
Models and Languages for Formatted Documents

Chris Rowley
The Open University
527 Finchley Road
London NW3 7BG
United Kingdom
C.A.Rowley@open.ac.uk

Abstract

The largest change that has come to the world of document formatting since
TEX’s DVI language was designed is the need to support documents destined for
multiple uses, e.g., for interactive reading on screen and for paper output. It is
time to investigate what is needed, both now and in the immediate future, from
a device-independent description language for formatted documents.

This paper does not provide a complete such investigation. Instead, it out-
lines what is required from a language that can describe the “device independent”
properties of the “formatted form” of the currently imaginable range of docu-
ments. The important and innovative concept identified here is the complete
integration of three central formatting aspects of on-screen documents: text,
graphics and the mechanics of interaction.

Introduction

Motivation. There is currently a need for a stan-
dardised but flexible and comprehensive language
that will enable the description of all aspects of
formatted documents that are the output of high-
quality document formatters such as the growing
number based on TEX (and its derivatives); this
would also then be available for the output of all the
superior XML/XSL-based formatting software that,
we are assured by those who control the world, will
soon decorate our desk-tops.

Many aspects of formatted documents, such as
graphics and colour, were deliberately excluded by
TEX’s designers but the largest change that has come
to the world of document formatting since TEX’s DVI

language was designed is the need to support doc-
uments that are designed (to high standards) for
multiple uses, e.g., for interactive reading on screen
and for paper output. Many people now have ex-
perience of using TEX as the typesetting engine for
such documents, producing as the multi-use output
form a ‘PDF document’. This could be either by use
of pdfTEX or by producing PostScript and then con-
verting this to PDF (the acronym PDF here refers to
Adobe’s Portable Document Format). The power of
combining the programmability of TEX with a thor-
ough knowledge of the capabilities of PDF viewers
and Java programs have been brilliantly illustrated
by Hans Hagen.

There probably also exist other necessary ex-
tensions to the currently used models for format-
ted documents that are not supported well by any
current such language. Thus it is time to investi-
gate what is needed, both now and in the imme-
diate future, from a device-independent description
language for formatted documents. In order to illus-
trate and crystallise these ideas, it is useful to con-
sider how these needs are met by the current version
of PDF or by other languages such as the Scalable
Vector Graphics language. This would lead to a far
longer paper detailing the achievements and failings
of the current version of PDF and the relevance to
this subject of the current thinking on SVG but here
I have confined myself to occasional comments on
pertinent aspects of these languages.

Background. About a year ago I was bold enough
to state:

By August 1999 I hope, with a bit of help
from my friends, to have further analysed the
models and concepts that need to be sup-
ported by a language for describing multi-use
documents, and how well PDF provides such
support.

Well, I got a lot of help, mostly from the PDF discus-
sion list [8] and particularly from Sebastian Rahtz
and Hans Hagen who, being privy to Adobe’s fu-
ture plans and hence in their thrall, could often only
answer with the phrase “but I could not possibly

TUGboat, Volume 20 (1999), No. 3 —Proceedings of the 1999 Annual Meeting 189



Chris Rowley

comment”, even about things that are already de-
scribed in the literature— such is the way of com-
merce.

The result is this short paper outlining what
is required from a language that can describe the
“device independent” properties of the “formatted
form” of the currently imaginable range of docu-
ments. The discussion here tries to be general but
it is heavily influenced by the currently popular re-
sources in this area: DVI [4], PDF [2, 3] (and hence
PostScript [1]), together with some, such as the Scal-
able Vector Graphics (SVG) Specification [5], that
are currently under development.

I am very much aware that the current version
of this paper lacks a lot of explanation and exam-
ples; and that it contains little about practical ways
to take these ideas forward and relate them to other
activity in this area. However, it does contain at
least one significant new idea: the complete integra-
tion of three central formatting aspects of on-screen
documents: text, graphics and the mechanics of in-
teraction; this will lead to a more comprehensible
and systematic treatment of all aspects of multi-use
formatted documents.

Preamble. I shall assume that the reader has some
familiarity with the DVI language (at least the com-
monly used parts) and with the PDF language (v1.2
or later, but only the formatting-related parts).

Please note that there are many things that are
not covered in this paper because, although very im-
portant for modern document science, they are not
directly relevant to the current subject. For exam-
ple, since we are considering a description language
for formatted, multi-use documents, we completely
ignore the current uses, aimed at expressing docu-
ments as logical tree-structures, of languages such
as XML and HTML (although these are often used
to provide an inspired mixture of semi-specified for-
matting and logical markup). It is also possible
to combine such languages with a language such as
PDF to describe “partially formatted” documents.

The major consequences of the chosen language
for the design of the applications, e.g., TEX or its
successors, that produce examples of it will be men-
tioned, but only in passing and hence incompletely.
However, these are probably of greater practical im-
portance than the details of the language itself.

The paper begins by setting up the context, de-
scribing briefly the relationship between DVI, PDF

and the various models of document formatting into
which they fit. It then describes various models that
must be supported by a fully functional language
for multi-use formatted documents and analyses the

consequences of these for the structure of the lan-
guage.

Subsequent work will consider in more detail
the specification of the language together with the
design and implementation of related applications.

DVI and PDF. One motivation for this paper was
my being asked at the TUG’98 conference: which is
better, DVI or PDF? My reaction then was: since
they are so similar, neither! But then I was think-
ing only of the original version of PDF; now, having
discovered the joys of v1.2 and more recently the
7.4MB of the latest (v1.3) manual, I publicly recant
from that position.

Although PDF is technically not a “device inde-
pendent” language, it contains a large core of stuff
that is, at least potentially, as “device independent”
as TEX’s eponymous DVI language. Both must, of
course, be parsed by an application that understands
the language and its underlying document model,
formatting model and page model; and, although
they look very different at the detailed level, the
page models of these two languages (and their ab-
stract semantics) also have a lot in common. This
is one reason why the part of pdfTEX [6] that han-
dles classical TEX files is only very locally and mini-
mally different from classic TEX. However, PDF has
a somewhat richer document model and it integrates
text and graphics in its formatting model. This is
one reason why pdfTEX has extra primitives.

On the other hand, PDF also has a large, and
growing, part that is dependent on the very specific,
and limited, features of Adobe’s own viewers and
font technologies. As with most languages that are
being actively developed whilst being widely used,
PDF is now a mixture of good and bad ideas: it is
still based on some simple but general models but
these are not always used to provide extensions nor
have they been developed to provide more inclusive
but equally clean new models. Instead, it has grown
a collection of ad hoc add-ons that lack simplicity
and coherence. Much of the additional functionality
of pdfTEX is there only to support such very partic-
ular features of PDF, as its meta-data objects and
stream compression possibilities.

Although this is a lot, PDF does only what it
does; it has become a more difficult language for
a (human) document formatter or programmer to
work with. It is therefore currently not at all clear
how to make straightforward adaptations or exten-
sions of the PDF language and we seem able to get
from it only what They want us to have in Our doc-
uments. Note that some caution is needed when
evaluating the PDF language itself since much of its

190 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting



Models and Languages for Formatted Documents

expressive ability is obscured by the lack of function-
ality and bad behaviour of the applications currently
available for viewing or translating it.

Given the close symbiosis between its develop-
ment and that of the Adobe’s Acrobat Reader ap-
plication, it is very likely that, wisely used, it is a
very good language for rapid and accurate screen-
ing of downloaded documents. However, this is by
no means a unanimous verdict on the utility of PDF

and any such advantages have clearly been at the ex-
pense of efficient and accurate production of those
documents since the current version is far from pro-
viding the uniform, clean, comprehensible interfaces
needed by writers of applications.

This suggests that there is a need for Yet An-
other Language: one with a clean and general model
and a flexible, uniform syntax. If this is incompat-
ible with fast incremental processing then a compi-
lation process should be inserted to transform this
into something at least as good as PDF. So here are
some thoughts on such a language.

Background and models

Here is a description of the use of a FDL (or Fixed
Formatted Document Language) and the models of
document processing that it both supports and pro-
vides.

The global model. The assumed usage of this
FDL derives from the following high-level model of
the document formatting process in which it is used.
• A generating application (GA) produces a fully

formatted document and outputs it in this FDL

language.
• A processing application (PA) uses the infor-

mation about a fully formatted document de-
scribed in this FDL in order to do only the fol-
lowing (these are informal descriptions):

– faithfully render (in accordance with the
medium) parts of the visual content of the
document on one or more media;

– when appropriate, supply information
about attributes of such a rendering needed
to determine the interaction state of the PA;

– pass on, but not process, information
streams to other applications (in partic-
ular, non-visual material).

At its top level, a formatted document consists of
a collection of objects, the most pertinent of which
are formatted objects (FOs).

A model for the language. What information
must therefore definitely be represented in an FDL

description of a document? Here is an answer.

• The contents of the document that are needed
for rendering the FOs in the document on any
supported output medium.

• The contents that are needed to determine the
interaction state on any supported interactive
output medium.

• Information about structural relationships
amongst the formatted objects in the document.

• Pointers to other resources required for the ren-
dering process (e.g., rasterisation, font and col-
our information).
The following is information that is not essen-

tial but is useful; it is also very closely related to
the formatted document. Other (non-formatted)
objects contain such information.
• Information about the logical structure of the

document and its relationship to the structure
of the formatted document.

• Information needed for non-rendering activities
for which support is needed; in general, this is
too open-ended but some of these are the logical
information that is needed for activities that are
traditionally associated with on-line document
readers, such as indexing and searching.
There are, of course, many other things that

are essential to the complete description of a docu-
ment and it may well be appropriate to add to the
language objects to be used for their specification.
The following are some examples (from many) of in-
formation that is important to the document but is
not, per se, closely related to the formatted form of
the document.
• Database information about the document it-

self rather than its contents.
• How any visual material produced by other co-

operating applications (which may not them-
selves process the FDL material in this docu-
ment) should be placed relative to the rendering
of the document.
This paper will thus analyse in detail only the

information in the first group (of four items). It
will also discuss some ideas concerning the informa-
tion in the second group but will argue that the FDL

needs to be able to express only how the provision of
such information relates to information in the first
group, leaving the specification of most of this in-
formation to other, more suitable, languages; these
languages have been, or will be, developed elsewhere
and can be used in a wider context.

The FDL is not intended to provide a revisable
document format. Thus it will contain no provision
below the level of the FOs for the specification of

TUGboat, Volume 20 (1999), No. 3 —Proceedings of the 1999 Annual Meeting 191



Chris Rowley

user-level graphical objects so that they can be di-
rectly manipulated, as in a drawing application or a
document editor. This should not rule out support
for extensions that, like PDF, provide some very lim-
ited but useful form of structured revisions of FDL

documents; however, this is not a primary property
of the FDL.

Further restrictions. In order to appease the ed-
itor of these proceedings and to put a reasonable
limit on the time I spend writing, I shall here re-
strict the analysis and discussion in the following
ways.
• The top-level formatted object (FO) described

by the FDL will be a two-dimensional, unro-
tatable rectangle (this is a convenient but not
essential restriction).

• The graphical model will have no concept of
transparency, i.e., no graphical layers: this re-
flects only the current limit on my resources for
investigating the issues involved and should be
relaxed as soon as possible. It is also one of the
areas where PDF’s support falls short of current
requirements.

• There is no concept of time nor of an external
environment beyond the idealised two-dimen-
sional output medium; hence the FDL itself does
not describe the non-typographic content of
sound/video; and documents cannot be defined
to look different on Wednesdays, on Macs or
on Vancouver Island (although some such re-
quirements could, of course, be implemented by
the PA).

• There is no concept of service levels to be ne-
gotiated between a client, knowing its local PA

resources, and a document server.
Note that the first restriction does not limit the

scope for specifying what is displayed since, within
these top-level FOs, complex clipping paths can be
specified.

Note also that the PA can use information ex-
pressed in the FDL to do complex things such as
affording different views of the document and con-
trolling time-dependent actions to produce son-et-
lumière shows, etc., but these do not need to be
described directly within the FDL.

Moreover, the information needed to control
associated multi-media actions should be encoded
in languages designed explicitly for describing such
objects and these languages should not be part of
the FDL.

A model for the medium. The abstract model
of the visual medium is therefore a rectangular sub-
set of a mathematical Euclidean plane on which are

defined attribute functions such as “colour”. Thus
other technical issues not dealt with here are the
precision of numerical values and the closely related
provision of rasterisation information. These are
very important in practice but it is best to keep
them clearly separate from the raster-independent,
arbitrary precision part of the model. In addition
(or rather subtraction) many of the complexities of
colour and tone rendering are not present in the
model since these are intimately connected to the
rasterisation process.

Having so peremptorily dismissed rasterisation
from this formal model, I must quickly explain that
everything in the model is predicated on a model of
device-dependent rendering that involves a rasteri-
sation of this idealised plane.

Analogies. One can liken a simple implementa-
tion of this global model to a translator (the GA)
and its agent (the PA), where: the translator com-
piles application-oriented document formats into a
well-defined, machine-oriented representation of the
visual form of the document; the agent processes
this lower-level code. In this simpler paradigm, the
“model for the language” is analogous to the opera-
tional semantics of that machine-oriented represen-
tation and the “model for the medium” would be
the abstract architecture of the machine.

A heuristically better, but less precise, analogue
is with database models that include pre-compiled
views and data indexes.

Analysis

At the lowest level such an FDL needs to be able to
express, within the above limitations, full details of
the following, and nothing more:

• everything that could be visually displayed by
any PA using any supported visual medium;

• everything that is needed for the detection of
interaction events by any PA that supports in-
teractivity with such a visual mediuml

This information can be usefully divided into a num-
ber of related topics but they are all, ultimately,
graphical abstractions.

Graphical specifications. Here we separate the
concept of text (i.e., glyphs from fonts) from other
visual items; however, we do not separate the inter-
action-related graphical information from the visual
parts.

The underlying model for all this information
is the specification of regions in the visual medium
(idealised as a mathematical plane). These are the
only fundamental graphical objects that are used.

192 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting



Models and Languages for Formatted Documents

Although there are many other possibilities,
there is no clear reason to depart from, or extend,
the commonly used collection of methods for speci-
fying regions in terms of cubic paths; see, for exam-
ple, the paper version of the original PDF specifica-
tion [2]. This almost universal method is also used
by PostScript and SVG.

Paths. These are used solely as a way of defining re-
gions (stroking, etc., define a narrow area along the
path). They are typically piece-wise cubics, other
common forms such as conics being provided by the
language only as syntax for their cubic approxima-
tions.

Note that these paths are mathematical ideal-
isations that are then used to define the somewhat
more concrete regions by means of various opera-
tors such as clipping, stroking and filling. Note that
the use of these words here does not imply that any
painting of the defined region is yet specified.

Regions. Having thus defined a region, it can be
(abstractly) painted in some way or it can be given
a label for use in defining interaction events; these
are not exclusive possibilities. Note that the speci-
fication of the region is identical for both visual in-
formation and for these interaction labels. This is
all that is needed from the FDL in order to support
all currently used types of interaction. A region can
both have a label and be painted, and these two
properties are completely independent. It may be
sensible for all regions to be labelled objects so that
all their properties, including painting related oper-
ations, would be accessed via the label.

Events. The first stage is to define events; although
there is a good case for a generic language to be
used here, the present level of development of the
technology suggests that ad hoc languages closely
linked to particular devices may be needed for some
time. That used by SVG is a good example of such
limited expressibility.

Thus the FDL needs event definition objects
where the following information can be put, using
a suitable language:

• definitions of the interaction events,
• the actions associated with interaction events.

An important and common case of an action is to
display a particular view of the current, or some
other, FDL document; the features needed to sup-
port this are described below.

Painting. Much of what comes under the detailed
specification of a painting method is relevant only
to the details of the rasterisation but some, such as

colour information, also need methods for device-
independent specification. The most general colour
information is the specification of a colour gradient
function, to specify how a region should be painted;
this is a mapping from the abstract visual medium
to a colour space. There is a need for further in-
vestigation into what types of mappings are needed
here; SVG will support a small range of mappings,
including linear, radial and periodic (for patterns).

This could be extended to support the far more
general concept of getting such resources from an ex-
ternal paint server (not to be confused with the Mix-
Yer-Own machine outside the local Do-It-Yourself
store); this is analogous to the commonly used in-
direct ways of specifying glyphs and other font re-
sources.

Text. Although glyphs are also graphical objects,
the methods by which they are specified are typi-
cally so completely different that treating the two
similarly becomes fatuous. In particular, the choice
and positioning of glyphs typically requires external
resources and, hence, other languages. In the case of
PDF and PostScript, this is the only supported un-
derlying model for text: both positioning and ren-
dering information for typical fonts can only be spec-
ified via a fixed external font resource that must be
accessed via a fixed-size encoding table. Such exter-
nal font resources are used by a specialised glyph-
rendering part of the PA and also, often, by the GA:
it is clearly essential, but often difficult to achieve,
that these two applications use identical informa-
tion.

Whilst there are good reasons to support most
of these existing models and formats for glyph pro-
duction, the FDL must support a far wider range
allowing, if feasible, for future new glyph resources
and font technologies as they come into use. Thus
it should support the specification of all of the fol-
lowing:
• font-resource independent specification of a

glyph within a font;
• explicit positioning of glyphs;
• relative positioning of sequences of glyphs (us-

ing font resources to calculate exact position-
ing): at least for all standard typesetting modes,
both horizontal and vertical, possibly also for
typesetting along more general graphics paths.

Although perhaps not strictly part of the FDL itself,
a clear requirement arising from these is the ability
to attach arbitrary external resources to a FDL file.

Higher-level structure. The basic formatted ob-
jects (FOs) can be related in various ways, including
these three of immediate importance:

TUGboat, Volume 20 (1999), No. 3 —Proceedings of the 1999 Annual Meeting 193



Chris Rowley

• Logical arrangements: these can be very general
relationships but include traditional page se-
quences; these do not prescribe anything about
the formatting of the individual objects.

• Formatted arrangements : use and reuse of ob-
jects within others.

• Global information that allows viewers/printers
to define different views of a document in terms
of these objects: e.g., print sequences, relative
positioning of windows on a screen, suppressing
the rendering of the content of whole objects
(another area where PDF is currently deficient).

I see no reason to put any restrictions within the
language on the nature of these relationships, thus
at least a general labelled-graph language providing
arbitrary linking information is needed here.

Such relationships and their specification need
further investigation and development. Specifica-
tion of the formatting relationships will immediately
require an extended model of the medium that sup-
ports layers and transparency.

There is currently some small-scale research ac-
tivity concerned with logical information extensions
to PDF, in particular the work on structured-PDF at
Nottingham University. It is unclear whether Adobe
have any long-term interest in moving PDF in that
direction (or, indeed, whether they have any inter-
est at all in the language itself as anything beyond
a cryptic internal language for the Acrobat black-
boxes).

Trade-offs. Many of the choices that need to be
made in developing the detailed syntax of the lan-
guage lead to decisions that, whilst not affecting the
semantics or power of the language, do affect the
following measures of its utility. The first two items
in this list are independent of any particular docu-
ment, whereas the others will vary according to the
type of document and its uses:

1. the expected functionality of the GA,
2. the required functionality of the PA,
3. the relative size of the FDL file,
4. the relative speed of the generation of the FDL

file,
5. the relative speed of accessing information in

the FDL file,
6. the relative speed of processing information from

the FDL file.
In general, decreasing 1, and hence, typically, 4, will
increase 2 and, often, also 3, 5 and 6. For example, if
the FDL supports a large range of higher-level graph-
ical objects, such as transformations, arcs of conics
or smooth piecewise-cubic paths, then the GA does

not have to be able to turn these into basic cubic
paths but the PA must be able to process them.

Of course, increasing the amount of informa-
tion (e.g., font resources) that does not need to be
stored in the FDL file also decreases 3, but it also
requires the PA to be able to access these resources
effectively.

This section does not analyse the possibilities
for the use of alternative formats since these af-
fect equally any language. Some relevant techniques
are data compression, which is comprehensively sup-
ported by the PDF standard, and binary formats
that can be read quickly, as typically used by DVI

but not currently available in PDF.

Summary

Outline. A formatted document, as described by
an FDL specification, is a collection of reusable FOs
with labelled relationships. These FOs contain posi-
tioned graphical objects including, recursively, fur-
ther FOs; but they have no further internal struc-
ture. No distinction is made between the graphical
objects used for painting and those used to define
interaction events.

Interaction events and associated actions are
not described in the FDL itself but it provides ob-
jects specifically to contain these descriptions. It
also provides objects for describing external resources
and the possibility to attach such resources to an
FDL file.

