S will
be 100% TEX-compatible, and are confident that it
will remain so for at least the first five years of its
life. We are less certain whether divergence should
then be permitted, in order to add new functionality
which is in some way incompatible with TEX. If
we do decide that compatibility must be sacrificed,
we will give considerable notice of that decision,
and users who must retain the ability to process
legacy documents in a manner identical to TEX will
be advised to take an archive copy of NT S before
compatibility is lost.

One exciting idea which the use of JAVA

permits is the possibility to integrate access to
CTAN (CNAN?!) with NT S: it is by no means
impossible that NT S might be able to fetch for
itself any module which cannot be found on the
local system and which is needed in order to process
a document. If that becomes a reality, TEX will
have become truly integrated into today’s (and
tomorrow’s) globally-networked world.

� Philip Taylor
Royal Holloway and Bedford New

College, University of London
Post: Room 106, Computer

Centre,
Egham Hill, Egham
Surrey TW20 0EX, United

Kingdom
P.Taylor@Vms.Rhbnc.Ac.Uk

242 TUGboat, Volume 18 (1997), No. 4


