
Margin Kerning and Font Expansion with pdfTEX

Hàn Thé Thành

Introduction

pdfTEX has some micro-typographic extensions that
are not so widely used, for the lack of documentation
and quite complicated setup. In this paper I would
like to describe their use in a step-by-step manner
so the reader can give a try afterwards. Two exten-
sions will be introduced: margin kerning and font
expansion.

Margin kerning is the technique to move the
characters slightly out to the margins of a text block
in order to make the margins look straight. Without
margin kerning, certain characters when ending up
at the margins can cause the optical illusion that
the margins look rather ragged. Margin kerning
is similar to hanging punctuation, but it can also
be applied to other characters as well. When used
with appropriate settings, this extension can help to
considerably improve appearance of a text block.

Font expansion is the technique to use a slightly
wider or narrower variant of a font to make inter-
word spacing more even. A font that can be ex-
panded thus has some ”stretchability” and ”shrink-
ability”. The potentiality to make a font wider or
narrow then can be used by the line-breaking engine
to choose better breakpoints.

I will describe the use of those two extensions
by examples, as I find it a very good way to explain
how to use something in practice. People interested
in the concepts and further details will find more in
my thesis.

Margin kerning

The simplest use of margin kerning can look like:

\input protcode.tex
\font\f=cmr10
\rpcode\f‘\-=700
\adjustprotcode\f
\f
\pdfprotrudechars=1
Some text...

\rpcode stands for ”right protruding code”.
The first parameter is a font identifier, and the
second parameter is a character code. The third
parameter specifies the amount how much the char-
acter will be moved to the right margin. The above
example says that if the hyphen character from font

\f ends up at the right margin, it should be moved
out to the margin by 700 thousandths of its width
(i.e., 70%).

It is conveninent to specify the protruding fac-
tor for individual characters in thousandths of char-
acter width. This is also the way how \rpcode
was implemented in versions up to 0.14h. However,
this method cannot be used for characters with
zero width (”faked” characters that can be used to
protrude other elements than normal characters), so
in version 0.14h and later, the protruding amount
is specified in thousandths of an em of the font.
A macro called \adjustprotcode (defined in file
\protrude.tex) is used here to checks whether the
used version is older than 0.14h and if so it will
convert the settings for versions before 0.14h (i.e., in
thousandths of character width) to the correspond-
ing settings for later versions (i.e., in thousandths of
an em).

By default, all characters have their \rpcode
set to zero, so no characters will be protruded unless
we explicitly set \rpcode.

The primitive \pdfprotrudechars is used to
control margin kerning at global level.
• ≤ 0: no margin kerning.
• 1: level 1 margin kerning, which does not have

effect to line breaking. This setting is handy if
you want to keep line-breaking to be compatible
with TEX.

• ≥ 2: level 2 margin kerning, which usually
gives different result of line breaking. This
setting causes the line-breaking engine to take
the amount needed to protrude the characters
at the margins into account. As the result,
interword spacing is better.
Now we go for another example:

\input protcode.tex
\font\f=cmr10
\lpcode\f‘\‘=700
\rpcode\f‘\’=700
\adjustprotcode\f
\f
\pdfprotrudechars=2
Some text...

This example introduced another primitive,
\lpcode. It is the counterpart of \rpcode, used for
protruding at the left margin. The above example

146 TUGboat, Volume 22 (2001), No. 3 —Proceedings of the 2001 Annual Meeting



Margin Kerning and Font Expansion with pdfTEX

thus sets the left quote to be protruded at left
mergin and the right quote at the right margin.
We set \pdfprotrudechars to 2, which may lead
to different line breaking.

Fortunately one does not have to set \lpcode
and \rpcode for each character. A common set of
protruding factors works quite reasonably for most
of body fonts, so one can use them as in the following
example:
\input protcode.tex
\font\f=cmr10
\setprotcode\f
\f
\pdfprotrudechars=2
Some text...

The macro \setprotcode is also defined in the
file protcode.tex and it will call \adjustprotcode
after settings the common values for protruding,
that is why we do not have \adjustprotcode in
this example.

Assigment to \lpcode and \rpcode is always
global. In a LATEX document, setting up margin
kerning can look like:
\documentclass{report}
...
\input protcode.tex
\begin{document}
\setprotcode\font
{\it \setprotcode\font}
{\bf \setprotcode\font}
{\bf\it \setprotcode\font}
Some text...
\end{document}

In case the settings in protcode.tex do not
look for a particular font, you can always change it
to your taste.

Font expansion

Use of font expansion is more complicated due to
the need to create expanded versions of a font. This
task can be done on-the-fly; however, its setup is
system-dependent so I will describe rather how to
create these fonts manually.

Creating expanded fonts Font expansion can be
used with

1. fonts based on Computer Modern fonts
(i.e., Computer Modern fonts and variants for
Czech, Vietnamese, etc.);

2. Type 1 fonts;
3. Multiple Master fonts with a width axis.

Expanded fonts have the name from the base
font, followed by the expansion amount in thou-

sandths. For example, cmr10 expanded by 10 thou-
sandths (1 %) will be named cmr10+10. Expansion
value can be negative, which stands for condensing.

Putting the created fonts into their correct loca-
tion is another matter. I suggest simply putting all
expanded fonts into a single directory to play with.
Computer Modern fonts Computer Modern
fonts can be expanded by altering the unit width
in the source. For example, cmr12+10.mf is created
by copying the source of the base font (cmr12.mf),
with a line appended after the place where the unit
width is defined as:

u#:=20/36pt#; % unit width
u#:=u#+10/1000u#;

Then the changed source is used to generate the
expanded TFM as well as the bitmap font needed
for rendering the output. While using expanded
Computer Modern fonts, the corresponding entries
in used the map files must be commented out,
otherwise pdfTEX will treat them as Type 1 fonts.
Type 1 fonts Type 1 fonts are expanded by alter-
ing the FontMatrix of Type 1 fonts. pdfTEX will do
that for you, the only task is to create the expanded
TFM files. Suppose that we have an AFM file
putr8a.afm (Adobe Utopia Regular). Then creat-
ing 8y-encoded TFM expanded by 10 thousandths
(1 %) can looks like:

afm2tfm putr8a.afm -e 1.010
-T texnansi.enc putr8y+10.tfm

You also need an entry in the map files that
looks like:

putr8y Utopia-Regular "TeXnANSIEncoding
ReEncodeFont" <texnansi.enc <putr8a.pfb

Only the entry for the base font (non-expanded)
is needed. The expanded versions will be embedded
according to the entry for the base font.
Multiple Master fonts Only Multiple Master
with a width axis can be expanded. The idea is to
create a new instance with the width value increased
by the expansion amount. The following example
shows how to create an Multiple Master instance
and a variant expanded by 20 thousandths:

mmafm --weight=400 --optical-size=12 -
-width=535 -
-output pmnr8a12.afm MinionMM.afm

mmafm --weight=400 --optical-size=12
--width=545.7
--output pmnr8a12+20.afm MinionMM.afm

The magic number 545.7 comes from the ex-
pression 535 × (1 + 20

1000 ), which means that we

TUGboat, Volume 22 (2001), No. 3 —Proceedings of the 2001 Annual Meeting 147



Hàn Thé Thành

increase the width value of the base instance by 20
thousandths.

The PFB font files are created in a similar way.
Afterwards the AFM can be converted to TFM using
afm2tfm:
afm2tfm pmnr8a12.afm -T
texnansi.enc pmnr8y12.tfm

afm2tfm pmnr8a12+20.afm -T
texnansi.enc pmnr8y12+20.tfm

Similar to Type 1 fonts, only the entry for the
base font is needed in map files:
pmnr8y12 MinionMM_400_535_12_
<texnansi.enc <pmnr8a12.pfb

Using font expansion Suppose that given a font,
we know how to create expanded versions of that
font. Now let us try an example:
\font\f=cmr10
\pdffontexpand \f 20 10 5 1000
\efcode\f‘\e=1000
\f
\pdfadjustspacing=1
Some text...

The primitive \pdffontexpand says that font
\f can be expanded up to 20 thousandths, con-
densed to 10 thousandths by step 5 thousandths.
This means that only variants whose expansion
amount is a multiple of 5 are needed. In our ex-
ample, the following variants are needed (they must
be created before running the example): cmr10+20,
cmr10+15, cmr10+10, cmr10+5, cmr10-5, cmr10-10.

The last parameter is so-called font expansion
factor, and 1000 is the recommended value for most
cases. More details in my thesis.

The primitive \efcode (character expansion
factor) has syntax similar to \lpcode and \rpcode.
The third parameter says how much the character
‘e’ is allowed to be expanded in thousands, in this
case fully. This parameter can be used to restrict ex-
pansion of certain characters that are more sensitive
to expansion. The default value of \efcode is zero,
thus no expansion is allowed unless we explicitly set
\efcode.

\pdfadjustspacing is also similar to
\pdfprotrudechars, i.e., is used to control
font expansion at global level: 0: no expansion;
1: expansion with backward compatibility
(unchanged line breaking); and ≥ 2: expansion that
may change line breaking.

A macro called \resetefcode, available in the
file efcode.tex, can be used to reset all expansion
factors to 1000.

So we can try to put margin kerning and font
expansion together:
\input protcode.tex
\input efcode.tex
\font\f=cmr10
\setprotcode\f
\reasetefcode\f
\pdffontexpand\f 20 20 5 1000
\pdfadjustspacing=2
\pdfprotrudechars=2
\f
Some text...

or in a LATEX document:
\documentclass{report}
...
\input protcode.tex
\input efcode.tex
\def\setupfont#1{

\setprotcode#1
\resetefcode#1
\pdffontexpand#1 20 20 5 1000

}
\begin{document}
\setupfont\font
{\it \setupfont\font}
{\bf \setupfont\font}
{\bf\it \setupfont\font}
Some text...
\end{document}

Conclusions

Margin kerning is a simple extension but quite effec-
tive. Its setup and use is very easy, while the gain is
considerable. I would recommend it to regular use.

Font expansion must be used with care, as use
with too tolerant expansion limits can be dangerous.
According to practical experiments, the limit is
±2 %.

References

1. My thesis (PDF version): http://www.fi.
muni.cz/~thanh/download/thesis.pdf

2. Various macros for margin kerning and font ex-
pansion with pdfTEX: ftp://ftp.cstug.cz/
pub/tex/local/cstug/thanh/pdftex/ext/

148 TUGboat, Volume 22 (2001), No. 3 —Proceedings of the 2001 Annual Meeting

http://www.fi.muni.cz/~thanh/download/thesis.pdf
http://www.fi.muni.cz/~thanh/download/thesis.pdf
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/ext/
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/ext/

	Introduction
	Margin kerning
	Font expansion
	Creating expanded fonts
	Computer Modern fonts
	Type1 fonts
	Multiple Master fonts

	Using font expansion

	Conclusions
	References

