
286 TUGboat, Volume 18 (1997), No. 4

Another Approach to Barcodes

Peter Willadt

Abstract

This article copes with barcodes, in particular with
interleaved two-of-five and with code 39. It shows
various means to generate them with TEX and
related software, even the use of VF-files for barcode
generation.

1 Background

1.1 Some Common Barcode Types

In stores, upc and ean codes are widely used for
automatic identification, pricing, etc. ean barcodes
have already been covered in TUGboat [1].

In an industrial environment, other barcodes
are in use. This article deals especially with two
of them, interleaved two-of-five (ITF for short) and
code 39.

Original two-of-five code consists of five bars:
two of them thick and three thin. With the ten
different possible combinations, just the ten digits
could be coded. Original two-of-five ignores the
width of the gaps between the bars and so it
wastes lots of space. One remedy against that was
the creation of barcodes where the gaps became
meaningful. With ITF, however, there was the
somewhat unlucky decision to use the gaps not in a
way where one digit would be coded with three bars
and two gaps, but to code two digits together — the
first digit within the bars and the second one within
the gaps (that’s where the interleaved comes from).

As a consequence, ITF is quite easy to produce
by a program, but it is very hard to generate
with a text processor or within a report generated
from database output. Also you can only code an
even number of digits. With quantities, this is no
problem, but with fixed-length article codes, things
may be different.

The us postnet code is a special kind of two-
of-five, where the bars have different height instead
of different width. It has already been covered in-
depth in TUGboat [3, 2].

Code 39 consists of 9 elements — five bars and
four gaps. Three of these nine elements are thick,
the others are thin (hence three-of-nine). As this
gives a lot of possible combinations, code 39 can
be used not only for digits, but also for uppercase
letters from A to Z and seven special signs (+−/ dot,
space, dollar, and percent). The bad news about
code 39 is that it also takes lots of space. Coding an
eight-digit number in medium resolution may easily
take two inches of space.



TUGboat, Volume 18 (1997), No. 4 287

Figure 1: Codabar looks like this. If you have a
barcode reader, you should read c1009*

Codabar consists of seven elements — four bars
and the three gaps between them. The meaning
is contained in two or three thick elements, hence
codabar could also be called two-or-three-of-seven.
Codabar can be used for the ten digits and +− / :,
dot, and dollar. Strangely enough, codabar uses four
sets of start/stop-signs. You have to use either the
set a/t, b/n, c/* or d/e. The start/stop-signs will
be decoded together with the digits between them.

1.2 Usage with TEX

TEX sometimes is used as a back end for database
output. I use TEX also for the creation of labels for
pharmaceutics for in-house use.

With the ligature mechanism of TEX, ITF out-
put can be easily and transparently handled. And,
through TEXs ability to draw bars, also the creation
of barcodes without using any other software is pos-
sible.

1.3 Readability

Barcodes look rather ugly, so one tends to make
them as small as possible. But for readability, there
are limits. For a normal scanning device, the width
of a narrow bar in code 39 or in ITF must not be less
than 7.5 · 10−3 inches (≈ 0.2 mm). In ITF and code
39, thick gaps or bars have to be at least twice as
thick as thin gaps or bars. In higher resolutions,
making them 2.25 to 3 times as wide may yield
better results.

The bleeding of the bars has not only to be
considered for the output device of TEX, but if
there is a printing step to follow, the bleeding of
the secondary printer has to be compensated, too —
at least at higher bar code resolutions. Code 39
and ITF should appear to be about 50% black, not
much darker. The contrast between barcode and
background should be high. As most reading devices
use red light, the bars should not be printed red.

To the left and right of the barcode, there has
to be some space in background color. The higher
the bars are, the more the reader can be rotated
with respect to the bars. If the bars are as high as
the complete code is wide, the reader can be twisted
at an angle of ±45 degrees.

It is always best to have access to a reading
device to verify good readability.

2 Making Barcodes Work

There are different approaches that fortunately all
work. The first approach is to use TEX to draw the
barcodes entirely on its own. The great advantage
is complete portablity and also an independent
control over both height and width of the barcodes.
The disadvantage is that macros have to be used
for every bar that is to be shown. This may
lead to some problems and also to slow run-time
behaviour. When coding ITF, the macros get rather
complicated.

