Jeffrey MCArthur

Managing TEX Software Development Projects

Jeffrey MEArthur
ATLIS Publishing Services
8728 Colesville Road
Silver Spring, MD 29010

jmcarth@atlis.com

Abstract

During the past few years, many articles and books have been written about
managing software development projects. Software development projects using
TEX require some special attention. This presentation looks at the entire software
development life cycle as it applies to TEX and the following issues in particular:
requirements specification, design specification, coding standards, code review

checklist.

Why use software development
management techniques?

Writing good, versatile and well-documented code
should be the goal of anyone developing macros
in TEX. Unfortunately, even the macros that
are included in the standard distribution of TEX
fail that standard. Books typeset using TEX
often have special coding scattered throughout the
source to make the book layout better. The
macros used, however, do not always work the
way the documentation says. Book typesetting
specifications are often incomplete and ambiguous
or refer to the style of some other book without
any detailed information on fonts, page size, and
so on. Specifications can, and usually do, change
and mutate during the production process. Poorly
documented and bug-ridden macros make managing
the process a nightmare.

Database publishing pushes the process to its
limits. It is one thing to produce a book once, or
even once a year; it is another thing to produce
the same book each and every month, in a scenario
in which the data changes on a daily basis and is
extracted out of a database only for composition.
Database publishing does not allow the luxury of
scattering special code throughout the sources. The
production process is often automated and the TEX
typesetting macros must be written to take care of
all contingencies because the input data file format
cannot be adjusted to make the book layout better.

One solution is to use software development
management techniques. This paper is an attempt
to define a template or checklist suitable for man-
aging a software development project that uses TEX
as one of its primary programming languages.

Requirements specification

The first step in any software development project
should be to create a document known as a re-
quirements specification. This document defines
the project in very broad terms. A copy of the
requirements specification should be given to every-
one involved in the project; any time a requirement
changes, everyone involved should be informed of
the change by receiving an updated requirements
specification document. The requirements specifi-
cation should include:

Description. I am amazed at how difficult it is
to describe some projects. If it is not possible to
write down a simple paragraph that gives a valid
description of the project, that project is not well
defined and has a high probability of getting out of
control.

Project goal. Once the project is described a
goal or goals can be defined: “If you don’t know
where you are going, then how can you know when
you get there?” Defining the project goal can force
important issues to surface at the start of the
project. A written project goal provides a means
to objectively measure the success or failure of a
project.

Needless to say, the project goal should be
documented and understood by all members of the
software development team as well as the project
manager. Failure to have a documented goal will
lead to feature creep and project drift.

Overview of problems to be solved. Describe
the fundamental problems that need to be solved.
Converting the existing data into a usable format
may be a real challenge. Word processing files,

298 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

poorly organized databases with little or no doc-
umentation, and spreadsheets can, and often are,
the only available format for the data. All must
be converted into a format suitable for typesetting

with TEX.

Tasks/Functions. Specify the tasks or functions
the macros perform. For example, if there are
any extracted indexes or page cross references they
should be defined.

Current mode of operation. It is useful to know
the current mode of operation. This avoids the
problem of creating a solution that cannot be easily
integrated into the working environment of the user.
For example, if the user is a hard-core plain TEX
user, providing a set of macros that only work under
IATEX would not be an appropriate solution.

Communications. Does the user expect the data
back in some other format? One rather large project
that I was involved in required converting data
from a proprietary typesetting format into SGML,
typesetting a book, and producing an electronic
version of the data on CD. We finished the book
and the CD and figured we were done for the
quarter when the client called up and asked us
about the “mag-tape version”? Our marketing
department had forgotten to tell us that we had
to create yet another deliverable. The data was to
be delivered on an IBM formatted 6250 BPI mag-
tape with a specific tape label. The requirements
document should have specified that deliverable.
Unfortunately it did not, and we had to scramble to
pull together the resources to complete the project.

If the data undergoes any conversion processes
it is important to specify the life cycle of the
data and its changes. This means that the date
(and possibly the time) when the data is frozen
for production should be specified. If the data is
modifed for typographic reasons during the produc-
tion process, it must be specified if the original
data is to be updated to match the typographic
changes. For example, if the data is in SGML or
XML it is common to add processing instructions
to the data to help with the typography. It is
sometimes necessary to make structural changes in
tables, particularly CALS SGML tables,! to make

1 Continuous Acquisition and Life-Cycle Support
(formerly Computer-aided Acquisition and Logistics
Support) (CALS) is a Department of Defense (DoD)
strategy for achieving effective creation, exchange,
and use of digital data for weapon systems and
equipment. MIL-PRF-28001C is the military stan-

Managing TEX Software Development Projects

them typeset properly. Changes of this type require
complex changes to the source. If the data must be
returned in a format that could be used again, the
returned data must include the structural changes
to the table elements.

Another example involves the creation of a
printed book and an electronic product, e.g. CD-
ROM. Typographic changes due to typesetting the
book may need to be reflected in the CD. Failure
to document this requirement can lead to serious
problems if the products get out of sync with each
other.

Ease of use. Specify how experienced with TEX
the user of the macros should be. It is all too
easy to create macros that only an expert can use.
Occasionally, however, it is appropriate to create
complex macros. The key is to document the
expertise needed, since the level of experience of
the user also defines the amount of detail that the
documentation needs.

Hardware/Software. Specify the hardware plat-
form(s), operating system(s), and implementa-
tion(s) of TEX that the macros will run on. This
is important if you are using some of the modified
implementations of TEX like e-TEX, Omega, or
PDFTEX.

Some implementations of TEX are compiled for
a particular memory size. Other implementations
are configurable. In either case, the minimum and
recommended TEX memory size should be specified.
This will let the user know if they have to use a
larger version of TEX or reconfigure their existing
version.

TEX has a very small memory footprint by
today’s standards. Unfortunately some of our users
have just about everything running on the PC at one
time. One of our users has the following programs
running at all times: Excel, Word, Outlook, Internet
Explorer, and several other proprietary pieces of
software. “Bloatware” software packages can use
up tremendous amounts of local disk space and
memory. Attempt to define the possible interactions
that might occur if other software packages are
running. Define the amount of both network and
local hard disk space required.

dard for CALS markup requirements. A soft copy

of this is available at:
http://www-cals.itsi.disa.mil/core/
standards/28001C.pdf

Because CALS tables are designed to support the

entire DoD they are very complex and difficult

to use.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 299

Jeffrey MCArthur

Quality. Outline in broad terms the rules for word,
paragraph, column, and page breaking.

Performance. TEX is a high-performance typeset-
ting system. Usually there is no need to worry
about performance. However, the generation of
PDF pages on demand by a web server can become
a performance issue. List all performance criteria.

Compatibility and migration. Specify if the
macros are based on plain or I4TEX or something
else. Specify if the macros have to be compatible
with any other macro package. If the macros are a
replacement /upgrade of an existing package specify
what amount of re-learning will be required of users
as they migrate their data to the new package.

International. Specify the need to support run-
ning and/or continued heads that may include sup-
port for ® and ™ as well as accented characters.
Specify how ® and ™ are to be typeset: superscript
or not, serif or sans-serif or font dependent.

Itemize the languages to be supported. Each
language requires it own hyphenation dictionary.
The encoding of the input data should be defined.
Determine if the data uses the Latin-1 encoding or
some other format, e.g. UTF-8.

There is a lot of data with accented characters
that uses MS-DOS code page 437 or 850.2 This data
is not compatible with the TEX standard encoding
or 8r, used with most PostScript fonts. The way
the data is encoded should be documented.

Service and support. Itemize the level of service
and support. The days and hours when support is
available should be listed in detail.

Pricing/Licensing. Define the ownership of the
macros. Specify the method by which the source
code will be provided and if the source code can be
de-commented.

Design specification

Creating the design specification document can be
done in parallel with creation of the requirements
specification document, but it should not precede
it. It is important to understand what is required
prior to defining the design of the pages.

2 The term “code page” refers to the keyboard
and display encoding. When MS-DOS was developed
there were no accepted standards for the layout of
accented characters. Code page 437 was the default
layout for the version of MS-DOS that what shipped
to the United States, and code page 850 was the
default layout for Wester Europe.

Publishers often provide design specifications,
but publisher-supplied design specifications are of-
ten incomplete, vague, and ambiguous. Even when
the publisher provides such information, a docu-
ment should be created that defines all the details
required by the project.

Documenting the specifications also gives the
typesetter a mechanism to generate additional rev-
enue when the publisher makes changes at the last
minute.

Description. Give a detailed description of the
typeset pages.

Output format. Define the output medium.
Resin-coated paper and film are still used as well
as electronic formats. The design specification doc-
ument should unambiguously define the format of
electronic files. There are many possible standard
electronic formats: PostScript, PDF, or separate
EPS files. If the deliverable is in PostScript, identify
which PostScript level 1, 2 or 3 is required, and
if the files are to be DSC-compliant (Document
Structure Convention). Specify how many pages
will be in each output file.?

If the final deliverable to the printer is to
be electronic files, it is important to establish a
dialogue early in the process with the printer’s
technical staff in order to determine the specific file
formats needed.

Covers/Spines. State if book covers and/or spines
are part of the deliverable.

Page size. Define the physical size of the page.
In PostScript this is also the bounding box. If
there are crop marks, the size of the physical page
will need to be larger than the size of the trimmed
page. The size of the trimmed page should also be
defined.

PostScript and imposition software may have
additional requirements. The bounding box of
the printed page may or may not need to include
the crop marks, depending on the needs of the
imposition software.

Crop marks. Specify if crop marks are needed
and where they are to be located. Today, many
web press printers want crop marks, but they must

3 Some imagesetters limit the number of pages
they can process in a single file. Often long runs
must be broken into ten or twenty page batches.
When this happens, the design specification docu-
ment should also define the file naming convention
for the multiple pieces.

300 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

be located one-eighth of an inch outside the page.
Specify the location of the crop marks and what
they should look like.

Color separations and registration marks.
Define the number of color separations and what
information is printed on each separation. Regis-
tration marks should also be specified. The use of
spot color or highlighting also needs to be defined.

Screens. Specify if there are any screens on the
pages or if the pages are to be set on colored
paper. Also define the amount that the screens
must extend beyond the trim size.

Bleed tabs. Define the number, size, and place-
ment of any bleed tabs as well as the amount that
the tab should “bleed” beyond the trim size.

Makeup. Define the number of columns per page
for each section of the book. The rules for starting
a new column, new page, and new right-hand page
should all be specified.

Fonts. Define what fonts are to be used. If the
output is PostScript or PDF, the document should
also specify if the fonts are to be embedded in the
document. Also specify if embedded fonts must be
the entire font or if the font can be a subset of only
the characters used by the document.

Running heads. Define the running heads. The
rules for any alpha-omega or dictionary heads should
be specified. The document should also define if
math, accented characters, or other complex textual
material can occur in the running heads since these
may require particular attention.

Even if there is initial agreement that there
will be no math in the running heads, this may
change later in the process. Any changes to design
specification must be agreed to by all parties.

Continuation heads. Define the number and
type of continuation heads. As with running
heads, the document should define if math, accented
characters, or other complex textual material can
occur in continuation heads.

Sorting. If the data is to be sorted, the rules for
sorting must be defined. Particular attention should
be made to rules for ignoring leading articles such
as “a”, “an”, and “the”, casing and punctuation.
The sorting order for names can be particularly
complex and must be defined.

Sorting languages like Chinese can be partic-
ularly challenging since it can be sorted in either
radical then stroke order or stroke then radical

order. The order is dependent upon the publisher’s

Managing TEX Software Development Projects

preference. Dealing with sorting and punctuation in
Chinese is particularly painful. Japanese has even
more complicated sorting requirements. All of these
need to be specified if the sorting involves Chinese,
Japanese, or Korean.

Cross-references and hypertext links. Define
the types of cross-references. The document should
define if they are simple references, or actual page
cross-references or even hypertext links. The for-
matting style for hypertext links should be defined.

Extracted indexes. Define any extracted indexes.
The sorting order for each extracted index must be
clearly described and all exceptions noted.

Graphics and line art. Define the parameters for
line art. If there are specific limits on the art size
or shape they must be documented. The acceptable
formats for the artwork should be specified. If the
artwork is to be scanned, the scanning resolution
should be specified as well as the delivery format.
If there is an approval process associated with the
artwork? it should be clearly spelled out.

Hyphenation. Define the rules for hyphenation.
Any multi-lingual document requires special atten-
tion to defining the hyphenation rules.

Widows and orphans. The rules for breaking
paragraphs, columns, and pages should be defined
in detail. Special attention should be devoted to
pages that run short or long.

Additional breaking and grouping logic. De-
scribe any logic that may be required for grouping.
For example, it may be undesirable to break address
listings except at specific places. For example: the
city, state or province, and postal code should sit
as a block, except when they will not fit, and then
it should break following the city. The rules for
addresses outside of the United States and Canada
should be defined in detail.

Blank pages. The direct-to-plate technology does
not come without a price: imposition software
demands consistency. Often it is necessary for the
final deliverable electronic pages to include blanks.
When a section of a book is defined to start on a new
right-hand page, the typesetting macros may need
to output a blank page instead of just incrementing
the folio. Bleed tabs, crop marks, and screens
complicate the process.

4 Advertisements in books are generally artwork
that must be approved prior to printing in the
finished book.

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 301

Jeffrey MCArthur

Front and back matter. Cover pages, copyright
pages, and dedications are often created using
WYSIWYG software. If the book is to be printed
using direct-to-plate technology these pages may
need to be integrated into the electronic files for
the body of the book. How these pages are to
be delivered and who will be responsible for the
integration must be documented.

Typesetting deliverables. Define how the fin-
ished pages are to be delivered. In the case of
film or photographic paper, include the shipping
address and how the package is to be shipped. If
the deliverable is electronic, specify how the data is
to be transferred or shipped. Define the acceptable
media: floppy, zip-disk, CD-ROM. If the files are to
be electronically transmitted, list the email address
or the ftp site to which the data is to be sent. If
the data is to be transferred through a firewall, the
security measures should be specified.

Features/Enhancements. Define possible future
features or enhancements that could be made to the
typesetting macros.

Exit conditions. The printer has the final word
on the design specification document. The location
of crop marks, bleed tabs, registration marks, and
screens may need to be adjusted to meet the
demands made by the printing press. Sample pages
should be sent to the printer for their approval as
soon as possible in the process.

Metrics

Dr. W. Edward Deming, a well-known author on
management techniques and practices, introduced
various quality control methods into management
practice. He emphasized that you cannot manage
what cannot be measured — otherwise you have no
idea if what you are doing helps, harms or has no
effect. He also introduced a number of statistical
techniques for measuring product quality, as well as
procedures for measuring improvement.

Therefore, as part of managing the develop-
ment process, it is important to create an objective
measure of the quality of TEX macros. As a pro-
gramming language TEX has some unusual features
such as the ability to change the category code
of characters. This makes it difficult to create
accurate metrics. The solution is to enforce coding
standards.

Metrics are a complex and controversial subject
that requires more than just a few paragraphs. I
plan on writing a detailed paper in the near future,
to cover the topic of metrics and TEX.

Coding standards

There is very little literature about coding standards
for TEX. ProTeX and docstrip are tools that
are supposed to aid in documentation and code
generation, but neither assures consistency in coding
style.

Introduction. This is an attempt to introduce a
formalized set of standards for software develop-
ment using TEX. During the past nine years I
have managed nearly twenty man-years of extensive
development in TEX and this paper is based upon
that hard-earned experience. My focus has been
exclusively on plain TEX, although most of these
standards can be applied to IATEX.

Scope. This set of coding standards and con-
ventions for coding and commenting TEX macros
will help ensure consistency and maintainability.
These standards were created not only for newly
developed code; any maintenance change to existing
code should attempt to bring that code into confor-
mance with at least the commenting standards.

Purpose. Coding standards provide a frame-
work for developing code that is both internally and
externally consistent. The framework should pro-
vide the support necessary to allow the programmer
to concentrate on creating the best implementation
of the code.

Deviations from industry standards. The
TEXbook defines a coding and commenting standard
by its numerous examples. The coding style used
in The TEXbook puts multiple statements per line
and uses trailing \fi. This style makes it difficult
to follow the logic of the code.

Instead of continuing to emulate the standard
defined in The TEXbook, this is an attempt to
define a new standard that treats TEX macros like
any other software development language.®

Some will argue that the coding styles in
printed books such as The TEXbook and TEX: The
Program are used to save space in the printed
product. Paper-saving economies that may have
been exercised for budgetary reasons should not
have a long-term bearing on standards particularly
if the result is compromised clarity. TEX is about
fine typesetting. Listings of code should be held to
the same high standard as typesetting text.

There are tools to help with coding. The editor
I use has a mode that is supposed to assist with the
formatting of TEX. I find it more trouble than it

5 McConnell (1993) is an excellent reference and
is the basis of much of this standard.

302 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

is worth, particularly since I rarely work with the
standard \catcode settings.

This points out the problems with tools like
funnelweb and ProTeX: they place restrictions on the
type of data the macros can be used with. If your
input file is in SGML or XML, there is absolutely no
reason to preprocess that file before using it with
TEX. It is relatively simple to typeset SGML or
XML data using TEX.S

Working directories. The TDS, TEX Direc-
tory Structure, is designed to stabilize the organi-
zation of TEX-related software packages. Unfortu-
nately the TDS does not work in an environment
where there are multiple projects that use TEX as an
embedded typesetting engine or in an environment
where there are multiple projects where TEX is only
one of a number of tools used. It is preferable
to keep all the macros under development in close
proximity to the rest of the project and not part of
the TDS tree.

The directory structure in use at ATLIS Pub-
lishing Services is quite different from the TDS. The
top-level structure is based on accounts. Ideally,
each account is broken into projects. Under each
project specify the following directories:

doc for Documentation and correspondence

help for help files

version for version control files

alpha for distribution files that are part of the

current alpha release

e beta for distribution files that are part of the
current beta release

e release for distribution files that are part of

the current production release

tex for TEX files

sgml for SGML, DTD files and such

lex for Lex files

Delphi3 for Delphi 3 files

Delphi4 for Delphi 4 files

and so on for other project-specific files

Format files and such are built and copied to
the alpha directory where they are tested. When
the macros have passed regression testing, the alpha
files are moved into the beta directory as part of
a ‘beta’ release. When the ‘beta’ release has been
tested by the end users and accepted, the files are
copied into the ‘release’ directory.

6 The website www.greenbook.net/free.asp al-
lows viewing of thousands of SGML documents that
were typeset using TEX without the use of any
preprocessor. XML is a subset of SGML.

Managing TEX Software Development Projects

File naming conventions. Below is a table show-
ing the proposed file-naming conventions for macro
and font files:

Prefix Extension Description

.tex source file
.sty macro include file
.fnt font include file

.dat data file
Tst, .tex unit test file

Source file. TEX uses .tex as the default
extension for input files. This extension should
only be used for files that can be used on the
command line for TEX. That is, any file which is to
be run by itself through TEX or any file that can
create a format file. If the file will only run with
a particular format file, e.g. IATEX files, then the
extension should not be .tex. It should be possible
to determine the purpose of the file and how to
process the file from its file name. Using the .tex
extension for files that require the IATEX format is
counter-intuitive because the extension implies that
the file will work with TEX and does not imply that
a format file is required.

Macro include file. Style, or .sty files,
contain macro definitions. A .sty file should not
produce any output to the .dvi file.

Font file. TEX provides a tremendous amount
of power in its use of the \font primitive. Unlike
some desktop packages, TEX allows complete control
over how fonts are loaded and how they are used.
One of the goals of good macro design is to separate
form from function. That is, the data should be
tagged as to its purpose and not as to how it looks.
This philosophy should also be reflected in the way
fonts are loaded. \font statements should not be
mixed with macros. Fonts should be loaded as part
of a separate file (or files). This makes it easier
to change the fonts used to typeset a document.
The document itself should not reference any font
by anything but a generic name. The New Font
Selection Scheme (NFSS) follows this same principle.

To promote this methodology the .fnt files
contain all the \font statements. This has some
significant advantages over the standard ITEX
method of specifying fonts. IATEX allows the user
to specify the main point size of the document
in the \documentclass statement. Changing the
main point size of the document requires the main
data file be modified. It is better to separate all
references to fonts and font sizes from the document.

File names. Having a portable file name
versus with an understandable file name is the main

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 303

Jeffrey MCArthur

issue in choosing a standard for file names. “8 + 3”
file names are more portable than long file names
but it is difficult to use meaningful file names with
only eight letters. All users should be polled to
ensure that they can process the long file names,
however. To avoid any possible problems, all file
names should be limited to strictly alphabetical
characters.

Coding conventions.

White space or blank lines. Blank lines
should be used to show the organization of the file.
Files with no blank lines are difficult to read and
understand.

Dividing lines. By default TEX uses the
percent sign, %, as the comment character; it also
makes a good section divider. I recommend using
a line of percent signs to separate sections of text.
It is possible to mark off major sections by using
double lines of percents. Minor sections can be
delimited by using half lines or quarter lines of
percent signs.”

Version control. Keeping track of revisions,
releases, and versions of software is important
to all successful software development projects.
Integrating TEX with a version control system is
relatively simple. There are numerous version
control systems, each with their own features and
syntax. Each set of TEX macros should announce
to the user what version of the macros they are
running. The following code fragment shows one
method of passing the version information to a TEX
macro:

% First for the revision level
\def\DefStyleVersion’#1’{/
\gdef\StyleVersion{1l.#1}}

% **xkeyword-flag*x *Yv (%d %t)’
\DefStyleVersion’2 (5-Aug-98 2:42:04)’

The version number should be announced to the
user by using \everyjob.

General coding conventions. The Funda-
mental Theorem of Formatting is that good visual
layout shows the logical structure of a program
(McConnell, 1993:403). TEX macros should use a
layout style that:

e accurately represents the logical structure of
the code

e consistently represents the logical structure of
the code

7 Some editors allow the user to specify how
many “repeats” of a character to use, a function
which facilitates insertion of such dividing lines.

e improves readability
e withstands modifications as the code is main-
tained

Modularity. Macros should be written in a
modular fashion. For example, the macro should
not call out fonts by their point size but rather
by their usage. So, instead of using \tenrm
the macro package should reference something like
\NormalRoman. This allows the fonts to be replaced
conditionally depending on context.

In almost every case, over the past nine years
of software development projects using TEX, the
font set had to be changed at some time during
the project. In many cases different outputs were
created using different sets of fonts.

The same input file can be used to create
dramatically different output formats. One project
entailed typesetting a directory of telephone and fax
numbers. The input composition file was approxi-
mately 60 MB in size. From the single composition
file two different directories were created. The
first, much larger, included both the phone and
fax numbers. The second, much smaller, contained
listings only with fax numbers. The TEX macros
were written to programatically suppress listings in
the directory if they did not have a fax number.

Macro coding conventions. TEX macros
should be self-documenting. In other words, the
code should be commented in such a way as to make
it easy for the casual reader to understand what the
macros are doing, no matter how complicated the
actual logic is. Each macro should have a preamble
comment. The preamble should define what the
macro does. If the macro takes parameters, each
parameter should be documented as to what it
is and what its expected value should be. If the
macros take optional parameters then those optional
parameters should also be documented.

Indentation. To accurately and consistently rep-
resent the logical structure of the code, macros
should be formatted using a block indentation style.

“if” coding conventions. All if-else—fi test-
ing should show the logical block structure of the
code. Below is an example of code that does not
show the logical structure:

\def\strut{\relaxy
\ifmmode\copy\strutbox’,
\else\unhcopy\strutbox\fi}

The logical structure is much easier to understand
using the following formatting style:

304 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

-

\def\strut{%
\relax
\ifmmodeY
\copy\strutbox
\else
\unhcopy\strutbox
\fi%
}

“elseif” coding conventions. TEX does not
define an \elseif primitive. Occasionally it is
useful to do several sequential tests, such as testing
a parameter to see if it matches some pattern.
Because the tests are sequential, a strict indentation
style would be difficult to read. In those cases a
modified indentation style should be used:

\def\TestValue{%
\ifx\next\ValAY
\ProcessA’,
\else\ifx\next\ValB}
\ProcessB/,
\else\ifx\next\ValC}
\ProcessC}
\else,
\ProcessOtherY,
\fi\fi\fi%
}

Specialized TEX coding conventions. The
code necessary to change the value of the TEX
escape character, \, in order to process verbatim
text or produce auxiliary index files, is difficult to
document. In cases like this, there should be an
extensive preamble that documents the process.

User interface. TEX is a batch processing type-
setting system and as such has a very rudimentary
user interface. However, the user should be able to
tell at a glance what version of the macros they are
running. TEX provides an \everyjob facility that
allows format files to show the user the information
about the version of the macros.

As TEX processes pages it displays the folio. For
large jobs, it may also be desirable to inform the user
what part of the document TEX is processing. This
can be done using \write or \message statements.

Code review checklist

Prior to doing a code review, the software should
undergo a clean build, followed by an inspection of
its design and coding.

Clean build process. Prior to the release, the
software should be subject to a clean build and
test. Doing a clean build ensures that all the files

Managing TEX Software Development Projects

are properly checked into the version control system
and that it would be possible to recreate the project
from a backup of only the source code.

Back up everything. The first step in a clean
build is to back up everything. This is important
because, as part of the process, many files will be
deleted.

Check everything into version control.
Make sure that all source files are checked back into
the version control system. This also ensures that
version/revision numbers are incremented.

Delete the entire project. All source code
files and format files are deleted from the system.
Those who are worried about disaster recovery
would start with a system with a completely clean
disk and would require all the development software
to be reinstalled.

Restore the source from version control.
Restore all source files from the version control
system.

Build the project. At this point the format
files should be rebuilt. One of the most common
problems is missing files. If a file is missing, it was
not included in the version control system.

Regression testing. Testing to make sure
that software has not taken a step backward and
reintroduced bugs that have been fixed previously
is called regression testing. Because the entire
system has been rebuilt, it is important to check
that nothing has been inadvertently changed.

Design and coding inspection. The clean build
should find any files not included in the version
control system. Every project should have a
document that defines how it is to be built and this
document should be updated to list any problems
that appeared during the clean build.

Using the Design Specification Document, the
code should be inspected to see if it is easy
to determine if the code implements the design
specification. Items that should be checked include:
page size
crop marks
color separations and registration marks
screens
bleed tab
page makeup
fonts
running heads
continuation heads
cross-references and links
extracted indexes
artwork
additional hyphenation patterns

TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting 305

Jeffrey MCArthur

e widow and orphan logic
e blank page generation

Project plan and status reporting

Successful management of a software development
project requires that a detailed plan be developed.
The plan should be created using project manage-
ment software. As a rule of thumb, all tasks should
be between four and sixteen hours in length. If the
estimated time for task is longer than sixteen hours,
the task should be broken up into sub tasks.

A status report showing the state of the project
should be created weekly. Because estimating the
time for a software development project using TEX
is difficult, it is important that the time for the
development be tracked against the plan. Tracking
the time provides feedback on the estimate, allowing
the estimating skills of the project manager to
improve.

Summary

The Software Engineering Institute, or SEI, has
defined a Capability Maturity Model, or CMM, for
the software development process.® Briefly, the
CMM levels involved are:

1. initial: no formalized procedures

2. repeatable: basic project management

3. defined: process standardization

4. managed: quantitative management

5. optimizing: continuous process improvement

This paper is an attempt to move from level 2 to
level 3. The process for managing TEX software
development projects must be defined so that the
process can be managed, level 4, and optimized,
level 5.

CMM levels provide an objective measure of
the quality of the management process. Better

8 SEI's website is: http://www.sei.cmu.edu;
the CMM material begins on /cmm/cmms/cmms . html.

managed projects provide higher customer satisfac-
tion and lower costs. The standards I am proposing
will encourage macro re-use and improved docu-
mentation, both of which should result in improved
efficiencies, cost-containment, and easier transfer
of maintenance and support duties to individuals
other than the original coder.

Acknowledgements

I would like to thank the reviewer for their time and
patience in reviewing this article. In particular, the
introduction to the section on metrics was vastly
improved by their comments.

A special thanks to Melissa Colbert and Denise
Marcus, who helped me prepare this paper for
submission.

I would also like to thank Christina Thiele for
the thankless work as editor.

Selected bibliography

Arthur, Lowell Jay. Improving Software Quality: An
Insider’s Guide to TQM. John Wiley and Sons,
New York, 1993.

Constantine, Larry L. Constantine on Peopleware.
PTR Prentice Hall, Englewood Cliffs, New Jersey,
1995.

Humphrey, Watts S. Managing the Software Process.
Addison-Wesley, Reading, Massachusetts, 1990.
McConnell, Steve. Code Complete: A Practical
Handbook of Software Construction. Microsoft

Press, Redmond, Washington, 1993.

Whitten, Neal. Managing Software Development
Projects. John Wiley and Sons, New York, 2nd
ed., 1995.

Yourdon, Edward. Decline and Fall of the Ameri-
can Programmer. PTR Prentice Hall, Englewood
Cliffs, New Jersey, 1993.

306 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting

