
TUGboat, Volume 22 (2001), No. 1/2 93

LATEX

The trace package∗

Frank Mittelbach

Introduction

When writing new macros one often finds that they do not work as expected (at
least I do :-). If this happens and one can’t immediately figure out why there is a
problem one has to start doing some serious debugging. TEX offers a lot of bells
and whistles to control what is being traced but often enough I find myself applying
the crude command \tracingall which essentially means “give me whatever tracing
information is available”.
In fact I normally use ε-TEX in such a case, since that TEX extension offers me a
number of additional tracing possibilities which I find extremely helpful. The most
important ones are \tracingassigns, which will show you changes to register values
and changes to control sequences when they happen, and \tracinggroups, which will
tell you what groups are entered or left (very useful if your grouping got out of sync).
So what I really write is

\tracingassigns=1\tracinggroups=1\tracingall

That in itself is already a nuisance (since it is a mouthful) but there is a worse catch:
when using \tracingall you do get a awful lot of information and some of it is really
useless.
For example, if LATEX has to load a new font it enters some internal routines of
NFSS which scan font definition tables etc. And 99.9% of the time you are not at all
interested in that part of the processing but in the two lines before and the five lines
after. However, you have to scan through a few hundred lines of output to find the
lines you need.
Another example is the calc package. A simple statement like \setlength
\linewidth {1cm} inside your macro will result in

\setlength ->\protect \setlength

{\relax}

\setlength ->\calc@assign@skip

\calc@assign@skip ->\calc@assign@generic \calc@Askip \calc@Bskip

\calc@assign@generic #1#2#3#4->\let \calc@A #1\let \calc@B #2\expandafter \calc

@open \expandafter (#4!\global \calc@A \calc@B \endgroup #3\calc@B

#1<-\calc@Askip

#2<-\calc@Bskip

#3<-\linewidth

#4<-1cm

{\let}

{\let}

{\expandafter}

{\expandafter}

\calc@open (->\begingroup \aftergroup \calc@initB \begingroup \aftergroup \calc

@initB \calc@pre@scan

{\begingroup}

{\aftergroup}

{\begingroup}

{\aftergroup}

∗This file has version number 1.0a trace LaTeX code, last revised 2000/02/16.

94 TUGboat, Volume 22 (2001), No. 1/2

\calc@pre@scan #1->\ifx (#1\expandafter \calc@open \else \ifx \widthof #1\expan

dafter \expandafter \expandafter \calc@textsize \else \calc@numeric \fi \fi #1

#1<-1

{\ifx}

{false}

{\ifx}

{false}

\calc@numeric ->\afterassignment \calc@post@scan \global \calc@A

{\afterassignment}

{\global}

{\fi}

{\fi}

\calc@post@scan #1->\ifx #1!\let \calc@next \endgroup \else \ifx #1+\let \calc@

next \calc@add \else \ifx #1-\let \calc@next \calc@subtract \else \ifx #1*\let

\calc@next \calc@multiplyx \else \ifx #1/\let \calc@next \calc@dividex \else \i

fx #1)\let \calc@next \calc@close \else \calc@error #1\fi \fi \fi \fi \fi \fi \

calc@next

#1<-!

{\ifx}

{true}

{\let}

{\else}

{\endgroup}

{restoring \calc@next=undefined}

\calc@initB ->\calc@B \calc@A

{\skip44}

{\global}

{\endgroup}

{restoring \skip44=0.0pt}

\calc@initB ->\calc@B \calc@A

{\skip44}

{\dimen27}

Do you still remember what I was talking about?
No? We’re trying to find a problem in macro code without having to scan too many
uninteresting lines. To make this possible we have to redefine a number of key com-
mands to turn tracing off temporarily in the hope that this will reduce the amount of
noise during the trace. For example, if we change one of the calc internals slightly,
the above tracing output can be reduced to:

\setlength ->\protect \setlength

{\relax}

\setlength ->\calc@assign@skip

\calc@assign@skip ->\calc@assign@generic \calc@Askip \calc@Bskip

\calc@assign@generic #1#2#3#4->\let \calc@A #1\let \calc@B #2\expandafter \calc

@open \expandafter (#4!\global \calc@A \calc@B \endgroup #3\calc@B

#1<-\calc@Askip

#2<-\calc@Bskip

#3<-\linewidth

#4<-1cm

{\let}

{\let}

{\expandafter}

{\expandafter}

\calc@open (->\begingroup \conditionally@traceoff \aftergroup \calc@initB \begi

ngroup \aftergroup \calc@initB \calc@pre@scan

\conditionally@traceoff ->\tracingrestores \z@ \tracingcommands \z@ \tracingpag

es \z@ \tracingmacros \z@ \tracingparagraphs \z@

TUGboat, Volume 22 (2001), No. 1/2 95

{\tracingrestores}

{\tracingcommands}

{restoring \tracingrestores=1}

\calc@initB ->\calc@B \calc@A

{\skip44}

{\dimen27}

Still a lot of noise but definitely preferable to the original case.
I redefined those internals that I found most annoyingly noisy. There are probably
many others that could be treated in a similar fashion, so if you think you found one
worth adding please drop me a short note.

