
TEX in 2003: Part I

Propositions and Conjectures on the Future of TEX∗

NTG TEX future working group
P.O. Box 394
1740 AJ Schagen
The Netherlands
ntg-toekomsttex@ntg.nl

http://www.ntg.nl

Introduction

In the last year, there has been a lively discussion
within the Dutch TEX Users Group about the future
of TEX. This discussion was initialized by a couple
of posts to the TEX-NL e-mail list by Hans Hagen
and Taco Hoekwater, but it soon spread to a much
larger group of correspondents.

Eventually, this resulted in a meeting of the
most interested people in December 1997. The
current articles are a re-working of the long-term
proposals and requests formulated by this group of
people. The short-term requests were passed on to
the ε-TEX team.

Our views on current work

At the moment, there are at least three distinct
projects available to current TEX users that are
working to extend TEX: Ω, PdfTEX and ε-TEX.

The first two of these are in a sense niche prod-
ucts: If you don’t need either non-latin language
typesetting or PDF output, there is little point in
learning how to use these two programs. The third
project, ε-TEX follows the more general approach,
and is potentially of interest to every current user of
TEX.

The work done in ε-TEX is nicely thought out,
and the result is both stable and virtually bug-free,
but it is hardly ever used in real applications. The
reason is simple: package writers will not use ε-TEX
primitives until they can be certain that ε-TEX is in-
deed available everywhere. On the other side, ε-TEX
cannot develop without input from package writers
that intent to use ε-TEX. There is a chicken–egg
situation, and it leads to the following conclusion:

1. ε-TEX is a nice idea with too little momentum
to make a difference.

Another important problem is the fact that people
that need the functionality of either ε-TEX or PdfTEX

∗ Published in MAPS 21, Najaar 1998, pages 13-19.

or Ω and one of the other two extensions, cannot do
so from within one document. All three have their
own specific syntax extensions that are hard to fake
in one of the other extensions. This is unsolvable in
the current situation, and leads us to the following
statement:

2. Ω, PdfTEX and ε-TEX should be merged as
soon as possible.

Then there is a fourth project that has just started:
the New Typesetting System (NTS).

The NTS development group hopes to increase
the chances of general acceptance of NTS by guar-
anteeing compatibility with TEX for a number of
years to come. We feel that this is a error, be-
cause most of the more fundamental issues that
NTS should deal with to live up to the ‘New’ in
it’s name cannot be done without sacrificing that
compatibility. Issues like grid-based typesetting and
better insertion control are very likely to require a
completely new algorithm, resulting in a completely
new implementation. Of course it is possible to do
these things in parallel, but trying to implement
something new while having to be really careful
not to break the old implementation unnecessarily
complicates development: people that want to use
TEX should stay with TEX anyway.

Therefore, we urge the NTS group to reconsider
their decision to stay compatible with TEX for at
least the next five years.

3. NTS will be pointless if it intends to be
compatible with TEX82

The next remark we have deals with the proposed
modularity of the system, which is facilitated by the
use of Java:

4. NTS is a step forward and a step backward
at the same time.

A great feature of NTS will be its extensibility. This
is similar in many ways to current LATEX packages,
albeit much more advanced. Since NTS will be

TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting 323

NTG TEX future working group

written in Java, one can easily extend NTS with
it’s own classes. We presume there will be an easy
interface to extend NTS (if not, someone will just
hack the sources).

In all likelyhood, this will result in precisely the
same problems that current LATEX has:
• Users are not aware of the packages available,

and so keep asking questions like: How can I
make this work in LATEX?
• Furthermore, the portability of source docu-

ments (the .tex or .nts? input file) will be
seriously endangered. We expect to see things
like:

Error: this .nts style-file requires
module x.y which has not been
installed on your system.

The NTS team should give very strict rules for these
extensions, otherwise we’ll end up with another
\special- similar situation. A central registry and
a “head maintainer” are needed to keep track of ex-
tension modules in order to prevent these problems.
It would be wise to turn this work into a full-fledged
job under the control of (probably) TUG.

5. We need time to experiment and must not
fall into the “every year a new version” trap.

An interesting common aspect in all current work
is that only experience can lead to useful functional
specifications. It is likely that NTS functionality will
follow the same track.

This means that when we deal with the next
generation TEX programs, common users must be
patient until the developers of extensions and macro
packages trust the new features and can guarantee
upward compatibility. It also means that it will
take some years until ε-TEX as well as NTS will be
accepted as descendants.

We have to keep in mind Knuth completely
rewrote his first TEX!

Packaging of Distributions

Over the last 5 years TEX has become a lot easier
to install. The most important reasons for this are:
• Cd-roms have become available at large. These

can easily hold a complete TEX system. The
old-fashioned piles of diskettes gave far too
much trouble, and tape is only for professionals.
• Recently hard disk space has become so cheap

that complete installations on hard disk are not
unusual anymore.
• Installation scripts were made to shield users

from tedious setup and configuration issues.

Still a number of problems remain because they are
inherent to the way that TEX systems work:
• A typical TEX system consists of an incredible

number of files (more than 31,415). No one re-
ally knows which parts are essential and which
parts are not. In other words: every system is
too large.
• “Everything” can be found on CTAN but only

the most recent version. Old versions can be
necessary to run old documents. Old CTAN

dumps on cd-rom can be used to track down
older versions, but we really need more profes-
sional version control.
• Maintenance is only feasible for professionals.

Others are better off replacing the entire sys-
tem, even though this will undoubtedly cause
problems. The draw-back of ‘plug & play’ sys-
tems is that users have no idea anymore of the
inner workings of the system. Is that a good
thing or a bad thing?
• There is no such thing as an easy upgrade path.

It’s usually very hard if not impossible to simply
add some files to a system and make them
cooperate.
• Initial configuration can be automated, but

reconfiguring is usually very hard. Any typical
TEX system contains dozens of configuration
files in almost as many completely different
flavours. As a rule they are scattered all over,
and only an absolute expert can deal with this.

This leads to a number of conjectures:

6. The number of files in a typical TEX system
should be reduced by a factor 100.

We can achieve this by redefining the way any pro-
gram finds its resources. A central database should
be queried for any resource. This database should
physically contain all resources. And of course it
should be able to report (in any required level of de-
tail) what’s available. The database may eventually
connect to CTAN (another database application) to
retrieve resources not available locally.

This setup would allow for a minimal local
installation to grow as necessary using Internet.

7. Configuration of a TEX system should be
centralized and automated.

If we can realize the previous issue this one will
not be too hard. Programs should specify formal
descriptions of the configuration details they need.
These could then be generated through menus or
automatically by scanning the current setup, i.e.,
querying the database.

324 TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting

TEX in 2003: Part I Propositions and Conjectures on the Future of TEX

8. Installation and maintenance should require
far less expertise.

The database may occasionally query CTAN for
any updates. The administrator would get short
descriptions of these, with links to complete doc-
umentation. He/she could then select which ones
should be installed. This could even be done silently
(overnight) if you want an up-to-date system all the
time. If necessary, programs will be signaled to
reconfigure themselves.

This setup should also take care of the endless
problems with non-portable DVI files. We should all
be using the same resources and if we are not, the
system should warn us about possible mismatches.
If we decide to make TEX produce DVI files that
require no virtual fonts at all (i.e., TEX reads VF’s
itself instead of the DVI driver) an important source
of problems can be eliminated.

9. CTAN should have a complete index with
descriptions of everything and cross-links to
anything related to anything.

This is obvious now if we want the systems to
interact. Uploads to CTAN will have to be checked
more carefully: descriptions, specifications, version
number, relations to other packages, dependencies
on other resources, etc. must be supplied. Any item
that doesn’t comply to this convention should be
moved out (‘not supported’) and deleted after a
certain period.

We realize that this might cause a cultural
shock in the TEX world, but we feel this is necessary
to keep TEX alive & kicking in the next millenium:

10. Anarchy is what made TEX great, and it’s
anarchy again that will kill TEX.

Let’s try to prevent this!

On-line Publication Wishlist

With the increasing growth of the internet, a whole
new branch of documents has appeared: documents
that are only or primarily intended for screen view-
ing. The used formats differ, but it is easy to
see that there are some common issues involved in
all of those: file download sizes, hyperlink support
and ease-of-use are important points for all of these
formats.

11. TEX is rather well suited to cater for those
needs as it is, but some extensions are needed
to make sure that TEX will stay/become in
the leading position in this arena

For about 15 years TEX was only capable of pro-
ducing DVI output. The limitations in both TEX

and the DVI format mainly concerned direct graphic
support and color typesetting, but color printers
were rare and the lack of graphics support could
be worked around.

Although originally TEX was more or less sup-
posed to handle everything itself, those 15 years of
use have demonstrated that many applications, like
color and graphic inserts, heavily depend on the
DVI postprocessing stage. To a large extent, this
is not feasible nor desired in on-line publication.
On-line formats are all rather device independent
themselves: otherwise people would have to publish
several versions of the same document.

Theoretically, both PdfTEX the current trajec-
tory using and DVI to PDF processing through dvips
and the Acrobat Distiller can offer similar func-
tionality, given that postprocessors are available to
help out in the second case, but we can imagine
both methods drifting apart, and we feel that the
use of external programs to solve intrinsic problems
adds a great deal of unnecessary complexity to the
system.

12. On-line publishing needs primitive support

In fact, most of the conceptual extensions like
hyper-referencing can be implemented using DVI

and \specials. However, usage can be far more ro-
bust in, e.g., current PdfTEX, simply because hyper-
referencing is built in, and there is no longer a need
to run various programs in turn. The same goes
for object reuse, fill-in forms, scripting (Java), and
graphic inclusion.

But systems like PdfTEX also create new prob-
lems. Take for instance graphics inclusions: where
originally TEX macros only had to bother with the
dimensions of the needed box, on-line publishing
backends have to include the file directly.

Although clever tricks can give acceptable re-
sults, all approaches to hyper-referencing based on
current TEX interfere with either the explicit wishes
of the author or the line- and paragraph-breaking
mechanisms present in TEX.

13. TEX objects should be easily re-usable

When we look at object reuse, we see that this
concept never surfaced in DVI (using \specials).
This is probably due to the fact that specially
screen-designed documents need these features, and
it hardly matters for paper output.

From the users point of view, reuse may look
rather straightforward (a sort of variant on copying
boxes), but from the implementors eyes, object defi-
nitions are just another interfering kind of 〈whatsit〉.
And why is it interfering? Simply because TEX has

TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting 325

NTG TEX future working group

no particular mode which suppresses all interference.
Yes, we can use a box, and we can let things happen
at certain locations in the document that don’t do
any harm, but the situation is far from optimal.

When applied to for instance figure inclusion,
reuse can quite easily be implemented in original
TEX (pure DVI, using Gilbert’s DVIview), the tra-
ditional DVI–dvips–Acrobat trajectory or Thanh’s
PdfTEX. But PDF fill-in fields support demands for
more.

To give you a real life example where objects
are needed: in PDF one can define a check field
with several appearances like on, off, mouse down,
etc. Technically this means something like this (in
PdfTEX syntax):

\setbox0=\hbox{$\star $} \pdfform0
\edef\on {\the\pdflastform}

\setbox0=\hbox{\bullet} \pdfform0
\edef\off {\the\pdflastform}

\setbox0=\hbox{$\times $} \pdfform0
\edef\down{\the\pdflastform}

When defining the check field, we then can refer to
\on, \off and \down, as in the following code:
\pdfannot{ ... /On \on\space0 R ...}

Currently PdfTEX only flushes forms to the output
file when are accessed. (this feature is needed be-
cause we want to be able to try out things, without
ending up with redundant objects, like in a macro
that tries three different methods and takes the best
result).

Back to the three objects, these won’t end up in
the file when we refer to them in the field definition
above, because the field definition is handled like
a \special: PdfTEX just passes the information
through.

Therefore, we end up with invalid references:
the object is referred to, but never passed to the
file. What do we learn from this:

14. TEX needs a real object model.

One with immediate as well as deferred definitions,
that do not interfere with the internal lists that
TEX builds and that permits forward and backward
referencing.

Another typicality that surfaces often in on-
line documents is the fact that screen layouts tend
to use a lot more page decorations and colors than
traditional typesetting. This is an area where a lot
of disagreement is possible, but in the real world
there are lots of practical applications of this.

At TUG97 there were several presentations on
graphics. The related discussions invoked a BOF
session on graphic primitives. Direct inclusion of

METAPOST output (in PdfTEX) had already proven
that a relatively small subset of PostScript primi-
tives could be used for advanced graphics and there-
fore the discussion focussed on those primitives.

These graphic primitives in TEX are not meant
for drawing free hand graphics like one would do
in programs like Illustrator, Corel Draw, or indeed
Freehand. Instead, they are most often (to be) used
for things like visualizing statistical results, plotting
functions and drawing almost-mathematical shapes
that can be used to emphasize certain layouts. In
these graphics, text plays a important role, and this
text must preferably be typeset by TEX. It follows
that inclusion of an external file will not do, and the
conclusion is:

15. TEX needs a reliable system for in-line graph-
ics and colors

The most important outcome of the ’97 BOF session
was an agreement on the way to go: define a set
of extensions that permit direct METAPOST output
inclusion. It was felt that this set could also suffice
the needs of the mainstream graphic macro packages
written in TEX.

During the NTG ‘future of TEX meeting’ the
participants made the exact specification of these
graphic primitives (currently to be implemented as
\specials) one of its main goals. To this end, we
had to create a formal specification of the syntax
involved, and that put us right in the middle of the
\special problems.

Our final proposal on that matter will appear
somewhere else in these proceedings, but Gilbert
has already done some of the groundwork. Below
is his explainatory text on the \specials that are
currently included in DVIview. This text is kept
here because it demostrates very well that only a
few primitive commands are enough to give almost
full in-line graphics capabilities.

To allow for instance METAPOST drawings te be
inlined in TEX you need several things:

• A macro to interpret METAPOST’s PostScript
output. Hans Hagen wrote a set of macros for
PDFTEXusing \pdfliteral commands. These
macros are easy to adapt to another standard
using \special syntax
• A primitive sub-set of PostScript commands is

needed. METAPOST uses only a few PostScript
commands to draw it’s figures.

To actually test the inline graphics standard we
needed a viewer where this support was easy to
include. DVIview was coming to life at that time so

326 TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting

TEX in 2003: Part I Propositions and Conjectures on the Future of TEX

it was logical to use that as a test and development
environment.

All primitives are easy to interpret, except for a
few things like clipping and the like. The syntax will
probably change in the future when the new special
syntax is standarized. Converting these specials to
PostScript output (e.g., modifying dvips) is easy to
do, since the commands hardly need any translation.
Specials and stuff for inline graphics in DVIview:
\special{dv:startgraphic}
\special{dv:stopgraphic}
\special{dv:moveto x y}
\special{dv:lineto x y}
\special{dv:curveto x1 y1 x2 y2 x3 y3}
\special{dv:stroke}
\special{dv:setlinejoin j}
\special{dv:setlinecap c}
\special{dv:setdash offset values}
\special{dv:setlinewidth w}
\special{dv:setmiterlimit m}
\special{dv:rotate r}
\special{dv:translate x y}
\special{dv:concat x1 y1 x2 y2 x3 y3}
\special{dv:newpath}
\special{dv:closepath}
\special{dv:clip}
\special{dv:fill}
\special{dv:gsave}
\special{dv:grestore}

As you can see the amount of commands needed to
support METAPOST output is in fact quiet small.
Some explanations:

dv:startgraphic Starts a graphics figure. It saves
the current position and context of the DVI inter-
preter. The current location is marked as (0, 0). As
in PostScript positive x, y draws to the right and up.

dv:stopgraphic Stops a graphics figure and re-
stores the context.

dv:moveto x y Moves the current position to x, y.

dv:lineto x y Draws a line to x, y. This does
not actually draw the line but only remembers the
coordinates. The actual drawing is performed by
stroke.

dv:curveto x1 y1 x2 y2 x3 y3 Draws a Bézier
curve starting at the current point to (x3, y3). The
control points are given as (x1, y1) and (x2, y2).

dv:stroke Performs the actual drawing using the
current pen-style, color and width.

dv:setlinejoin j How lines are joined. j can be 0,
1 or 2.

dv:setlinecap c How the line-endings will look
like. c can be 0 1 or 2.

dv:setdash offset vals Sets the pen-style. vals
is any number of values and specifies how long the
pen is on and how long the pen is off. offset can be
used to specifiy a starting offset in the vals pattern.

dv:setlinewidth w Sets the thickness of the cur-
rent pen.

dv:setmiterlimit m Sets the miterlimit.

dv:rotate r Modifies the current transformation
matrix so that everything following this is rotated
r degrees.

dv:translate x y Modifies the current transforma-
tion matrix so everything following this is translated
(x, y).

dv:concat x1 y1 x2 y2 x3 y3 Multiplies the
current transformation matrix with the given values.

dv:newpath Discards any present paths and start
a new path.

dv:closepath Closes the current path. After this
you can use fill to fill the closed path.

dv:clip Selects the current path as the clipping
path. All subsequent fills and strokes are clipped
to the this path. The clipping path may contain
one or more closed paths.

dv:fill Fills the current path with the current color.

dv:gsave Saves the graphics state.

dv:grestore Restores the graphics state.

dv:setrgbcolor r g b Sets the current color. r, g,
and b are specified from 0 to 1.

dv:setcmykcolor c m y k Sets the current color.

dv:setgray g Sets the current gray-level. 0 means
black, and 1 means white.

Though it is easy to extend this set and include
much more PostScript operators, this is not the
intention. It should be noted that complex graphics
which require the full PostScript set of commands
should be done by including the EPS file and let
PostScript do the work.

Language extension wishlist

Removal of limitations regarding fonts The
font limitations that are inherent in the TFM format
should be dropped. One fairly simple way to achieve
this is to make TEX read .pl or .vpl files instead of
TFMs, but it is also possible to adopt a new format

TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting 327

NTG TEX future working group

like Ω’s OFM files or even create a completely new
specification.

An overview of limitations in current TEX shows
limits in almost all places: the amount of char-
acters present in a TFM, The number of separate
width / height / depth / italics-corr values, the num-
ber of ligatures and kerning pairs, math sizing stuff,
etc. Almost all of these limitations are not really
needed anymore; most of them were born out of
Knuth’s desire to use as small an amount of memory
as possible.

In particular, t he current implementation of
math mode places some really weird demands on
used fonts (some characters get really weird place-
ment in the glyph container, e.g., integrals and de-
limiters are all below the baseline, and the height
of the \sqrt sign is used to decide the width of
the extension bar). This should be fixed so that it
becomes possible to use non-METAFONT math fonts
in a reliable way, and to facilitate the creation of
new math font sets. The current situation makes
it impossible to use non-TEX math fonts from, e.g.,
Mathematica without lots of vf trickery.

These things are all very easy to fix in the
executable, but it won’t do any good at the moment,
because we are still stuck with the TFM format.

16. The way TFM and VF formats are defined
and implemented is the primary cause of the
current font chaos

If we want to adopt a new format, the extensibility of
the syntax of PL files is to our advantage, even allow-
ing new features to be added in the future while re-
maining backward-compatible. But, although there
no longer is a real reason for binary file input as
speed or disk space optimization, binary files do have
the advantage of being non-editable (meaning that
the chances of a user accidently breaking them is
very small).

17. We need symbolic names for characters

TEX currently uses encoding instead of glyph names.
Encoding is old-fashioned and merely a speed opti-
mizing thing. The coupling of glyph-name – char-
acter should be a TEX internal operation.

The used named characters from the fonts
should be deductible from the output (DVI) file, to
prevent reencoding issues in postprocessing applica-
tions. To reach this goal, it is very likely that TEX
needs an internal naming scheme for glyphs that
does not depend on font encoding. Work in this
area is already being done by the ε-TEX team. It is
considered unlikely that using UNICODE will solve
the problem, but it might well be that a solution

based on the predefined set of unicode names (the
road taken by Ω) is the right way to go.

18. Ligatures and kern info should be indepen-
dent of the character metrics

Ligatures can be present in the current font defini-
tions, but we would like to be able to modify the
lig-table internally from within TEX. This request
has already be passed on to the ε-TEX group, but
it needs a more general solution than the prim-
itives that were proposed to ε-TEX(\noligs and
\nolig〈char〉). Likewise for the kerning tables.

The mechanism by which a user loads fonts into
TEX’s memory is much too simple. It should be pos-
sible to specify encodings, kerning info and ligature
tables separate from the actual glyph dimensions.
The ligature problem actually comprises two very
different problems.

The simple case is most noticeable in type-
setting verbatim stuff in non-tt fonts, something
that is often needed for textbooks on programming
languages.

The hard case comes from the fact that liga-
tures depend on the language, not on the used font
itself. The Spanish quotation, e.g., is never needed
outside of Spain, and we are all stuck with it now.
Ideally, every language should have it’s own ligature
table, that is part of the language attributes just like
\patterns are.

19. METAFONT is becoming outdated, even if
TEX itself isn’t

A new version of METAFONT is needed that can
generate acceptable outline fonts instead of the now
used .pk format, and the use of non-METAFONT

fonts (PostScript, TrueType) should be simplified.
As stated in a previous article, TEX should take care
of the virtuality of fonts itself. But that does not
have to imply using .vf files. There are some other
possible solutions that may not be as powerful as
.vf, but are a lot less confusing: The only widely
used applications of virtual fonts are reencoding and
creation of composite characters.

User interface

Currently, TEX shows a weird duality: while mostly
a batch tool, there are still a number of places where
user intervention is needed.

On one side, if TEX wants to survive as a batch
tool (either as a stand-alone typesetter or as back-
end for, e.g., SGML processing systems), it will need
extensions so that it is 100% safe to run the program
unattended. Thinks like breaking math formulas

328 TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting

TEX in 2003: Part I Propositions and Conjectures on the Future of TEX

and placement of figures cannot be left to TEX on
its own.

On the other end of the spectrum, TEX needs a
real-time graphical user interface to satisfy interac-
tive users (maybe this can be a partial implemen-
tation, like having GUI-based equation- or table-
editors). This goal can only be reached if the GUI-
based tools have a foolproof TEX input format that
they can rely on.
There are two probable roads we envisage:
• Moving a large number of current macros into

the executable itself will avoid confusion of
macro formats, but there are still problems to
be solved relating to redefined primitives.
• Allowing a tokenized input in a pre-compiled

format would probably be better since it cir-
cumvents these problems. The idea is that,
assuming we are an external program that tries
to generate TEX code, we want to be very sure
that \par really means \par.

But there are some other idiosyncracies in TEX’s
language that needs to be dealt with as well — some-
times optional, sometimes not optional keywords
and characters like equal signs; arguments with
braces versus arguments that are space-delimited;
confusing rules for spaces; etc.

20. In all events, the language should be cleaned
up drastically.

The syntax should definately be cleaned out. Any-
body who has ever tried to write a non-trivial macro
will know that even if your approach in itself is
correct, chances are that the macro still won’t work,
because of a stupid mistake with \expandafter or
extra / too few spaces. Solutions that use markup in

the style of SGML or lisp would be vastly preferable
over the current situation. The current syntax often
justifies the following statement:

21. TEX’s macro language encourages writing
garbage

We can safely say that many sources look awful in
terms of formatting, just take a look at the sources of
the style used to typeset this article. (Or look at the
sources of the TEXbook: the output is beautiful, the
input is just ugly.) In the hands of common users,
bad input becomes bad output.

22. We would profit from better programming
primitives

Finally, experience shows that format files are never
simple and small, like Knuth presumed they would
be. Instead, format files are complex programs with
numerous interactions between the various parts.
TEX’s macro language was never supposed to sup-
port this, and as a result has virtually no program-
ming support. Among the missing things are data
structures like lists and queue’s; name spaces; con-
trol structures (like cases and while loops); signals;
and reliable \if tests.

TUGboat, Volume 19 (1998), No. 3 — Proceedings of the 1998 Annual Meeting 329

