
Fast scanners and self-parsing in TEX

Pedro Palao Gostanza
Universidad Complutense de Madrid
Edificio de CC. Matemáticas,
Ciudad Universitaria s/n,
Madrid 28040,
Spain
ecceso@sip.ucm.es

Abstract

In this paper we will explain how to build fast scanners for regular languages in
TEX. The resulting scanners can be composed with different parsers if they are
written as self parsers. This parsing technique allows us to choose the syntactic
rigour: from loose parsers with almost no syntax checks, good for pretty-printers,
to the strict parser needed to write a compiler.

Introduction

It is customary to embed little languages in TEX;
LATEX picture environment, XY-pic [9] and TESLA [2]
are illustrative examples. TEX can process these
languages in a reasonable fast manner because their
syntaxes are chosen with TEX’s abilities in mind;
for instance, arguments are surrounded with braces
or delimited with fixed characters. Also, programs
written with these little languages are usually short.

Sometimes, TEX has to process programs writ-
ten in bigger languages, or in languages designed
without paying attention to TEX. Pretty-printing
structured programming languages is the ubiquitous
example [6, 11], but we also meet the same problems
when trying to typeset HTML directly or when do-
ing some Cronopio [3] activities like executing pro-
grams written in high level languages [5] within TEX.
Programs to cope with these problems are written
around a slow character by character processing en-
gine. The \FIND macro ([4, 10]), possible in a modi-
fied or subtle variant, is the kernel of this processing
engine. This is the method adopted in Doumont’s
pretty-printer [6] and Woliński’s scanners [11]. Slow
processing is particularly striking here because pro-
grams in these languages can be really long.

We became interested in this problem several
years ago, while doing just another Pascal pretty-
printer [7]. Since we found no trick to build a
fast scanner, we simply put the burden on the
user who was forced to write a backslash before
every identifier. In this way, every identifier was a
control word and we could take advantage of TEX’s
scanner. Obviously, this was a poor design decision.
Fortunately, one year ago we found a trick to write

fast scanners in TEX; to our knowledge, it seems to
be an unused TEXnique.

The idea to make a fast scanner in TEX is
not to check every character. But, since a scanner
must see every character, the implementation must
use burst like processing : the scanner checks some
characters, but TEX internal machinery eats the
rest. In this way, the final complexity will be a small
constant (due to TEX internals) multiplying a linear
factor, plus a big constant (due to scanner checks)
multiplying a sub-linear factor. We will call every
scanner that works without checking every character
in its input a fast scanner.

Our trick to make a fast scanner is based on
active characters and \edef. We will illustrate
it with Pascal in the next section. The scanner
engine is spread along all the active characters;
each character knows how to keep the scanner alive.
This organization, where every token knows what
to do, and there is no centralized set of processing
macros, is what we call self-parsing. Self-parsing
can be used to build scanners and parsers. Its
two main advantages are: firstly, it allows to split
scanners and parsers like in a traditional compiler,
and secondly, the syntactic rigour can be chosen.
The first advantage allows us to write a definitive
Pascal scanner that can be used to feed a pretty-
printer parser, a compiler parser, etc. The second
allows us to write a strict parser for a compiler and
a loose parser for a pretty-printer with this same
technique. Of course, each parser will have to be
developed from scratch.

To illustrate all these ideas we will use, as a
running example, a small Pascal subset that we

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 235

Pedro Palao Gostanza

Program ::= program Id ; Block .

Block ::= Decls begin Stats end
Decls ::= 〈empty〉 | Vars Decls
Vars ::= var SeqVar SeqsVar
SeqsVar ::= 〈empty〉 | SeqVar SeqsVar
SeqVar ::= Ids : Id ;

Ids ::= Id IdsExt
IdsExt ::= 〈empty〉 | , Ids
Stats ::= Stat StatsExt
StatsExt ::= 〈empty〉 | ; Stat StatsExt
Stat ::= Id := Expr
| Id OptArgs | if Expr then Stat Else
| while Expr do Stat | begin Stats end

Else ::= 〈empty〉 | else Stat
OptArgs ::= 〈empty〉 | (Args)
Args ::= Expr ArgsExt
ArgsExt ::= 〈empty〉 | , Args
Expr ::= Rel
Rel ::= Term RelExt
RelExt ::= 〈empty〉 | = Term | <> Term
| < Term | <= Term | > Term | >= Term

Term ::= Factor TermExt
TermExt ::= 〈empty〉
| + Factor TermExt | - Factor TermExt

Factor ::= Atom FactorExt
FactorExt ::= 〈empty〉 | * Atom FactorExt
| div Atom FactorExt | mod Atom FactorExt

Atom ::= Int | Id | (Expr) | - Atom

Id ::= Letter LettersOrDigits
LetterOrDigits ::= 〈empty〉 | Letter LetterOrDigits
| Digit LettersOrDigits

Int ::= Digit Digits
Digits ::= 〈empty〉 | Digit Digits
Digit ::= 0 | · · · | 9

Letters ::= a | · · · | z | A | · · · | Z

Figure 1: Mini-Pascal syntax

will call ‘mini-Pascal.’ Its syntax can be found in
Figure 1.

The rest of this paper is organized as follows.
In the next section, we explain how to write a fast
scanner for mini-Pascal. Although its main idea can
be reused, each language has its own tricks that
speed the scanner even more; part of this section
is devoted to explore useful tricks for Pascal and
other structured programming languages. Next we
will devote two sections to building a pretty-printer

and a compiler for mini-Pascal. Both parsers work
on top of the same scanner. Since pretty-printing is
a widely studied area, the goal of our pretty-printer
is not how to pretty-print a programming language
but how to build a loose self-parser. Obviously,
the goal of the compiler is how to built a strict
self-parser. The section ‘Other uses’ reviews other
projects where we have used fast scanners and self-
parsers. Finally, we conclude and suggest some
future work.

A Pascal scanner

By far, identifiers and keywords account for most
of the characters in a Pascal program. Letters are
used exclusively for this purpose.1 Digits can also
appear in identifiers, but do so rather seldom; they
almost exclusively appear in numbers. Every other
character, apart from white space, is seldom used.
White space has a strange occurrence pattern: every
line starts with a long white sequence (just after
an end of line), and then single spaces split other
tokens.

In order to get really good sub-linear behavior,
a scanner should operate checking no character in
any identifier (including keywords), and no space in
every start-of-line white sequence.

The scanner will change each Pascal token into
a TEX control word: the identifier Foo to \Id{Foo},
the number 123 to \Int{123}, the keyword begin
to \Begin, := to \Assign, etc.

Every character but roman letters will be ac-
tive; that is, ,, ., :, ;, (,), +, -, *, =, <, >, 0,
. . . , 9, and blanks are active characters. Forget for
a moment digits and symbols composed with more
than one active character, like <>. So, every identi-
fier is composed only with letters (non-active char-
acters) and is surrounded with active characters. To
catch these identifiers without an explicit character-
by-character analysis, it is enough to start a capture
at the end of each active character and to finish this
capture at the beginning of each active character.
The macro \catchId starts the capture:

\def\catchId{\edef\mayId{\iffalse}\fi}

This macro store every following characters in \mayId,
while expanding active characters. To finish this
capture an active: character uses

\def\endId{\iffalse{\else}\fi}

This capture does not always success; for example,
there can be two active characters one after the
other. Since every character that cannot take part in
an identifier is active, the capture will be successful
if and only if \mayId is not \empty.

1 Not exactly: e and E are used in floating point literal
numbers.

236 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

Fast scanners and self-parsing in TEX

\def\empty{}

\def\flush{\ifx\mayId\empty\else

\expandafter\Id\expandafter{\mayId}\fi}

These three macros are all a white space must do:
\def\blank{\endId\flush\catchId}

This is also needed at the beginning and the end of
the scanner

\def\beginScanner{\activeChars\defActive

\catchId}

\def\endScanner{\endId\flush}

Other active characters will produce, in addition, its
own Pascal token:

\def+{\endId\flush\Plus\catchId}

\def.{\endId\flush\Dot\catchId}

...

Of course, some identifiers are keywords, which
introduces two problems. First, it is necessary to
check every identifier in order to test whether it is a
keyword or a regular identifier. Several TEXniques
to implement sets may be used, for example:
• For each keyword k there is a control word
\kw@k trivially defined (but not \relax). Check-
ing whether an identifier is a keyword is simple
and fast:

\def\ifIsNotKW#1{\expandafter\ifx

\csname kw@#1\endcsname\relax}

But each new identifier introduces a new entry
in TEX control sequences table. Since TEX
never deletes entries from this table, we can
exhaust TEX limited hash memory.
• All keywords can be stored in a macro:

\def\kws{|begin|end|if|...|while|}

Checking an identifier is tricky and long

\def\ifIsNotKW#1{\def\aux

##1|#1|##2\relax{\ifx\relax##2\relax}%

\expandafter\aux\kws#1|\relax}

but it works in a constant amount of memory.
Since we want to build fast scanners, the first
technique is preferable.

The second problem arising with keywords con-
cerns capitalization. Pascal is case insensitive, so we
should be capable of recognizing an identifier or key-
word without regard to its capitalization. This can
be easily solved invoking a \lowercase over those
characters stored in \mayId. Since some parsers care
about capitalization, but others do not, it is better
to change the identifier Foo into \Id{foo}{Foo} in-
stead of only to \Id{Foo}.

Part of the speed has already been achieved.
The other acceleration source is to deal with spaces
at the beginning of lines. The trick is to recover
the original category codes of spaces at end of lines.

Then we look for the next TEX token so that TEX
eats all the intermediate spaces.

\def\eoln{\endId\flush\catcode‘\ =10 \eolnB}

\def\eolnB#1{\catcode‘\ =\active\catchId#1}

Category code 9 (ignored character) also works.
To consider numbers and composed symbols,

an state needs to be added to the scanner; we will
call it ‘scanner state’ because, latter in the paper,
some other states will come into play. The scanner
state due to numbers is a macro \mayInt where
its digits will be stored. Composed symbols need
two macros: \maySym and \symCode. \symCode is a
number that uniquely determines what characters
are in the current symbol; it is 0 if there is no
character, or a non-zero integer for each of the three
characters that can start composed symbols:

\chardef\noCode=0

\chardef\colonCode=1

\chardef\lessCode=2

\chardef\greaterCode=3

\maySym stores which token will be generated if there
is no character extending the current symbol. For
instance, a colon does not generate a \Colon token
directly; instead, it is stored, so that, if there is
an equal immediately after it, an \Assign will be
generated.

\def:{\endId\flush

\gdef\maySym{\Colon}\glet\symCode\colonCode

\catchId}

But what if there is an identifier followed by an
space; the \Id token will be generated before the
\Colon; it is even possible that the \Colon get
lost. The solution is simple: \flush must not only
take care of captured identifiers but also of delayed
symbols and stored numbers.

\def\flush{\flushSym\flushInt\flushId}

\def\genSym{\maySym\glet\symCode\noCode}

\def\flushSym{\ifnum\symCode=\noCode

\else\genSym\fi}

\def\genInt{\expandafter\Int\expandafter

{\mayInt}\glet\mayInt\empty}

\def\flushInt{\ifx\mayInt\empty\else\genInt\fi}

\def\genId{\expandafter\Id\expandafter{\mayId}}

\def\flushId{\ifx\mayId\empty\else\genId\fi}

Characters that can be in the second place of a com-
posed symbol cannot simply \flush; they should
flush integers and identifiers, but can only flush de-
layed symbols if there is something intertwined:

\def\flushInter{%

\ifx\mayInt\empty\else\flushSym\genInt\fi

\ifx\mayId\empty\else\flushSym\genId\fi}

The definition of ‘>’ is illustrative because it can be
the first and the second character in a composed
symbol:

\def>{\endId\flushInter

\ifnum\symCode=\lessCode

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 237

Pedro Palao Gostanza

\glet\symCode\noCode \NotEqual

\else\flushSym\gdef\maySym{\Greater}%

\glet\symCode\greaterCode

\fi\catchId}

Digits do important work to keep the scanner
alive, but they do not need to flush because a
character will follow that will cause flushing. The
main digit task is to know whether it is part of a
number or an identifier.

\def\digit#1{\endId

\ifx\mayInt\empty

\ifx\mayId\empty \gdef\mayInt{#1}\catchId

\else \catchId\mayId#1\fi

\else\ifx\mayId\empty

\xdef\mayInt{\mayInt#1}\catchId

\else\errmessage{An identifier cannot

start with digits}\catchId

\fi\fi}

This completes our fast scanner. But a little
problem remains. Sometimes, the program we want
to parse is not embedded in the document sources,
but stored in a separate file. Invoking \input inside
an scanner context (\beginScanner\endScanner)
has no use because backslash will loose its usual
meaning inside this context. The usual roundabout
\expandafter\beginScanner\input p.pas \endScanner

does not work either (read \@@input instead of
\input if thinking in LATEX) because the last active
character in p.pas launches a \catchId that will
be closed in \endScanner after the end-of-file, i.e.,
the last active character starts a definition that will
be closed pass the end of the file. Since TEX does
not allow a definition to span across files, we will
get the error “File ended while scanning definition
of \mayId.” Fortunately, TEX appends an end-of-
line character to the last line of every file, if absent;
so the last character in every file processed with
TEX is an end-of-line. We are going to put on
EOLN character the burden of crossing the end-of-
file boundary before to launch \catchId. Of course,
if not at the end of a file, an EOLN should behave as
before. The cheapest manner to cross the end-of-line
boundary is with \futurelet:
\def\eoln{\endId\flush\catcode‘\ =9

\futurelet\aux\eolnB}

\def\eolnB{\catcode‘\ =\active\catchId}

Incidentally, \futurelet makes leading spaces (ig-
nored characters) in the next line disappear.

A Pascal pretty-printing

Now, we have our scanner ready. Let us use it to
build a pretty-printer. The pretty-printer is respon-
sible for choosing a correct definition for the tokens
that the scanner generates. These definitions can-
not look forward following tokens because the scan-
ner may not have produced them yet and because

there can be TEX control words (that remain to be
evaluated) before the next token. So the pretty-
printer must conform to the self-parsing technique.
Of course, each token can change the pretty-printer
state, in order to produce a visible effect, to prepare
the environment for the next tokens, and to commu-
nicate to future tokens its previous occurrence.

Self-parsing is such a natural technique to use
in a pretty-printer that it has been discovered and
used in several pretty-printers before (at least in [6]
and in [7]). But it has never been used in a
pure manner, neither recognized as a useful general
parsing technique. So, our emphasis will be to
explain how self-parsing can be used to build a loose
parser. Pretty-printer output will be very simple,
just the raw style in [7]: every statement in a line;
keywords are in bold face; identifiers are in italics;
every expression, assignment and procedure call is
typeset in TEX math mode. The formatted program
to compute xn, for x = 3 and n = 9, follows:

program power;
var x, n: integer;

x1, n1, pow: integer;
begin

x← 3;
n← 9;
x1← x;
n1← n;
pow← 1;
while n1 ≥ 1 do begin

if n1 mod 2 = 1 then pow← pow× x1;
x1← x1× x1;
n1← n1 div 2

end;
write(pow)

end.
To keep the pretty-printer alive, every token

must do some work. Some, like parenthesis, do a
really simple work, without bothering about where
it is used.

\def\OpenPar{(}

Others, like assignments, do a simple work too, but
require that other tokens have already opened a
math mode.

\def\Assign{\leftarrow}

An assignment in an incorrect place will cause a
“Missing $ inserted” error; this is a syntactic check
with a bad error message.

Identifiers behave differently if placed at the
beginning of an statement or inside an expression.
In the first case, they must open a math mode; in the
second case, they only have to write themselves. The
best agreement is to use a \ifinsideexpr condition

\let\ifinsideexpr\ifmmode

238 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

Fast scanners and self-parsing in TEX

\def\openExpr{\ifinsideexpr\else$\fi}

\def\closeExpr{\ifinsideexpr$\fi}

\def\Id#1{\openExpr\hbox{\it#1}}

If a token can appear after an expression it should
ensure that the expression is closed; for example:

\def\Semicolon{\closeExpr;\par}

But not every semicolon behaves in this way;
the semicolon after the program name must indent
following constructions a bit. There are three
techniques to solve this problem:

Conditions technique in which we have a global
condition \ifafterprogram, which the defini-
tion of \Program sets true. Other definitions
set it false; since there is only one semicolon af-
ter a program name, the definition of semicolon
is the best place to set it false.

Redefinition technique in which we have one
definition for each possible behaviour. Other
tokens redefine \Semicolon according to the
expected behaviour in an immediate future.

Steps technique in which we have a number, a
step holder, that records the syntactic construc-
tion where the present token occurs. Each to-
ken can adjust its behaviour according to the
value in the step holder, and change it as nec-
essary.

These three techniques are equivalent, but depend-
ing on the problem one is easier than the others.
As the syntactic checks become stricter, one should
move from the first to the third. These three tech-
niques can be used simultaneously; for instance, in
the above fast scanner we have mixed conditions and
steps in order to build symbols composed with more
than one character.

Usually a stack is needed in order to store values
(before changing a condition, making a redefinition
or assigning to the step holder) that will be restored
when a nested construction ends. For a pretty-
printer, TEX grouping is enough, but for stricter
parsers it is better to maintain an explicit stack.

The following macros illustrate a pretty-printer
built with redefinition technique.

\def\Program{{\bf program}\

\let\Begin\BeginBlock

\let\Semicolon\SemicolonProgram}

\def\SemicolonProgram{\closeExpr;\par\indent

\let\Semicolon\SemicolonBlock}

\def\SemicolonBlock{\closeExpr;\par}

\def\BeginBlock{\par\outdent

{\bf begin}\par\indent

\let\Begin\BeginStat}

\def\BeginStat{\ {bf begin}\par\indent}

A Pascal compiler

Implementing a pretty-printer with self-parsing is an
easy task, easier than doing it with a classical and
strict parser. So, we wonder how the effort needed to
write a self-parser evolves when increasing syntactic
checks. We thought that the best test was to write
a mini-Pascal compiler.

We envisaged the following organization. To
compile a program, it must be surrounded with the
pair \beginPC/\endPC. A program called power, for
instance, will be translated to a TEX macro called
\power, that comprises an instruction sequence for
a virtual stack machine. Whenever this macro is
called, its instructions get executed, and everything
written (with write) appears inserted in the text.

Since a compiler needs to ensure a complete
syntactic conformance, we will use the step tech-
nique to produce its parser. But which are the
correct steps? This question has already been an-
swered: classical parsing techniques, like LL and LR,
rewrite a context free grammar as an automaton.
This automaton states are the steps we were look-
ing for.

Here we will work out how to build an LL self-
parser because it is simpler than LR parsing and
Pascal has an (almost) LL grammar. Nevertheless,
the main idea and many details can be reused in an
LR self-parser.

The construction of an LL self-parser for a
given grammar has been automated with a simple
program (written in Haskell [8]) called parTEX.
Here we are explaining how to do by hand what
this program already does alone. This program
expects an LL grammar annotated with semantic
actions and semantic checks. Figure 2 shows the
production for mini-Pascal statements. Semantic
actions are surrounded with braces and semantic
checks are also preceded with a question mark. Both
semantic actions and checks use several auxiliary
macros that read and modify the compiler state; an
explanation of their implementation and behaviour
is beyond the scope of this paper, but their names
are chosen to evoke its meaning (sequences without
spaces or end-of-lines are just one macro call with its
arguments). Semantic actions (checks) immediately
following a terminal that carries information, like an
Id, get this information through parameters. So, in
the semantic actions (checks) following Id, #1 is the
identifier down-cased string and #2 (not used) is the
identifier string.

Then, following [1], we add state numbers be-
tween every symbol that appears in each production
right hand side. The state numbers for the produc-
tion in Figure 2 (without semantic actions) are:

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 239

Pedro Palao Gostanza

Stat ::=

Id ?{\isVarQ{#1}}

{\memDir{#1}\aMemDir

\emitCode{\lit{\aMemDir}}}

":=" Expr {\emitCode{\put}}

| Id {\def\procToCall{#1} \noa=0 }

OptArgs {\iftrue \isProcQ\procToCall\noa

\procDir\procToCall\noa\aProcDir

\emitCode{\call{\aProcDir}}%

\else \errmessage{No procedure

"\procToCall" with \number\noa\space

arguments}\fi}

| "if" Expr {\newLabel\labelse \newLabel\labend

\emitCode{\jzero{\number\labelse}}}

"then" {\bgroup}

Stat {\egroup \emitCode{\jump{\number\labend}}%

\emitCode{\label{\number\labelse}}}

Else {\emitCode{\label{\number\labend}}}

| "while" {\newLabel\loopL \newLabel\endloopL

\emitCode{\label{\number\loopL}}}

Expr {\addCode{\jzero{\number\endloopL}}}

"do" {\bgroup}

Stat {\egroup \addCode{\jump{\number\loopL}}

\emitCode{\label{\number\endloopL}}}

| "begin" Stats "end"

.

Figure 2: Statement production

Stat ::=

Id 42 ":=" 43 Expr 44

| Id 45 ArgsOpt 46

| "if" 48 Expr 49 "then" 50 Stat 51 Else 52

| "while" 54 Expr 55 "do" 56 Stat 57

| "begin" 59 Stats 60 "end" 61

There is an obvious map between semantic ac-
tions (checks) and automaton states: every seman-
tic action (check) occurs in an automaton state and
an automaton state may have one semantic action
(check). The semantic action (check) occurring in
state n is stored in macro \sa@n (\sc@n). This
macro has as many parameters as information bun-
dles carried by the token preceding the semantic ac-
tion. For example:

\defx{sc@42}#1#2{\isVarQ{#1}}

\defx{sa@42}#1#2{\memDir{#1}\aMemDir

\emitCode{\lit{\aMemDir}}}

\defx{sa@49}{\newLabel\labelse \newLabel\labend

\emitCode{\jzero{\number\labelse}}}

We will call these macros through

\def\semaction#1{\csname sa@#1\endcsame}

Due to the behaviour of \csname, an action can
be called even if it does not exist. To exploit this
circumstance, those states after a token that carries

information but has no semantic action will have an
explicit empty action with enough parameters.

A semantic action is executed when entering its
state. A semantic check is executed before entering
its state; if it returns true, its state will be entered;
if it returns false, another possible next state will be
tried.

Traditional parsers encode the automaton and
semantic actions in a table. A loop uses the current
automaton state and the next token to index this
table, to perform some action, and to change to the
next automaton state, and a stack is needed to store
return states when entering a non-terminal. In a
self-parsing implementation the current automaton
state and the stack are in the global parser state:
\state and \stack. The table becomes code; the
action performed in the loop when looking at the
token \Tok in state n is stored in the macro \Tok@n.
Therefore, token \Tok behaviour is

\csname Tok@\state\endcsname

Since most entries in the table are just errors,
memory can be saved not defining them. Checks
for errors can be factored in the following macro:

\def\exe#1{\expandafter\let\expandadfter

\aux\csname #1@\state\endcsname

\ifx\aux\relax

\errmessage{Unexpected token "#1"}\fi

\aux}

So, the definition of \Tok can be simplified to
\def\Tok{\exe{Tok}}

Changing to another state, and pushing and pop-
ping states from the stack will be abstracted with
\toState, \pushState and \popState. These
macros are the best place to call semantic actions.

\def\toState#1{\def\state{#1}\semantic{#1}}

With all these helper macros, encoding the
automaton table with a set of macros is a simple
but boring task. For example, a while in state 53
only have to change to state 54

\defx{while@53}{\toState{54}}

But while can appear in other states; for example,
nested inside another while, that is, after a do
(state 56); in this case, it must push state 57 in
the stack, change to state 54

\defx{while@56}{\pushState{57}{54}}

When nested while parsing ends, the state 57 will
be restored from the stack and its semantic action
executed so that the last instructions of the outer
loop were generated. In a self-parser, tokens that
may appear after a while statement are responsible
for doing this. For example, end may appear after
every statement type:

\defx{end@44}{\popState\exe{end}}

\defx{end@46}{\popState\exe{end}}

\defx{end@51}{\toState{52}\exe{end}}

240 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

Fast scanners and self-parsing in TEX

\defx{end@52}{\popState\exe{end}}

\defx{end@57}{\popState\exe{end}}

\defx{end@60}{\toState{61}}

Notice, that end keeps rescheduling itself until
reaching state 60.

Encoding entries in the automaton table that
need a semantic check to be disambiguated is a
bit more complex. For example, Id may occur in
state 56, just after a do; changing to state 42 or 45
depends on the semantic check in state 42:

\defx{Id@56}#1#2{%

\iftrue\semcheck{42}{#1}{#2}%

\toState{42}{#1}{#2}\else

\toState{45}{#1}{#2}\fi}

As can be seen, there is nothing radically new
in this code. The classical parser engine with a
monolithic table is split into a lot of little macros.
Deciding what to do next does not rely on the parser
lookahead but each token checks the correctness of
its present occurrence, changes to the next state
and invokes a semantic action. Therefore, TEX is a
nice source language for a compiler-compiler. Before
implementing parTEX, we checked all these ideas by
hand; having done this boring work, we are eager
to use it wherever possible. So now, we will input
again the program pretty-printed on page 238, this
time surrounded with \beginPC/\endPC, just here,
only with the intention to execute \power to ensure
that 39 = 19683.

