
Presenting Mathematics and Languages in Web-pages, using LATEX2HTML

Ross Moore
Mathematics Department
Macquarie University
Sydney, Australia 2109
ross@mpce.mq.edu.au

http://www-math.mpce.mq.edu.au/~ross/

Introduction

LATEX2HTML is a very flexible tool for creating Web
pages to display the information contained in a man-
uscript prepared using LATEX. As of July 1998, the
current version is LATEX2HTML v98.2. It runs un-
der Unix, Linux, Windows NT, Windows’95, OS/2
and DOS. The latest released version, with online
manual for browsing, can be obtained from its dis-
tribution site1, in the USA or the European mirror2.
On CTAN, look under support/latex2html. There
is a developers repository3 for minor updates and
(α- or β-) development versions.

In the following sections we first discuss some
general considerations for Web pages using HTML,
including some pragmatic tips for authors wishing
to use the LATEX2HTML translator. This is followed
by a study of the different ways that are available for
the presentation of mathematics using LATEX2HTML,
discussing the available options and when a partic-
ular approach may be most appropriate. Further
examples are presented on how to use LATEX2HTML

to produce multi-lingual documents.

General considerations: Why HTML?

For distribution of text-like data on the Internet
the HTML formats, in their various versions, are
very efficient and widely supported in Web browser
software on all computing platforms. Thus a con-
verter that produces documents using HTML can
guarantee that the information to be presented is
accessible to the widest possible audience. Further-
more, there is no requirement for ‘plug-in’ modules
or other special software, beyond what is normally
available with a Web browser.

Since an .html file contains just editable text, it
is easily modified in any editor. This property alone
adds a significant level of flexibility to any transla-

1 http://www-dsed.llnl.gov/files/programs/unix/

latex2html/
2 ftp://ftp.rzg.mpg.de/pub/software/latex2html/
3 http://cdc-server.cdc.informatik.tu-darmstadt.de/ la-

tex2html/

tion tool. If the result of the automatic translation
is not quite what is desired, it is a simple matter to
find the place where a correction is necessary and
do it ‘by hand’.

Even if the translation is flawless, at some time
in the future there may be a change desired in the
information being presented. For example a name
or address may change, or a different graphic image
may be desired, or a hyperlink to some external site
may become invalid so needing to be replaced by an-
other. Such minor alterations and updates can be
done without the need to reprocess the whole docu-
ment from the original LATEX source (which may no
longer even be available).

Another flexible aspect of HTML is that the
reader has control over the browser window’s char-
acteristics. This includes size, style and colour of the
text-font in which most of the information is to be
presented, as well as the location and shape of the
viewing window. The reader can customise these
properties to suit personal requirements and pref-
erences. This is a feature not available with other
data formats, such as .dvi, .pdf or PostScript.

Mathematics with LATEX2HTML

Figure 1 shows how pieces of mathematics may be
presented, using LATEX2HTML’s default settings for
the versions released during 1997 and 1998. This is
a ‘screen-shot’ of a portion of a Web page generated
using LATEX2HTML. Fuzziness in the image is due
to the lower resolution for on-screen display than is
typically used with a printed version. Furthermore
“anti-aliasing” is used with the font characters, to
avoid a jagged appearance.

The LATEX code for this example is given at
the end of this article. It displays many common
features of typeset mathematics:

• Greek letters and calligraphic (script) symbols;

• superscripts, subscripts, fractions and deriva-
tives;

• large operators, such as
∫

and
∑

with limits;

195 TEXNorthEast Conference, March 22 – 24, 1998

196 TUGboat, Volume 19 (1998), No. 2

Figure 1: Some mathematics in a Web document produced by LATEX2HTML, using the default settings.

• aligned arrays of equations (in particular the
subequations environment from the amsmath
package);

• extended brackets and parentheses.

Notice how most of the mathematics looks just like
it has been typeset in TEX, because that is precisely
what has happened. These expressions are actually
images, in gif format.4 This is achieved by typeset-
ting each mathematical expression on a single page,
processing the .dvi-file using dvips, then rendering

4 Alternatively images can be generated using the png

graphics format.

the resulting PostScript5 files using Ghostscript.6

For a better quality on-screen appearance in these
low-resolution images, the ‘anti-aliasing’ technique
is employed to soften the edges of otherwise ‘blocky’
font characters. For readability on-screen, images
of mathematical expressions are normally made to
correspond to a 14 pt font-size. Like most choices in
LATEX2HTML, this can be altered.7

5 PostScript is a registered trademark of Adobe Systems
Inc.

6 Ghostscript is a product of Aladdin Enterprises, Menlo
Park, CA. Version 4.02 or later is required for ‘anti-aliasing’
effects.

