
TUGboat, Volume 19 (1998), No. 2 135

Hints and Tricks

‘Hey — it works!’

Jeremy Gibbons

Welcome to ‘Hey — it works!’, a column devoted
to (LA)TEX tips, tricks and techniques. In this issue,
we have an article by Robert Tolksdorf, on auto-
matically inserting or avoiding spaces after macros
that expand to text (such as the macro \TUB, which
generates ‘TUGboat’); this is based on a macro by
Donald Arseneau in an earlier column in TTN . We
also have an article by Pedro Aphalo on generating
dashed lines of various kinds in LATEX.

I have decided to expand the scope of the col-
umn to include also METAFONT and METAPOST

techniques, prompted by a recent question on the
METAFONT mailing list. To get the ball rolling, this
issue concludes with an article of mine on drawing
double-headed arrows in METAPOST. Please send
me any more little METAFONT or METAPOST snip-
pets you might have, along with the usual TEX and
LATEX ones.

� Jeremy Gibbons
CMS, Oxford Brookes University
Gipsy Lane, Headington
Oxford OX3 0BP, UK
jgibbons@brookes.ac.uk

http://www.brookes.ac.uk/

~p0071749/

1 Smart spaced macros everywhere

The article Italic correction everywhere by Donald
Arseneau in TTN 3,1:15 addresses the issue of in-
serting an italic correction automatically, if there is
no punctuation following the italicized text.

A similar problem is the generation of spaces
after a macro that generates text, such as the \TUB
macro from the TUGboat document class. Con-
sider the sentence “TUGboat uses the macro \TUB
to generate ‘TUGboat’.” The source for this sen-
tence reads:

\TUB\ uses the macro \verb"\TUB"

to generate ‘\TUB’.

What one would like to avoid is the manually in-
serted \ after the first \TUB. The following lines in-
troduce the macro \smartspace that automagically
inserts it when no punctuation follows the macro:

% smart insertion of space

% Robert Tolksdorf (tolk@cs.tu-berlin.de)

% Following Donald Arseneau,

% Italic correction everywhere, TTN 3,1

136 TUGboat, Volume 19 (1998), No. 2

\def\smartspace#1{{\protect

\aftergroup\smartspaceit#1}}

\def\smartspaceit{\futurelet\spta\sptest}

\def\sptest{\ifcat\noexpand\spta,\else\ \fi}

Now, we can define a macro \TUGboat by
\def\TUGboat{\smartspace{\TUB}}

and use
\TUGboat uses the macro \verb"\TUGboat"

to generate ‘\TUGboat’.

And hey, to quote Donald Arseneau, this works for
9944/100% of the time only, as ‘\TUGboat --’ shows.
Someone tell me why!1

� Robert Tolksdorf
Technische Universität Berlin
tolk@cs.tu-berlin.de

2 Dashed lines

Sometimes, for example when including data plots,
it is necessary to include in the caption to a fig-
ure different dashed or entire line segments used to
identify different lines, like this:

A (), B ()
The size and location of these line segments should
match the surrounding text. After reading Norbert
Schwarz’s ‘Introduction to TEX’ book, I wrote a very
small package which I have been using for some time
with LATEX. It is based on a command which can
generate most commonly used dashed lines.
\def\dashedrule#1#2#3{{%

% #1 is length of dash

% #2 is length of gap between dashes

% #3 is number of dashes

\dimen1=#2 \divide\dimen1 by 2

\def\@ruledash{%

\rule{\dimen1}{0pt}%

\rule[0.5ex]{#1}{0.4pt}%

% line is 0.5ex above the baseline

% and 0.4pt thick

\rule{\dimen1}{0pt}}%

\count1=0

\loop%

\ifnum\count1<#3%

\advance\count1 by 1%

\@ruledash%

\repeat}}

How does it work? \@ruledash draws a single
dash plus half a gap in front of it, and half a gap
after it. A loop draws as many dashes, surrounded

1 Note that if you make the macro \TeX smart-spaced,
then ‘\TeX book’ no longer works as it used to!

by half gaps, as indicated by the third argument.
Using this command it is extremely easy to define
different dashed line segments of equal length, as the
example below shows for 3em-long line segments.

% length of line segment is (#1 + #2) * #3

\def\longdashes{\dashedrule{.8em}{.2em}{3}}

\def\mediumdashes{\dashedrule{.3em}{.2em}{6}}

\def\shortdashes{\dashedrule{.1em}{.1em}{15}}

\def\solidline{\dashedrule{3em}{0em}{1}}

\def\sparsedashes{\dashedrule{.5em}{.5em}{3}}

‘ ’
‘ ’
‘ ’
‘ ’
‘ ’

� Pedro J. Aphalo
Faculty of Forestry
University of Joensuu
pedro.aphalo@joensuu.fi

http://cc.joensuu.fi/~aphalo/

3 Double-headed arrows

A recent request on the METAFONT mailing list was
for help in drawing double-headed arrows. One cor-
respondent provided the following definition of a
macro to draw a path with an arrowhead at each
end:

def draw_dbl_arrow text t =

path p, q;

p := t;

q := subpath (0,.5) of p;

drawarrow reverse q;

q := subpath (.5,1) of p;

drawarrow q

enddef;

For example,
draw_dbl_arrow (0,0){right} .. {right}(50,25);

produces:

This definition can be improved in several ways.
For one thing, there is no need to use assignments
like this. METAPOST

2 has a powerful expression
language, and in particular you can use an expres-
sion as the argument to drawarrow:

def draw_dbl_arrow text t =

drawarrow reverse (subpath (0,.5) of p);

drawarrow subpath (.5,1) of p

enddef;

2 Although we use the term ‘METAPOST’ to refer to the
language, everything in this article applies equally to the
METAPOST and METAFONT systems.

TUGboat, Volume 19 (1998), No. 2 137

For another thing, that ‘1’ should be ‘length p’,
otherwise the macro will only work for a path of
length 1.

Indeed, there is no need to draw just subpaths
of p; there is no harm in drawing p itself twice:
def draw_dbl_arrow text t =

drawarrow reverse p;

drawarrow p

enddef;

In fact, the original poster asked for a triple-
headed arrow, with two arrow heads at (for the sake
of argument) the end of the path. If you can pick
the right small value of e, you can achieve this by
just drawing the path three times:
def draw_trp_arrow text t =

drawarrow reverse p;

drawarrow p;

drawarrow subpath (0, length p - e) of p

enddef;

But what value to pick for e? You could just experi-
ment, but different values will be needed for different
paths to get consistent results. A better approach is
to find the time at which a point traversing path p
is a certain fixed distance (namely, the length of an
arrow head, ahlength) from the end of p, and to
draw the corresponding subpath of p. You can find
that time using intersectiontimes, intersecting p
with a circle of the appropriate size centred on the
end of p.
def draw_trp_arrow text t =

drawarrow reverse p;

drawarrow p;

path q;

q := fullcircle scaled (2*ahlength)

shifted (point (length p) of p);

numeric tp, tq;

(tp,tq) = p intersectiontimes q;

drawarrow subpath (0, tp) of p

enddef;

On the same path as before, draw_trp_arrow gives

It is assumed that p is suitably well-behaved, that
is, that it crosses the small circle just once.

(Again, it is possible to do it without those
assignments, but then the argument to the third
drawarrow gets rather unwieldy.)

� Jeremy Gibbons
Oxford Brookes University
jgibbons@brookes.ac.uk

