
TUGboat, Volume 20 (1999), No. 2 141

Hints and Tricks

‘Hey — it works!’

Jeremy Gibbons

Welcome to ‘Hey — it works!’, a column devoted
to (LA)TEX and META tips, tricks and techniques.
Any short and elegant TEX-related items are warmly
received.

In this issue, as usual, we have three articles.
One is my own, and provides a macro for margin
notes that you can switch on and off. The sec-
ond is by Andreas Scherer, and shows how to draw
smooth graphs using METAPOST’s graph package.
The third is by Ramón Casares, and demonstrates
how to disable TEX’s rule for deciding whether a ‘.’
ends a sentence.

Last issue (Vol. 19, No. 4) we had an article by
Christina Thiele showing how to produce ornamen-
tal rules out of ordinary symbols, using \cleaders.
The final paragraph demonstrated how to alternate
two symbols, but to get an odd number of symbols
properly laid out involved switching to \leaders in-
stead of \cleaders, with the result that the rule is
no longer centred within the requested width:

‘×÷×÷×÷×÷× ’
Barbara Beeton responded to point out that it is
not hard to recentre the rule: first trim its width to
the actual printed width, and then ‘manually’ centre
this trimmed rule within the requested width:
\def\bordertwo#1#2#3{{%

\setbox1=\hbox{#1}%

\setbox2=\hbox{#1#2}%

\dimen0=#3\advance\dimen0 by -\wd1

\divide\dimen0 by \wd2

\multiply\dimen0 by \wd2

\leavevmode

\hbox to #3{\hfil#1\hbox to \dimen0

{\leaders\hbox{#2#1}\hfil}\hfil}%

}}

This generates
‘ ×÷×÷×÷×÷× ’

instead.

� Jeremy Gibbons
CMS, Oxford Brookes University
Gipsy Lane, Headington
Oxford OX3 0BP, UK
jgibbons@brookes.ac.uk

http://www.brookes.ac.uk/

~p0071749/

1 Switchable marginal notes

I often find it convenient, when working on the draft
of an article, to annotate it in the margin with re-
minders of facts to check, corrections to make and
so on. Of course, this is what LATEX’s \marginpar
macro is for. However, I would also like to be able
to switch off the annotations, for example when I
am distributing the draft article to an audience for
whom the annotations are inappropriate or irrele-
vant. I don’t want to have to edit the document
to remove the annotations one by one; that’s just
too much trouble. To solve this problem I wrote a
simple macro for ‘switchable marginal notes’.

The following definitions should be put into a
style file, say margnote.sty:

\newif\ifmarginnotes \marginnotestrue

\def\marginnotestyle

{\scriptsize\itshape\raggedright}

\def\marginnote#1{%

\@bsphack

\ifmarginnotes

\marginpar{\marginnotestyle#1}%

\fi

\@esphack}

Then marginal notes can be used by including
\usepackage{margnote}

in the document preamble.
The first line defines the marginal note switch.

Marginal notes are turned on by default, but they
can be turned off simply by saying

\marginnotesfalse

after the \usepackage declaration. (They can even
be turned off and on mid-document.)

The second section specifies the style of marginal
notes; by default, they are in a smaller size, italic,
and set ragged right, but this can be changed by
using \renewcommand.

The remainder of the file defines the marginal
note macro itself. This takes a single argument, the
text of the note, and sets it using \marginpar if
marginal notes are turned on. For example,

\marginnote{This is a marginal note.}

produces the note in the margin here. The macros This is a
marginal
note.

\@bsphack and \@esphack are internal to LATEX;
they ensure that an entity like a marginal note or
label definition does not introduce any extra space
into a paragraph, independently of whether or not
it is attached to a word.

� Jeremy Gibbons
Oxford Brookes University
jgibbons@brookes.ac.uk

142 TUGboat, Volume 20 (1999), No. 2

2 Smoothing augmented paths in
METAPOST

The user manual of the METAPOST graph package
states that neighbouring points of a path created
with the augment macro are connected by straight
line segments. Depending on the application, it may
be more suitable to draw a smooth curve through the
set of points on the path, using the ‘..’ operator.
This can be achieved easily.

Let the input be an external data file hiw.data
containing several pairs of coordinates, each pair on
a separate line:
1 1

2 2

3 6

4 9

The following METAPOST code creates a (jagged)
path by calling augment as the third argument to
the gdata routine:
input graph;

beginfig(1);

draw begingraph(5cm, 3cm);

path p;

gdata("hiw.data", c,

augment.p(c1, c2););

gdraw p dashed evenly;

gdraw (point 0 of p

for i = 1 upto length p:

.. point i of p

endfor);

pickup pencircle scaled 3pt;

for i = 0 upto length p:

gdraw point i of p;

endfor;

pickup defaultpen;

endgraph;

endfig;

end.

This path is gdrawn the first time as a dashed
line, depicting the default behaviour of augment.
The “Hey, it works!” effect is achieved in the next
four lines by gdrawing a (temporary) smooth version
of the same path. This is done directly as an argu-
ment to gdraw; no new variables are needed. Note
how this is done in a simple for loop running over
the points of the paths, applying the ‘..’ operator
in between.

Together with the control points displayed as
heavy dots, the result of this code is shown in the
following picture.

1 2 3 4

2

4

6

8

METAPOST automatically scales the x- and y-axes,
adds a frame (whose size was set in the begingraph
command), and attaches tick marks and labels.

METAPOST’s graph package will not generate
cyclic paths, but nevertheless a similar approach can
be used to draw a smooth version of a cyclic polygon:

draw (for i = 0 upto (length p - 1):

point i of p ..

endfor cycle);

� Andreas Scherer
Rochusstraße 22–24
52062 Aachen, Germany
andreas.scherer@pobox.com

3 Every point a period

The rule used by TEX to decide whether a point
is a period ending a sentence (so it will stretch the
following space) or is just indicating an abbreviation
is, for a simple mind like mine, too complicated.
And it fails more frequently than expected when my
text is full of ugly acronyms. So I have devised an
alternative scheme.

Basically the idea is that every point is a period
ending a sentence, so when I want to use a point in
any other circumstance I have to protect the space
that follows it, if any. If I want this space to be
breakable then the solution is to write a backslash
between the point and the space, that is ‘.\ ’. If, on
the other hand, I want this space to be unbreakable
then the solution is to write a tilde between the point
and the space, that is ‘.~ ’. Easy, isn’t it?

The code to achieve this is as follows:
\count255=‘A

\loop

\sfcode\count255=1000

\ifnum\count255<‘Z\advance\count255 1

\repeat

\def~{\nobreak\ \ignorespaces}

Note that I have appended a \ignorespaces to the
tie mark definition (so in fact a space after a tilde is
ignored).

� Ramón Casares
Telefónica de España
r.casares@computer.org

