
Paperless publishing

Publishing of books and documents has dramati-
cally changed in the past few decades. Philip Taylor
(1996) accurately described the emergence of com-
puter typesetting with emphasis on Web document
rendering applications, using portable multiplat-
form hypertext exchange standards, particularly
focusing on the merits of PDF and HTML (including
XML, SGML, et al.). For our purpose we can define
on-line as any means by which a document can be
electronically rendered; this is perhaps more aptly
called paperless printing.

The popularity of on-line books and documents
has spawned a diverse variety of on-line readers.
These readers, for our purpose, are programs, ap-
plets, and interpreters which can read electronic
data and output the image to a screen, in much
the same way that one would see the output from a
printer. Readers include proprietary single-platform
programs, stand-alone multi-platform readers (in-
cluding Frame Reader, Ghostscript, and Acro-
bat Reader), Web browsers (including HTML and
JAVA), and Web browser plug-ins (including Acro-
bat). It is not at all wrong to suggest that TEX,
along with a DVI previewer, is one of the first
platform independent readers. Many people have
generously contributed packages to the TEX cause,
by which users can incorporate recent advancements
in reader design such as HTML and PDF.

232 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Paul A. Mailhot

Implementing Dynamic Cross-Referencing and PDF with PreTEX

Paul A. Mailhot
PreTEX, Inc.

2891 Oxford Street

Halifax, Nova Scotia, B3L 2V9

Canada

paul@pretex.com

Abstract

This paper discusses how we can create dynamic and interactive on-line
documents in Portable Document Format (PDF), using TEX. PDF documents
are generally device and platform independent, therefore, ideally suited for
on-line publishing and information exhange. We will need to work in three
programming languages: macros in TEX, and definitions in PostScriptand PDF.
We begin by describing the steps necessary to process PDF through TEXand
PostScript, followed by several examples of defining such TEX macros. The
examples are quite easy to follow; however, some knowledge of PostScript and
PDF programming is useful.

Portable Document Format

Portable Document Format, more commonly called
PDF, was developed by Adobe Systems and is a
descriptive programming language, devoid of soft-
ware and hardware dependence, used to render
documents. PDF is sometimes grossly misunder-
stood as being a subset of the PostScript format
language. It is true that PDF and PostScript share
many common features but each format language
suits a particular task, and there are features found
in each but not the other. Thomas Merz (1997)
describes these similarities and differences in suit-
able detail. For our purpose we will concentrate
on PDF documents, in particular addressing some
hypertext features including bookmarks, links, and
annotations.

A PDF document in general cannot be directly
viewed, but rather, must be processed through a
reader such as Adobe Acrobat Reader or Ghost-
script. There also exist a number of application
plug-ins for internet, word-processing, and desktop-
publishing software which allow viewing of PDF

documents. PDF documents are usually created
by printing a document through a printer driver
such as Acrobat PDF Writer or printing to a
PostScript file which is in turn passed through
Acrobat Distiller. The second method is more
commonly used by the TEX community; a brief
description is given by Amy Hendrickson (1998).
Contributions such as hyperref (Thành and Rahtz,
1997) and pdftex (Thành, 1998) provide direct-to-
PDF document processing.

PDF through PostScript

For our purpose we will concentrate on the method
used by Hendrickson. The description of PDF and
PostScript operators for hypertext links is found in
Merz, but for our purpose we will briefly review it.

In order to create PDF links, we must first sup-
ply a set of raw PostScript instructions/definitions
which will allow passage of PDF link code through
Acrobat Distiller to create PDF files with links.
This PDF code will be ignored by non-PDF de-
vices such as PostScript printers. The following
PostScript source code accommodates this by an
if–else statement:

/pdfmark where
{pop}
{dictionary /pdfmark
/cleartomark
load put}

ifelse

In this PostScript code, the where command
searches for a PostScript dict containing a defi-
nition of pdfmark. If the definition is found, then
the if portion {pop} is executed and word pdfmark
is popped off the execution stack by the PostScript
interpreter; otherwise, pdfmark is defined to remove
all the tokens between mark and the word pdfmark
by using the PostScript operator /cleartomark. A
mark in PostScript is the character [. We now
have an avenue by which PDF code can be passed
through both to PDF devices and non-PDF devices.

Most new DVI-to-PostScript interpreters have
already included the above PostScript code in their
document header. Those interpreters that do
not include it can do so with the following TEX
definition:

\def\initializePDF{
\special{header=pdfparse.psc}}

This TEX macro tells TEX and any generic DVI-
to-PS driver to insert the file pdfparse.psc into
the PostScript output file header. The file pdf-
parse.psc would then contain the above PostScript
code with the /pdfmark definition.

The PDF code

Now that we have taken care of passing PDF link
code, we must create PDF code for creating PDF

links. The PDF code works in the same manner as
PostScript in that we must create definitions using
predefined PDF operators. There are essentially two
parts to implementing PDF links. Merz (1997:288–
298) gives several examples of fully functional links
which can be easily followed. The example

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 233

Implementing Dynamic Cross-Referencing and PDF with PreTEX

[/Rect [0 0 60 60]
/Page 124
/LNK pdfmark

contains all of the essential elements required for a
link to pass through PostScript and be executed in
PDF. The PostScript mark [and definition pdfmark
delimit the PDF code. It cannot be assumed that
the code between the delimiters is PDF because we
may need to pass values from TEX into the PDF

code. The fully functioning example
\def\pdfbookmark#1#2{{
%#1=section/Chapter/etc..
%#2=usually the title
\special{verbatim=
" [/Title (#1 #2)

/OUT pdfmark"}
}}

shows how we can define a TEX macro, using a
PostScript special, to insert entries into an outline
of a PDF document. An example of an outline in
Adobe Acrobat is shown in the left side of Figure 1.
We can jump to each entry of the document by
clicking the icon to the left of the outline entry.

Figure 1: An example of a PDF document con-
taining an outline. We can use the outline to jump
to its location in the body of the text.

A more useful but trickier example is:
\def\pdfnameddestination#1#2{{
%#1=xrf-tag name
%#2=pagenumber
\special{verbatim=
" [/Dest /#1

/page #2
/Border [0 0 0]
/DEST pdfmark"}

}}

\def\pdfgotonameddestination#1{{
%#1=xref-tag name
\special{verbatim=
" [/Rect [currentpoint

2 neg add exch
10 neg add exch

currentpoint
8 add exch
0 add exch]

/Border [0 0 0]
/Dest /#1
/LNK pdfmark "}

}}

This example supports dynamic cross-referencing in
the PDF document in the same manner as LATEX.
The first macro creates a mark where the source
reference is located and the second macro creates a
link to that reference. The second macro does this
by creating a PDF link box 10 points square in the
PDF document. If, in Acrobat Reader, you click on
this box, you will jump to the page where the link
is defined.

One major restriction of this method is that
the entire project needs to be in one PDF document.

Multiple-file PDF documents

Many books and other large projects need to be
processed as multiple files, broken up so that each
section is of more manageable size. But our earlier
method of creating links as named references does
not work outside a single file.

A better method, which works over multiple
files, is to create a set of macros that reference
both the filename and the page number With this
method, we can set up a link to any PDF document,
as long as we know the file name and the absolute
page reference. This method is implemented in the
following TEX definition:

\def\pdfxrffileopen#1#2{{
%#1= file name
%#2= absolute page number -
% not the printed page number
\special{verbatim=
" [/Rect [currentpoint

2 neg add exch
10 neg add exch
currentpoint
8 add exch
0 add exch]

/Border [0 0 0]
/Action << /Type /Action
/Subtype /GoToR
/File (#1.pdf)
/Dest [#2 1 neg add /Fit] >>

/Subtype /Link
/ANN pdfmark "}}}

This definition contains a few more operators but
it has an overall structure similar to the earlier
example. It is important to note that PDF docu-
ments are referenced by absolute page number. If,
for example, the document contains front matter
numbered i to xvi and text pages 1 through 23, then

234 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Paul A. Mailhot

the absolute page numbers are 0 for i, 15 for xvi,
16 for 1, up through 38 for page 23. With a little
work, one could easily redefine TEX cross-reference
and index macros to include file names and absolute
page numbers, thereby implementing dynamic and
automatic PDF linking. One method for keeping
track of absolute page numbering in TEX is to define
a new counter and increment it in the TEX output
routine.

We can combine the methods of the two previ-
ous examples by having the TEX macro PDFnamed-
destination include another TEX macro which
writes each instance, named destination, and file-
name, to a global output file containing calls to
each document file:

% Global file containing
% named destinations
\input document1.nd
\input document2.nd

.

.
\input documentN.nd

In this manner, all files can be accessed somewhat
independently and named references for each docu-
ment can be easily updated. By referencing this file,
one can determine in which file a named destination
occurs.

Figure 2: An example of a PDF document con-
taining links from Table of Contents entries to their
locations in the main body of the text.

Duplicate named destinations should not occur.
Figures 2 and 3 show several examples of how this
combination can be implemented to give PDF links.
The small shaded boxes represent PDF link boxes;
clicking on these boxes will jump the reader to the
destination page.

Figure 3: An example of index entries containing
links to their locations in the main body of the text.

Launching applications from PDF
links

One final useful example of a PDF link is to allow a
user to launch an application program while reading
the PDF document. The following code allows an
executable to be opened directly and related files to
be opened using associations:

\def\pdflaunchapp#1{{%
% #1 = filename (pathname is optional)
\special{verbatim=
" [/Rect [currentpoint

2 neg add exch
10 neg add exch
currentpoint
8 add exch
0 add exch]

/Border [0 0 0]
/Action << /Type /Action

/Subtype /Launch
/File (#1) >>

/Subtype /Link
/ANN pdfmark "}}}

The TEX example
\pdflaunchapp{filename.c}

can be used to compile, or to open with an Inte-
grated Development Environment (IDE), files hav-
ing extensions associated with C compilers. Files
such as MS-DOS executables can work, although
these files can only be run in a DOS/Windows
environment. The shaded boxes containing the
uppercase “D” in Figure 4 indicates a PDF link
to launch the program compside.exe. In gen-
eral, this type of PDF link can be platform- and
operating-system-specific; however, under certain
conditions, it can be quite useful. Any link to an

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 235

Implementing Dynamic Cross-Referencing and PDF with PreTEX

executable should be thoroughly tested before being
distributed.

Figure 4: An example of launching an application
in a PDF file by clicking the shaded boxes containing
the “D”.

Customized PDFlink radio buttons

We can now create documents which contain dy-
namically linked cross-references in the form of PDF

links. We should now enhance our PDF documents
by creating menus or user-defined buttons which
will allow warping to different locations of the book.
In Figures 1 to 4 we see a menu with such headings
as Title, TOC, Prev, Next, Index, and Help;
all these represent links to various locations in the
book. These are inserted onto each page by includ-
ing a TEX command in the output routine. The
TEX output routine

\def\output{\shipout\vbox{\pdftoolbar
\makeheadline
\pagebody
\makefootline}%
\advancepageno
\global\advance\absolutepageno by 1
\ifnum\outputpenalty>-\@MM
\else\dosupereject\fi}

is taken from the set of macros used to create the
pages in Figures 1 to 4. Note that there is also a
reference to absolute page numbering in the sixth
line, as we suggested earlier. The TEX macro for
the PDF link toolbar

\def\pdftoolbar{{
\vbox to 0pt{\hbox to 0pt{\hskip -15pc
\vbox{\hsize=8pc%
\pdftitlepage
\pdftoc
\pdfprev
\pdfnext
\pdfindex
\pdfhelp
}\hss}\vss}}}

is quite simple. Depending on its implementation,
however, must not affect the remainder of the page
body. The TEX macro \pdftoc, for example, is
simply a line containing a PDF link using the
\pdfxrffileopen macros.

Acrobat 4

In this paper we have attempted to define a set
of TEX macros which will create on-line PDF doc-
uments which are platform independent. Since we
cannot foresee advancements in software develop-
ment, with the release of Acrobat 4 and future
versions, there remains the potential for better and
more visually appealing on-line documents. The
examples used in this paper are based on exist-
ing PDF features found in the on-line document
Portable Document Format Reference Manual, Ver-
sion 1.2, November 1997, by Adobe Systems. This
edition is rather old, but one can get the most recent
PDF version at the Adobe website www.adobe.com.

PreTEX and PDF

PreTEX is a preprocessor and macro package for
TEX, developed by PreTEX, Inc., which supplies an
author with many tools to simplify the writing and
management of larger (book length) projects. (For
a discussion of PreTEX, see the article by R. Kruse
elsewhere in this issue.) One of PreTEX’s important
expansions of the resources available to an author
is the inclusion of PDF links by using TEX macro
definitions similar to the examples above. In this
way, a book can be published both on paper and in
an electronic form that incorporates automatically
generated PDF links for cross-references, index
entries, launching application programs, and the
like. The current set of PDF macros are not stable
enough; they will be made freely available in the
spring of next year (1999).

Cheers.

References

Adobe Systems Incorporated. PostScript Language
Reference Manual. Addison-Wesley, Reading, Mas-
sachusetts, 1993.

Adobe Systems Incorporated. Portable Document
Format Reference Manual. Addison-Wesley, Read-
ing, Massachusetts, 1993.

Hendrickson, Amy. “Real Life LATEX: Adventures
of a TEX Consultant.” TUGboat 19(2), 162–167
(1998).

236 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

Paul A. Mailhot

Kruse, Robert. “Managing Large Projects with
PreTEX: A Preprocessor for TEX.” 1999. (See
elsewhere in these Proceedings.)

Merz, Thomaz. PostScript and Acrobat/PDF
Springer-Verlag, Berlin, Heidelberg, 1997.

Taylor, Philip. “Computer Typesetting or Electronic
Publishing? New trends in scientific publishing.”
TUGboat 17(4), 367–381 (1996).

Thanh, Hàn Thé̂. “Improving TEX’s Typeset Lay-
out.” TUGboat 19(3), 284–288 (1998).

Thành, Hàn Thé̂, and Sebastian Rahtz. “The
pdfTEX user manual.” TUGboat 18(4), 249–254
(1997).

A TEX Haiku

\expandafter\def
\csname def\endcsname
{\message{farewell}}\bye

—Sebastian Rahtz

A TEXnician’s Haiku

This haiku for TEXnicians consists entirely of TEX
control sequences; furthermore, it forms a valid
TEX assignment statement—provided that a certain
control sequence that is normally undefined is
defined in an obvious way. Can you identify the
control sequence in question?

\catcode\csname
\romannumeral\parshape
\endcsname\month

—Michael Downes

A TEX Cheer

Flush to the left
Flush to the right
\vskip, \hskip, type type type

Michael Sofka