∗ ∗ ∗

The package defines the two macros \traceon and \traceoff to unconditionally turn\traceon

\traceoff tracing on or off, respectively. \traceon is like \tracingall but additionally adds
\tracingassigns and \tracinggroups if the ε-TEX program (in extended mode) is
used. And \traceoff will turn tracing off again, a command which is already badly
missing in plain TEX, since it is often not desirable to restrict the tracing using extra
groups in the document.
There are also two internal macros that turn tracing on and off, but only if the user\conditionally@traceon

\conditionally@traceoff requested tracing in the first place. These are the ones that are used internally within
the code below.
Since the package overwrites some internals of other packages you should load it as
the last package in your preamble using \usepackage{trace}.

A sample file

The following small test file shows the benefits of the trace package. If one uncom-
ments the line loading the package, the amount of tracing data will be drastically
reduced. Without the trace package we get 6573 lines in the log file; adding the
package will reduce this to 1593 lines.

\documentclass{article}

\usepackage{calc}

%\usepackage{trace} % uncomment to see difference

\begin{document}

\ifx\traceon\undefined \tracingall \else \traceon \fi

\setlength\linewidth{1cm}

$foo=\bar a$

\small \texttt{\$} \stop

Implementation

This package is for use with LATEX (though something similar could be produced for
other formats).

〈∗package〉
\NeedsTeXFormat{LaTeX2e}[1998/12/01]

\if@tracing We need a switch to determine if we want any tracing at all. Otherwise, if we use
\traceoff. . . \traceon internally, we would unconditionally turn on tracing even
when no tracing was asked for in the first place.

\newif\if@tracing

96 TUGboat, Volume 22 (2001), No. 1/2

\traceon

\conditionally@traceoff

As stated in the introduction, the amount of tracing being done should depend on the
formatter we use. So we first test if we are running with ε-TEX in extended mode. In
the latter csse the command \tracinggroups is defined.1

\ifx\tracinggroups\undefined

If we are using standard TEX then \traceon is more or less another name for
\tracingall. The only differences are that we set the above @tracing switch to
true and reorder the assignments within it somewhat so that it will output no tracing
information about itself. In contrast, \tracingall itself produces

{vertical mode: \tracingstats}

{\tracingpages}

{\tracinglostchars}

{\tracingmacros}

{\tracingparagraphs}

{\tracingrestores}

{\errorcontextlines}

\showoutput ->\tracingoutput \@ne \showboxbreadth \maxdimen \showboxdepth \maxd

imen \errorstopmode \showoverfull

{\tracingoutput}

{\showboxbreadth}

{\showboxdepth}

{\errorstopmode}

\showoverfull ->\tracingonline \@ne

{\tracingonline}

Which is quite a lot given that none of it is of any help to the task at hand. In contrast
\traceon will produce nothing whatsoever since the noise generating switches are set
at the very end.

\def\traceon{%

We start by setting the @tracing switch to signal that tracing is asked for. This is
then followed by setting the various tracing primitives of TEX.

\@tracingtrue

\tracingstats\tw@

\tracingpages\@ne

\tracinglostchars\@ne

\tracingparagraphs\@ne

\errorcontextlines\maxdimen\showoutput

\tracingmacros\tw@

\tracingrestores\@ne

\tracingcommands\tw@

}

Now what should \conditionally@traceoff do in this case? Should it revert all
settings changed by \traceon? It should not, since our goal is to shorten the trace
output, thus setting all of the uninteresting values back makes the output unneces-
sarily longer. Therefore we restrict ourself to those \tracing... internals that really
contribute to listings like the above.
And one additional point is worth mentioning. The order in which we turn the tracing
internals off has effects on the output we see. So what needs to be turned off first?
Either \tracingrestores or \tracingcommands; it makes no difference which, as
long as they both come first. This is because those two are the only tracing switches
that produce output while tracing the command \conditionally@traceoff itself (see
example on page 95).

1 If some package writer has defined that command name for some reason—too bad—then we
make the wrong deduction from this fact and as a result the package will fail.

TUGboat, Volume 22 (2001), No. 1/2 97

In principle we would need to test the @tracing switch to see if there is anything to
turn off; after all, this is the conditional trace off. However this would lead to extra
output if we are currently tracing so we skip the test and instead accept that in case
we are not doing any tracing we unnecessarily set the tracing primitives back to zero
(i.e., the value they already have).

\def\conditionally@traceoff{%

\tracingrestores\z@

\tracingcommands\z@

\tracingpages\z@

\tracingmacros\z@

\tracingparagraphs\z@

As remarked above there are more tracing switches set by \traceon, however there is
no point in resetting \tracingstats or \tracinglostchars so we leave them alone.

% \tracingstats\z@

% \tracinglostchars\z@

Since this is the command that only conditionally turns off tracing we do not touch
the @tracing switch. This way a \conditionally@traceon will be able to turn the
tracing on again.

}

That covers the case for the standard TEX program. If \tracingsgroups was defined
we assume that we are running with ε-TEX in extended mode.

\else

In that case \traceon does more than \tracingall: it also turns on tracing of as-
signments and tracing of grouping.2 To keep tracing at a minimum \tracingassigns
should be turned on last (in fact like before we disassemble \tracingall and reorder
it partially).

\def\traceon{%

\@tracingtrue

\tracingstats\tw@

\tracingpages\@ne

\tracinglostchars\@ne

\tracingparagraphs\@ne

\errorcontextlines\maxdimen\showoutput

\tracingmacros\tw@

\tracinggroups\@ne

\tracingrestores\@ne

\tracingcommands\tw@

\tracingassigns\@ne

}

When turning tracing off again we now also have to turn off those additional tracing
switches. But what to turn off in what order? Since \tracingassigns is quite noisy
(two lines of output per assignment) and the whole command expansion consists of as-
signments, we had best start with this switch and follow it again by \tracingrestores
and \tracingcommands. The rest can be in any order, it doesn’t make a difference.
With the same reasoning as before we omit testing for the @tracing switch and always
set the primitives back to zero.

\def\conditionally@traceoff{%

\tracingassigns\z@

\tracingrestores\z@

2 These are my personal preference settings; ε-TEX does in fact offer some more tracing switches
and perhaps one or or more of them should be added here as well.

98 TUGboat, Volume 22 (2001), No. 1/2

\tracingcommands\z@

\tracingpages\z@

\tracingmacros\z@

\tracingparagraphs\z@

\tracinggroups\z@

}

This concludes the part that depends on the formatter being used.
\fi

\traceoff

\conditionally@traceon

Above we have defined \conditionally@traceoff and \traceon so now we have to
define their counterparts.
To stop tracing unconditionally we call \conditionally@traceoff (which in reality
is far from conditional except for not setting the @tracing switch :-) and then reset
the @tracing switch to false.

\def\traceoff{\conditionally@traceoff \@tracingfalse}

Now the \conditionally@traceon command will look at the @tracing switch and
if it is true it will call \traceon to restart tracing (note that the latter command
unnecessarily sets the switch to true as well). The reason for the \expandafter is to
get rid of the \fi primitive which would otherwise show up in the tracing output (and
perhaps puzzle somebody).

\def\conditionally@traceon{\if@tracing \expandafter \traceon \fi}

The rest of the package now consists of redefinitions of certain commands to make use
of \conditionally@traceoff.

Taming calc

\calc@open Near the start of parsing a calc expression the macro \calc@open is called. Since it
already involves a group it is perfectly suitable for our task—we don’t even have to
restart the tracing as this is done automatically for us.

\def\calc@open({\begingroup

\conditionally@traceoff

\aftergroup\calc@initB

\begingroup\aftergroup\calc@initB

\calc@pre@scan}

Making NFSS less noisy

\define@newfont Whenever NFSS determines that the font currently asked for is not already loaded, it
will start looking through font definition files and then load the font. This results in
a very large number of tracing lines which are not normally of interest (unless there is
a bug in that area—something we hope should have been found by now). Again the
code already contains its own group so we only have to turn the tracing off.

\def\define@newfont{%

\begingroup

\conditionally@traceoff

\let\typeout\@font@info

\escapechar\m@ne

\expandafter\expandafter\expandafter

\split@name\expandafter\string\font@name\@nil

\try@load@fontshape % try always

\expandafter\ifx

\csname\curr@fontshape\endcsname \relax

\wrong@fontshape\else

\extract@font\fi

\endgroup}

TUGboat, Volume 22 (2001), No. 1/2 99

\frozen@everymath

\frozen@everydisplay

At the beginning of every math formula NFSS will check whether or not the math fonts
are properly set up and if not will load whatever is needed. So we surround that part
of the code with \conditionally@traceoff and \conditionally@traceon thereby
avoiding all this uninteresting output.

\frozen@everymath =

{\conditionally@traceoff \check@mathfonts \conditionally@traceon

\the\everymath}

\frozen@everydisplay =

{\conditionally@traceoff \check@mathfonts \conditionally@traceon

\the\everydisplay}

Checking for italic corrections

\maybe@ic@ When executing \textit or its friends, LATEX looks ahead to determine whether or not
to add an italic correction at the end. This involves looping through the \nocorrlist
which outputs a lot of tracing lines we are normally not interested in. So we disable
tracing for this part of the processing.

\def \maybe@ic@ {%

\ifdim \fontdimen\@ne\font>\z@

\else

\conditionally@traceoff

\@tempswatrue

\expandafter\@tfor\expandafter\reserved@a\expandafter:\expandafter=%

\nocorrlist

\do \t@st@ic

\if@tempswa \sw@slant \fi

\conditionally@traceon

\fi

}

� Frank Mittelbach