Other uses

We have used these TEXniques in other projects.
AGL is a small graphic library that our stu-

dents (and we) write and improve year after year. It
is written with the literate paradigm, using noweb.
Moreover, there is a separate document “getting
started and reference”. In order to keep the ref-
erence up to date, and to allow concurrent devel-
opment, the description of each element (function,
type, constant, etc.) is embedded in the implemen-
tation; typesetting the implementation produces an
up to date file to be input in the reference. To en-
sure full agreement and to save some typing, there
is no place in a description to put its definition (the
head of a function, the structure of a type, etc.);
instead, while processing the reference, TEX opens
source code files (built with tangle (notangle)) and
looks for the definition of each described identifier.
A fast scanner splits Pascal programs into tokens;
then a search engine, organized like a self-parser,
stores the tokens constituting each requested defini-
tion in a macro; finally, when typesetting an element
description, these tokens feed a pretty-printer. So,
the same scanner is composed both with a search

engine and a pretty-printer. TEX process hundreds
definitions in a few seconds, thanks to the fast scan-
ner.

EXercita is a hierarchical, human-readable database
of exercises. Every exercise has, in addition to the
wording of the exercise itself, an author (or source),
its objective and difficulty, and several solutions.
A set of macros helps in extracting exercises to
be included in a document. The macros to search
databases use a self-parser.

hTεXml (HTML in TEX) is a work in progress
to make TEX capable of type setting HTML directly.
Almost all the processing work comes from HTML

tags. It is important to do it as fast as possible be-
cause, although hand written HTML has few tags
with few parameters, machine generated HTML has
large numbers of tags with lots of (usually unneces-
sary) parameters. The simple syntax of HTML tags
makes really ease to write a fast scanner. With the
arrival of CSS a lot of new parsing capabilities are
needed.

Conclusions

Fast scanners are clearly fast. We have only col-
lected simple figures. For example, in my old In-
tel 80486, more than 1000 lines of Pascal code are
scanned in 5.4 seconds, and pretty-printed in 4.6 sec-
onds more. TEX typesets this same code (thinking
that it is plain text) in 1.7 seconds and needs 0.9
seconds to process a file that only loads the scan-
ner and the pretty-printer— so, parsing and pretty
printing is only one order of magnitude slower. In
general, it is astonishing to see TEX working so fast
in every project were we have tried a fast scanner.

Self-parsing is a nice TEXnique to organize
reusable parsers. It also allows an adaptable syntac-
tic rigour. Its main drawback is the effort to build
a strict self-parser by hand. Fortunately, parTEX
removes this burden. Fast scanners, being an ap-
plication of self-parser, should inherit this complex-
ity; but writing a fast-scanner generator for TEX is
a daunting task because each language has its own
tricks. Fortunately, writing a fast scanner by hand
is affordable because the lexical part of a program-
ming language is simpler than its syntax. In addi-
tion, each processing kind needs a new parser, but
the same scanner can be used once and for all.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D.
Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[2] Henry Baragar and Gail E. Harris. An example
of a special purpose input language to LATEX. In

TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting 241

Pedro Palao Gostanza

Proceedings of the TUG Annual Meeting, 1994.
[3] Julio Cortazar. Historias de Cronopios y

Famas.
[4] Jonathan Fine. The \CASE and \FIND macros.

TUGBoat, 1(14):35–39, 1993.
[5] Andrew Marc Greene. BASIX—an interpreter

written in TEX. In Proceedings of the TUG
Annual Meeting, 1994.

[6] Jean luc Doumont. Pascal pretty-printing:
an example of “preprocessing with TEX”. In
Proceedings of the TUG Annual Meeting, 1994.

[7] Pedro Palao Gostanza and Manuel
Núñez Garćıa. pascal : Formating pascal
using TEX. In EuroTEX, 1995.

[8] Simon Peyton Jones, John Hughes, Lennart
Augustsson, Dave Barton, Brian Boutel, War-
ren Burton, Joseph Fasel, Kevin Hammond,
Ralf Hinze, Paul Hudack, Thomas Johnsson,
Mark Jones, John Launchbury, Erik Meijer,
John Peterson, Alastair Reid, Colin Runciman,
and Philip Wadler. Haskell 98. a non-strict,
purely functional language. 1999.

[9] Kristoffer H. Rose. XY-pic user’s guide. 1998.
[10] C.G. van der Laan. \FIFO and \LIFO sign the

BLUes. TUGBoat, 1(14):54–60, 1993.
[11] Marcin Woliński. Pretprin—a LATEX2ε package

for pretty-printing texts in formal languages. In
Proceedings of the TUG Annual Meeting, 1998.

Pedro Palao Gostanza

242 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting

