
58 TUGboat, Volume 22 (2001), No. 1/2

Reports

The status quo of the NTS project

Hans Hagen1

The reason

In the last decade, several initiatives were started
in extending “TEX The Program”. Most closely re-
lated to the original is ε-TEX. This program adds
some primitives to TEX that provide more control
over expansion, extends the range of registers be-
yond 255, and provides bidirectional typesetting at
the paragraph level. The fact that ε-TEX is pro-
grammed within the original WEB concept makes it
a close relative.

Donald Knuth’s main motivation for writing
TEX was the need to typeset his own books in the
best of typographic traditions. Therefore, it will be
no surprise that its typographic engine favours the
English script over other, more complicated, scripts.
Composed characters and glyphs, advanced liga-
tures, complicated input encodings, and tightly in-
tegrated multi-directional typesetting, are not han-
dled well by TEX, but they are covered by Omega,
yet another relative of good old TEX. Omega not
only provides an advanced input translation proces-
sor, it also extends the range of registers. In con-
trast to ε-TEX, Omega can handle a large number
of math font families. However, it is especially the
multi-lingual capabilities that have given Omega a
well-deserved position in the family of TEX descen-
dants.

The third major descendant of TEX is pdfTEX.
Where ε-TEX demonstrates quite well that TEX can
be extended, and Omega gives TEX its place in type-
setting non-western languages, pdfTEX lets TEX sur-
vive in the turbulent Internet environment. It does
so by providing an alternative back-end, which en-
ables TEX users to prepare documents that can be
distributed, viewed and printed without additional
resources; in color, with graphics included, and en-
hanced with hyperlinks and widgets.

Because pdfTEX can be combined with ε-TEX
it can also provide the ε-TEX goodies, but it offers
more. pdfTEX extends TEX’s paragraph building

This article first appeared in Die TEXnische Komödie,
1/2001, pages 36–53. Reprinted with permission.

1 I want to express my thanks to Jerzy Ludwichowski,
Karel Skoupý, and Volker RW Schaa for proofreading this ar-
ticle, improving the English and providing suggestions. Don’t
confuse my opinions with theirs.



TUGboat, Volume 22 (2001), No. 1/2 59

routines with character protruding (marginal kern-
ing) as well as horizontal font expansion (hz opti-
mization). In doing so, pdfTEX ensures that TEX is
still quite up to date and ready for the near future.

There are a few more extensions, like those pro-
vided by MLTEX, which focuses on 8-bit encodings
and mapping, but these extensions are small com-
pared to the ones already mentioned. Being use-
ful for European languages, they are often part of
the mainstream TEX distributions, probably with-
out users being aware of it.

So, to summarize the current state of TEX, we
can classify the programs developed so far as follows:

• TEX: the stable and bug-free ancestor
• ε-TEX: the useful successor
• Omega: the much-needed extension
• pdfTEX: the successful descendant

pdfTEX differs from the other two TEX descen-
dants in that it goes a step further in combining
more tools into one. This is a logical consequence
of the fact that it is a typesetting engine as well as
a back-end. It has to handle all aspects of fonts,
images and resources. It does so by using new
code, written within the WEB paradigm, but it also
uses existing code, available as precompiled C li-
braries, while some of its subsystems are written
from scratch in C instead of Pascal.

When TEX was written, Pascal was one of the
favourite structured languages. In order to make
TEX portable, Knuth sacrificed some of Pascal’s fea-
tures and implemented his own memory manage-
ment. Also, instead of relying on Pascal data struc-
tures, he used his literate programming environment
WEB as a wrapper. As a result, extending TEX is pos-
sible, but only to a certain extent. The main rea-
son for this is that many data structures are reused
and/or overloaded. Another handicap is that many
variables have a global nature, so that one should
be very careful in manipulating them. TEX is one of
the few programs that really benefit from faster ma-
chines since the code is highly optimized, but some-
times these optimizations have the nasty side effect
that they obscure what the code does. It is no se-
cret that pdfTEX demonstrates quite well that the
limits of extending TEX within its current concept
have been reached.

At the time when ε-TEX took shape, Omega
prototypes started to show up, and pdfTEX was not
yet invented, there was already a more structured
discussion taking place on re-implementing “TEX
The Program”. This re-implementation should be
done in such a way that extending TEX would be
more easy. This envisaged successor has been desig-

nated as The New Typesetting System, or NTS for
short.

For quite some time, the ε-TEX and the NTS
projects were combined and hosted by the German
user group DANTE. Since the start of the project,
DANTE has been funding it substantially. This
makes the project unique in the TEX world, since
the projects ε-TEX, Omega and pdfTEX were not
funded at all, or at least not to that extent. Be-
fore discussing the NTS project, we will spend some
words on the environment where these developments
take place.

The environment

Visiting a TEX user group meeting is a special expe-
rience. Such meetings often look more like a gath-
ering of family and friends than a conference of ex-
perts. This is not to say that the people present are
not experts. Actually, they are an interesting mix
of highly qualified professionals with many areas of
interest. They share the feeling that TEX is special,
and by using TEX they can express their knowledge
on paper in the way that they want. Although a mi-
nority of them has in-depth typographic knowledge
by education, they embody quite some expertise in
the, sometimes even dark, areas of high quality au-
tomatic typesetting.

Given that everything related to computers
evolves fast, the TEX community is rather stable.
Many users will stick to using TEX when they are
permitted, and even when they are forced to use
commercial software in their offices, they keep an
eye on TEX. However, open source software is gain-
ing attention and we may consider TEX and friends
to be one of the oldest examples of open source. (It
is in this respect interesting to observe that TEX
distributions are always struggling with the public
licenses, that somehow do not fit them well. Many
TEX distributions depend on stability and consis-
tency and thereby sometimes pose some restrictions,
mainly to guarantee their users a working system.)

One of the main drives for using TEX is that it
makes one independent, especially if one also uses re-
lated or similar free tools. Although there are com-
mercial versions of TEX available, some with quite
interesting extensions, the wish to be independent
implies that the successor of TEX has to originate
from the user community and so far, the extensions
mentioned before did so.

As a demonstration that TEX could be ex-
tended, Donald Knuth added the \special and
\write primitives. I think that there is much truth
in saying that although they can be qualified as
“just” extensions, both mechanisms have given TEX



60 TUGboat, Volume 22 (2001), No. 1/2

an edge over competitors. Two decades after TEX
was born, we make documents with lots of graphics,
color, and extensive referencing, all of which would
not be possible without those primitives.

This demonstrates that what can be regarded
as an interesting example of an extension today,
tomorrow can prove to be a necessity. Currently,
pdfTEX has some extensions that are waiting to be
used to the full extent some day in the future.

The number of people that understand enough
of programming, typography and user interfacing
to extend “TEX The Program”, is not that large.
Therefore, the statement that TEX is extensible
is rather an optimistic one. Even if a successor
would be implemented using today’s technologies,
this would not change much. And if some limita-
tions of the good old TEX can be qualified as fun-
damental shortcomings, this does not automatically
mean that replacing them by better alternatives can
be achieved in a couple of days programming. For
some problems there are no simple solutions, and
some of the current limitations are quite natural,
given the solution space.

The development of pdfTEX is a good demon-
stration that, although many people are involved in
testing the core program, only a few people are in-
volved in the actual development of the program.
Actually, the making of pdfTEX is mainly a one-
person job, namely Hàn Thé̂ Thành’s. But, this one
person can fall back on the experience embodied in
the TEX community. Experts in the areas of fonts,
images, PDF and macro writing can be consulted
and when they see the potential of the extensions,
they are willing to participate. The number of ex-
perts is small, but their expertise is available when-
ever needed. Those operating at the cutting edge
of what TEX can do want to be involved, and often
are involved. Fortunately only one person pulls the
car, which means that right from the start work-
ing prototypes were available, bugs were being fixed
quite fast, and what is even more important, design
decisions were made.

Because TEX has its own DVI output format,
the whole suite of related programs (think of DVI

viewers and converters and font generators) is rather
independent from commercial developments. Be-
cause pdfTEX is used also to produce PDF output,
it is more dependent on the outside world. It is no
secret that Hàn Thé̂ Thành has spent quite a lot of
time in keeping (buggy) viewers happy and figuring
out the real PDF specs. One (maybe only philosoph-
ical) question we should ask ourselves is if we want
to be that dependent. Both alternatives ask their
price.

In the last few years we have seen that (finally)
the TEX community managed to get a hold on their
multitude of files and resources. There is a well-
defined TEX directory structure and there are some
de facto standard distributions with binaries, fonts,
macros and more. As a direct result, extensions like
ε-TEX, Omega, and pdfTEX are available for every-
one who uses TEX and on many platforms.

This also means that the maintainers of those
resources (distributions) can ensure that such exten-
sions are being integrated into the current frame-
work of TEX in a natural way. For instance, when
Omega is part of a distribution, its unique (re-)en-
coding and font resources are available too. Or,
when pdfTEX is on someone’s system, one can also
be sure that the right configuration files are around
somewhere. Development of new technologies is in-
tegrated into the constant process of updating and
distributing TEX.

I already mentioned TEX user groups. They are
organized by country or language and many of them
have regular meetings and journals. Although the
number of members differs from hundreds to thou-
sands, the number of users that attend meetings is
often not more than 75–100. A survey by the NTG

showed that many members, when asked for the rea-
son to be a member, responded that they are a mem-
ber out of sympathy. Although many of them do
not understand everything that is published, they
are happy to be kept informed that there are de-
velopments. It shows them that TEX is alive. Of
course members also like the regular distribution of
CD-ROMs and the support that mailing lists pro-
vide.

So, whereas the large audience wants to be kept
informed and is willing to support the TEX commu-
nity, a small group actively attends meetings where
issues like the future of TEX, extending TEX, and
writing of macros are discussed. It will be no sur-
prise that this group harbours many of the people
that also take part in the developments.

We can summarize the main characteristics of
the TEX community as follows:

• the developers want to be involved,
• the maintainers want to be in control,
• the users want to be kept informed, and
• they all want to be independent.

It is in this framework of TEX developments
and the TEX community that I will discuss the cur-
rent state of the NTS project. So far I have been
rather general in my remarks, but I will be more ex-
plicit from now on. The following observations can
therefore be seen as personal ones, and I express my



TUGboat, Volume 22 (2001), No. 1/2 61

sincere hope that future developments may benefit
from them.

The project

I started this article by mentioning a few extensions
to TEX of which the NTS project was planned to
become one. It was started in the early nineties,
and after some years of discussion the decision was
made to re-implement “TEX The Program” using
a modern programming language and applying to-
day’s software technology.

In spite of the fact that the project has run for
nearly ten years, it is quite unknown. One reason
for this is that for a long time it was only a mental
exercise. Where each of ε-TEX, Omega and pdfTEX
at a certain point led to a real usable product NTS
only existed in the minds of a few people. I don’t
know much about what took place in those early
days, but I am told that NTS was discussed by a
broad audience, but at the moment when I joined
the team, the group of people that were taking part
in it had become rather small.

At a certain point in time the NTS dream be-
came an official project and there are not that many
of them in the TEX community. Most efforts are con-
centrated around a rather active group of develop-
ers, and driven by users who see the benefits from
those efforts. The community is rather open, and
the lines of communication are short. This means
that when someone becomes aware of an effort that
is of common interest, this knowledge spreads rather
fast.

Knowing that TEX has some limitations and
that ε-TEX could not solve them all, it should not
be a surprise that NTS became the magic succes-
sor that was supposed to solve those problems. Its
official project statement gave it a reputation before-
hand. The magic resulted from the fact that for a
long time there had been talks of a successor, but no
real progress was seen. It is interesting to observe
that meanwhile some extensions have been imple-
mented in ε-TEX, Omega and pdfTEX in a quite
acceptable way, which proves that demand can lead
to solutions quite effectively.

In many user groups, or sometimes between
user groups, projects are being launched with am-
bitious goals. Some of these projects keep rolling
while others get stuck in the conceptual phase or
merge with other efforts. Most projects in one way
or another contribute to the constant developments,
if only because their ideas merge with others. None
of these projects is really official, and as far as I
know, none of them is like the NTS project.

The NTS project, for instance, has an inter-
esting structure. There is a managing director, a
project manager, a technical director, about three
members and (since recently again) a treasurer. The
real work is done by one paid programmer. Al-
though undoubtedly the original ideas behind this
structure were sound, in practice it does not work
out that well. One reason is that this is not a
real project in the sense of projects that are being
run within institutions or companies. There are no
clear roles, and there are no clear functions amid the
structure. The project is not embedded in research,
but there have even been suggestions to organize the
project as a legal body. Apart from occasional email
exchanges, there is no day-to-day communication,
no formal responsibilities and there is no planning.

However, there is progress, which is mainly due
to the fact that there is a professional programmer
involved. Thanks to DANTE, the project was able
to hire such a programmer. One of the quoted rea-
sons behind making the conversion work into a paid
job was that it would speed up the process. An-
other reason was that it would lead to a consistent
redesign. We can safely agree with the second rea-
son, but right from the start it has proven to be
impossible to estimate how much time was needed.

The latter is in itself interesting. Given that
TEX is considered to be a well-documented program,
and given that it is almost bug free, the first very op-
timistic estimate was that a conversion would take
a few months using a rapid prototyping language.
This later became more than two years because the
prototyping stage was omitted. So far, each interme-
diate estimate for the moment when the first stage
could be finished has been wrong.

This has its (in itself valid) reasons. As I men-
tioned before, users want to be in control, and part
of this control is in using stable tools. And, “TEX
The Program” is as stable as a program can be,
both in terms of functionality and in terms of relia-
bility. This is clearly proved by the fact that during
the process of re-implementation, no bug has shown
up in the original TEX, although there are certainly
questionable areas. However, in the process of clean-
ing up and reaching full compatibility, a real bug in
TEX surfaced when processing the TEXbook.2

For many users stability means that any future
extensions, like NTS, should be able to compile ex-
isting documents and macros. For some users, this

2 The bug is related to \xleaders and makes the last lead-
ing box disappear in an inconsistent way. Karel Skoupý and
Bernd Raichle did an in-depth analysis of this bug and will
report on this.



62 TUGboat, Volume 22 (2001), No. 1/2

also means that the result should be 100% compat-
ible, both in terms of DVI output as well as the log
file content.

A considerable amount of time has been spent
on making the re-implementation 100% TEX com-
patible. As a side effect, the new code is not as
beautiful as it could be, due to some strange depen-
dencies, resulting from the requirement that also the
log files should be identical. However, this also re-
sulted in the new implementation being quite bug
free, because the programmer had to test every tiny
aspect in order to get exactly the same DVI and
log files as TEX does. Full compatibility is only the
starting point, and future (extended) versions would
be upward compatible in functionality, but will not
necessarily produce the same output.

I will not elaborate on the pros and cons of
the conversion, the problems encountered, the joy
and frustrations of the programmer, the quality of
the code, portability and the performance of the
re-implementation. In due time Karel Skoupý, the
NTS programmer, will share his insights with us in
a more systematic way, as he already did at sev-
eral user group meetings. However, I think that the
project missed a chance to research in a systematic
way why it took so long to go from one implemen-
tation to another, especially since the language of
choice, Java, qualified as a highly portable and easy
to use language.

In an earlier stage of the project a rapid pro-
totyping language was considered but this option
has been rejected in favour of Java. Given some
negative experience with this language, in terms of
sub-optimal performance, lack of portability and an
insufficient design (features), Karel has been dis-
cussing alternatives with some experts in object-
oriented programming. It is his strong belief that,
given the object-oriented design of the current re-
implementation, switching to another language is
not a real problem.

Because we were dealing with a program that
is very well documented, “which does not automat-
ically mean that the subject at hand is easy and
trivial”, it is an interesting question why the re-
implementation took so much effort. Since no sys-
tematic data has been gathered during the project,
we will never know the complete answer to this ques-
tion.

Another fact that became clear, especially in
the final stage of the re-implementation, was that
good old TEX runs much faster. The Java re-imple-
mentation is far more memory hungry and about
30 times slower in processing the TEXbook, and

thereby much slower when used in large applica-
tions. When Knuth wrote TEX, department com-
puters were much slower than today’s desktops. So
what exactly is slow? Anyhow, when one watches
the page numbers appearing so slowly on the screen,
one gets a good impression on how precise Knuth
must have been in writing code in order not to waste
much time waiting. One may argue that speed is not
an issue, but evolving macro packages are getting
more and more demanding and new features in the
typesetting engine will ask for much more processing
power.

I already mentioned that ε-TEX, Omega, and
pdfTEX have been created by individuals but were
developed with the help of users and experts. As
a result, these programs are really used. The NTS
project on the other hand has had a rather low pro-
file. When the first alpha versions were made avail-
able, only a few people did a few tests. One reason
for this is that the implementation is uncomfortably
slow, is not as portable as the development environ-
ment promises, is not yet embedded in the existing
file structures, and, most of all, does not offer any-
thing new. I believe that there are also a few more
reasons for this isolation on which I will elaborate
later.

Some of the ideas behind the original project
were to boost TEX into the future by providing a
successor with more advanced features, as well as
providing means to add a user interface. A third
objective was that anyone could take the code and
extend the program.

Even if we can envision those more advanced
features, these are not goals that are reached fast.
There are a few good ideas about areas of exten-
sions. But to say for instance that, given a nice
re-implementation, we can build a stable and full
functional multi-column mechanism is a gross over-
simplification of the problems at hand. Giving TEX
a nice user interface is not by definition something
that goes hand in hand with its batch processing
character. And, how many people really understand
the issues that TEX has to deal with to the extent
that he or she can extend the program?

People use word processors for everyday tasks,
and these programs have become better over time.
In typesetting, WYSIWYG page layout programs
have become more sophisticated, and some of the
features that made TEX famous, like its paragraph
builder, have made it into some of those. On the
other hand, TEX is one of the few programs which
can deal with today’s document encoding formats,
like for instance XML, in advanced ways. It is also



TUGboat, Volume 22 (2001), No. 1/2 63

one of a few programs that can handle database out-
put with ease and speed. And, in the math arena it
is still the best.

Times are changing, both in terms of demands
and usage patterns. The main objective for a TEX
successor is to provide better and more flexible gen-
eral purpose routines to handle any input, typeset
any document, in any language. In this respect the
NTS project is far more ambitious than its prede-
cessors ε-TEX, Omega and pdfTEX. But while all
of these are already available, used and appreciated,
the full NTS implementation is still a dream.

The status

One could expect that an effort like NTS would
make other developments obsolete. But the oppo-
site can be observed. Even after 20 years of TEX,
user group meetings show that TEX is far from be-
ing dead. At such meetings, users often demonstrate
new applications. They demonstrate specific ε-TEX,
Omega or pdfTEX features and demonstrate new
and advanced macros. When discussing those fea-
tures, and possible future extensions, NTS never is
part of the discussion.

In spite of being overloaded with official func-
tions, the project team has not managed to get a
good and promising reputation. In general, public-
ity has been handled at a bare minimum. And, even
where the project is known, it is not so per definition
in the positive sense.

One reason for this is that at a certain moment
in time, politics entered the project. I must admit
that I am only partially aware of the fine details
of the political issues, since much of what I know
comes from secondary sources. Surely some of the
DANTE internal affairs influenced the project. On
the other hand, the generous contributions and pos-
itive attitude of past and present DANTE boards
towards the NTS project have ensured that at least
the first main objective, the TEX re-implementation,
has been achieved. Unfortunately the project lost
some valuable German participants already in its
early stage, which in my opinion has damaged the
project.

I already pointed out that this project has quite
a number of official tasks in its organization. Since
I am participating in more “projects” than NTS
alone, I can safely conclude that this has been coun-
terproductive rather than productive. No other
project in the TEX world has such a formal struc-
ture, no other project has spent so much user group
money, and no other project has such a vague rep-
utation as the NTS project. Instead of having a

stronghold in the TEX community, this project has
isolated itself beyond an acceptable limit.

I want to summarize the previous observations
as follows:
• the NTS effort is largely unknown,
• the project is not really managed,
• the re-implementation is not embedded in re-

search,
• the project objectives seem to be out of sync

with reality,
• publicity has been handled badly or not at all,

and
• the project is too isolated from other develop-

ments.
It may be clear that most of the conclusions re-

sult from the fact that the project was organized in
such a way that the key players in the TEX commu-
nity were only minimally involved. In this respect, I
think that one way or another, the project became
a hostage of its own structure. In spite of this, one
of the objectives, namely the re-implementation of
“TEX The Program” has been achieved. In the next
section I will therefore elaborate on the future of the
project as I see it.

The short term objective of the NTS project
was to re-implement TEX. At the time of this writ-
ing, NTS can process the TEXbook. As Karel and
I demonstrated at the DANTE October 2000 meet-
ing, there is still a small problem in processing the
METAFONTbook, and the trip test is passed largely,
but not completely. Personally I presented the pro-
gram with some more complicated situations and
apart from a few not so dramatic bugs I am im-
pressed by what Karel has achieved so far.

In the week before DANTE 2001 Karel an-
nounced that NTS has reached the beta stage. An
important milestone was reached, namely that NTS
can operate in the de facto standard TDS (the so-
called texmf tree). From that moment on NTS
could be really used as a replacement for traditional
TEX.

In the continuous process of debugging, the pro-
grammer will also clean up some messy code, im-
prove the performance where possible and document
the source to the extent needed for further develop-
ment. Because the team is very aware of the fact
that users expect any TEX to be stable, and will ex-
pect the same from a re-implementation, the official
release date is left to the programmer.

We can safely assume that in the summer of
2001 the code will be present in the TEX archives
and part of distributions. At that moment we can
start evaluating if the money spent so far has been



64 TUGboat, Volume 22 (2001), No. 1/2

worth it. This may be a good place to mention that
the main official contributions to the project were
from DANTE (85,000 DM), GUTenberg (3,000 EUR),
TUG ($ 5,000), CSTUG (20,000 CZK for Karel’s ex-
penses), an unknown donor (5,000 DM), and the
NTG (3,000 HFL) which means that until now the
whole project has consumed over 100,000 DM. The
finances were managed by DANTE, and the regular
payments to the programmer went through Masaryk
University in Brno (Czech Republic). This univer-
sity also provided Karel with an email account and
internet facilities, for which it deserves the team’s
gratitude.

By the way I want to note that at DANTE 2001
the membership decided to provide a regular budget
for projects related in any kind to TEX, METAFONT,
METAPOST and friends. For a couple of years, the
NTG has had a similar budget for projects. The
NTS project has demonstrated the need for such
financing requirements. One obstacle has been the
proper way to handle transactions in such a way
that it fits into the tax regimes of the countries that
are involved. This topic is a good candidate for the
agenda of future cross-user group board meetings.

So, we can now safely conclude that:
• NTS version zero is there as a beta release, but

still being debugged and cleaned up,
• some basic documentation will be provided,
• soon everyone can take the source and go ahead,
• so far the project has cost about 100,000 DM,

and that
• thanks to Masaryk University we were able to

transfer the money to the programmer.
Especially the fact that there is not much money
left, causes the need to look into the future.

In recent publications in the GUTenberg mag-
azine (spring 2000) and the TUG proceedings (fall
2000), some team members have drawn conclusions
with regard to the project, its history, status and
future. These conclusions were not discussed within
the team, so a less informed reader could understand
them as the voice of the whole team. Unfortunately,
I don’t share the views aired in those articles and, if
I am right, also some other team members disagree.
To state it clearly, the following section reflects my
own thoughts and therefore should not be taken as
the views of the whole NTS team.

The future

At a certain moment in time I got involved in dis-
cussions with regard to ε-TEX, which at that time
were also related to NTS. I must say that those dis-
cussions were quite interesting, and each proposal

was considered in detail. Some made it into ε-TEX
already, others could make it into future versions of
ε-TEX, but those that were too complicated were
put on the agenda for NTS.

After a while, I got involved in the more ambi-
tious NTS project, first as a reviewer for DANTE,
later as a project member with the obligation to re-
port to the DANTE membership about the progress
of the project, since reporting had proven to be a
weak spot of the project.

I have only been involved in the last stage of
the project, a period when not many fundamen-
tal discussions were taking place within the team.
Nonetheless, I carry pleasant memories of the dis-
cussions concerning the design that I had with Karel
whenever I was visiting him in Brno. I saw it as my
main contribution to make sure that this stage was
finished and tried as hard as possible to be of help
to him.

So, in the light of my experience, how do I see
the future of NTS, or to be more specific, how do I
think a TEX successor should be developed? What
lessons can be learned from the past, and how should
we proceed?

I already remarked that the project is rather
isolated from the rest of the TEX community and I
see no indication that this will change soon. Given
this, and given that I don’t regard myself as being
a real member of the NTS team any longer, if only
because I am not one of the founding members, I
feel that my role will be finished as soon as the first
official release is there.

The language. I think that at this stage, the pos-
itive conclusion can be drawn that at least there is
a working re-implementation, possibly with all the
flaws that the language of choice imposed, but a
major goal is reached. This means that we have a
pretty good starting point for further development.

At a certain stage in the project, the decision
was made to use the Java programming language.
Such a decision is not easy, especially since everyone
has his or her favourite language. At that time,
Java was brand new and promising, and the public
relations were good.

In every discussion I had so far, this choice is
being highly criticized and not without reason. An
interesting aspect is that when discussing alterna-
tives, the availability comes up as a criterion. When
NTS started the re-implementation, Java’s future
was yet unsure and portability was (and to some
extent is) still an issue. Since we cannot foresee the
future yet, any choice can be the wrong one.



TUGboat, Volume 22 (2001), No. 1/2 65

In the current version of NTS some lines are
commented out in order to let the program run on
all platforms. In due time Karel will reflect on the
re-implementation with respect to the language used
and I’m sure that he will discuss how Java com-
pares to other languages and how well it suits proper
object-oriented programming.

I think that, in order to succeed, a group of
very dedicated people is far more important than
the programming language, especially if languages
are chosen that compile to the heavily portable C
language. It may even be of a certain charm if the
language of choice is special, and very well-suited for
the task. A strong belief in the virtues of a language
is equally important to the success as dedication to
high quality typesetting. It is my strong belief that
the project should be directed by those who do the
work. This is not to say that there is no need for
advisers in any of the areas involved.

The fact that TEX was programmed in WEB
and Pascal did not stop it from becoming available
on nearly all platforms. An important aspect of
Knuth’s efforts was the documentation. Flagged as
literate programming, the WEB system stimulates a
particular way of programming. Programmers may
like it or not, this has its charm, and it has cer-
tainly given TEX its place in the history of software
development.

One thing that strikes me when people discuss
a re-implementation of TEX, the language of choice
is a major item. Of course we can wonder why
we should keep on re-implementing TEX, and if re-
implementing NTS is an issue, but at least I want to
remark that the people involved in extending TEX
should feel comfortable with the language that is
used. There have been attempts to rewrite TEX,
and I know of at least one other re-implementation
project going on, but going from idea to full con-
ception is not trivial, if not to speak of coming up
with the right structuring for extensions. Current
TEX has some flaws, but is nevertheless rather pow-
erful (and often underestimated), so a successor had
better be really good in order to succeed.

At TUG 2000 in Oxford, a number of the peo-
ple involved in maintaining and extending TEX were
present (among them some well known TEX ex-
perts like Hàn Thé̂ Thành, Karel Skoupý, Fabrice
Popineau, John Plaice). Since the descendants of
TEX have all reached a more or less mature state,
their creators shared their views on the future of
TEX with the others experts present. Apart from
the shared vision that those developments should
converge in the near future, they all have strong
opinions about the languages that are most suitable

for a re-implementation. Most people involved in
less trivial TEX programming agree on the fact that
in order to extend, we need to re-implement. But in
what language and in which architecture is a non-
trivial decision.

Functional languages are the first choice, but
this choice is more a (challenging) academic one, and
it is understood that they are not the most stimu-
lating candidates for users who want to extend TEX
themselves. After some discussion, the language of
choice was the object-oriented language Eiffel, which
especially John Plaice considered to be a good can-
didate for a re-implementation of Omega.

Although I am completely new to this language,
I cannot deny that reading the specs alone already
gives me the good feeling that it suits such a project
well. It compares to what I felt when for the first
time I read the TEXbook, the METAFONTbook, the
(real) books about Modula, SmallTalk, Lisp and the
like.

But is a functional language, or a language with
a vision like Eiffel the best choice on the long run? In
this respect I owe much to Fabrice Popineau for shar-
ing with me his balanced visions on the ideal lan-
guages versus practical languages (like C++). What-
ever the outcome of merging these efforts into the
worthy and stable successor will be, I am sure that
those talented people will make the right decisions
with regards to the tools to use.

The design. Some time ago Karel and I discussed
the viability to implement a successor in layers, like
an efficient core in a pure imperative object-ori-
ented language, a programming layer in a functional
language, and on top of that the macro language.
Whatever choices are made, the languages that are
used should be able to interface to other languages.
Especially pdfTEX demonstrates how useful it is to
fall back on existing libraries, like those that deal
with font embedding, bitmap and PDF inclusion and
compression.

So, given that we can organize an enthusias-
tic group of people who want to spend time and
effort on a successor, and given that we have a rea-
sonable starting point in the well-organized TEX re-
implementation called NTS, there is a good chance
that in the near future a real successor will show up.

At the TUG 2000 conference as well as preced-
ing conferences the basis for cooperation has already
been laid. But, we are talking of another project,
with another name, this time properly embedded in
the TEX community, and (again) carried by the user
groups. Given the complexity of the typographic
problems at hand, this should not be a näıve effort



66 TUGboat, Volume 22 (2001), No. 1/2

to come up with a collection of a thousand classes for
everyone to extend, but a stable, flexible, and still
extendable program, that can carry on the tradition
started by TEX for another 20 years. As said, the
existing extensions combined with the NTS redesign
of TEX, provide a pretty good starting point.

Whatever course developments take, the results
should be highly usable, (intermediate) distributions
have to be stable, and the system should be open for
future extensions. Of course it should also solve our
most persistent typographic problems.

The environment. Another interesting develop-
ment is that at TUG 2000 in Oxford, Karel was
offered the opportunity to join the ETH in Zurich.
There can be no doubt that a project like NTS or its
successor will benefit from the possibility to embed
it in proper research. We will learn more about those
options when Karel has moved to Zurich (around the
summer of 2001).

A result of a more close cooperation with the
developers of TEX’s multi-lingual follower Omega
will also mean that developments can be related to
the fundamental research that will follow the next
release of Omega (this was presented at TUG 2000).

Apart from the fact that the (new) project
could benefit from more fundamental research, an
academic environment also gives access to all kind
of resources. Given that for developers such envi-
ronments can be inspiring in themselves, this will
enlarge the chance of success.

The organization. One thing that can be learned
from the current NTS project is that this is not the
way to organize a project in the TEX community.
The ε-TEX, Omega and pdfTEX projects demon-
strate clearly how a successor can be developed suc-
cessfully, while the NTS project demonstrates the
contrary. And, at a much higher cost.

At TUG 2000, I have participated in discussions
between the developers of pdfTEX and Omega and
experienced programmers and users from the TEX
community. To some extent, these discussions were
a continuation of discussions at previous user group
meetings and from email exchange.

For me, it is always a great experience to see
how people share their ideas about future TEXs, the
languages of choice, and the possibilities to integrate

ideas. It demonstrates the real power of the TEX
community when it comes to combining efforts. It
also shows the way in which the next stage in devel-
oping a successful successor should take place.

One of the leading mottos of the NTS project is
that “anyone can take the source and go forward”.
Given that the current team — except for the pro-
grammer— is not functioning in optimal form and
seems to be unable to keep up its promises, this
seems to be the right moment to take it at its word
and start a new project.

Informal discussions at user group meetings
have also demonstrated that it is quite possible to
organize those who play a role in developments in a
new team. I would not suggest this if I were con-
vinced that the current team could be reorganized.
Unfortunately there is too much historic ballast in-
volved to guarantee success. Therefore I think that
as soon as NTS version zero is released, the moment
has come to start a new thread in the development of
the successor. We need a fresh restart, run in such
a way that user groups are involved in the proper
way. We cannot do without a team, but apart from a
group of people who can represent their user group,
we also need dedicated teams for research, develop-
ment and testing.

Let’s do it. The current NTS team has managed
to re-implement TEX in an object-oriented way, so
in a sense it has accomplished its main objective.
It is my strong belief that in order to achieve the
more ambitious goals, a new team of enthusiastic
and active people is needed. During the last couple
of years I have received enough signals that such
people are there waiting to get going.

At Bachotek 2001 as well as EuroTEX 2001
there will be NTS related sessions. Especially the
(expected to be memorable) Bachotek meeting will
provide the right ambiance to make such a fresh
start. There, in the woods along the lake, team
members Jerzy Ludwichowski and Karel Skoupý will
present NTS in its full glory and invite us to discuss
the future. I hope that you will be there too.

� Hans Hagen
Hasselt, The Netherlands
October 2000 –March 2001
pragma@wxs.nl


