
Developing Database Publishing Systems Using TEX

Jeffrey McArthur
ATLIS Publishing Services
jmcarth@atlis.com

Abstract

Many directories and publications are created and maintained using “off the
shelf” desktop publishing systems. Producing a publication may take months of
hard work. Some publications can be converted to a database publishing system
which is capable of producing a finished book in a matter of hours. This paper
looks at some of the issues involved in developing a database publishing system
that uses TEX as the typesetting system.

The Key Features of a Content
Management System

Content management systems store information in
a database. The list below enumerates some of
the benefits of developing a system to maintain
information using TEX as the typesetting engine:

1. Consistency: The typesetting is regular and
predictable. Books that are typeset using desk-
top publishing are often broken into sections.
Each section is done by a different person.
Each person has control over the layout of their
section. This can result in subtle differences
between sections of a publication. A content
management system using TEX removes the
possibility of undesirable differences between
sections.

2. Timeliness: Document preparation no longer
takes days or months. Pushing a key can gen-
erate an up-to-date publication reflecting the
state of the data in the system. A complete
publication can be finished in a matter of hours
using TEX. Information constantly changes and
last minute changes will automatically be incor-
porated in the final output with no additional
effort. The predictable nature of publication
generation allows for tighter scheduling of pro-
duction.

3. Indexing: Automatic generation and extraction
of index information are part of the typeset-
ting process. A content management system
using TEX as the typesetting engine provides
the capability to create indexes that would be
impossible to do using desktop publishing in a
timely manner.

4. Repeatability: The ability to generate a book
over and over again with different data is a
key feature of content management systems.

Multiple books can be quickly created using
different subsets of the information contained
in the system.

This paper focuses on using TEX as the back
end or typesetting engine in a content management
system. The choice of TEX as the typesetting
system provides many benefits but also affects the
development and implementation.

Limitations of Desktop Publishing Systems

Desktop publishing systems are designed around the
WYSIWYG paradigm. It is easy to create great
looking pages but there are no integrity checks on
the data. Without validation on the input data it
is possible to have dates like “February 31”, or to
have a two letter state abbreviation like “23”. Errors
of this type are amazingly common. Spelling and
grammar checking will not detect errors of this type.
In a desktop publishing system the information is
just textual data. If a person changes his email
address, all the documents in the system must be
searched and a replacement done to each and every
instance. In content management systems each
person is an entity. All calls to the person are by
reference. If the email address of the person changes,
then all references to the person are automatically
updated.

One of our clients took three months with up to
fifteen people to generate the index to one of their
books. That index can be generated in a matter of
hours with a content management system developed
for them.

Desktop publishing systems are not designed
for publishing large quantities of data quickly. TEX
works hand in hand with the content management
system to quickly and accurately generate printed
or electronic documentation.

TEXNorthEast Conference, March 22 – 24, 1998 188



TUGboat, Volume 19 (1998), No. 2 189

Most desktop publishing systems provide tools
to import database information. The WYSIWYG

paradigm means that the user is prompted to “flow”
the data into the system. Style sheets provide only
limited capabilities over club and widow control.
Import capabilities are usually limited to importing
a single table, query, or view of the data. Content
management systems do not have this limitation.

Database Development Must Work
Hand-in-hand with TEX

All successful content management systems must
keep the goal of producing the output documents
in mind during all phases of development. TEX as a
typesetting engine places demands on the database
design.

Sorting. It is possible to sort in TEX, but the
macros to do this are complex and difficult to use.
Database systems are designed for sorting and each
system should be used for its strengths. Thus, all
sorting should be done by the database system and
not in TEX.

Accents. Many database systems in the United
States are not able to accurately store accented
data. Some database systems translate accented
characters to some other form internally. This can
cause problems when the data is output for TEX to
typeset. The database system must be configured
so that it is easy for the user to enter accented data,
and be able to get that data back out into a file that
can be typeset by TEX.

Publication order. Normalized databases have
an implicit order. This seldom matches the order
that is desired in the printed or electronic output.
TEX can rearrange data. It is easy to exceed the
capacity of TEX by trying to store large quantities
of data internally so that they can be rearranged
on output. The database should be designed to
allow quick generation of the data in an order which
closely resembles the final output. This makes the
job of typesetting the data with TEX easier.

Line lengths. One limitation of TEX is that the
input file must be broken into lines. Most imple-
mentations of TEX only allow one to two thousand
characters on a line. This is a serious limitation with
database publishing. The database system must
separate the data into lines that are less than the
input-line limit of TEX.

Special characters. Publishing data from a
database places some requirements on the macros
developed in TEX. A common requirement is that
all printable characters must be usable. If the user

can enter a character, they want that character
to output in the finished document. If the user
enters a backslash, the resulting output needs to
print the backslash. Although this causes difficulties
with TEX, there are several methods for solving the
problem. One solution is to have the database filter
the data for input into TEX. This is quite slow
since it requires the database system to check every
character to see if it needs to be “escaped”. Another
approach is to change the way TEX reads the data by
using verbatim macros such as are commonly used
for listings. The composition file generated by the
database system does not need to be editable by
a human since it is only a temporary file used to
transfer data from the content management system
into TEX.

This approach allows many of the control char-
acters normally used by TEX to have their \catcode
changed to that of a letter. Macro packages used
to typeset databases often end with the following
sequence:

\catcode‘\$=\other
\catcode‘\%=\other
\catcode‘\&=\other
\catcode‘\#=\other
\catcode‘\_=\other
\catcode‘\^=\other
\catcode‘\{=\other
\catcode‘\}=\other

The lines above allow most characters to be printed.
The tilde character, — —, however, is a special case.
Internet URLs often contain a — —. The problem
with typesetting internet URLs is that the — —
character should be typeset as ∼ and not as — —.
Using a —∼— instead of a — — is more consistent
with the way the information looks when keyed or
when viewed in a browser. The simplest solution
to changing the typesetting of — — is to do the
following:

\def\Tilde{\hbox{$\sim$}}
\catcode‘\~=\active
\let~=\Tilde

Changing the \catcode of —— and —— means
that grouping cannot be done using them. This is
usually not a problem. The parameter text rules of
TEX provide a mechanism to specify the boundaries
of the input parameters.

Typesetting \ is a bit more challenging. One
solution is to change the escape character to one
that is non-printable. One choice is character 255.
Very few typefaces define a glyph for character 255.
On the PC, character 255 prints as a space. The
character is non-printable, so it is difficult to give an

TEXNorthEast Conference, March 22 – 24, 1998



190 TUGboat, Volume 19 (1998), No. 2

example how to use it. Below is a set of macros that
use character 255 as the escape character. In the
example below, character 255 has been replaced by
the sequence M-^? so that the macros are readable.

\chardef\other=12
\def\QuoteBS{

\begingroup
\catcode‘\\=\other
\EndQuoteBS}

\begingroup
\catcode‘\M-^?=0
\catcode‘\\=\other
M-^?gdefM-^?EndQuoteBS#1\End{

M-^?line{M-^?hfil***#1***M-^?hfil}
M-^?endgroup}

M-^?endgroup

There is a problem with macros like the one
above: they are difficult to read and maintain.
Few texts, other than ones on TEX, use a lot of \
characters. A more rational approach is to restrict
the input of data into the content management
system to disallow entering a \ except in those few
fields that actually require it. This simplifies writing
the macros, makes the macros much more readable,
and more maintainable.

