
xmltex: A non validating (and not 100% conforming) namespace aware
XML parser implemented in TEX

David Carlisle
NAG Ltd
Jordan Hill Road
Oxford
davidc@nag.co.uk

Abstract

xmltex implements a non validating parser for documents matching the W3C

XML Namespaces Recommendation.

Introduction

xmltex may be used simply to parse a file (expand-
ing entity references and normalising namespace dec-
larations) in which case it records a trace of the parse
on the terminal. However, in normal use, the infor-
mation from the parse is used to trigger TEX type-
setting code. Declarations (in TEX syntax) are pro-
vided as part of xmltex to associate TEX code with
the start and end of each XML element, attributes,
processing instructions, and with unicode character
data.

Installation

The xmltex parser itself does not require LATEX. It
may be loaded into initex to produce a format ca-
pable of parsing XML files. However such a format
would have no convenient commands for typeset-
ting, and so normally xmltex will be used on top
of an existing format, normally LATEX. In this sec-
tion we assume that the document to be processed
is called document.xml.

Using XMLTEX as an input to the LATEX com-
mand LATEX requires a document in TEX syntax,
not XML. To process document.xml, first produce
a two line file called document.tex of the following
form:
\def\xmlfile{document.xml}
\input xmltex.tex

No other commands should appear in this file!
The document may then be processed with the

command: latex document, or some equivalent pro-
cedure in the user’s TEX environment.

Using XMLTEX as a TEX format built on LATEX
Some users may prefer to set up xmltex as a format
in its own right. This may speed things up slightly
(as xmltex.tex need not be read each time) but
more importantly perhaps it allows the XML file to

be processed directly without needing to make the
.tex wrapper.

To make a format, some command such as the
following is used, depending on the user’s TEX sys-
tem.

initex &latex xmltex
initex \&latex xmltex
tex -ini &latex xmltex
tex -ini \&latex xmltex

This will produce a format file xmltex.fmt. It
is then possible to make an xmltex command by
copying the way the latex command is defined in
terms of latex.fmt. Depending on the TEX system,
this might be a symbolic link, or a shell script, or
batch file, or a configuration option in a setup menu.

Making an XMLTEX format ‘from scratch’ It
may be convenient, for some, to build an xmltex
format as above, starting from the LATEX format.
However, other users may prefer to work with an
initex with no existing format file. Even for those
who wish to use standard LATEX it may be preferable
to make a TEX input file that first inputs latex.ltx
then xmltex.tex. In particular this permits dif-
ferent hyphenation and language customisation for
xmltex than for LATEX. Many of the features of
the language support in LATEX are related to modi-
fying the input syntax to be more convenient. Such
changes are not needed in xmltex as the input syn-
tax is always XML. Some language files may change
the meaning of such characters as < which would
break the xmltex parser. Also, rather than us-
ing latex.ltx one can in principle use a modified
docstrip install file and produce a ‘cut down’ LATEX
that omits features that are not going to be used in
xmltex.

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 193



David Carlisle

Unfortunately the support for this method of
building xmltex (and access to non-English hyphen-
ation generally) is not fully designed and totally un-
documented.

Using XMLTEX

xmltex by default ‘knows’ nothing about any par-
ticular type of XML file, and so needs to load exter-
nal files containing specific information. This sec-
tion describes how the information in the XML file
determines which files will be loaded.

1. If the file begins with a Byte Order Mark, the
default encoding is set to UTF-16. Otherwise
the default encoding is UTF-8.

2. If (after an optional BOM) the document be-
gins with an XML declaration that specifies an
encoding, this encoding will be used, otherwise
the default encoding will be used. A file with
name of the form encoding.xmt will be loaded
that maps the requested encoding to Unicode
positions. (It is an error if this file does not
exist for the requested encoding.)

3. If the document has a DOCTYPE declaration
that includes a local subset then this will be
parsed. If any external DTD entity is referenced
(by declaring and then referencing a parameter
entity) then the SYSTEM and PUBLIC identi-
fiers of this entity will be looked up in a cata-
logue (to be described below). If either identi-
fier is known in the catalogue the corresponding
xmltex package (often with .xmt extension)
will be loaded.

