
Formatting documents with floats
A new algorithm for LATEX2ε

∗

Frank Mittelbach
LATEX3 Project
frank.mittelbach@latex-project.org

Abstract

This paper describes an approach to placement of floats in multicolumn docu-
ments.

The current version of LATEX was originally written for single-column doc-
uments and extended to support two-column documents by essentially building
each column independently from the other. As a result the current system shows
severe limitations in two column mode, such as the fact that spanning floats are
always deferred to at least the next page or that numbering between column floats
and spanning floats can get out of sequence.

The new algorithm is intended to overcome these limitations and at the same
time extend the supported class of document layouts to multiple columns with
floats spanning an arbitrary number of columns.

Editor’s note

This paper describes facilities offered by the au-
thor’s new algorithm for use with LATEX; it there-
fore seemed appropriate that the paper itself should
be typeset using an implementation of it, and the
author was enthusiastic in support of the plan.

With some help from members of the LATEX
Team, we have managed to typeset all but the present
page of the paper using a version of LATEX that in-
corporates a prototype implementation of the new
algorithm.

While customising the algorithm to produce the
standard layout that readers of TUGboat have come
to expect, the paper also exhibits the following ca-
pabilities of the new algorithm:
• Alignment of text lines throughout the article

on an invisible grid.
• Support for spanning bottom floats; examples

are on pages 285 and 288.
• Restriction of float placement.

The float placement restrictions selected for this
article are as follows: floats have to appear after
their call-outs, can only occupy bottom areas, and
are not allowed there if footnotes are present in the
column. This accounts, for example, for the place-
ment of figure 1, which was moved from the second
column of page 280 to the bottom of the first column
of page 281.

In the lingua of the algorithm the exact speci-
fication used was:

float-callout-constraint = after,
float-callout-span-constraint

= flexible,
bottom-float-footnote-constraint

= forbidden,
max-float-num = 2,
area-list = {b12,b11,b21},

These settings are admittedly rather bizarre and
were solemnly chosen by the author for illustration
purposes.

In order to illustrate clearly the effect of the
page layout grid alignment used throughout, on page
279 a grid of lines is superimposed; we hope this
does not detract too much from your enjoyment in
reading the article.

In general it should be noted that the TUG-
boat layout isn’t really suited to be typeset using
an underlying grid; headings at the top of the col-
umn need to drop to avoid a large gap between the
heading and the following text (see page 279) and
of course with a flush bottom setting you will get
widows and orphans since there is no stretchability
on the page.

This title page has been set using the standard
(released) LATEX output routine because the proto-
type implementation does not at present support
switching the number of columns in the middle of
the page.

278 TUGboat, Volume 21 (2000), No. 3 —Proceedings of the 2000 Annual Meeting



Formatting documents with floats

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 279

Introduction

One problem with formatting documents containing
floats is the number of potential formatting solutions
that need to be checked out. The number of trials
grows combinatorially in the number of floats and ar-
eas which can receive them. If we have n floats wait-
ing to be placed and m areas in which we can place
them on the current page being built (not count-
ing the “deferred area”) then the number of different
placements is given by

#trials =
(

n+m

m

)
=
(n+m)!

n!m!
(1)

assuming that the order of floats has to be preserved,
i.e., if the call-out of float fi is before the call-out of
fj in the text stream then the float fi will be placed
earlier than float fj where “earlier” is a defined rela-
tion of float areas.

For example, if we have 8 floats waiting to be
distributed among 12 areas (which corresponds to a
three column page with float areas at the top and
bottom allowing for partial spans) then we have to
check 125970 possible distributions; if two additional
floats appear we end up with 646646 trials.

Even though a large number of these distribu-
tions would be unacceptable and discardable straight
away, after some initial test, the resulting running
time of the algorithm would clearly be beyond any
acceptable speed. (Assuming we could do 1000 trials
per second, which is ridiculously high since many of
them would require trial-typesetting the whole page,
then the case of 646646 trials would still take roughly
10 minutes to form a decision.)

Thus it is important to find algorithms with com-
plexity that is at worst linear in both the number of
floats on the trial list and the number of possible float
areas, even if this means that in a few cases a rela-
tively good layout will not be found. It is even better
if they have minimal redundancy.

Note that assessing the actual running time of
TEX code is not straightforward since some activi-
ties are very much faster than others. For example,
performing a test by using a reasonable number of
macro expansions and register assignments may be
very much slower than running through a long type-
set list and then doing a simple test.

The algorithm we have implemented fulfills the
requirement of being (essentially) linear in the num-
ber of floats and the number of float areas.

The document source model

The document source is a single stream of continu-
ous text containing call-outs to floating objects. (At
the moment the call-outs are marked by placing the
objects into the stream but it would be possible to
provide them as separate objects.) Floating objects
(as of today) come in three incarnations:

• Objects where the call-out and the placement
requires a strict spatial relationship, e.g., same
line in the margin. An example would be
marginal notes as implemented by \marginpar
in LATEX2ε.

• Objects where the call-out and the placement
are required to fall onto the same column/page/
spread, e.g., footnotes.

• Objects where there is a defined relation between
call-out and object placement, e.g., “not in an
earlier column”, or “on the same page or later”,
etc. These are the traditional floats.

Float objects in the last group are typed where the
type is defined by the logical content of the object,
e.g., “figure”, “table”, and so on.

The document formatting is achieved using a
minimal but customizable lookahead (typically the
considered galley material is the equivalent of one
page/spread of textual material ignoring the addi-
tional size taken up by embedded float objects).

While making up pages the main “quality” guid-
ance for the algorithm is to try to place each float
as early as possible without violating defined con-
straints.

The document layout model

Page layout grid The algorithm supports the spec-
ification of a page grid on which it will align text
columns and other elements. This will allow (if suit-
able parameters for various elements are chosen) to
have text lines of different columns all lying on grid
points.1

Columns The page layouts which are supported by
the new algorithm support an arbitrary number of
text columns of equal width.

The number of columns per page as well as their

1 On the current page lines are drawn to highlight the grid.
Note that headings, lists, and other “display” objects are not
aligned.



Frank Mittelbach

280 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

width can be changed at forced page breaks such as
the start of chapters.

Balanced columns Balancing columns (as done by
the multicol package) is planned but not imple-
mented. The major problem in that area is the han-
dling of column floats during the balancing process.

Float areas Float objects are distributed into float
areas which are rectangular in shape. Float areas
span one or more text columns; their horizontal size
is therefore given by the following formula (where c
is the number of columns spanned):

〈area-width〉 = c×(〈col-width〉+〈col-sep〉)−〈col-sep〉
The naming conventions for float areas is as follows:

〈identifier〉〈start-column〉〈span-count〉.
The 〈identifier〉 is a single letter denoting the type of
area, e.g., t for top, b for bottom. The 〈span-count〉
is a single digit denoting the number of columns to
span. The 〈start-column〉 is a single digit2 denot-
ing the start column of the area. Thus t23 is a
top area starting at column two and spanning three
columns, i.e., two, three and four. A restriction due
to the naming scheme is that currently no more than
9 columns are possible.3

Only a subset of the float areas is allowed to be
populated on a page. In essence the new algorithm
does not support placements that result in “splitting”
the text of a column due to a float (other than col-
umn “here” floats).4 This means that population of
some float areas must be prevented, namely those
satisfying these conditions when pcs (where p = pos,
c = column, s = span) has just been populated:

pij with i < c ≤ i+ j < c+ s

or

pij with i ≤ c+ s < i+ j ≤ 〈number-of-columns〉
The first formula describes the areas which partly
overlap from the left, the second formula describes
those that partly overlap from the right. Areas which
are sub- or super-areas, e.g., t13 and t22, do not af-
fect each other. The above restriction is necessary to

2 With a bit of care in the code this could be extended to
allow more than one digit.

3 The scheme is different from the original one used, where
t23 would have denoted an area starting at column two and
spanning until column three.

4 Perhaps this restriction will be lifted one day.

prevent situations like the one shown in figure 1 on
the facing page, i.e., where the float area t32 (rep-
resented as b’s) would result in splitting the fourth
column into two independent text areas.

The possibilities, as well as the restrictions, are
equal for both top and bottom areas. This means
that the new scheme in particular supports spanning
bottom areas.

Float pages and columns Float pages, i.e., pages
consisting only of floats, will be supported as well as
float columns.

Float types The type of float influences the format-
ting, e.g., where the caption is placed in relation to
the float body, how it is formatted, what kind of fixed
strings are added, etc. It also restricts the placement
algorithm in respect to which float areas can be pop-
ulated as explained below.

Margins The marginal areas can receive marginal
notes which are aligned with the corresponding text
line. In documents with more than two columns
marginal notes are currently not supported though
one could envision allowing them even there. If
marginals have to compete for space the later
marginal will be moved downwards if there is enough
space on the page, otherwise the line containing the
marginal will be moved to the next column/page.5

An alternative usage of the margin is to place
footnotes into it. A prototype version of this is pro-
vided already, see section “Footnotes” on the next
page.

Another potential use of the margin areas is to
use them (or parts thereof) as float areas in their own
right. The problem with this would be that these
float areas would have a horizontal width which is
different from the column width, thus allowing only
a limited class of floats to appear therein.

Another potential extension would be to al-
low float areas that border on a margin to use the
marginal space as part of the float area, thereby al-
lowing the filling of such an area with floats which
are wider than the nominal float area. A special case
of this, the placement of the caption in the margin
beside the float body, is already provided by choosing
a suitable caption formatting instance.

5 This is not yet implemented — right now they overprint
each other.



Formatting documents with floats

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 281

Footnotes Footnotes can be regarded as a special
type of floats. They are objects which are associ-
ated with lines of text (their call-out) but in contrast
to normal floats such as “figures” or “tables” their
placement constraints are stronger, e.g., they typi-
cally have to appear at the bottom of the column
which contains their call-outs, or at least they have
to appear on the same page as their call-outs.

In its current version, the model supports foot-
notes beneath the call-out column (normal behavior);
all footnotes in the last column (as with the ftnright
package for two-column mode); all footnotes in the
outer (or inner) margin.

Without an extension to the page makeup al-
gorithm (but instead with a suitable redefinition of
the footnote commands) they could be processed as
marginal notes or alternatively as “end-notes”.

Headers and footers The header and footer ar-
eas may use data received from individual columns.
An extended version of TEX’s mark mechanism is
made available which allows the definition of arbitrar-
ily many independent classes of marks. Within each
mark class information about the top mark (i.e., the
mark active at the top of the column), the first mark
and the last mark is made available for retrieval.

This allows the production of correct running
headers and footers for various types of applications
such as dictionaries, manuals, etc.

The processing model

Float placement concepts To build a page or
spread the algorithm first assembles enough textual
material to be able to fill the page without placing
any floats. During this process all floats that have
their call-outs within the assembled galley are col-
lected. They form, together with unplaced floats
from previous pages, an ordered trial list of floats.

The allowed float areas on the page under con-
struction are totally ordered as well.

The algorithm proceeds by taking the first float
from the trial list and trying to place it into the first
float area from the area list. It then checks if all
constraints (see below) are met and if not the algo-
rithm will try to place the float into the next area
until either all constraints are met or the areas in
the float area list are exhausted. A trial that does
not fail means that this distribution of floats becomes
the best solution so far and all further trials will be
based on adding to this solution (no backtracking). If
the algorithm fails to place the float into any area it
means that the float will be deferred to a later page.

As floats are added to areas, the constraints for
further trials are changed. There are several reasons
for this: on one hand, the call-out positions of various
floats move since the float will occupy space on the
page; on the other hand, placing a float in some area
might result in disallowing the placement of other
floats in the same or in other areas.

Float pages and columns At the moment there
is only rudimentary support for float pages available:
at the start of each page the algorithm will try to
form a float page out of all floats that have been
deferred from previous pages. However there is no
layout control available to define the conditions under
which such a trial will succeed.

Float storage Float bodies are typeset into boxes
at the point of ‘call-out’, as with the figure and
table environments in the standard LATEX; it may
also be possible to specify at the call-out point a log-
ical pointer to a float whose typesetting is specified
elsewhere (e.g., an external file).

However, text sub-elements such as the caption,
etc. (e.g., from \caption), are not typeset at this
stage but are stored as token lists; this allows for
trying different possible layout specifications, e.g., for
its measure, during the float-positioning trials. At
present this is confined to at most a single caption
element per float.

Caption processing When a float is placed into an
area the caption is trial formatted and mounted onto
the float body. This process can take into account
various information about the float positioning trial,
such as the area to format it into, the fact that it
formats onto a verso or recto page, etc. It might try
several possibilities before making a decision, e.g., if

aaaaaaaaaaa 444

aaaaaaaaaaa 444

aaaaaaaaaaa 444

111 222

111 222 bbbbbbb

111 222 bbbbbbb

111 222 bbbbbbb

111 222

111 222 333 444

111 222 333 444

111 222 333 444

Figure 1: Overlapping float areas



Frank Mittelbach

282 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

one formatting of the float results in violating some
constraint(s) it might try a different formatting at
this point.

Flushing floats It is possible to mark points in the
source document as boundaries beyond which floats
whose call-outs are prior to the boundary cannot
pass. In other words a “flush point” directs the algo-
rithm to place all affected floats into areas which are
“before” the flush point.

If due to other constraints the float could not
be placed in such an area the algorithm first retries
all potential areas using a less rigid set of constraints
(for example, restrictions on the number of allowed
floats per area are dropped) and if this still doesn’t
enable the algorithm to place the float properly it will
as a last resort move the flush point to a later col-
umn, which means breaking the column text before
the flush point.

Flushing of floats can be done either for all floats
or on a per float type basis, e.g., it is possible to flush
only floats of type “figure”.

A flush point can be given an additional at-
tribute which controls the “fuzziness” used by the
algorithm. By default the flush point algorithm uses
strict flushing as described above. The attribute
column modifies the algorithm’s behaviour by en-
abling a float to move past the flush point as long
as it will be placed on the same column. Similarly
the attribute values page and spread will enforce
that the float will not be deferred further than the
current page or the current spread. This way it can
be guaranteed that a float is always visible from its
call-out.

Float sequence classes Float sequence classes are
collections of float types; each float type belongs to
exactly one float sequence class. Within each se-
quence class the call-out order in the document is
always preserved by the float placement algorithm,
e.g., if c1, c2, . . . , cn are the call-outs of all floats of
a float sequence class then the corresponding floats
will be placed such that fi will be placed before fj

whenever i < j. Thus by putting all float types into a
single float sequence class all floats are placed in the
order of their call-outs. At the other extreme, if each
float type has its own sequence class6 then floats from
one type might move before floats of other types even

6 This is the LATEX2ε default.

though the corresponding call-outs are in a different
order.

Float and call-out relations The algorithm also
keeps track of the relation between an individual float
and its call-out. This allows one to define constraints
which guide the algorithm during the float placement
phase. It is always permissible to place a float “af-
ter” its call-out, e.g., in a later column/page. At the
moment the following constraints can be specified:
none which means that the relation between call-out

and float placement is not relevant for placing
floats.

page which means that the float can be placed any-
where on the page with the call-out (it is visible
from the call-out).

column which means that the float can be placed
before the call-out as long as it is placed in the
same column.

after which means that the float has to be placed
strictly after the call-out.

When extending the algorithm to directly support
spreads the above list is going to be extended by an
option that allows floats to move backwards on the
whole spread.

Spanning float and call-out relations For floats
that span two or more columns there are several pos-
sibilities to interpret the spatial relationship between
call-out and float areas. For example, if a float, whose
call-out is in the second column, has been placed into
area b12, is this float “before” or “after” its call-out?
The answer to this question depends on whether we
consider the float being placed into the first or the
second column, both of which are valid interpreta-
tions.

At the moment the following behaviour can be
specified:

strict which means that the leftmost column
spanned by the float is regarded as the column
in which the float was placed.

flexible which means that the rightmost column
spanned by the float is regarded as the column
in which the float was placed.

These settings are only relevant if the main float/call-
out relations are set to column or after.

Float and footnote relations It is possible to di-
rect the algorithm to check on each column if there



Formatting documents with floats

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 283

are footnotes, and if so to prevent it from placing
floats in the bottom area. In theory it might be possi-
ble that a forbidden constellation might resolve itself
once the algorithm has added further floats, e.g., it
could be the case that by adding additional floats the
offending footnote gets moved to a different column.
However, checking for this would mean potentially
large backtracking so the algorithm uses a conserva-
tive approach and simply considers a trial as failed if
footnotes and bottom areas collide.

It is planned to allow a designer the choice of
specifying where the footnotes should be placed in
relation to any bottom floats (if the combination is
allowed). Right now this is not implemented and col-
umn footnotes will always appear below the text col-
umn, i.e., above any bottom floats.

Area statuses For each area the algorithm keeps
track of whether or not it is closed for individual float
types, e.g., is not accepting any more floats of type
“figure” or closed for all types. The status of an area
can change due to floats being placed into other areas
(this might, for example, close earlier areas, or areas
that overlap) or it can change due to the fact that
the area became too full in some way (e.g., a size
constraint or a number of floats constraint).

Some of these constraints can be “relaxed” in
certain situations, e.g., if the algorithm is directed to
flush out remaining floats prior to a certain point in
the galley it will drop constraints related to number
of floats per area or size restrictions. However, if an
area was closed due to a different float being placed
into some other area, this area will stay closed in all
circumstances to ensure proper sequential placement
of floats and to ensure that overlapping areas that
are forbidden as explained in section “Float areas”
on page 280 will not receive floats at the same time.

Area constraints The algorithm offers several pos-
sibilities for the designer to specify how and under
what circumstances a float is allowed to be added to
a certain area on the page.

As explained above all areas on a page are tried
in a specific order. This order can be specified and
changed for specific parts of the document. Areas
that are closed for the current type will be bypassed
as well as areas which do not span the right number
of columns to fit the horizontal size of the float. If
these initial tests succeed the float may still fail to
be placed into a certain area if it doesn’t fulfill the
following set of constraints:

• There is an upper limit on the total number of
floats that can be placed on an individual page.

• Each area has an upper limit of floats that can
go into it.

• After placing the float the remaining space in
the text column must be larger than a specified
value.

All such constraints are customizable.
Additional constraints will probably be imple-

mented once there has been some experience of what
controls are actually needed to allow the specification
for a reasonable number of layouts.

For example, LATEX2ε allows the designer to re-
strict the maximum size of an area, but should one
provide this or should there be a constraint on the
size of all stacked areas? Or should there be both?

To “Here” or not to “Here” LATEX2ε allows the
user to control the placement of an individual float
by specifying one or more areas into which the float
would be allowed to move using single letters. As a
special notation an h would denote a so-called “here”
float. Its advertised semantics is to try placing the
float “at the position in the text where the environ-
ment appears” [1, p. 197]. If this is not feasible
LATEX2ε would try the remaining allowed possibili-
ties on the next page, thus a float with an ht specifi-
cation would either appear within the text or at the
top of the next or a later page.7

In many cases people however prefer a “here”
which always means “here”. The latter form is imple-
mented in some add-on packages for LATEX2ε, how-
ever usually at the cost of allowing floats to appear
out of order.

The new model supports only the absolute
“here” form for floats; however, correct ordering of
floats in the output is guaranteed (if the tag gener-
ating the here float issues flushing of floats for the
current type). If there is not enough space to place
the float in a column, the float plus the preceding
text line8 is moved to the next column/page.

Grid layout To produce layouts with elements
placed on an underlying grid (typically with grid

7 In two-column mode this can in fact result in a placement
on the top of the second column even though the call-out po-
sition finally falls into the middle of that column.

8 More precisely the column is broken at the last breakpoint
preceding the current position which is normally one line above
but could be more (or less).



Frank Mittelbach

284 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

points vertically separated by \baselineskip) the
algorithm assumes that certain parts of the text col-
umn, e.g., normal text, will automatically align on
the grid as long as the first line is positioned on the
grid. A further assumption is that such parts of the
column do not contain stretchable amounts of ver-
tical glue so that they are not subject to stretching
or shrinking if the material is adjusted to fit a given
size.

Given these assumptions, the algorithm proceeds
by ensuring that the space taken up by floats (includ-
ing their separating white spaces) is always of a size
such that the remaining space for the text part of
the columns allows for an integral number of grid
lines. This is achieved by stretching or shrinking
the space separating the areas from the text appro-
priately while building the page as explained in sec-
tion “Float placement concepts” on page 281.

Within the text column there are typically a
number of “display objects” such as headings, equa-
tions, quotations, lists, etc., which should not be
aligned on the grid. Instead, typically the text be-
fore and after is supposed to lie on the grid.9 This
is supported by allowing to mark lines of text (or
more generally points in the galley) to “snap to the
nearest grid point”. One can think of the implemen-
tation working by taking the column material up to
the marked line and putting it into a vertical box of
the size of the nearest possible grid point. By this ap-
proach stretchable glue around such a display object
will allow the text line that should snap to the grid to
move into the correct position. This box is then given
back to the page builder to assemble more material
for the column. In this way the preceding part of the
column becomes rigid; thus a later request for snap-
ping to the grid will only stretch or shrink material
further down the column.

A prototype implementation that makes most
standard LATEX objects, like headings, displays, etc.,
support grid design is available with the package
xo-grid. It is used for typesetting this document.

User control

Column and page breaks Breaking of columns
and pages can be controlled from the source doc-
ument by placing special tags into it. The
\columnbreak command ends the current column

9 In some cases, depending on the design, parts of the struc-
ture might be supposed to aligned as well.

after the current line (if used in horizontal mode).
Similarly the \pagebreak command ends the current
page.10

Manual float flushing The flush float functional-
ity is available within the source document via the
command \flushfloats. This command takes two
optional arguments which, if present, denote the float
type to flush (by default all) and the “fuzziness” of
the flush (by default strict). Other allowed values
for the fuzziness are column, page, or spread. If a
type is specified for flushing, effectively all types with
the same float sequence class are flushed to preserve
the ordering.

Specifying preferred areas At the time of writ-
ing, the document source interface for specifying
the group of areas into which a float is allowed to
move is not yet decided. One could envision keep-
ing the original LATEX interface to float environments
with optional argument. In that case something
like [t] could be internally interpreted as “any top
area that exists” and translated into a list such as
t12 t11 t21. But other interfaces are conceivable
as well.

Manually position all floats Any algorithm that
automatically places all floats may fail to produce
adequate results in some situations. In LATEX2ε the
user was offered only the optional arguments of the
float environments and by this method and by mov-
ing floats slightly in the source document one was
finally able to change the formatting as needed.

This was a time-consuming and error-prone
manual task and any slight change in the source doc-
ument text was likely to result in making this work
obsolete.

To improve on this situation the new algorithm
can be directed to write out a file containing all of its
float11 selections (an example is shown in table 2 on
the facing page). By simple drag and drop the user
can produce alterations to this selection. If such a
modified file is stored as \jobname.fpc then the al-
gorithm will use these selections without attempting
to apply any of its internal rules. Thus the formatting

10 At the moment these commands force a break; there is
no possibility, as in LATEX2ε, only to suggest that the current
point is a good or bad break.

11 Floats in this context mean “traditional” floats, not foot-
notes or marginpars.



Formatting documents with floats

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 285

will happen exactly as specified.12

Beside moving floats between float areas it will
be possible to move floats in and out of the special
area called hhh which represents a list of all “here”
floats on the page. If a float is moved into the “here”
area it means that it will be positioned as a here float
at the point of its call-out.

As an extension to this method we are experi-
menting with restricting the manual control only to
parts of the document, e.g., allowing the user to man-
ually fix a single chapter but have the algorithm de-
termine the remainder. We also plan to integrate
column length control in this way, so that it becomes
easily possible to run a page or double-spread long
or short by specifying this externally rather than via
tags in the source document.

Tracing the algorithm’s behavior In contrast to
the LATEX2ε output routine, which is a black box
as far as the user is concerned, the new algorithm
tries hard to make its decision process comprehensi-
ble. Table 3 shows a sample output produced by it. It
shows for each float which areas have been tried, why
they were rejected, etc. There is also an option which
produces about 1000 times as much information but
the latter is probably useful only for debugging the
system in case there are errors in the code.

12 If the floats are stored within the source document at the
point of their call-outs, the algorithm will be able to position a
float only if it has already encountered the float in the source
document. This means that one can move a float arbitrarily
forward but only to a limited extent before its call-out position.
If the floats are stored externally to the source document this
restriction does not apply.

Manually aligning text in grid layout If the al-
gorithm produces grid layout it automatically aligns
certain text lines on the underlying grid. For
manual control this functionality is also provided
with the command \TextAlignGrid which will align
the current text line on the grid. By issuing a
\IgnoreAlignToGrid command grid alignment will
be temporarily disabled, while \ObeyAlignToGrid
will reestablish automatic grid processing.

Layout Specification

In the class file the designer is given control over
the algorithm’s behavior in all the aspects described
above (and several more).

The layout specifications are done through the
new template and instance concept, see [2]. Addi-

Table 3: Progress output of the algorithm

=======================================================================

STATS: floats waiting = 2 on page 13

=======================================================================

Float: \bx@E {5} {table} (floats) {5} {Statistics from the algorithm}

area trial: b12 -> failed: span count b12 /= 1

area trial: b11 -> accepted

Float: \bx@F {6} {table} (floats) {6} {Running times of the algorithm}

area trial: b12 -> failed: span count b12 /= 1

area trial: b11 -> failed: b11 float num reached (1)

area trial: b21 -> failed: area below flush point (2=2, b21)

-> failed: --> retry with relaxed conditions

area trial: b12 -> failed: span count b12 /= 1

area trial: b11 -> accepted

STATS: trials = 7

Table 2: An example fpl file

Page: 1 (1)

Area: t13

Float: 4 (figure 4) []

Area: b21

Float: 2 (figure 2) [mylab:fig1]

Area: t31

Float: 3 (figure 3) [mylab:fig2]

Area: hhh

Float: 11 (table 1) []

Page: 2 (2)

Area: t13

Float: 8 (figure 8) []

Area: t22

Float: 5 (figure 5) []

Area: b11

Float: 6 (figure 6) [mylab:fig3]

Area: b31

Float: 7 (figure 7) [mylab:fig4]



Frank Mittelbach

286 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

tional information such as experimental code, fur-
ther documentation, etc., can be found on the LATEX
project web site at:

http://www.latex-project.org

In contrast to the algorithm itself, which in its
basic functionality now seems to be stable and reli-
able, the design interface is far more experimental.
Thus the example declarations given below represent
only the current state of thought (or of implementa-
tion) and are likely to be modified at any moment.

Float type declarations Float types are declared
using the command \DeclareFloatTypewhich takes
two arguments: the name of the type which is de-
clared and in the second argument a list of key/value
pairs which describe the properties of the float type,
e.g.,

\DeclareFloatType{figure}
{
sequence-class-id = floats,
toc-extension = lof,
caption-text = \figurename,
numbered-boolean = true,
numbered-id = figure,
numbered-within-id = section,
numbered-action =

\thesection.\arabic{figure},
body-decls = ,

}

The sequence-class-id key defines to which float
sequence class the type belongs to. If it is absent
a sequence class with the same name as the type is
assumed. The sequence class will be automatically
initialized if not referenced before.

The toc-extension key defines the extension to
be used to write the caption to when generating “List
of floats” listings. By using the same extension with
different types it is possible to generate combined list-
ings, such as “List of tables and figures”.

The caption-text key defines the fixed text to
be used as part of the caption text together with the
float number if present, e.g., Figure. This informa-
tion is passed to the caption formatting template so
the actual formatting is defined there.

The numbered-boolean defines whether or not
floats of this type are numbered.

The numbered-id key defines the name of the
counter to use when numbering floats. If absent a
counter with the same name as the type is assumed.

By using the same counter with different types it is
possible to use a single numbering scheme—in that
case the sequence-class-id for these types should
probably be identical as well to avoid strange num-
bering sequences within the document.

The numbered-within-id key defines the name
of the “within” counter, i.e., the counter which if
stepped resets the numbering. If the value is empty
or not set the float type is numbered in a single se-
quence throughout the document.

The numbered-action key defines the represen-
tation of the float number, as used in the caption
and by the \ref, \label mechanism. The default is
\arabic{〈counter〉}.

The body-decls key can hold formatting in-
structions that should apply to the float body. They
can assume a normalized formatting environment al-
ready set up by the algorithm.

The declaration of a new float type automati-
cally defines the necessary user document environ-
ments.

Float area declarations Any float area that is go-
ing to be used at some stage by the algorithm needs
to be declared beforehand. This is done through the
\DeclareFloatArea command which takes two ar-
guments: the name of the area (which has to follow
the conventions explained in section “Float areas” on
page 280) and a list of key/value pairs describing the
characteristics of the area.

\DeclareFloatArea{t22}
{

class-close-list = {t11,b11},
all-close-list = {t12,t32},
max-float-num = 2,

}

As of today an area is characterized through the
maximum number of floats it is allowed to receive
(max-float-num) and through two lists which tell the
algorithm which other areas are affected by adding a
float to the current area. The list class-close-list
enumerates all areas which are not allowed to re-
ceive additional floats of the same sequence class as
the float that has been placed into the current area,
while the list all-close-list contains the informa-
tion about all areas that are to be completely closed
the moment a float is received in the current area.

The class-close-list key is primarily in-
tended to specify a partial order on the areas to en-
sure that floats are not getting out of sequence in the



Formatting documents with floats

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 287

output. For example, the above declaration says: if a
float is placed into area t22, i.e., a top area starting at
column two and spanning two columns, then the sin-
gle column areas t11 and b11 (i.e., those of the first
column) are closed for floats of the same class. How-
ever, assuming this example is part of a declaration
for a four column layout which could have areas like
t14 or t13, there is nothing said about closing those
areas. Thus in this particular layout a float spanning
three or four columns would still be allowed to go on
top.

On the other hand the all-close-list key is
available to ensure more visual constraints, e.g, “if
t12 gets filled we don’t want to have b12 filled as
well, we only want b22 in this case.” In addition it
is needed to implement the restriction about overlap-
ping float areas as described in section “Float areas”
on page 280, e.g., in the example declaration t12 and
t32 are closed since they partly overlap with t22.13

Footnote formatting declarations The format-
ting of footnotes is specified by declaring instance(s)
of type footnotesetup. At the moment three tem-
plates are available though they should be considered
only as prototypes: the template std produces con-
ventional footnotes below each column, the template
ftnright collects all footnotes and typesets them in
the rightmost column, and the margin template col-
lects and typesets them in the right outer margin.

The keys of the above templates provide only
a rudimentary flexibility (to say it positively); in a
production version all of them would need a large
number of extensions. As an example,

\DeclareInstance{footnotesetup}
{mainmatter}{std}
{
text-sep = 14pt plus 3pt,
max-height = 8in,

}

would declare the named instance mainmatter that
provides footnotes below columns with a separation
of 14pt+ and a maximum height for footnotes per
column being 8in.

Instances like this can then be used in the decla-
ration for a particular page layout as explained below.

13 As mentioned before, this restriction might be lifted in
a later version of the algorithm; as long as it is required one
could alternatively add those areas behind the scenes to avoid
runtime problems.

Alternatively one could use unnamed instances there
using the \UseTemplate method.

Page setup declarations At the heart of the layout
declaration are instances of the type pagesetup2.14

An example setup showing all currently available
keys is given in table 4 on the following page.

Column specification The first four keys
(column-num, column-width, column-height, and
column-sep) describe the column structure of the
page layout being defined, i.e., in this case a two-
column layout.

Float constraint specification The following
four keys define the standard constraints for the al-
gorithm when placing floats: max-float-num is the
maximum number of floats that can go on a nor-
mal page; float-callout-constraint defines what
kind of relations between float and call-out are al-
lowed (possible values are explained on page 282);
float-callout-span-constraint handles the in-
terpretation of spanning floats and is explained on
page 282; and bottom-float-footnote-constraint
defines whether or not bottom floats are allowed in
case of footnotes.

The last three constraints are replaced by
flush-float-callout-constraint, flush-float-
callout-span-constraint, and flush-bottom-
float-footnote-constraint in case flushing can’t
be done without relaxing the conditions (max-float-
num is disregarded in that case automatically).

Float area specification The key area-list
defines all float areas that are allowed in this page
layout as well as defining the order in which the ar-
eas are tried when placing floats. The keys defer-
class-close-list and defer-all-close-list de-
fine the “closing actions” for the special area which
receives the floats that could not be placed. E.g., if
a float of a certain class can’t be placed then all ar-
eas listed in defer-class-close-listwill be closed
for this class of floats. In other words the two keys
are comparable to the ones available for area decla-
rations.

Thus these keys together with the keys from the
area declarations are most important to guarantee a
sensible order of floats on the formatted page.

In an earlier implementation of the algorithm a
simpler scheme was used: there was a single area
list which was shortened whenever a float couldn’t be

14 The number 2 has historical reasons and will vanish at
some point in the future.



Frank Mittelbach

288 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

placed into it thereby confining the remaining floats
to this restricted selection. This works fine as long
as there are mainly single column floats since in this
case the area can be reasonably ordered into a single
sequence. However the moment spanning floats are
supported the situation gets less straightforward. Is
it allowed to place a later float into t12 if there is
already a float in the area t11?

It is quite likely that the current controls will
turn out to be too crude. This will be seen once a
suitable number of layouts have been produced under
this scheme (or couldn’t be produced because they
turned out to be unspecifiable).

There needs to be space between floats in an area
and areas need to be separated from each other, as
well as from the column text. For this we have the
following keys: float-float-sep is the separation
between two floats in an area, float-area-sep is the
separation between two vertically adjacent areas, and
float-text-sep finally is the separation between a
float area and the column text.15 The separation
between inline floats and surrounding text is given

15 A possible extension would be to allow ornamental ma-
terial in place of white space.

by float-inline-sep.
Grid specification To produce a grid based

design the grid-point-sep needs to be given a pos-
itive dimension. This defines the distance between
grid points on which the algorithm aligns column
text, inline floats, etc.16

To align column text at a grid point the algo-
rithm will extend the float-text-sep space. Al-
ternatively, if the nearest grid point can be reached
by shrinking that space (assuming its specification
contains a minus component) the algorithm will use
that grid point instead. In a similar fashion the space
around an inline float will be determined by the value
of float-inline-sep.

Footnote, etc., specification Finally the
key footnote-setup receives an instance of a
footnotesetup template, thereby defining how foot-
notes are handled and presented.

What is clearly missing here is handling of other
page elements such as running headers and footers,

16 Setting this parameter is not sufficient: to make grid set-
ting possible several other parameters need to be set to suitable
values as well, e.g., the distance between baselines should be
compatible and the column height needs to be a multiple of
this value.

Table 4: Example declaration for the pagesetup2 template showing all currently available keys

\DeclareInstance{pagesetup2}{mainmatter}{std}

{

% column specification

column-num = 2,

column-width = 220pt,

column-height = 610pt,

column-sep = 20pt,

% float constraint specification

max-float-num = 3,

float-callout-constraint = after,

float-callout-span-constraint = strict,

bottom-float-footnote-constraint = forbidden,

flush-float-callout-constraint = page,

flush-float-callout-span-constraint = flexible,

flush-bottom-float-footnote-constraint = none,

% area specification

area-list = {t12,t11,b11,b12,t21,b21},

defer-class-close-list = {t12,t11,b11,b12,t21,b21},

defer-all-close-list = ,

float-float-sep = 15pt,

float-text-sep = 30pt minus 8pt,

float-area-sep = 15pt,

float-inline-sep = 6pt minus 2pt,

% grid specification

grid-point-sep = 12pt,

% footnote etc specification

footnote-setup = mainmatter,

}



Formatting documents with floats

TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting 289

the folio, etc. This will be added soon.

Float formatting declarations For the attach-
ment of captions to floats there exists a prototype
interface using templates of the type buildfloat.
At the time of writing, available templates are
centeredbelow, centeredabove, and bottomright,
which center the caption below or above the float
body or place it to the right of it, aligned with the
bottom of the float body. All of them would need
to be generalized for a production system to become
more flexible.

When trial-formatting a float the algorithm
checks for the existence of a number of buildfloat
instances and uses the first one that exists to build
the float. More precisely it first checks if an instance
with the name 〈area〉-〈type〉 exists, then it looks for
〈area〉, then for 〈type〉, and finally, if none of them
exists, for an instance with the name default. So
at least the latter instance has to be declared by the
class.

\DeclareInstance{buildfloat}{default}
{centeredbelow}{}

\DeclareInstance{buildfloat}{table}
{centeredabove}{}

\DeclareInstance{buildfloat}{t31}
{bottomright}{}

\DeclareInstance{buildfloat}{t22}
{bottomright}{}

The example declaration above defines the placement
of captions above tables and below for all other types,
with the exception of the areas t31 and t22 where
the captions are set to the side.

Performance of the algorithm

To test the performance of the algorithm we prepared
a somewhat ridiculous test file containing three types
of floats (“figures”, “tables”, and “algorithms”) with
a total number of 47 floats. The chosen layout had 3
columns and 11 potential float areas. Figure captions
have been placed below the float while with tables
and algorithms the caption was placed on top. The
exception was the top areas adjacent to the outer
margin: floats placed there got their captions placed
to the right and partly into the margin. Footnotes
were collected for all columns and placed in the outer
margin.

Floats had to strictly follow their call-out and
a maximum of ten floats was allowed per page, i.e.,

roughly three per column.
Since the document contained many floats early

on (24 on page one) and the first of these was espe-
cially constructed to be not placeable the first time
around, the algorithm had to work hard to place all
the dangling floats. Table 5 shows some statistics as
produced by the algorithm on the number of trials
necessary (the highest number was 397 for 37 floats;
by comparison, equation (1) on page 279 would give
22595200368 which would probably take a bit longer
to evaluate). Note that on the third page the algo-
rithm was able to produce a float page; on all other
pages the float page trial was unsuccessful.

Table 6 on the following page shows the running
times needed to produce the final document of 13
pages when the algorithm is used with different trac-
ing settings. The test machines were a Pentium iii
650 machine and an older laptop with a 486 proces-
sor. In both cases TEX was run straight from a TEX
Live 4 CD.

These times show that the algorithm has an ac-
ceptable time performance since even on a 486 the
average time to produce a page is roughly 2 seconds.

Outlook

While the current algorithm performs well there are

Table 5: Statistics from the algorithm

STATS: floats waiting = 24 on page 1

STATS: trials = 286

STATS: floats waiting = 19 on page 2 (float page)

STATS: trials = 159

STATS: floats waiting = 37 on page 2

STATS: trials = 397

STATS: floats waiting = 19 on page 3 (float page)

STATS: trials = 166

STATS: floats waiting = 7 on page 4 (float page)

STATS: trials = 41

STATS: floats waiting = 20 on page 4

STATS: trials = 204

STATS: floats waiting = 5 on page 5 (float page)

STATS: trials = 27

STATS: floats waiting = 12 on page 5

STATS: trials = 108

STATS: floats waiting = 0 on page 6 (float page)

STATS: trials = 0

STATS: floats waiting = 6 on page 6

STATS: trials = 57

...

STATS: floats waiting = 6 on page 12 (float page)

STATS: trials = 26

STATS: floats waiting = 6 on page 12

STATS: trials = 37

STATS: floats waiting = 0 on page 13

STATS: trials = 0



Frank Mittelbach

290 TUGboat, Volume 21 (2000), No. 3—Proceedings of the 2000 Annual Meeting

several areas in which its functionality could and
probably should be extended. The most important
points are given in the following list.
• Balancing of partial pages, comparable to the
way the multicol package works, should be im-
plemented to allow for layouts where, for exam-
ple, a heading should span across all columns.

• We intend to provide more control over the
marginal areas, allowing for marginal floats as
well as other objects in the margin, properly in-
teracting with each other.

• Without much effort the algorithm could be ex-
tended to properly support double-spreads so
this should be added some time soon.

• Once the algorithm has decided which floats
to place onto a page one could add a post-
processing step in which the placement could be
reconsidered according to different rules. For ex-
ample, if the call-out relation is page then floats
will tend to be placed in the left-hand columns.
This is fine as long as there are many floats to
process but on a page with only a few floats one
might want to redistribute them differently once
it is clear which floats could go onto the page.

• Since it is known beforehand how many floats are
actively waiting to be placed, one could use a dif-
ferent algorithm that tries all possible combina-
tions as long as there are only a limited number
of floats to be placed. The boundary at which
the algorithm changes behavior could be made
customizable so that people with faster machines
(or more patience) could have the search for op-
timum running for as many floats as they like.

References

[1] Leslie Lamport. LATEX: A Document Prepara-
tion System. Addison-Wesley, Reading, Massa-
chusetts, second edition, 1994.

[2] Frank Mittelbach, David Carlisle, and Chris Row-
ley. New interfaces for LATEX class design. TUG-
boat, 20(3):214–216, September 1999.

Table 6: Running times of the algorithm

Piii (650MHz) 486DX4 (75MHz)

no tracing

real 0m1.533s 0m27.633s
user 0m1.460s 0m26.940s
sys 0m0.050s 0m0.690s

progress information

real 0m3.116s 0m36.885s
user 0m1.740s 0m34.470s
sys 0m0.080s 0m2.420s

full tracing

real 0m7.833s 1m22.480s
user 0m2.720s 1m7.890s
sys 0m0.280s 0m12.360s

Frank Mittelbach