Another approach would be to use METAFONT

to draw the barcode characters. This approach is
straight forward. Also with METAFONT there is
very fine control over bleeding edges, etc. This con-
trol is especially useful with high-density barcodes
or with low-quality printers. The disadvantage of
using METAFONT is the requirement to create the
barcodes at all needed resolutions.

The third approach uses a virtual font (VF-)
file to do all the drawing. As a virtual font can
be used not only to map from one font or charset
to another, but also to draw bars, we get a flexible
solution. To TEX the barcodes are just characters
from another font; the DVI driver just has to draw
rules. The main disadvantage is that we lose the
fine control over printer-dependent bleeding, etc., so
that I recommend using this solution only for low- to
medium-resolution barcodes. Another disadvantage
lies in the absolute lack of meta-ness: in VPL-files,
everything has to be coded by hand and spelled out
explicitly. Any change required results in a lengthy
editor session.

2.1 Barcodes by TEX

It is not difficult to draw bars. But drawing
barcodes requires drawing a lot of bars. Having
defined macros for the obvious start/stop-code and
the individual characters, one can draw barcodes
by invoking the control sequences directly or —
more elegantly — by making characters active and
letting them draw themselves. The third solution —
reading the characters to draw as parameters to a
macro — works well for a numerical-only barcode,
but 43-way branching as would be necessary for code
39 is surely not attractive. Here is a short excerpt
from the coding of code 39.

\newdimen\dick \newdimen\dickbar
\newdimen\duenn \newdimen\duennbar
\newdimen\antibleed
\dick=1.2mm \duenn=0.6mm
\antibleed=0mm
\dickbar=\dick \duennbar=\duenn



288 TUGboat, Volume 18 (1997), No. 4

@HELLO@

Figure 2: Code 39 looks like this. These lines
mean HELLO

\advance\dickbar by -\antibleed
\advance\duennbar by -\antibleed

% b means bar...
\def\b{\vrule width\duennbar}
\def\B{\vrule width\dickbar}

% ...and s means space
\def\s{\hskip\duenn\hskip\antibleed}
\def\S{\hskip\dick\hskip\antibleed}

% and then the coding
\def\tninestart{\b\S\b\s\B\s\B\s\b\s}
\def\tnineminus{\b\S\b\s\b\s\B\s\B\s}
\def\tninelettera{\B\s\b\s\b\S\b\s\B\s}
\def\tnineletterb{\b\s\B\s\b\S\b\s\B\s}

% many lines of code omitted
\def\makethemactive{%

\catcode‘\A=\active
\catcode‘\B=\active
% many lines of code omitted

}
{\makethemactive
\gdef\begincodethirtynine{%

\bgroup\makethemactive
\strut\tninestart
\let A=\tninelettera
\let B=\tnineletterb
% many lines of code omitted

} % end begincodethirtynine
} % end scope makethemactive
\def\endcodethirtynine{%

\tninestart\egroup
}

The text to be printed as a barcode can then
be included between \begincodethirtynine and
\endcodethirtynine.

The code width and height can easily be ad-
justed from TEX, and the extra blackness added
by the printing engine can also be removed by
adjusting \antibleed. The coding is somewhat
fuzzy, because many characters, even the space,
have to get a special meaning already where
\begincodethirtynine is being defined.

If only digits have to be printed, a multiway
branch may be suitable to draw the bars and the
coding can be handled by tail recursion. The fol-
lowing example shows the coding of a Pharmazen-
tralnummer. These are article numbers for german
pharmaceuticals. They consist of exactly seven dig-
its; in code 39, they are preceded by a minus sign.

The last digit is a weighted mod 11 checksum. In
the following example, besides drawing bars, TEX
also counts the digits and calculates the checksum.
% needs the code printed above
% three counts for checksumming etc.
\newcount\ziffern
\newcount\checksum
\newcount\multreg
% numbers in code 39
\def\tnzero{\b\s\b\S\B\s\B\s\b\s}
\def\tnone{\B\s\b\S\b\s\b\s\B\s}
\def\tntwo{\b\s\B\S\b\s\b\s\B\s}

\def\tnthree{\B\s\B\S\b\s\b\s\b\s}
\def\tnfour{\b\s\b\S\b\s\b\s\B\s}
\def\tnfive{\B\s\b\S\B\s\b\s\b\s}
\def\tnsix{\b\s\B\S\B\s\b\s\b\s}

\def\tnseven{\b\s\b\S\b\s\B\s\B\s}
\def\tneight{\B\s\b\S\b\s\B\s\b\s}
\def\tnnine{\b\s\B\S\b\s\B\s\b\s}

\def\tndigit#1{%
\ifcase#1\tnzero\or\tnone
\or\tntwo\or\tnthree
\or\tnfour\or\tnfive
\or\tnsix\or\tnseven
\or\tneight\or\tnnine
\fi%

}
\def\endtncode{%

\ifnum\ziffern=9
\else\message{wrong digits count}%

\fi
\ifnum0=\checksum
\else\message{wrong checksum}%

\fi
\tninestart\egroup

}
\def\nexttn#1{%

\advance\ziffern by1
\if@#1\let\next\endtncode
\else
\tndigit#1

% begin checksum stuff
\ifnum\ziffern=8
\multreg=\checksum
\divide\multreg by 11
\multiply\multreg by 11
\advance\checksum by-\multreg
\multreg=#1
\advance\checksum by-\multreg
\ifnum\checksum=10

\checksum=0
\fi

\else
\multreg=#1



TUGboat, Volume 18 (1997), No. 4 289

\multiply\multreg by\ziffern
\advance\checksum by\multreg
\fi

\fi
% end checksum stuff
\next

}
\def\pzncode{%
\bgroup
\let\next\nexttn
\ziffern=1\checksum=0\multreg=0
\strut
\tninestart\tnineminus%
\next

}
% Example (right)
\pzncode1234562@
% Example (wrong)
\pzncode1235462@

2.2 Barcodes by METAFONT

The advantages of METAFONT are quite clear: It is
easy to draw bars, to build characters out of them, to
cope with the printer’s bleeding and similiar effects
(the german word is Druckzuwachs), and, because of
the meta-ness, very compact and flexible code can
be written. When the bars have to be combined with
other elements (ean code, e.g., requires the number
printed in ocr under the bars) METAFONT is the first
choice.

Using pk fonts, the fonts produced are rather
compact — they may be even shorter than the cor-
responding VF-files.

As this article already tends to be lengthy, I will
not treat METAFONT any further.

2.3 Barcoding with virtual fonts only

Virtual fonts can contain any instruction that is
also found in a DVI file. So, besides typesetting
letters and moving, virtual fonts can also contain
instructions to draw bars. As an example, I have
completely mapped ITF barcodes into a virtual font.
The handling of two digits sharing the same bars
and gaps is left entirely to the ligature mechanism,
so the font contains a little more than a hundred
characters.

The header of the VPL file looks like the header
of any VPL file for a monospaced, upright font.
(FAMILY BARCODE)
(DESIGNSIZE D 12)
(DESIGNUNITS D 14)
(COMMENT written by Peter Willadt)
(COMMENT August 16, 1997)
(FONTDIMEN

(SLANT R 0)
(SPACE D 14)
(SHRINK D 0)
(STRETCH D 0)
(XHEIGHT R 10)
(QUAD D 14)
)

Everything quoted can be found in the docu-
mentation for VPtoVF, so I will not discuss it in
detail. Just let me mention that the design size
of the font is twelve points, and that these twelve
points are divided into fourteen units (five bars and
five gaps, and two thick bars and gaps each). Thin
units will be about 0.3 mm; that makes a medium
resolution.

After the heading, there follows an extensive
ligtable, where every combination of each digit
with any other digit is mapped to a character. Here
is a short excerpt, showing the zero preceding any
digit:

(LIGTABLE
(LABEL C 0)
(LIG C 0 D 1) (LIG C 1 D 2)
(LIG C 2 D 3) (LIG C 3 D 4)
(LIG C 4 D 5) (LIG C 5 D 6)
(LIG C 6 D 7) (LIG C 7 D 8)
(LIG C 8 D 9) (LIG C 9 D 10)
(STOP)

The rest is too dull to show here. The charac-
ters from 48 to 58 have not been used for ligatures;
this not only gives clear code, but also avoids re-
entering the ligature mechanism.

Start- and stop-codes are different for ITF. I
have mapped them to the + and − keys. Codings
for 0–9 themselves are contained in the font, because
there is no possibility to have ligatures when the
constituent characters do not exist. They only get
drawn when there is an odd number of digits to code;
this is a case that should never happen. So there
are two possibilities: make the mistake immediately
visible (e.g. by just skipping instead of drawing) or
make the best of it. I chose the latter way and
mapped these codes to the same chars that would
result from the digit drawn twice — hoping that an
excess digit at the end would do no harm.

Let us just have a short look at the character
that will be drawn when a 0 is followed by a 5:

(CHARACTER D 6
(COMMENT 0 and 5)
(CHARWD D 14) (CHARHT R 14)
(CHARDP R 0) (CHARIC R 0.0)
(MAP

(SETRULE R 14 R 1)(MOVERIGHT R 2)



290 TUGboat, Volume 18 (1997), No. 4

Hello, the plate with the mix computer’s serial
number looks like this:

Figure 3: ITF code. Output of the sample code.

(SETRULE R 14 R 1)(MOVERIGHT R 1)
(SETRULE R 14 R 2)(MOVERIGHT R 2)
(SETRULE R 14 R 2)(MOVERIGHT R 1)
(SETRULE R 14 R 1)(MOVERIGHT R 1)
)

)

All the action consists of drawing several bars,
each 14 units (12 pt) high, and 1 or 2 units wide,
and skipping 1 or 2 units after every bar.

VPL files are human-readable, but I guess they
were not intended to be human-writable. You have
to painfully avoid using the tab-key for indenting;
also, it is recommended to indent in a very inten-
tional way, lined up as shown in the example, and
with every level of indentation shifted by the same
number of spaces further to the right.

Having the VPL file, you simply have to make
TFM and VF files out of it. You do this by invoking
VPtoVF and copying the resulting files to locations
where TEX and the printer driver can find them.

Within TEX, ITF can then simply be used like
any other font; it looks like this:

\font\itf=wlitf scaled 2000
\def\itfcode#1{{\itf+#1-}}
Hello, the plate with the
mix computer’s serial number
looks like this:
\centerline{\itfcode{1009}}

Higher TEXnique would require checking whether
the argument to \itfcode is completely numeric
and if it consists of an even number of digits —
maybe even calculating a checksum. But for pro-
cessing database output, the checking should hap-
pen at an earlier stage.

Because of the possibility to include references
to other fonts within a VPL file, it is also possible
to build a virtual font containing bars and digits —
something that you need for upc codes etc. — pro-
vided you have already got a font of ocr digits.

3 Conclusion

You can create barcodes any way you like; TEX offers
several opportunities. The conventional method of
using METAFONT is surely the best way, but for one-
time-use TEX itself may suffice. Using a VPL-file
alone results in scalable fonts, but without hinting.

The files related to this article (code 39 both
in METAFONT and TEX macros, an ITF font and a
codabar font, both in VPL format, and an ean font
in METAFONT format) can be found on CTANin ..
./tex-archive/fonts/barcodes/willadt/. You
should be aware of the fact that for the METAFONT

code, you need to do some preprocessing. All fonts
and macros may be freely used without restrictions.

References

[1] Peter Oľsak. The EAN barcodes by TEX.
TUGboat, 15(4):459–464, 1994.

[2] John Sauter. Postnet codes using METAFONT.
TUGboat, 13(4):472–476, 1992.

[3] Dimitri Vulis. TEX and envelopes. TUGboat,
12(2):279–284, 1991.

� Peter Willadt
Heinrich-Wieland-Allee 5
75177 Pforzheim
Germany
Willadt@t-online.de