4. After any local subset has been processed, if
the DOCTYPE specifies an external entity, the
PUBLIC and/or SYSTEM identifiers of the ex-
ternal DTD file will be similarly looked up, and
a corresponding xmltex file loaded if known.

5. As each element is processed, it may be ‘known’
to xmltex by virtue of one of the packages
loaded, or it may be unknown. If it is unknown
then if it is in a declared namespace, the name-
space URI (not the prefix) is looked up in the
xmltex catalogue. If the catalogue specifies an
xmltex package for this namespace it will be
loaded. If the element is not in a namespace,
then the element name will be looked up in the
catalogue.

6. If after all these steps the element is still un-
known then depending on the configuration set-
ting either a warning or an error will be dis-
played. (Currently only warning implemented.)

The XMLTEX Catalogue As has already been ex-
plained, xmltex requires a mapping between PUB-

LIC and SYSTEM identifiers, namespace URI, and
element names, to files of TEX code. This mapping
is implemented by the following commands:
\NAMESPACE{URI}{xmt-file}
\PUBLIC{FPI}{file}
\SYSTEM{URI}{file}
\NAME{element-name}{xmt-file}
\XMLNS{element-name}{URI}

As described above, if the first argument of one
of these commands matches the string specified in
the XML source file, the corresponding TEX com-
mands in the file specified in the second argument
are loaded. The PUBLIC and SYSTEM catalogue
entries may also be used to control which XML files
should be input in response to external entity refer-
ences. The \XMLNS command is rather different; if
an element in the null namespace does not have any
definition attatched to it, this declaration forces the
default namespace to the given URI. The catalogue
lookup is then repeated. This allows for example
documents beginning <html> to be coerced into the
XHTML namespace.

These commands may be placed in a configu-
ration file, either xmltex.cfg, in which case they
apply to all documents, or in a configuration file
‘\jobname.cfg’ (e.g., document.cfg in the exam-
ple in section ‘Using xmltex’, above) in which case
the commands just apply to the specified document.

Configuring XMLTEX In addition to the ‘cata-
logue’ commands described earlier there are other
commands that may be placed in the configuration
files.

• \xmltraceonly
This stops xmltex from trying to typeset the
document. The external files specified in the
catalogue are still loaded, so that the trace may
report any elements for which no code is de-
fined, but no actual typesetting takes place. In
the event of unknown errors it is always worth
using xmltex in this mode to isolate any prob-
lems.

It may be noted that if an xmltex format is
built just using initex without any typesetting
commands, the resulting format should still be
able to parse any XML file if xmltex.cfg just
specifies \xmltraceonly and \jobname.cfg is
empty.

• \xmltraceoff
By default xmltex provides a trace of its XML

parse, displaying each element begin and end.

194 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting



xmltex: A non validating namespace aware XML parser implemented in TEX

This command in xmltex.cfg or \jobname.cfg
will stop the trace being produced.

• \inputonce{xmt-file}
The catalogue entries specify that certain files
should be loaded if XML constructs are met. Al-
ternatively the files may just always be loaded.
The system will ignore any later requests to
load. This is especially useful if an xmltex
format is being made.

• \UnicodeCharacter{hex-or-dec}{tex-code}
The first argument specifies a unicode charac-
ter number, in the same format as used for
XML character entities, namely either a decimal
number, or an upper case Hex number preceded
by a lower case ‘x’.

The second argument specifies arbitrary TEX
code to be used when typesetting this character.
Any code in the XML range may be specified
(i.e., up to x10FFFF). Although codes in the
‘ASCII’ range, below 128, may be specified, the
definitions supplied for such characters will not
by default be used. The definition will however
be stored and used if the character is activated
using the command described below.

• \ActivateASCII{hex-or-dec}
The argument to this command should be a
number less than 128. If a character is acti-
vated by this command in a configuration file
then any special typesetting instructions speci-
fied for the character will be executed whenever
the character appears as character data.

Some ASCII characters are activated by de-
fault. The list is essentially those characters
with special meanings to either TEX or XML.

If a format is being made, there are essentially
two copies of xmltex.cfg that may play a role. The
configuration file input when the format is made will
control catalogue entries and packages built into the
format. A possibly different xmltex.cfg may be
used in the input path of ‘normal’ TEX, this will
then be used for additional information loaded each
run.

In either case, a separate configuration file spe-
cific to the given XML document may also be used
(which is loaded immediately after xmltex.cfg).

Stopping xmltex

xmltex should stop after the end of the document
element has been processed. If something goes wrong
one may be offered TEX’s * prompt from which one
might choose to exit with <?xmltex stop?>.

XMLTEX package files

xmltex package files are the link between the XML

markup and TEX typesetting code. They are written
in TEX (rather than XML) syntax and may load di-
rectly or indirectly other files, including LATEX class
and package files. For example a file loaded for
a particular document type may directly execute
\LoadClass{article}, or alternatively it may cause
some XML element in the document to execute
\documentclass{article}. In either case the doc-
ument will suffer the dubious benefit of being for-
matted according to the style implemented in the
standard article class. Beware though that the pack-
age files may be loaded at strange times, the first
time a given namespace is declared in a document,
and so the code should be written to work if loaded
inside a local group.

Characters in xmltex package files have their
normal LATEX meanings except that line endings are
ignored so that there is no need to add a % to the
end of lines in macro code. Unlike LATEX .fd file
conventions, other white space is not ignored.

The available commands are:

• \FileEncoding{encoding}
This is the analogue for TEX syntax files of the
encoding specification in the XML or text dec-
laration of XML files. If it is not specified the
file will be assumed to be in UTF-8.

• \DeclareNamespace{prefix}{URI}
This declares a prefix to be used in this file
for referring to elements in the specified name-
space. If the prefix is empty then this declares
the default namespace (otherwise, unprefixed
element names refer to elements that are not in
a namespace).

Note that the elements in the XML document
instance may use a different prefix, or no prefix
at all to access this namespace. In order to re-
solve these different prefixes for the same name-
space, each time a namespace is encountered for
the first time (either by \DeclareNamespace in
a preloaded package, or in a namespace decla-
ration in the XML instance) then it is allocated
a new number and any further namespace dec-
laration for the same URI just locally associates
a prefix with this number. It is these numbers
that are displayed when the XML trace of the
parse of the document is shown, and also if any
element is written out to an external file it will
have a normalised numerical prefix whichever
prefix it originally had. (Numeric prefixes are
not legal XML, but this is an advantage, as it

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 195



David Carlisle

ensures these internal forms can not clash with
any prefix actually used in the document.)

Three namespaces are predeclared. The null
namespace (0), the XML namespace http://
www.w3.org/1998/xml (1) which is predeclared
with prefix xml as specified in the Namespace
Recommendation, and the xmltex name-
space http://www.dcarlisle.demon.co.uk/
xmltex (2) which is not given a default prefix,
but may be used to have XML syntax for some
internal commands (eg to have .aux files fully
in XML, currently they are a hybrid mixture of
some TEX and some XML syntax).

• \XMLelement{element-qname}{attribute-spec}
{begin-code}{end-code}
This is similar to a LATEX \newenvironment
command. It declares the code to execute at
the start and end of each instance of this ele-
ment type. This code will be executed in a local
group (like a LATEX environment). The second
argument declares a list of attributes and their
default values using the \XMLattribute com-
mand whose description follows.

• \XMLelement{element-qname}{attribute-spec}
{\xmlgrab}{end-code}
A special case of the above command (which
may be better made into a separate declara-
tion) is to make the start-code just be the com-
mand \xmlgrab. In this case the end-code has
access to the element content (in XML syntax)
as #1. This content isn’t literally the same as
the original document, namespaces, white space
and attribute quote symbols will all have been
normalised.

• \XMLattribute{attribute-qname}{command-
name}{default}
This command may only be used in the ar-
gument to \XMLelement. The first argument
specifies the name of an attribute (using any
namespace prefixes current for this package file,
which need not be the same as the prefixes used
in the document). The second argument gives
a TEX command name that will be used to ac-
cess the value of this attribute in the begin and
end code for the element. (Note using TEX syn-
tax here provides a name independednt of the
namespace declarations that are in scope when
this code is executed). The third argument pro-
vides a default value that wil be used if the
attribute is not used on an instance of this ele-
ment.

The special token \inherit will cause the
command to have a value set in an ancestor el-
ement if this element does not specify any value.

If a TEX token such as \relax is used as the
default the element code may distinguish the
case that the attribute is not used in the docu-
ment.

• \XMLnamespaceattribute{prefix}{attribute-
qname}{command-name}{default}
This command is similar to \XMLattribute but
is used at the top level of the package file, not in
the argument to \XMLelement. It is equivalent
to specifying the attribute in every element in
the namespace specified by the first argument.
As usual the prefix (which may be to denote
the default namespace) refers to the namespace
declarations in the xmltex package: the pre-
fixes used in the document may be different.

• \XMLentity{name}{code}
Declare an (internal parsed) entity, this is equiv-
alent to a <!ENTITY]]> declaration, except that
the replacement text is specified in TEX syntax.

• \XMLname{name}{command-name}
Declare the TEX command to hold the (nor-
malised, internal form) of the XML name given
in the first argument. This allows the code
specified in \XMLelement to refer to XML el-
ement names without knowing the encodings
or namespace prefixes used in the document.
Of particular use might be to compare such a
name with \ifx\XML@parent which will allow
element code to take different actions depend-
ing on the parent of the current element.

• \XMLstring{command-name}<>XML Data</>
This saves the XML fragment as the TEX com-
mand given in the first argument. It may be
particularly useful for redefining ‘fixed strings’
that are generated by LATEX document classes
to use any special typesetting rules specified for
individual characters.

XML processing

xmltex tries as far as possible to be a fully conform-
ing non validating parser. It fails in the following
respects.
• Error reporting is virtually non existent. Names

are not checked against the list of allowed char-
acters, and various other constraints are not en-
forced.

• A non validating parser is not forced to read
external DTD entities (and this one does not).
It is obliged to read the local subset and pro-
cess entity definitions and attribute declara-
tions. Entity declarations are reasonably well
handled: External parameter entities are han-
dled as above, loading a corresponding xmltex

196 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting



xmltex: A non validating namespace aware XML parser implemented in TEX

file if known. External entities are similarly pro-
cessed, inputting the XML file, a difference in
this case is that if the entity is not found in
the catalogue, the SYSTEM identifier will be
used directly to \input as often this is a local
file reference. Internal parsed entities and pa-
rameter entities are essentially treated as TEX
macros, and nonparsed entities are saved along
with their NDATA type, for use presumably by
\includegraphics.

Any default attributes specified in the local
subset are saved and added to the correspond-
ing element befor any processing is triggered.
Note that this defaulting, unlike the defaults
specified with \XMLattribute are ‘namespace
unaware’ and only apply to elements using the
same expanded name. The element from th
esame namespace but represented with a differ-
ent prefix will not have these defaults applied.

• Support for encodings depends on having an en-
coding mapping file. Any 8-bit encoding that
matches Unicode for the first 127 positions may
be used by making a trivial mapping file. (The
one for latin1 looks over complicated as it pro-
grams a loop rather than having 127 declara-
tions saying that latin1 and Unicode are iden-
tical in this range).

UTF-8 is supported, but support for UTF-
16 is minimal. Currently only latin-1 values
work: (In this range UTF-16 is just latin-1 with
a null byte inserted after (or before, depend-
ing on endedness) each latin-1 byte. The UTF-
16 implementation just ignores this null byte
then processes as for latin-1. Probably the first
few 8-bit pages could be similarly supported by
making the low ASCII control characters acti-
vate UTF-16 processing but this will never be
satisfactory using a standard TEX. Hopefully a
setup for a 16bit TEX such as Omega will cor-
rect this.

Accessing TEX

In theory one should be able to control the document
simply by suitable code specified by \XMLelement
and friends, but sometimes it may be necessary to
‘tweak’ the output by placing commands directly in
the source.

Two mechanisms are availalable to do this.

• Using the xmltex namespace. The xmltex
namespace conatins a small (currently empty)
set of useful TEX constructs that are accessed
by XML syntax. For example if xmltex pro-
vides a mechanism for having XML (rather than

LATEX) syntax toc files, it will need an ana-
logue of \contentsline which might be an el-
ement accessed by <xmltex:contentsline>. . .
where the xmltex prefix is declared on this or
a parent element to be xmlns:xmltex="http:
//www.dcarlisle.demon.co.uk/xmltex".

As the xmltex namespace is declared but
currently empty, a more useful variant of this
might be:

• Declare a personal namespace for TEX tweaks,
and load a suitable package file that attatches
TEX code to the elements in this namespace (or
at least specify the correspondence between the
namespace and the package using \NAMESPACE).
For instance, <clearpage xmlns="/my/tex/
tweak"/> will force a page break if, at suitable
points, the document contains:

\NAMESPACE{/my/tex/tweak}{tweak.xmt}

and

\DeclareNamespace{twk}{/my/tex/tweak}
\XMLelement{twk:clearpage}{\clearpage}

• A second different mechanism is available, to
use XML processing instructions. A Process-
ing Instruction of the form: ?xmltex TEX com-
mands ?> will execute the TEX commands.

Bugs

None, of course.

Don’t Read Past This Point

Thus section discusses some of the more experimen-
tal features of xmltex that may get a cleaner syntax
(or be removed, as a bad idea) in later releases, and
also describes some of the internal interfaces (which
are also subject to change)

Input Encodings and States At any point while
processing a document, xmltex is in one of two
states: tex or xml.

States In the xml state, < and & are the only
two characters that trigger special markup codes.
Other characters, such as !, >, =, . . . ; may be used in
certain XML constructs as markup but unless some
code has been triggered by < they are treated sim-
ply as character data. All characters above 127 are
‘active’ to TEX and are used to translate the input
encoding to UTF-8. All internal character handling
is based on UTF-8, as described below. Some char-
acters in the ASCII range, below 127 are also ac-
tive by default (mainly punctuation characters used
in XML constructs, such as the ones listed above).
Some or all of the others may be activated using
the \ActivateASCII command, which allows special

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 197



David Carlisle

typesetting rules to be activated for the characters,
at some cost in processing speed.

In the tex state, characters in the ASCII range
have their usual TEX meanings, so letters are ‘cat-
code 11’ and may be used in TEX control sequences,
\ is the escape character, & the table cell separa-
tor, etc. Characters above 127 have the meanings
current for the current encoding just as for the xml
state, probably this means that they are unusable
in TEX code, except for the special case of refer-
ring to XML element names in the first argument to
\XMLelement and releated commands.

Encodings Whenever a new (XML or TEX)
file is input by the xmltex system the encoding is
first switched to UTF-8. At the end of the input the
encoding is returned to whatever was the current en-
coding. The encoding current while the file is read is
determined by the encoding pseudo-attribute on the
XML or text declaration in the case of XML files, or
by the \FileEncoding command for TEX files. Note
that the encoding mechanism only is triggered by
xmltex file includes. Once an xmltex package file
is loaded it may include other TEX files by \input
or \includepackage these input command swill be
transparent to the xmltex encoding system. The
vast majority of TEX macro packages only use ASCII

characters so this should not be a problem.
Note that if the \includepackage occurs di-

rectly in the xmltex package file, the TEX code
will be included with a known encoding, the one
specified in the xmltex package, or UTF-8. If how-
ever the \includepackage is included in code spec-
ified by \XMLelement, then it will be executed with
whatever encoding is current in the document at the
point that element is reached. Before xmltex ex-
ecutes the code for that element it will switch to
the tex state, thus normalising the ASCII characters
but characters above 127 will not have predefined
definitions in this case.

Internally eveything is stored as UTF-8. So
.aux and .toc files will be in UTF-8 even if the
document (or parts of the document) used different
encodings.

To specify a new encoding, if it is an 8 bit en-
coding that matches ASCII in the printable ASCII

range, then one just needs to produce a file with
name encoding.xmt (in lowercase, on case sensi-
tive systems) this should consist of a series of
\InputCharacter commands, giving the input char-
acter slot and the equivalent Unicode. If an encod-
ing is specified in this manner character data will
be converted to UTF-8 by expansion and so liga-
tures and inter letter kerns will be preserved. (Con-
versely if characters are accessed by character refer-

ences, &#1234; then TEX arithmetic is used to de-
code the information and ligature information will
be lost. For some large character sets, especially
for Asian languages, these mechanisms will proba-
bly not prove to be sufficient. Alternative mecha-
nisms are being investigated, but in the short term
it may be necessary to always use UTF-8 if the input
encoding is not strictly a ine byte extension of the
ASCII code page.

XMLTEX Package Commands And TEX com-
mand may be used in an xmltex package, although
the user should be aware that the file may be input
into a local group, at the point in a document that
a particular namespace is first used, for example.
There are however some specific commands designed
to be used in the begin or end code of \XMLElement.

• \ignorespaces
This is similar to the TEX primitive of the same
name, but redefined to work more naturally in
this context.

• \obeyspaces
Obey consecutive space characters, rather than
treating consecutive runs as a single space. (A
command of this name, but not this definition
is in plain TEX.)

• \obeylines
Obey end of line characters, rather than treat-
ing then as a space, force a line break. (A com-
mand of this name, but not this definition exists
in plain TEX.)

• \xmltexfirstchild#1\@
If the start-code for an element is specified as
\xmlgrab then the end-code may use #1 in or-
der to execute the element content. However,
the entire content is not always needed, and the
construction \xmltexfirstchild\#1\@ (with
currently unpleasant syntax) will just evaluate
the first child element of the content, discarding
the remaining elements.

• \xmltextwochildren\csa\csb#1
If it is known that the content will be exactly
two child elements (e.g., a MathML frac or sub
element) then this command may be used. The
command executes the TEX code \csa{child-
1}\csb{child-2} So either two TEX commands
may be supplied, one will be applied to each
child, or the second argument may be {} in
which case the first argument may be a TEX
command that takes two arguments. For ex-
ample the code for MathML frac might be

\XMLelement{m:mfrac}
{}

198 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting



xmltex: A non validating namespace aware XML parser implemented in TEX

{\xmlgrab}
{\xmltextwochildren\frac{}#1}

• \xmltexthreechildren\csa\csb\csc#1
As above, but more so.

• \xmltexforall\csa{#1}
The TEX command \csa is executed repeatedly,
taking as argument each time one child from
the content ‘#1’ of the current element. The
command name \xml@name is set to the (nor-
malised, internal) name of each child element
before \csa is executed.

• \NDATAEntity\csa\csb\attvalue
If the XML parser encounters an internal or ex-
ternal entity reference it expands it without ex-
ecuting any special hook that may be defined
in an xmltex package. However NDATA en-
tites are never directly encountered in an entity
reference. They may only be used as an at-
tribute value. If \attvalue is a TEX command
holding the value of an attribute, as declared in
\XMLattribute then \NDATAEntity\csa\csb

\attvalue applies the two TEX commands \csa
and \csb to the notation type and the value, in
a way analogous to \xmltextwochildren, so
for example the XML version of manual docu-
ment, from which this paper is derived, speci-
fies:

<!NOTATION URL SYSTEM "" >
<!ENTITY lppl SYSTEM
"http://www.latex-project.org/lppl.txt"
NDATA URL>

and this is handled by the following xmltex
code

\XMLelement{xptr}
{\XMLattribute{doc}{\xptrdoc}{}}
{\NDATAEntity\xptrdoc\@gobble\url}
{}

which saves the attribute value in \xptrdoc and
then discards the notation name (URL) and ap-
plies the command \url to typeset the supplied
URL.

David Carlisle

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 199


