
TUGboat, Volume 20 (1999), No. 1 15

Language Support

A Simple Technique for Typesetting
Hebrew with Vowel Points

Sivan Toledo

Introduction

This paper describes a simple mechanism for type-
setting Hebrew with vowel points. Hebrew uses a
large set of accents that represent vowels, consonant
modifiers, and cantillation instructions. These ac-
cents are placed above, below, or inside letters; a
single letter can carry several accents. The solution
that we describe, which is designed for PostScript [2]
output devices, leaves the placement of the accents
to the output device. TEX regards the accents as
zero-width characters and does not process them in
any special way. Samples of the output are shown
in Figures 1 and 2.

The paper only addresses the issue of typeset-
ting vowel and consonant modifiers, known collec-
tively in Hebrew as nekudot, or points. We refer
to this group of accents as vowels in the rest of the
paper. Cantillation marks are only used in printing
Biblical texts; they are missing in most fonts, and
they complicate the placement of accents. In partic-
ular, a cantillation mark attached to one letter may
require ajdustments in the positioning of adjacent
letters and/or marks attached to them. Vowels, on
the other hand, are widely used in Hebrew print-
ing, and are included in most of the Hebrew fonts
that have been produced in recent years.1 A vowel
mark attached to a letter does not affect the po-
sitioning of other letters or the marks attached to
other letters. Without vowels, it is only possible to
determine the meaning and pronunciation of many
words from their context. Although all proficient
Hebrew readers can read most texts without vowels,
vowels are still used in printing of liturgical texts,
poetry, and texts for beginning readers. Vowels are

This work was done while the author was at the Xerox
Palo Alto Research Center in Palo Alto, California.

1 Nearly all the TrueType fonts that come with the
Apple Macintosh’s Hebrew Language Kit (www.apple.com),
with Microsoft’s Hebrew Windows, and with Hebrew word
processors include vowel points (Microsoft’s Hebrew prod-
ucts are available outside Israel from Glyph Systems, www.

glyphsys.com). So do nearly all the commercial PostScript
and TrueType fonts that are produced by Elsner and
Flake (fontinform@t-online.de; distributed in Israel by
Panergy, www.inter.net.il/~panergy), by Studio Rosen-
berg in Israel (with the exception of their display type-
faces; mailto:master_f@netvision.ac.il), and by Mono-
type (www.monotype.com).

ÓõøÆàÈ äÈ úàÅ åÀ íéÄîÇ ùÈÌÉ äÇ úàÅ íéäÄ ìÉ àÁ àøÈáÈÌ úéùÄ ÉàøÅáÀÌ
úåÉ öÀ îÄ ,úåÉ öÌ îÇ ,ä÷È øÅùÌÉ É ìÇ åÀ ,àðÅùÉ É ,ïåÌ ùÉ øÉ ãÀ éÄ

Figure 1: A sample of the output of the
vowel-placement mechanism described in this
paper. The top line shows the first few words of
Genesis. The bottom line shows a few words that
are traditionally considered difficult to set [8]. The
typeface is a version of Hadassa, designed in the
1950’s by Henri Friedlaender.

õֶהָאָר וְאֵת íִהַשָֹֹמַי אֵת íֹלהִי אֱ בָֹרָא בְֹרֵאשִֹית
ֹות מִצְ מַצֹוֹת, ֹשֹרֵקָה, ֹ וְלַ ֹשנֵא, ֹ ,ïֹֹרשֹו יִדְ

Figure 2: Another example; the font is Omega
Serif Hebrew (a version of a typeface called David,
designed by Ismar David in the 1950’s).

also used in texts for proficient readers to specify
the pronunciation of difficult words.

The technique described in this paper is de-
signed for typesetting Hebrew with vowel marks.
The placement of a vowel mark is determined by the
specific letter it is attached to and possibly by other
marks attached to the same letter. The technique
does not allow the positioning of marks or letter
to depend on adjacent letters and their marks, so
it may be insufficient for setting Hebrew with both
vowels and cantillation marks.

Two factors contribute to the difficulty of type-
setting Hebrew with vowels. First, the large num-
ber of possible letter-vowel combinations makes it
impractical to use a separate glyph for each pos-
sible combination. Second, every vowel needs to be
placed at a particular location relative to each letter
(one can decompose the set of vowels into classes of
vowels with the same placement, but there are at
least 7 such classes). Generally speaking, a well
chosen placement visually centers the vowel with
respect to the letter, but there are exceptions.

Because of these technical difficulties, one often
finds texts in which the vowels are placed incorrectly.
In some cases, the placement is just off center, but in
other cases it is completely incorrect, to the extent
that the vowel appears on the wrong side of the
letter or under the wrong letter. This happens even
in Bibles (see [8] for examples) and in books that
were recently published by major Israeli publishers,
as shown in the samples in Figure 3.

This paper does not explain how vowel points
should be set; for information on this topic, see [5,
6, 8, 11, 14]. For further information on Hebrew
typography in English, see [12]; this article is a
bit dated, but is widely available in libraries. The

16 TUGboat, Volume 20 (1999), No. 1

Figure 3: Examples of the poor setting of vowel
point in books that were recently published by
major Israeli publishers. The top sample is a
true typesetting disaster, with totally incorrect
placement of many vowels. The bottom sample is
generally well set, except for the leftmost vowel
sign which is set too much to the right.

collection [13] contains more up-to-date information
in Hebrew.

An Overview of the Vowel Placement
Mechanism

This section describes the mechanism that I have
developed for placing Hebrew vowels.

The main idea behind the mechanism is to
leave the precise placement of the vowels to the
PostScript font program that the output device uses,
rather than require the main typesetting engine,
TEX, to place these accents. To TEX, vowels
appear to be regular characters with zero widths.
The advantages and disadvantages of this technique
over other possible vowel-placement mechanisms are
discussed in Section Discussion and Comparison to
Related Techniques.

In the source text file, the vowels are placed
after the base letter, in accordance with Unicode
usage [14] (and unlike the current text-entry mech-
anism for Latin accents in TEX). When TEX--XET
(a bidirectional version of TEX) processes the file,
the accents are placed to the left of the base letter.
Once the dvi file is processed by a dvi-to-PostScript
processor, they are placed in the PostScript output
file before the base letter, since the order of the char-
acters of a word within right-to-left text is reversed.

The PostScript font that the Hebrew is set in is
responsible for vowel placement. We use a Type 3
font [2], in which the rendering of each glyph causes
the invocation of an arbitrary PostScript procedure.
When this procedure is asked to render a vowel
mark, it does nothing, except remember (raise a
boolean flag) that this vowel must be set when
the next base letter is to be rendered. When the
procedure is asked to render a base letter, it renders
the base letter and then renders all the vowel points
whose flags are raised, and clears the flags. Since the
rendering of the base letter and vowel points is now

done together in the same PostScript procedure, we
can easily control the placement of the vowels with
respect to the letter.

This technique is insensitive to the ordering in
the input file of the vowels that apply to a single
base letter, which is consistent with the Unicode
specification.

The Type 3 font renders the letters and vowel
points by calling another font program, not by
specifying the actual shapes of the glyphs. The
Type 3 font therefore behaves in much the same
way that a virtual TEX font behaves, but it is
considerably more flexible, since it can use all the
facilities of the PostScript language. In particular,
current virtual TEX files are limited to 256 glyphs,
which prevents them from being used to specify all
the possible letter-vowel combinations in Hebrew.

There are several advantages to calling another
font to render the glyph rather than specifying
their shapes in the Type 3 font. First, since we
use unmodified Type 1 [1] and TrueType [9] fonts
(encapsulated in a Type 42 PostScript font [3]),
we preserve their hints and avoid license violations
that may be associated with a conversion of the
outlines to a Type 3 font that is subsequently
modified. We also gain in PostScript rasterization
speed, since the glyphs of the Type 3 must not
be cached (the rasterizer must call the font to
“render” vowel points, and the shape of base letters
depends on their vowels). But the glyphs of the
Type 1 or Type 42 font that the Type 3 font calls
are cached. Still, the placement of vowels by the
Type 3 font slows down rasterization considerably
compared to the rasterization of a text set in a
Type 1 font, but this problem can be alleviated by
optimizing the procedures of this Type 3 font, or by
conversion to PDF format [4], as explained below.
Early experiments with a Type 3 font that both
placed vowels and specified the outlines of glyphs
revealed that when PostScript files that use such
fonts are distilled to PDF using Adobe Distiller, the
resulting PDF file encodes the outline of every glyph
that appears on the page separately. That is, in
a document that used 100 different glyphs 100,000
times, the PDF file would include 100,000 glyph
outlines, not just 100. This produces a large file
that renders slowly. In contrast, when the Type 3
font calls a Type 1 font, the PDF file encodes only
the placement of every glyph on the page, and
rendering speed is essentially the same as the speed
of rendering a page set in a Type 1 font.

TUGboat, Volume 20 (1999), No. 1 17

Technical Details

This section describes the implementation of the
Type 3 font that places vowels.

The BuildChar and BuildGlyph procedures of
the font are fairly standard: the BuildChar pro-
cedure calls BuildGlyph, and BuildGlyph calls the
appropriate procedure from a CharProcs dictionary,
after pushing on the stack the CharStrings dictio-
nary itself. It also pushes a mark, so that the stack
can be cleaned up later.
/BuildGlyph {

mark

3 1 roll

exch /CharProcs get

dup

3 -1 roll

2 copy known not {pop /.notdef} if

get exec

cleartomark

} bind def

/BuildChar {

1 index /Encoding get exch get

1 index /BuildGlyph get exec

} bind def

The CharProcs dictionary includes procedures
that render base letters, that “render” vowels (in
effect, these just raise a flag), and procedures that
perform the actual rendering of vowels based on the
state of the flags. The dictionary also includes the
flags themselves.
/CharProcs 200 dict def

CharProcs begin

% vowel flags

/sheva_flag false def

/hatafsegol_flag false def

...

When the PostScript rendering engine needs to
render a vowel, it calls a procedure similar to the one
below, which simply sets the appropriate flag. The
font metrics file describing this font must reflect, of
course, the fact that the width of the vowels is 0. (It
does not matter what the width of the vowels in the
font that is used for actual rendering is.)
/sheva {

% zero-width character, do not cache

0 0 setcharwidth

% set the flag

/sheva_flag true put

} def

When the PostScript rendering engine needs to
render a base letter, it calls a procedure like the
next one. The procedure first renders the letter
by calling another font, and then calls procedures

that render vowels, if the appropriate flags are set.
The horizontal and vertical offsets for each vowel
are specified separately. The reason that the width
of the base letter is specified as 1/1000 the width
specified in the afm metrics file, and that the scaling
of the font that renders the glyph is 1, is that we
specify the font transformation matrix (the font’s
/FontMatrix) for this Type 3 font as [1 0 0 1 0 0].

/bet {

% width taken from .afm file

0.614 0 setcharwidth

% render using another font

0 0 moveto

/MonotypeHadassah findfont

1 scalefont setfont

(\341) show

% now set placement for each vowel and call

% /draw... to render it if necessary.

% The sheva, for example, is offset 0.250

% units to the right with respect the a bet.

dup 0.250 0.000 4 -1 roll /drawsheva get exec

dup 0.300 0.000 4 -1 roll /drawhiriq get exec

...

dup 0.220 0.000 4 -1 roll /drawtsere get exec

% this vowel, holam, is moved both

% horizontally and vertically

dup -0.04 -0.08 4 -1 roll /drawholam get exec

} def

The next set of procedures includes the ones
that test the flags, clear them, and render the glyphs
when necessary.

/drawsheva {

% arguments are already on the stack

moveto

% get the flag, leave on stack

dup /sheva_flag get exch

% clear the flag

dup /sheva_flag false put exch

% if set, render

{dup /sheva_glyph get exec}

if

} def

...

/sheva_glyph {

/MonotypeHadassah findfont

1 scalefont

setfont (\300) show

} def

...

Discussion and Comparison to Related
Techniques

The vowel-placement technique described in this
paper allows for accurate placement of vowels of He-
brew. It was designed for use with TEX--XET, but it

18 TUGboat, Volume 20 (1999), No. 1

can also be used with other typesetters that produce
similar PostScript output. It can be used with any
unmodified Type 1 or TrueType font (encapsulated
in a Type 42 font). The technique requires only
one software component besides TEX--XET and a
Hebrew PostScript font: a Type 3 PostScript font
that places vowels. The end user simply types the
Hebrew text with vowels following the base letter (as
prescribed by Unicode) and runs the file through
TEX--XET and a dvi-to-PostScript processor. The
resulting output file can be converted to a high-
quality PDF file that renders quickly. Since the
technique does not use any TEX macros, it does
not interfere with any, and texts with vowels can
be freely used in moving arguments, indices, etc.

Producing a new Type 3 font that specifies
vowel placement takes a few hours, even without
interactive visual tools (I used a text editor and a
PostScript previewer). The production process can
probably be sped up using an interactive placement
editor, or at least a table-driven script that would
generate the actual font. Producing such fonts
requires no special TEX expertise. The Type 3 font
that places vowels for the Omega Serif Hebrew font
is freely available from the author.

The technique has other potential advantages,
which I have not yet exploited, but are worth
mentioning. It is possible to choose narrow vowel
glyphs for narrow letters, thus ensuring that the
vowel does not extend beyong the letter. It is
possible to render the vowels in a different color
than letters; I think that this may be useful in large
sizes, where rendering the vowels in gray, so as to
emphasize the base letters.

The main disadvantages of this technique are
that the resulting output files render somewhat
slowly and that it is fragile. The PostScript raster-
ization speed is slow because the PostScript inter-
preter computes glyph placements algorithmically.
As explained above, the problem can be alleviated
by optimizing the Type 3 fonts or by conversion to
PDF, especially for documents that are designed to
be read on a computer screen. The method is fragile
because it assumes that TEX and the dvi processor
always place the vowels before the base letter in the
PostScript file, and that the PostScript interpreter
would render the glyphs in the order in which they
appear in the file. These assumptions are true today,
but they may change in the future. Still, I have not
encountered any robustness problems yet.

Since letter-vowel combinations are rendered by
a font program, they must be rendered with no
information about nearby glyphs. For example, it is
not possible to render vowels based on the vowels of

the letters to the right and left of the current one, or
based on whether the letter appears at the beginning
or end of a line. This is not a serious limitation
for typesetting Hebrew with vowel marks, but it a
limitation when typesetting biblical texts with both
vowel and cantillation marks.

There are other solutions and partial solutions
to the vowel-placement problem. One common
partial solution is to use fonts that have some
precombined letter-vowel glyphs. A set of around 50
or 60 precombined glyphs, which are treated by the
typesetting software as ligatures, ensure an accurate
placement of the most difficult combinations. The
other combinations are produced by overstriking a
base letter or one of the precombined glyphs with
vowel glyphs. Overstriking usually places the vowel
slightly off center (because a single overstriking
vowel glyph is used for all base letters). The
typographical quality of the result is not high, but it
is not a disaster either. Also, to ensure that ligatures
are used, the user must type vowels in a specific
order, which is inconsistent with Unicode usage. For
example, if the font includes a ligature for the letter
yod with a dagesh mark, the user must type the
dagesh before other vowels that apply to the yod.
This type of solution appears to be fairly common
in commercial publishing in Israel.

Another solution, specifically for TEX, was
developed by Haralambous [5, 6]. His system,
which sets both vowel and cantillation marks, uses
a preprocessor and a special font to place these
accents. I do not know whether the system can
be adapted to other fonts. While Haralambous’s
system is more robust and flexible than the one I
describe, my approach is simpler to implement and
use.

Haralambous is also one of the developers of
Omega [7] (with Plaice), a system for multilingual
typesetting that is based on TEX, uses a 16-bit char-
acter set (Unicode), adds to TEX another processing
mechanism that is separate from macros, and has
more flexible virtual fonts. Omega should enable
typesetting Hebrew with vowel points.

The introduction of OpenType [10] fonts will
probably encourage the development of additional
solutions. OpenType fonts, which were developed
by Adobe and Microsoft, are essentially enhanced
TrueType fonts that can contain Type 1 outlines and
advanced typographical layout information, simi-
lar in spirit to the information that Apple’s True-
TypeGX fonts can contain. OpenType fonts are
already used in Arabic and Far Eastern versions of
Microsoft Windows, and they are supposed to be
used in future versions of all versions of Windows,

TUGboat, Volume 20 (1999), No. 1 19

including Hebrew. It is possible that Hebrew Open-
Type fonts with enough information for accurate
placement of vowel points will be produced. There
are currently no such fonts, however, and no pro-
grams that can use them. Converting OpenType
fonts and the typographic information that they
contain to a format that TEX can use is certainly
a complex task.

All in all, I found this technique to be a
remarkably simple solution to a complex problem.

Acknowledgements

Thanks to Barbara Beeton, Yannis Haralambous,
and an anonymous referee for helpful comments.

References

[1] Adobe Systems Incorporated. Adobe Type 1
Font Format. Addison Wesley, 1990.

[2] Adobe Systems Incorporated. PostScript Lan-
guage Reference Manual, 2nd Edition. Addison
Wesley, 1990.

[3] Adobe Systems Incorporated. The Type 42 Font
Format Specification. Technical Note 5012,
1993.

[4] Tim Bienz, Richard Cohn, and James R.
Meehan. Portable Document Format Reference
Manual, Version 1.2. Adobe Systems Incorpo-
rated, 1996.

[5] Yannis Haralambous. Typesetting the Holy
Bible in Hebrew, with TEX. TUGboat, 15(3):
174–191, 1994. Also appeared in the Proceed-
ings of EuroTEX 1994, Gdańsk, 1994.

[6] Yannis Haralambous. “Tiqwah”: a typesetting
system for biblical Hebrew, based on TEX. Bible
et Informatique, 4:445–470, 1995.

[7] Yannis Haralambous and John Plaice. Omega,
a TEX extension including Unicode and featur-
ing lex-like filtering processes. Proceedings of
EuroTEX 1994, Gdańsk, 1994.

[8] Eliyahu Koren. [The letter as an element in
the design of sacred books]. In Hebrew. In [13],
pages 85–90.

.ùãå÷ éøôñ áåöéòá ãåñéë úåàä .ïøå÷ åäéìà

[9] Microsoft Corporation. TrueType Specifica-
tion, Version 1.66. Available online at www.
microsoft.com/typography.

[10] Microsoft Corporation. OpenType Specifica-
tion, Version 1.1. Available online at www.
microsoft.com/typography.

[11] Gershon Silberberg with contributions by
Moshe Spitzer, Meir Ben-Yehuda, Shmuel
Perez, and Arie Lotan. Principles of Printing.
Irgun Mifale ha-Defus be-Yisrael, Tel Aviv,
1968.
øéàî ,øöéôù äùî úåôúúùäá ,âøáøáìéñ ïåùøâ
.ñåôãä úøåú .ïèåì äéøàå ,õøô ìàåîù ,äãåäé-ïá

.á"ëùú ,áéáà-ìú ,ìàøùéá ñåôãä éìòôî ïåâøà

[12] Moshe Spitzer. Typography. Encyclopedia Ju-
daica, 15:1480–1488, Keter, Jerusalem, 1971. In
English.

[13] Moshe Spitzer, editor. [A Letter is Forever:
A Collection of Papers on the Design of the
Hebrew Letter]. In Hebrew. Second edition,
Israel Ministry of Education and Culture, 1989
or 1990.
íéøîàî õáå÷ :íìåòì àéä úåà .êøåò ,øöéôù äùî
�øúäå êåðéçä ãøùî .úéøáòä úåàä áåöéòì ùã÷åî

.ï"ùú ,íéìùåøé ,éðøåú êåðéçì óâàä ,úåá

[14] The Unicode Consortium. The Unicode Stan-
dard Version 2.0. Published by Addison-
Wesley, 1996. Parts of the standard are avail-
able online at www.unicode.org.

� Sivan Toledo
School of Mathematical Sciences
Tel-Aviv University
Tel-Aviv 69978
ISRAEL
sivan@math.tau.ac.il