Index generation. TEX has the ability to cre-
ate auxiliary output files that list the page number
where the write occurred. TEX can extract infor-
mation that can be used to form an index. We have
used two different methods of creating extracted
indexes. One method is for TEX to be responsible
for outputting a file suitable for composition with
TEX. That is, TEX creates a file that can be run
through TEX. The file is sorted prior to running
through TEX, using a simple sort program. One
major disadvantage to this method is that the re-
sulting code is very difficult to read because many
characters have their \catcode changed. Another
difficulty is in sorting the resulting index. Care must
be taken to allow the file to be sorted properly. It is
usually easier for the database program to export a
“sort key” into the data stream for TEX to pass on
to the extracted index file than to try and create the
“sort key” in TEX. This is particularly true if the
index contains entries like 3M which need to sort
under M (Minnesota Mining and Manufacturing).
Accented characters are a problem. Care must be
taken to allow accented characters to pass through
TEX without any change.

A second approach is for TEX to only output the
“record id” and page number. The auxiliary file is
read into a database program and a new composition

file is generated with the page number data. This
method has a couple of advantages:

1. The database provides the tools to sort the
information.

2. Indexes where an entry may occur under many
headings are much easier to handle.

Extraction from the Database

The information in the database or content man-
agement system must be exported for use by TEX.
For simple database projects it is possible to use
standard database export utilities. Typesetting di-
rectly from the quote-delimited format can be done
by making the double quote character active to start
the input, and then using a form of tail-recursion to
call macros for the next field.

For each field there are three macros. One to
start the input, one to store or typeset the data, and
one to finish the field and call the macro to start
the next field. If the database contained only three
fields: first name, last name, and phone extension,
then an exported quote-delimited file would look like
this:
"Jeffrey","McArthur","4253"
"Jeannine","McArthur","1234"
"Bilbo","Baggins","5678"

The following macro would typeset the data,
moving the first name after the last name and setting
the name left-justified on the line and the extension
right-justified on the line.
\chardef\other=12

% These assume " is active
\def\BegFirstName{

\begingroup
\catcode‘\"=\other
\MidFirstName}

\def\BegLastName{
\begingroup
\catcode‘\"=\other
\MidLastName}

\def\BegExtension{
\begingroup
\catcode‘\"=\other
\MidExtension}

% These assume " is other.
% They pull in the parameter
% and store or set it
\def\MidFirstName#1","{

\gdef\ValFN{#1}

TEXNorthEast Conference, March 22 – 24, 1998



TUGboat, Volume 19 (1998), No. 2 191

\EndFirstName}

\def\MidLastName#1","{
\gdef\ValLN{#1}
\EndLastName}

\def\MidExtension#1"{
\line{

\ValLN,
\ValFN
\hfil
#1

}
\EndExtension}

% these assume " is other
% they reset the catcode and
% call the next field
\def\EndFirstName{\endgroup\BegLastName}
\def\EndLastName{\endgroup\BegExtension}
\def\EndExtension{\endgroup}

\catcode‘\"=\active
\let"=\BegFirstName

There are several problems with typesetting
quote delimited files. TEX can only work with
files that do not exceed its input buffer line length,
usually one to two thousand characters. Databases
with large record structures can generate lines longer
than this. If the database adds a new field to
the table, then the output file would be a different
structure and TEX would no longer typeset the file
properly.

Generation of composition files. The approach
we have taken to preparing the data for use with
TEX is to write a program that generates a com-
position file. The program processes each record in
the database and tags and outputs each field. This
gives full control over the order of the data and can
provide any special processing required.

We have used a descriptive tagging scheme
which allows the same extracted data to be used
for more than one purpose. The data file can be
composed with different sets of macros producing
different output. Using the same data file for mul-
tiple outputs has various advantages. For instance,
the generation of a composition file can be a time-
consuming process. TEX can process the data two to
ten times faster than the data file can be generated.
For example it can take up to four hours to extract
a sixty megabyte composition file; TEX can compose

that file into about twelve-hundred pages in less than
half an hour.1

SGML. Content management systems that use
SGML encoding can be typeset using TEX. Valid
SGML document instances are stored as memo fields
in relational databases. The document instances
are extracted into composition order and “stitched
together” using TEX macros. With proper care TEX
can directly typeset the SGML document instances.
This requires that all the tags follow consistent cas-
ing scheme, or preferably a change to the SGML dec-
laration to make the tags case-sensitive. If no output
processing or filtering on the SGML is required, the
composition file can be quickly generated. This is
one of the few cases we have encountered where the
composition file can be generated faster than TEX
can compose it.

SGML tables. SGML tables using the SoftQuad
table model are computationally expensive to do in
TEX. Some of the SGML tables we have typeset
extend beyond four pages. Our implementation of
macros in TEX to typeset SoftQuad SGML tables
uses \halign. This has proven to be very memory
intensive. Large tables require a version of TEX that
can use more than 20 Meg of RAM. TEX normally
processes pages quickly, but on slower hardware2

TEX can take up to ten minutes to process a single
table. During that time no pages are output.
Once the table processing has finished, TEX resumes
quickly outputting pages.

Entity and table validation. During our imple-
mentation of SGML content management systems
we ran into some problems with tables. A valid
SGML document instance can have an invalid table.
That is, the table can define three columns and
actually have four or more columns of data. The
SGML parser is not designed to catch this type of
problem. Typesetting SGML document instances
that have malformed tables causes TEX to generate
an error message. The content management system
hides most of the details from the end users. Error
messages generated by TEX are helpful to those well
versed in TEX, but to an average user they are total
gibberish. To avoid this problem we developed a
small program using a variant of Lex3 that compares
the number of column definitions with the number of
actual columns. We further enhanced the program
to process the ampersand character & and make

1 Using a Pentium 166 running on a Novell 4.11 network
with Paradox tables.

2 486DX33 with 32 Meg of RAM.
3 TPLexYacc 3.01, this version of Lex emits Pascal code

instead of C.

TEXNorthEast Conference, March 22 – 24, 1998



192 TUGboat, Volume 19 (1998), No. 2

sure that it was only used as the start of an entity
and that all entities were followed by semicolons.
Making & active and using \csname and \endcsname
allowed TEX to process the SGML entities. The
macros below show how to do this:

\catcode‘\&=\active
\def&#1;{\csname ENTITY#1\endcsname}

Push-button Book Generation

Any time the user wants to generate a book, or see
what a book will look like, we can push a button
and have the finished book in a few hours. We have
used TEX to generate completely turn-key database
publishing systems in which the user does not need
to know anything about TEX.

The content management systems we have de-
veloped provide the user with the ability to select
what sections or documents to print. We have also
implemented systems where the user has some lim-
ited capabilities to change how the book is typeset.
For instance, we have developed systems where the
user can select the number of columns, the font sets
to use, the point sizes to use, and the overall page
size. The user cannot enter arbitrary combinations
since the selection is limited to combinations that
would work.

Test and Fit

Push-button generation means that the user does
not need to make any decision on the fly about how
the program is to typeset the book.

However, the measuring capabilities of TEX do
allow for runtime calculations. For example, in a
common directory style the phone numbers should
fit into a right-hand column, with the text on the
left. If the phone numbers follow a regular pattern,
as they do in the United States and Canada, then
the width of the phone number column can be
calculated at run time. This is done by setting a
test phone number in an hbox and taking its width.
The advantage of this method is that the fonts can
be changed and TEX will recalculate the column
widths.

Test and fit can also be used in another phone
number situation. Although phone numbers in the
United States and Canada follow a 3-3-4 pattern,
e.g. 301-578-4200, other countries do not follow that
pattern. TEX can measure a foreign phone number
to see if it will fit. This is accomplished by placing
the phone number into an hbox. The width of the
hbox can then be compared to the space allowed on
the line for phone numbers. If the phone number
is larger than the allowed space, the data can be

re-typeset using a smaller or condensed font. This
capability should be used judiciously or the pages
will be aesthetically displeasing.

Widow and Club Control

TEX provides two penalties \clubpenalty and
\widowpenalty that control how paragraphs break.
The paragraph-breaking capability of TEX can be
used for more than just simple lines. One common
rule is to “leave and carry two” entities. That is,
if the book is a list of people, then the require-
ment is that there are always at least two people
prior to and following a column break. The in-
formation for a person may actually take several
output lines. If each person is eventually placed
in a \line and the list of people is typeset as a
paragraph, then setting \clubpenalty=10000 and
\widowpenalty=10000 means that TEX will always
“leave and carry two” people.

One of the limitations of TEX is that its
paragraph-breaking algorithm does not provide mech-
anisms for doing things like “leave and carry three”
or higher. In cases like this the database extraction
program must provide the information to TEX on
where to allow it to break. One way to do this is to
output each entity as a vbox. If TEX is in vertical
mode then a series of vboxes cannot break if there is
no glue between them. Let the database extraction
program count the number of records and insert the
glue and penalty commands at the allowed break-
points. Another option is for the database program
to only output the number of records and let TEX
count the records as it processes them add glue at
the appropriate points. So even though TEX does
not provide the capability to “leave and carry three”
this can easily be done in a content management
system by having the database extraction program
work with TEX.

Suppression and Selection

The macro capabilities of TEX provide powerful se-
lection capabilities allowing TEX to act as a filter.
For example, one application we developed typeset
a large directory of phone and fax numbers. The
sorting was complicated and the extraction from
the database took several hours. We were able to
produce two different books from the same compo-
sition file. The first book listed all the entries. The
second book listed only those entities that had fax
numbers. Because the books were generated from
the same data file it was guaranteed that the order
of the records in the books could not change.

TEXNorthEast Conference, March 22 – 24, 1998



TUGboat, Volume 19 (1998), No. 2 193

TEX can also filter out visually redundant in-
formation. Normalization is the process of removing
redundant information from a database. Extracting
the information from a database will denormalize
the data. Consider the following simple example.
The database contains three tables: a department
table containing the id number of the department
and the name of the department, a person table con-
taining the name and phone number of the person
and a link table that connects the department and
person tables. The SQL statement to select all the
records from the tables for composition could look
something like this:

SELECT DISTINCT
D0.DeptId,
D0.Department,
D2.PersId,
D2.First,
D2.Last,
D2.PersPhone

FROM
"Department.DB" D0,
"Link.db" D1,
"Person.DB" D2

WHERE
(D1.DeptId = D0.DeptId) AND
(D2.PersId = D1.PersId)

ORDER BY
D0.Department,
D2.Last,
D2.First

When the resulting answer table is output using
descriptive tags the result would be a file looking like
this:

\StartRecord
\DeptId{2}
\Department{Medlars}
\PersId{3}
\FirstName{Bilbo}
\LastName{Baggins}
\PersPhone{5678}
\EndRecord
\StartRecord
\DeptId{2}
\Department{Medlars}
\PersId{2}
\FirstName{Jeannine}
\LastName{McArthur}
\PersPhone{1234}
\EndRecord
\StartRecord
\DeptId{1}
\Department{Programming}

\PersId{1}
\FirstName{Jeffrey}
\LastName{McArthur}
\PersPhone{4200}
\EndRecord

All the fields are output into the composition
file with a start and end tag for each record. It is
usually undesirable to reprint duplicate information.
Using combinations of \def, \let, and \ifx, TEX
can filter out the duplicate information. Doing this
type of filtering, or deduping, in TEX simplifies the
generation of the composition file.

TEX can also do simple rearrangement of the
data. Below is a set of simple macros that demon-
strate these capabilities.

\let\StartRecord=\empty
\let\LastDept=\empty

\def\DeptId#1{\def\ValDeptId{#1}}
\def\Department#1{\def\ValDepartment{#1}}
\def\PersId#1{\def\ValPersId{#1}}
\def\FirstName#1{\def\ValFirstName{#1}}
\def\LastName#1{\def\ValLastName{#1}}
\def\PersPhone#1{\def\ValPersPhone{#1}}

\def\EndRecord{
\ifx\LastDept\ValDeptId\else

\let\LastDept=\ValDeptId
\medbreak
\line{\bf\ValDepartment\hfil}

\fi
\line{\ValLastName,

\ValFirstName
\hfil
\ValPersPhone}

}

TEX could also be used to select which entries
to typeset. The same data file could be used
to generate a complete directory, and a separate
directory for each department. For the complete
directory TEX would set each record. For the
department records TEX could test the department
id.

Various Output Options

TEX generates DVI files. None of our end users
were interested in DVI files. Using tools like DVIPS,
and recently pdfTEX we have created PostScript and
PDF files for our clients, as well as finished camera
ready pages and film. We have used TEX to generate
questionnaires to be programmatically faxed.

TEXNorthEast Conference, March 22 – 24, 1998



194 TUGboat, Volume 19 (1998), No. 2

TEX generated faxes. The process of using TEX
to fax questionnaires is outlined below:

1. The application generates a composition file.
2. The application executes TEX which composes

the file and generates a DVI file. TEX generates
an auxiliary file listing the account number,
starting page

and ending page of each questionnaire.
3. The application reads in the auxiliary file.
4. The application executes DVIPS to extract each

questionnaire using the starting and ending
page number from the auxiliary file. The name
of the resulting PostScript file is based on the
account number.

5. Acrobat Distiller converts the PostScript File
into a PDF file and embeds all the needed
graphics and fonts.

6. A second application watches the output di-
rectory from Acrobat Distiller. The file name,
which is based on an account number, is used
to look up the fax number. Using OLE, Ac-
robat Exchange is executed and the PDF file
is opened. Using DDE and WinFax, the fax
number is set. Using OLE, Acrobat Exchange
is told to print the PDF to the Fax.

Caveats

Developing macros for database publishing requires
a full understanding of all of the capabilities of
TEX. Macro packages like LATEX are designed for
authoring and they were not designed for database
publishing. The macro writer must understand how
to write output routines, use \mark, and even the
list capabilities of TEX as described in Appendix D
of The TEXbook. Compared to desktop publishing
systems this is a very high threshold. Finding and
training people to write macros of this complexity
is a difficult task.

All the logic to typeset the pages must be
programmed into TEX. The rules for when to break,
when to kern, and so on must be incorporated into

the macros. This means that the output pages are
very regular. One often-heard complaint is “can’t
you change the typesetting in just this one case?”
TEX is not WYSIWYG. This means that the user of
a turn-key system that uses TEX as its typesetting
engine may not allow any visual fine-tuning of the
pages.

Although TEX is very robust, many DVI trans-
lation programs have problems with complex pages.
We have seen numerous implementations fail try-
ing to process large complex pages. Many DVI

translation programs are “fussy” about the types
of graphics they will use. Integration of “off-the-
shelf” versions of TEX is relatively easy. Integration
of “off-the-shelf” DVI translation programs has been
problematic.

Most implementations of TEX and the related
DVIware for the PC use environment variables. The
tools assume that there is only one implementation
of TEX being used. Configuration management is
much more difficult than it should be.

The most serious disadvantage to using TEX as
the back end system is the difficulty finding people
with the aptitude to learn and understand how
to write complex macros. It is relatively easy to
find someone to use a desktop publishing system.
Finding someone who can write the macros for a
content management system is a lot harder. We
are always looking for qualified people. The lack of
qualified people is part of the overall shortage in the
computer industry.

Conclusion

TEX has proven to be a valuable tool in developing
content management systems, but it cannot be
quickly adopted. It takes time and commitment to
find, hire, and train the people needed to develop
the macros. There are disadvantages to using TEX
as the typesetting engine, but the disadvantages are
compensated for by the quality and speed of the
resulting system.

TEXNorthEast Conference, March 22 – 24, 1998


