356

TUGDboat, Volume 20 (1999), No. 4

A WYSIWYG TEX implementation
Igor I. Strokov

Abstract

A true WYSIWYG editor is implemented by means
of minor modifications to canonical TEX. The
changes include the ability to start compilation from
an arbitrary page and fast reformatting of para-
graphs. The new features provide an immediate
response for editing the typeset preview of a doc-
ument.

1 Conditional compilation

TEX was designed and implemented as a document
compiler (Knuth 1986); that is, one cannot preview
a typeset document before the compilation of its
source file, which means a relatively long response
time between inputing the text and previewing the
result. It does not matter much until one has to
deal with the document’s final appearance, making
numerous source file corrections to achieve better-
looking output. In other programming languages
the problem of acceleration is often resolved by
means of a ‘conditional compilation’, where a com-
piler tries to locate changes in the source text and
perform only that part of the job relevant to the
changes.

The same method evidently could work with
TEX: if, say, a user corrects page 10, then there is
no need to recompile the first 9 pages, as they will
remain the same.! If one could load the complete
TEX memory stage on the beginning of page 10
then the page of interest could be obtained much
faster. Indeed TEX already does something in this
vein, loading a precompiled format on the job start.
One need only generalize this technique for the
intermediate stages of a TEX run. And here is
where the technical difficulties begin, involving an
account of almost all global variables, arrays, open
file pointers, etc. Besides, one cannot afford to
store all these values, literally, if we're talking about
ordinary hard disks.

So, let us see how it is done in the WYSIWYG
TEX prototype program with the tentative name
‘TgXlite’. The memory dump is made after every
page completion when the page is thrown out and
the memory is relatively empty. In addition, an
extra dump refers to the beginning of the first
page (after loading all styles or \input files, at the
moment of first switching into horizontal mode). So,

1 Sometimes they will not, for example, if a table of
contents goes at the beginning and the document requires
two runs. This case is discussed below.

TUGDboat, Volume 20 (1999), No. 4

we have memory stage j + 1 after each j-th page,
plus the initial stage 1 to be dumped. Indeed, every
j-th dump (j > 1) records only the differences to
a basic memory stage k, where k = (j/8) * 8 + 1.
The basic memory stages (whose numbers form
the sequence 1,9,17,25,...) in turn are stored as
the differences with respect to memory stage 0,
which occurs just after loading the precompiled
format. Here a precompiled format is handled as
a special case of a memory dump—the only one
made, regardless any other basic memory stage.
The two-level hierarchy of basic memory stages
makes it possible to keep the total number of dumps
space almost linear, with respect to document size.
In fact, close memory stages generally differ less then
distant ones as differences tend to be collected. By
confining the distance between compared memory
stages (to 8 in our case) one can set up a certain
differences limit. Two levels of comparison definitely
slow down memory dumping and reading although
there is the positive effect resulting from smaller
space requirements and fewer disk addressings.
Rough measurements were done on a 535-page
book, TEX: The Program (Knuth 1986). TgXlite
was tested in both canonical TEX and WYSIWYG
modes, where the first case required 24 seconds and
the other 41 seconds. All 536 dumps took 29,280,000
bytes of virtual memory. These values, of course,
indicate plenty of scope for TEXlite optimization.
As the memory stages are dumped, it is known
which line [; in a source file was being read by
TEX on the completion of j-th page. If a user has
edited line I, [; < | < lj41, then TEX does not
need to recompile the first j pages; it can already
start from j + 1. There is one exception however:
TEX might produce or change some \output files
and wish to read their contents again at the next
run (as happens, for example, with the BTEX com-
mand \tableofcontents). Let the user enter or
correct some TEX clause and press a certain key
to watch the result. TgXlite notices the least line
number [; subjected to changes and retrieves the
corresponding page number j+ 1. Then it loads the
memory stage j + 1 and starts TEX which behaves
as if it has just processed page j and is going to
continue the compilation. If TEX is not interrupted
by another user demand then it will run until the
end of a document and check whether any \output
files have been updated since the previous run. If
they have, then TEX is run again, this time from
the zero stage.
So, in response of the user ‘recompile’ com-
mand, TEX is run once or twice. FEach time it
produces, among others, a page which can be pre-

357

viewed by the user. Before displaying the page
TEXlite compares its past and present virtual views
and composes a map of changes. This map (which
may be, and usually is, void) helps to both reduce
redraw time and avoid flickers. In practice it means
that a user may enter or edit some consistent TEX
clause and get a very fast (in a split-second) and
precise response regardless of what page number he
is working with. Though there still remains a chance
for a page view to be altered later, the possibility is
small and the change is gentle.

2 WYSIWYG TEX

Although the conditional compilation already pro-
vides significant advantages, it still leaves two ma-
jor problems rooted in a human psychology un-
touched. First, it is wrong to share one’s attention
between two views (source text and typeset docu-
ment). Moreover, most people (all but us TEX users)
do not like programming languages and avoid learn-
ing them despite all the accrued benefits. Thus there
is a certain need to provide a way to work directly
and solely with the typeset view of a document,
leaving intervention in the source file for extreme
cases.

The simplest (and probably only) decision lies
in keeping the back link (the authors of the Mac im-
plementation Teztures call it ‘synchronicity’?) from
the typeset document to the source text. The prob-
lem, of course, is rather technical and is resolved in
TgEXlite by keeping track of source file characters to
their corresponding memory nodes in a special array.
All operations with memory nodes (including node
lists copying, rebuilding, etc.) address this array as
well. Finally, the information on character locations
in the source text (line and column numbers) is
stored in the typeset pages output (an analog of the
DVI file). Using this information one can synchro-
nize positions in a document view and its source
text. Users may work with the document view and
mark a current position in it with a flashing caret.
Upon performing some editing operation one could
apply a corresponding action to the source text
and initiate the conditional compilation as described
above. On fast machines (starting from a Pentium-
200) this process (compilation of one page) is often
fast enough to achieve no perceptible delay between
pressing a key and obtaining a visible result. How-
ever, one should not relay upon fast machines only.
Besides, there may be various slowing down factors,
such as complex page formatting, slow macros in-
volving vast calculations, etc.

2 See http://www.bluesky.com/sync.html for details.

358

1
].:.n-nh.w.a. Ll

y rasult o

- TT NI T

-r--t-'! " 118
ﬁu.-'ar-p .-'l-t -i 'H.l:h\.lrl
"'.: st iﬂ

g'\v: I.ﬂ'lln." |-\:r|-“'\-mun'l.ﬂil
W:E Janstegyed BE

.ﬂlrlE: faer-r g]
"":lt F-“'\-:w”

Ml e teiiie

" I.ﬁ:l Ddaml ite. men b

lll!"-l | |l

TUGDboat, Volume 20 (1999), No. 4

Sp'donlexliia. lal
ti |... e
olues and
L el II.
!'!III IIll'll

the |NTTEENEENR rout
saull

Figure 1: A screen shot of a TEXlite run. A selection in the typeset document window is shown to be

mapped into the source text.

Although any procedure providing a fast and
fairly accurate result will help here, it is better to use
native TEX algorithms for this purpose. Difficulties
in this choice follow from the fact that canonical TEX
does not keep parameters it has used to build boxes
and paragraphs. That is, one could not correctly
rebuild a box or a paragraph from its contents alone.
TgXlite resolves this problem by storing necessary
data in special ‘whatsit’ nodes. It does not take too
much extra space, as many parameters (penalties,
glues, parshape, etc.) remain the same throughout
a document and can thus be omitted. In addition,
TgEXlite is more verbatim in its output of typeset
pages as it preserves all the nested lists structure
(however, the common DVI file is also optionally
output).

Let us see what happens when a user edits a
typeset document. First of all, TEXlite decides (with
the aid of ‘whatsit’ nodes) which paragraph, if any,
the current position belongs to. If no paragraph is
recognized (that is, it may happen within \halign)
then only the enclosing box is rebuilt and the
conditional compilation starting from the current
page is initiated. Otherwise, TEXlite locates the
current paragraph and unwraps it back into the hlist
by inserting lost glues and repairing hyphenation
aftermaths. The unwrapped list is subjected to the
changes followed from the user input (one may insert

a character-and-glue node list or delete several nodes
from the current position) and the linebreak routine
is called to rebuild the paragraph and display the
result on the typeset document view. After this
‘emergency repair’ the program enters the source
text, performs parallel changes there and starts the
conditional compilation which runs from the current
page to the end of the document or until the user
presses a key once more. Here the scenario described
in the above section is repeated in detail. If TEX
manages to build the current page before a next key
hit (usually it does) and the new page happens to
be different (usually it does not) from the repaired
one then the view is accurately updated.

3 Implementation

At present TgXlite is implemented under Win32
although without any specific Win32 virtues, which
hamper porting to other platforms, are used. The
program spawns four threads, where the most im-
portant one is TEX, slightly modified in five aspects:

1. It can be interrupted from outside and fall
asleep until an external wake-up command.

2. It dumps its own memory stage after every page
completion.

3. For every paragraph it stores all the data re-
quired to unwrap the paragraph and break it
into lines again.

TUGDboat, Volume 20 (1999), No. 4

4. Tt outputs typeset pages in a form of nested lists
along with a common DVI file.

5. It traces the ancestry of nodes in the memory
and in typeset pages from the source text.

Another thread answers for the user interface
(which is more than just bare-bones now) and owns
the source text and typeset document windows (see
Figure 1). Two other threads, running on a higher
priority, do asynchronous mapping and scaling of
typeset pages to the previewer, which allows no
bottlenecks in the path from a user action to a visible
result.

Thus in TEXlite one can edit a typeset doc-
ument in true WYSIWYG mode without address-
ing the source text, at least while dealing with a
narrative text. Still, there are many apparent im-
provements worth adding: language constructions
handled by menu commands or by application of
‘wizards’, linkage of TEX messages to the source text
to allow faster and more intuitive error corrections,
and so on. Further application of the WYSIWYG
mode for TEX also promises some more substantial
benefits whose exploration, however, requires more
extensive efforts.

4 Availability

An alpha release of TEXlite is available by emailing
the author under the condition to report all bugs
and problems to him. A self-contained distribution
of TEXlite takes about 600K bytes.

References

[1] Knuth, D.E. Computers & Typesetting, Vol. B,
TEX: The Program. Reading, Mass.: Addison-
Wesley, 1986.

o Igor I. Strokov

Novosibirsk Institute of Organic
Chemistry

Siberian Branch of Russian
Academy of Science

Lavrentiev avenue 9

Novosibirsk 90, Russia

strokov@nioch.nsc.ru

359