Although glyphs are graphical objects, they are
most often accessed via external resources so they
must be treated very differently within the FDL.

All the organisational structure of the format-
ted document is defined in the FDL by general named
relationships between the FOs; other logical infor-
mation is not described in the FDL itself.

General principles. In developing the details of
such a language the following principles should be
adhered to as much as possible.
• Indirection: always A Good Thing.
• Modularity: but do not try to separate too rash-

ly things that should be intimately connected.
• Flexibility: do not impose unnecessary restric-

tions on the GAs or PAs.
• Extensibility : of course! But only within the

limits of the above outline.
• Clarity: and ease-of-use as the cream on the

cake!

The way forward

The next step is to refine and formalise the ideas
described here and to investigate extensions of these

194 TUGboat, Volume 20 (1999), No. 3— Proceedings of the 1999 Annual Meeting



Models and Languages for Formatted Documents

models that will support, in particular, a powerful
concept of layers in the output medium.

Some possible (and mutually supportive) ways
in which the TEX community should be able to assist
in this, and beyond, are as follows:
• Further extend DVI along the lines suggested

by the NTG TEX Future Working Group [7].
This already supplies a syntax for those graph-
ics objects supported by PDF; semantics satis-
fying the FDL model can be simply specified for
these and further necessary objects.

• Work with the W3C group to influence the de-
velopment of the SVG specification so that it
can be used as (part of) an FDL.

• Design future typesetting systems (such as NTS)
to output such a powerful, clean FDL and write
drivers that use it directly or translate it to
a more processor-friendly and currently sup-
ported language, such as PDF or the API (A..
P.. I..) of a printer/viewer sub-system.
Or maybe I should move on to even more radical

ideas whilst PDF and SVG/XML slog it out in the
market place and TEX/DVI continues to dominate
the quality niche? (Note: The last word must be
treated à la française to make the pun work.)

Postamble

Preparing the conference talk and the subsequent
discussions have shown that there are other impor-
tant questions not even touched on above; thus, this
paper should be treated as “preliminary thoughts”.

In particular, it became very clear when I was
designing and producing the examples for the talk
that, even by using all currently available applica-
tions (including some pre-release versions), I could
not implement all of those features of a formatted
document that are currently agreed to be desirable.
Moreover, it has taught me that, even at the high
level of my models and languages, there is a lot
more to the interactions amongst graphics, text, and
screen formatting than I had considered so far.

For example, what should happen when a user
resizes a window that contains both graphics and

text, possibly intimately connected? The possibili-
ties for each element are as follows (at least): resize,
clip, reflow.

Resizing may make sense, within reasonable lim-
its, for some graphics but maybe not for others; it is
rarely the best thing for text. Contrariwise, reflow-
ing is not usually feasible for graphics but may be
sensible for text, again within some limits.

So who decides what is allowed? The author
should at least be able to define the reasonable limits
but maybe the user should have some control over
what he is looking at.

Thus, more work, more ideas and, sadly, more
papers, are needed.

References

[1] PostScript Language Reference, 3rd ed., Adobe
Systems, 1999.
http://www.adobe.com/prodindex/
postscript/.

[2] Portable Document Format Reference Manual,
v 1.2. Adobe Systems, 1996.

[3] Portable Document Format Reference Manual,
v 1.3. Adobe Systems, 1999.
http://www.pdfzone.com/resources/.

[4] The DVIType Program. Stanford University,
1982.
http://www.CTAN.org/tex-archive/systems/
knuth/texware/.

[5] Scalable Vector Graphics (SVG) Specification.
W3C, 1999.
http://www.w3.org/TR/WD-SVG/.

[6] The pdfTEX Manual. 1999.
http://www.tug.org/applications/pdftex/.

[7] NTG TEX future working group. TEX in 2003:
Part II: Proposal for \special standard. TUG-
boat 19(3) pages 330–337, 1998.

[8] PDF e-mail discussion list.
http://tug.org/mail-archives/pdftex/.

[9] Hagen, Hans. Examples of the use of pdfTEX
to produce interactive documents. 1999.
http://www.pragma-ade.nl/.

TUGboat, Volume 20 (1999), No. 3 —Proceedings of the 1999 Annual Meeting 195