7 . . . by adjusting the value of the $MATH SCALE FACTOR

configuration variable.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 197

‘Simple math’. Some of the mathematical expres-
sions in figure 1 do not use an image; e.g., the inline
expression y = B(x) and most of the ‘=’ signs in
the first alignment. For these the whole expression
can be represented using ordinary font characters,
so this is what is done—with names set in italics, of
course.

If any special symbol, indeed any macro (apart
from those listed below), occurs within a mathemati-
cal expression then an image is made of the whole ex-
pression. To LATEX2HTML users this is known as the
“simple math” strategy. Superscripts, subscripts
and some simple type-face macros are handled ap-
propriately. Allowable macros include \mathbf,
\mathrm, \mathtt, \mathit and \boldsymbol, as
well as the recent \mb addition to LATEX. Further-
more \textbf, \textrm, \texttt, \textit are al-
lowable, but not recommended.

Although the appearance of expressions pre-
sented using ‘simple math’ are generally not as at-
tractive as with an image, the benefit is that less
information needs to be transferred across the net-
work. For example, the expression N (A) = R(B)
results in HTML code:
<!-- MATH: $\mathcal{N}(A) = \mathcal{R}(B)$ -->

<IMG

WIDTH="104" HEIGHT="31" ALIGN="MIDDLE" BORDER="0"

SRC="img14.gif"

ALT="$\mathcal{N}(A) = \mathcal{R}(B)$">

Notice how the TEX source is included as a com-
ment. This ensures that the information is available
in the .html file, in case the image fails to load suc-
cessfully. When sufficiently short, the source is also
included within the ALT attribute of the tag.
This allows a textual representation to be shown by
browsers which do not support images (e.g., lynx) or
when image support has been deliberately disabled.

Compare this with the amount of code gener-
ated for y = B(x), using ‘simple math’:
when <I>y</I>=<I>B</I>(<I>x</I>) then one has

It is not difficult to appreciate the advantages to
this ‘simple math’ approach. Furthermore, in the
previous paragraph there was no mention of the
actual size of the file img14.gif that needs to be
transferred to show the image, and the extra server-
connection required to request it be sent. In prac-
tice these are more significant than the extra text
required within the .html file. Furthermore images
do not rescale automatically when the font-size is
changed within the browser.

It is clear that ‘simple math’ is a good strategy
when a Web document contains only simple mathe-
matical expressions, for then the overhead to request
and transfer images is minimal. However when a lot

of quite complicated mathematics is to be presented,
this approach is not ideal. We later discuss alterna-
tive strategies available with LATEX2HTML.

Alignment environments. Equation alignments
are achieved using HTML’s <table> tag. Such tags
became available as a standard part of HTML with
the version 3.2 recommendation in early 1997. Some
browsers provided support earlier than this.

Each cell in the table is treated as a separate ex-
pression, for deciding whether to use “simple math”
or to make an image. Compare the different size of
the ‘=’ signs in the equation beginning γ′ = . . . in
figure 1. The first uses the browser’s font whereas
the second one is part of an image.

Notice also that equation numbers are placed in
a separate column of cells within the <table>. The
leqno document-class option causes numbering to be
put on the left-hand side, as with LATEX.

Overriding ‘simple math’. The default ‘simple
math’ strategy can be turned-off using the -no math
command-line switch. That is, run LATEX2HTML on
the LATEX source file using the command:
latex2html -no_math ... myfile.tex

where the ‘. . . ’ indicate the possible presence of
other command-line switches. This will provide a
consistent style for the mathematical expressions in
all parts of the environment, as in an on-paper type-
set version. This can be seen in figure 2, showing the
inline mathematics portion of figure 1.

Figure 2: Inline mathematics, without using the
‘simple math’ strategy. An opaque background
shows the size of images; extra space is included
to allow correct alignment. (Normally image
backgrounds are transparent.)

There will be more images than when ‘simple
math’ is used. An appropriate situation for this
strategy might be when the complete HTML doc-
ument is available on the local machine or network
(LAN), so that expensive file-transfers are not an
issue.

Normally images are created with transparent
backgrounds.8 In figure 2, an opaque background
has been used to show the size and alignment of the
images, with respect to the surrounding text. Notice

8 This is overridden by the -no transparent command-
line switch.

TEXNorthEast Conference, March 22 – 24, 1998

198 TUGboat, Volume 19 (1998), No. 2

that when there is a ‘descender’ the image contains
extra white space below the baseline. This allows
the attribute to
position the image correctly. With no descender
 is appropriate.

The extra height causes wide line-spacing in
older browsers. This anomaly can be fixed for more
recent browsers, by using the .css stylesheet[7] that
LATEX2HTML produces automatically. One needs to
set the line-height property to a fixed amount; e.g.,
P.INLINE { line-height : 20pt }

Now within the .html pages, change the <p> tag
to <p class="inline"> for paragraphs containing
over-sized images. The technique was used with fig-
ure 8. Future versions of LATEX2HTML will handle
this automatically, at least when preparing code ac-
cording to HTML 4.0 specifications.

Images of aligned environments. In earlier ver-
sions of LATEX2HTML an image was made of whole
eqnarray and equation and other environments.
Before <table> tags were recommended within the
HTML 3.2 standard, this was necessary and equa-
tion numbering was included as part of the image.
Now this effect can be achieved, when desired, in
several different ways.

Easiest is to request that LATEX2HTML produce
HTML code conforming to the version 2.0 standard,
using the command-line option:
latextohtml -html_version 2.0 ... myfile.tex

However this will disallow other constructions; e.g.
forcing images also of tabular environments. Using
also -no math ensures images of all inline formulae
as well.

Alternatively, images can be forced selectively
by including an \htmlimage command within the
environment. This command takes an argument
which allows extra graphic effects to be specified for
the image; see the User Manual[1] for the available
effects:
\begin{eqnarray}

\htmlimage{}

...

...

\end{eqnarray}

Finally, the makeimage environment creates an
image of whatever LATEX code it contains. Both
this and the \htmlimage command require the html
package be loaded within the document preamble.
\begin{makeimage}

\begin{eqnarray}

...

...

\end{eqnarray}

\end{makeimage}

Image Reuse and Reduction Strategies

A document such as a research paper, thesis or class
notes, can require a lot of mathematics. This can
lead to many images. LATEX2HTML automatically
detects when LATEX code is essentially identical to
that used for an image already occurring within the
document. A single image serves all such instances.
However, even with this ‘image reuse’ the total num-
ber of images can still be large, giving significant
loading delays.

math extension. One way to reduce these effects
is to create more images, but of smaller pieces of
mathematics. The idea is to extend the ‘simple
math’ idea to use the text-font whenever possible.
Only when a symbol or sub-expression cannot be
represented adequately using the text-font is an im-
age made. Any given HTML page can be expected
to contain more images this way, however the same
image may occur in many places on that page. The
total size (in bytes) needed for images is reduced
significantly, compared to when images are made of
complete expressions.

Typically the first page is slow to load, as the
images are downloaded across the network. Later
pages in the same document require less download
time as most of the required images will have been
cached locally by the browser, from being present
within earlier pages.

To activate the extra processing required for
this strategy one must load LATEX2HTML’s special
math extension, as follows:

latex2html -no_math -html_version 3.2,math ...

UNICODE fonts. Further reduction in the number
of images is obtained by presuming that the browser
will provide at least limited support for the unicode

font encoding9. In particular there should be sup-
port for Greek letters, both upper and lower-case,
and some extra mathematical symbols.

To activate this, append the unicode extension
to the -html version command-line switch (don’t
leave any spaces):

... -no_math -html_version 3.2,math,unicode ...

Compare figure 4 with figure 3 to see the effect. This
strategy is not yet ideal; notice the different styles of
ε with and without the overline accent in the lower
equations. Use of \varepsilon within the LATEX
source alleviates this discrepancy; alternatively it
may become possible for browsers to render accented
unicode characters.

9 This is the case with the most recent versions of the
Netscape Navigator and Microsoft’s Internet Explorer

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 199

Figure 3: With the math extension loaded extra parsing of mathematics produces a mix of
font-characters and smaller images. Opaque image backgrounds are used here only to show clearly
which parts are images. In normal use these backgrounds are transparent.

Figure 4: When the unicode extension is also loaded, Greek letters and other symbols can use
font-characters also. This requires the browser to have some support for unicode.

Browser inadequacies. The commonly available
Web browsers are continually improving, as more of
the HTML 4.0 recommendations[7] are implemented.
However some aspects of less advanced effects still
create difficulties.

Look at the placement of superscripts and sub-
scripts within figure 6. In mathematics these should
be positioned above one another, as in Bαij . Further-
more the browser places extra space after italiced
text. This is clearly evident in figure 5.

Figure 5: A browser’s placement of multiple
superscripts and subscripts is not always ideal for
mathematical usage.

Figure 6: Some browsers place extra space after
italiced text, over-compensating for the slope. This
is particularly awkward for placing subscripts.

Such details should be fixed in future releases of
browser software. Alternatively it may become pos-
sible to overcome these deficiencies within the HTML

code, by specifying ‘box-like’ placement properties
with a CSS style-sheet[7]. This requires browsers to
support these advanced features.

Future support for MathML. As support for the
new XML[7] (similar to HTML but more versatile)
is incorporated into Web-browsers, it will become
appropriate to extend the translation capabilities of
LATEX2HTML. In particular, an ability to prepare

TEXNorthEast Conference, March 22 – 24, 1998

200 TUGboat, Volume 19 (1998), No. 2

Figure 7: Bibliography entries using images for text of non-Latin based alphabets.

mathematics according to the MathML[7] markup
scheme is a goal for future development.

Multi-lingual documents

Representing different languages within the same
Web document presents problems similar to those
with mathematics. There is no real difficulty when
the languages are all based on the latin alphabet,
provided any required accented letters are all avail-
able within a single font encoding.

The ISO-8859 encodings contain complete char-
acter-sets for various languages. Modern browsers
provide support for Web pages having some of these
as the designated character-set. LATEX2HTML has
specific support to produce pages using Latin-1, . . . ,
Latin-6 (i.e. ISO-8859-1, 2, 3, 4, 9 and 10). A par-
ticular character set is specified using an extension
to the \html version command-line switch. This is
fully compatible with other extensions; e.g.
... -html_version 3.2,latin2,math,unicode ...

Images of special fonts. A single encoding rarely
suffices when non-Latin languages are also required.
Using images is a convenient strategy. Figure 7
shows some bibliographic entries10 using characters
from the cyrillic alphabet and sinhalese script.

LATEX2HTML recognises TEX’s \font command
as declaring a macro that will require an image to
be made of enclosing environment. For example the
cyrillic text was produced using:
\font\wncyr = wncyr at 10pt

...

...

{\wncyr Bel\char126koviq, A.A.} ...

Pre-processing for exotic scripts. The sinhalese
script in figure 7 was generated in a similar way

10 These are taken from a LATEX2HTML conversion of
the ‘Sinhala-TEX’ documentation[3], available at: http://

www-texdev.mpce.mq.edu.au/l2h/indic/Sinhala/lreport/

to the cyrillic, but only after the source is filtered
through Haralambous’ Indica preprocessor, part of
‘Sinhala–TEX’[3]. After pre-processing, the LATEX
source contains parts like:
{\SHb\char29a\char8}{\SHb\-\char69i}{\SHb...

in which each grouping generates an image for the
appropriate letter or syllable. This is acceptable for
small pieces of text in the exotic script. However
many images are needed when there are whole para-
graphs and pages of the script.

Automatic pre-processing. In figure 8 we see a
portion in which each paragraph is presented as a
separate image. One way is to use the makeimage
environment, as was done with mathematics.

A better way is to use LATEX2HTML on the
manuscript, before pre-processing with Indica. Since
the alphabets do not map one-for-one with the latin
alphabet, a transliteration or transcription scheme
is employed. Multi-letter combinations correspond
to single letters or syllables in the exotic language.
Portions of the manuscript using such schemes are
included with the other parts to be rendered as im-
ages, just as with pieces of mathematics. The dif-
ference is that these portions need not be valid TEX
code, requiring pre-processing first. This is done as
an extra step prior to image-generation.

Systems have been devised for the typesetting
of various languages using TEX, after first using such
a pre-processing step. A suite of packages for LATEX
and appropriate implementations for LATEX2HTML,
known as IndicTEX/HTML[4], automate this process
with some of the pre-processors available for In-
dic languages and traditional scripts. This includes
support for Avinash Chopde’s ’ITRANS’ preproces-
sor [5] which handles many different languages and
transliteration schemes.

The pre-processor was used this way for the
page from which figure 8 was extracted. Some of

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 201

the HTML coding is shown in figure 9. Notice how
the original transliteration is included as a comment.
Just as with mathematics, this ensures the informa-
tion is available even when the image fails to render.

UNICODE fonts, Ω and Λ . As unicode becomes
more widely used, it should become possible to use
its extensive range of characters, instead of images.
Furthermore, it should become possible to employ
Ω[2][6], via its LATEX variant Λ, in conjunction with
LATEX2HTML. It could be used for several tasks:
• as the pre-processing engine;
• replacing LATEX for the typesetting necessary

when producing images;
• to generate unicode font-entities.

References

[1] Nikos Drakos & Ross Moore, “The
LATEX2HTML Translator”. Documentation and
User Guide accompanying the software; on-
line version at http://www-dsed.llnl.gov/
files/programs/unix/latex2html/manual .

[2] Yannis Haralambous & John Plaice, “ΩTimes
and ΩHelvetica Fonts Under Development:
Step One”, TUGboat, The Communications of
the TEX Users Group, Volume 17, No. 2 (1996)
pp. 126–146.

[3] Yannis Haralambous & Dominik Wujastyk,
“A Sinhalese TEX System”, documentation
for ‘Sinhala–TEX’ and the Indica preproces-
sor, 1994; available at http://ctan.tug.org/
ctan/tex-archive/languages/sinhala/.

[4] Ross Moore, “IndicTEX/HTML, Traditional
Scripts within Web-pages”, to appear in:
TUG–India, volume 1, 1998; online ver-
sion available at http://www-texdev.mpce.
mq.edu.au/indic/IndicHTML/ .

[5] Avinash Chopde, ITRANS ”Indian Language
Transliteration Package”, A package for print-
ing text in Indian Language Scripts, available
from http://www.aczone.com/itrans/.

[6] John Plaice & Yannis Haralambous, “The Lat-
est Developments in Ω”, TUGboat, The Com-
munications of the TEX Users Group, Volume
17, No. 2 (1996) pp. 181–183.

[7] World Wide Web Consortium, online site at
http://www.w3c.org/Consortium/ ;
HTML 4.0: http://www.w3c.org/Markup/
Stylesheets: http://www.w3c.org/Style/
MathML: http://www.w3c.org/Math/
XML: http://www.w3c.org/XML/

TEXNorthEast Conference, March 22 – 24, 1998

202 TUGboat, Volume 19 (1998), No. 2

Figure 8: Single images are made of whole paragraphs, when pre-processing is delayed until the
image-generation phase.

<!-- INDICA S

‘‘e~ka nambuyine putha~’’ vi~rase~kara katha~va patan gaththe~ nodhannekuta

yamak kiya~ dhena paridhdheni.

-->

<P><IMG

WIDTH="554" HEIGHT="45" ALIGN="BOTTOM" BORDER="0"

SRC="img4.gif"

ALT="\lq\lq e~ka nambuyine putha~’’ vi~rase~kara katha~va patan gaththe~ nodhannekuta

yamak kiya~ dhena paridhdheni."></P>

<!-- INDICA S

‘‘e~ka nambuyi. koLa"mba ugannanava kiyandath puLuvan. i~tath koLa"mba loku

isko~lavalata enne loku lokkange Lamayi. e~ Lamayi thama~ issarahata ho"ndha

tha^nakata enne. i~tath e~ Lamayinge ma~rgayen puLuvan e~ Lamayinge

tha~ththalagen o~na^~ va^dak karava ganna’’

-->

<P><IMG

WIDTH="558" HEIGHT="108" ALIGN="BOTTOM" BORDER="0"

SRC="img5.gif"

ALT="\lq\lq e~ka nambuyi. koLa’’mba ugannanava kiyandath puLuvan. i~tath koLa’’mba lo

ku...

...ma~rgayen puLuvan e~ Lamayinge tha~ththalagen o~na^~ va^dak karava ganna’’"></P>

<!-- INDICA S

‘‘ballata dha~mu. ballata. ballata’’ baladhe~va sina~suNe~ya.

-->

<P><IMG

WIDTH="433" HEIGHT="22" ALIGN="BOTTOM" BORDER="0"

SRC="img6.gif"

ALT="\lq\lq ballata dha~mu. ballata. ballata’’ baladhe~va sina~suNe~ya."></P>

Figure 9: HTML code produced for some of the paragraphs of Sinhalese shown in figure 8, using a
standard transliteration and preprocessed by Indica.

TEXNorthEast Conference, March 22 – 24, 1998

TUGboat, Volume 19 (1998), No. 2 203

LATEX code for figure 1

The following LATEX code is adapted from pieces of coding provided by Michael Hall11 and Michel Goossens,12

for testing during the development of certain aspects of the mathematics support within LATEX2HTML.
\documentclass[a4paper]{article}

\usepackage{html, amsmath, array, alltt}

\usepackage[dvips]{color}

% ensure \bm is defined if not latest LaTeX

%begin{latexonly}

\providecommand{\bm}[1]{\mathbf{#1}}

%end{latexonly}

\begin{imagesonly}

\providecommand{\bm}[1]{\mathbf{#1}}

\end{imagesonly}

\newcommand{\Range}{\mathcal{R}}

\newcommand{\Ker}{\mathcal{N}}

\newcommand{\Quat}{\vec{\mathbf{Q}}}

\renewcommand{\d}{\partial}

\begin{document}

\htmlhead[center]{section}{Math examples}

\begin{eqnarray}

\phi(\lambda)&=& \frac{1}{2 \pi i}\int^{c+i\infty}_{c-i\infty}

\exp \left(u\ln u+\lambda u \right)du \hspace{1cm}\mbox{for } c\geq 0\\

\lambda & = & \frac{\epsilon -\bar{\epsilon}}{\xi}-\gamma’ -\beta^2 -\ln\frac{\xi}{E_{\rm max}} \\

\gamma & = & 0.577215\dots \mathrm{\hspace{5mm}(Euler’s\ constant)}\\

\gamma’ & = & 0.422784\dots = 1 - \gamma \\

\bar{\epsilon}& = & \mbox{average energy loss} \\

\epsilon & = & \mbox{actual energy loss}

\end{eqnarray}

Since~\eqref{bgdefs} or~\eqref{gdef} should hold for arbitrary

$\delta\bm{c} $-vectors, it is clear that $\Ker(A) = \Range(B)$ and

that when $y=B(x)$ then one has ...

\begin{eqnarray}\label{eqn:stress-sr}

V \bm{\pi}^{sr} & = & \left<

\sum_i M_i \bm{V}_i \bm{V}_i + \sum_i \sum_{j>i} \bm{R}_{ij} \bm{F}_{ij} \right> \\

\nonumber & = & \left< \sum_i M_i \bm{V}_i \bm{V}_i

+ \sum_{i} \sum_{j>i} \sum_\alpha \sum_\beta \bm{r}_{i\alpha j\beta} \bm{f}_{i\alpha j\beta}

- \sum_i \sum_\alpha \bm{p}_{i\alpha} \bm{f}_{i\alpha} \right>

\end{eqnarray}

\begin{subequations}\label{bgdefs}

\begin{align}

B_{ij}^\alpha & = \left(B_{ij}^\alpha\right)_0 + \left(B_{ij}^\alpha\right)_a \label{bdef} \\

\left(B_{ij}^\alpha\right)_0 & = \frac{1}{2}\left(

\frac{\d N_i^\alpha}{\d X_j} + \frac{\d N_j^\alpha} {\d X_i} \right)\label{b0def} \\

\left(B_{ij}^\alpha\right)_a & = H_{ij}^{\alpha \beta} a^\beta \label{budef} \\

H_{ij}^{\alpha \beta} & = \frac{1}{2}\left(

\frac{\d N_k^\alpha}{\d X_i} \frac{\d N_k^\beta}{\d X_j}

+ \frac{\d N_k^\beta}{\d X_i} \frac{\d N_k^\alpha}{\d X_j} \right)\label{gdef}

\end{align}

\end{subequations}

\end{document}

11 Dr. Michael L. Hall, Los Alamos National Laboratory.
12 Dr. Michel Goossens, IT Division, CERN, Geneva

TEXNorthEast Conference, March 22 – 24, 1998

