
314 TUGboat, Volume 22 (2001), No. 4

The plot functions of pst-plot∗

Jana Voß and Herbert Voß

Abstract

Plotting of external data records is one of the standard

problems of technical and industrial publications. One

common approach is importing the data files into an ex-

ternal program, such as gnuplot, provided with axes of

coordinates and further references, and finally exported

to LATEX. By contrast, in this article we explain ways to

get proper data plotting without using external applica-

tions.

1 Introduction

The history and the meaning of PostScript have been

covered sufficiently in many articles. For the program-

ming language PostScript have a look at [3, 4]. The

package pst-plot [8] under consideration here is part

of the pstricks project. It must be loaded into a LATEX

document as usual with \usepackage{pst-plot} or

alternatively, for documents written in plain TEX, with

\input pst-plot.tex.

pst-plot provides three plot macros for the repre-

sentation of external data, with the following syntax:

\listplot*[<parameter>]{<data macro>}

\dataplot*[<parameter>]{<data macro>}

\fileplot*[<parameter>]{<file name>}

The starred forms have the same meaning as with

all macros of pstricks: to plot the data in a reversed

mode. Thus, for a default black-on-white diagram one

produces the negative with the starred command form,

namely white-on-black. Additionally, a negative plot im-

plies that PostScript closes the path of the points from the

last to the first one and fills all points inside this closed

path with the actual fillcolor. For our purposes in this

article there will be no real sense in this negative view;

therefore, all of the following examples are plotted with

the normal (unstarred) form only.

For further information about pstricks, have a

look at the (more or less) official documentation [6], or

the extensive description in the “standard LATEX” book

[2] or in [1, 9]. Altogether, however, these do not fully

describe the substantial differences between these three

plot macros.

For all of the examples in this article, the complete

pspicture environment is indicated, so that the exam-

ples may be directly copied. The documentation for the

multido macro used here can be found in the package

itself [7]; macros not otherwise mentioned are described

in the pstricks documentation [6].

∗ Based on “Die Plot-Funktionen von pst-plot,” Die TeXnische

Komödie 2/02, June 2002, pages 27-34, with permission.

TUGboat, Volume 22 (2001), No. 4 315

Table 1: Possible options

style option meaning

plotstyle=dots plot (x,y) as a dot

=line draw a line from a dot to the

following one

=polygon nearly the same as line, but

with a line from the last to the

first dot

=curve interpolation between three

dots, whereby the curve can

go beyond the point of origin

and/or termination point

=ecurve like curve, but ends at the

first/last dot

=ccurve like curve, but closed

The general plotstyle parameter is particularly

important, and can take the values shown in table 1.

By default, the line option is selected.

The following general commands are also useful in

conjunction with the plot commands. They are also de-

fined by the pst-plot package:

\readdata{<data macro name>}{<file name>}

\savedata{<data macro name>}{<file name>}

In the following examples only the \readdata

macro is used, but it would be straightforward to create

examples with \savedata.

2 Examples for \listplot

The syntax of \listplot is :

\listplot{<data macro name>}

The data macro may contain any additional (LA)TEX-

or PostScript-commands. The (LA)TEX macros are ex-

panded first before they are passed as a list of x|y values

to PostScript. The data records can be defined inside the

document like

\newcommand{\dataA}{

1.00000000 1.00000000

0.56000000 0.31000000

0.85841600 0.17360000

...

or can be read from an external data file with \readdata:

\readdata{\dataA}{/anyPath/data.dat}

The example in figure 1 shows the Henon attractor,

a typical graphic of a system with chaotic behavior[5].

Figure 2 is nearly the same as figure 1, with the ad-

dition of PostScript code to get the "Draft" watermark.

(Some familiarity with PostScript is needed to fully un-

derstand its operation.) To save space, listing 2 does not

contain the data, which is nothing more than a sequence

of pairs of floats, each value separated by a space, as

shown above.

1� 1� 2

1
✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁ ✁

✁

✁

✁

✁

✁

✁ ✁

✁

✁

✁

✁

✁ ✁

✁

✁

✁

✁
✁

Figure 1: Example for \listplot

1� 1� 2

1

D
R
A
F
T

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁ ✁

✁

✁

✁

✁

✁

✁ ✁

✁

✁

✁

✁

✁ ✁

✁

✁

✁

✁
✁

Figure 2: Example for modified \listplot

Listing 1: LATEX source for figure 1

1 \readdata{\henon}{henon.dat}

2 \psset{xunit=1.5cm, yunit=3cm}

3 \begin{pspicture}(-3,-0.5)(2.25,1.25)

4 \psaxes{->}(0,0)(-2,-0.5)(1.5,1.25)

5 \listplot[%

6 showpoints=true,%

7 linecolor=red,%

8 plotstyle=curve]{\dataA}

9 \end{pspicture}

Listing 2: LATEX source for figure 2

1 \newcommand{\DataA}{%

2 [... data ...]

3 gsave % save graphic status

4 /Helvetica findfont 40 scalefont setfont

316 TUGboat, Volume 22 (2001), No. 4

5 45 rotate % rotate by 45 degrees

6 0.9 setgray % 1 is color white

7 -60 10 moveto (DRAFT) show

8 grestore

9 }

10 \psset{xunit=1.5cm, yunit=3cm}

11 \begin{pspicture}(-3,-0.5)(2.25,1.25)

12 \psaxes{->}(0,0)(-2,-0.5)(1.5,1.25)

13 \listplot[%

14 showpoints=true,%

15 plotstyle=curve]{\dataA}

16 \end{pspicture}

Naturally, [... data ...] is replaced by all

the x|y-values; they’re omitted here only to save space.

As an alternative to direct modification of the data

set passed to \listplot, one can redefine the macro

defScalePoints from pst-plot. For example, to

change the x|y values and then rotate the whole plotted

graphic (don’t ask why!), the redefinition is as shown in

listing 3.

Listing 3: LATEX source for figure 3

1 \makeatletter

2 \pst@def{ScalePoints}<%

3 %-------------------------------------

4 45 rotate % rotate the whole object

5 %-------------------------------------

6 /y ED /x ED

7 counttomark dup dup cvi eq not { exch pop

} if

8 /m exch def /n m 2 div cvi def

9 n {

10 %-------------------------------------

11 exch % exchange the last two elements

12 %-------------------------------------

13 y mul m 1 roll

14 x mul m 1 roll

15 /m m 2 sub

16 def } repeat>

17 \makeatother

This gives figure 3.

Thus, the advantage of \listplot is that one can

easily modify the data values without any external pro-

gram. Here is one more example—suppose you have the

following data records:

1050, 0.368

1100, 0.371

1200, 0.471

1250, 0.428

1300, 0.391

1350, 0.456

1400, 0.499

1500, 1.712

1550, 0.475

1600, 0.497

which perhaps came automatically from a technical de-

vice. The unit of the x-values is micrometer but it makes

1

1

� 1

� 2

✁

✁✁

✁

✁

✁

✁

✁

✁
✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁
✁

✁

✁

✁

✁

✁

✁

✁

Figure 3: Example for \listplot with a redefined

ScalePoints

more sense to use millimeter for the plot. A redefinition

of ScalePoints makes it very easy to plot the data with

this change of scale:

Listing 4: Rescale all x values

1 \makeatletter

2 \pst@def{ScalePoints}<%

3 /y ED /x ED

4 counttomark dup dup cvi eq not { exch pop

} if

5 /m exch def /n m 2 div cvi def

6 n {

7 y mul m 1 roll

8 x mul 1000 div m 1 roll% <-- divide by

1000

9 /m m 2 sub

10 def } repeat>

11 \makeatother

1 1.25 1.50 1.75

0

1

�✁�
� � �

� �

�

� �

Figure 4: Example for modified data values with a

redefined ScalePoints

3 Examples for \dataplot

\dataplot has the same syntax as \listplot, so the

first question is, what is the difference between the two?

TUGboat, Volume 22 (2001), No. 4 317

\listplot builds a list of all the data and then multiplies

all values with the length unit. This takes some time, so

you may prefer a so-called “quick plot”, where the data

can be passed more quickly to PostScript, depending on

the plotstyle and especially the option showpoints. Ta-

ble 2 shows whether this is possible. A quick plot is not

possible with \listplot, whereas \dataplot uses it

whenever possible. When it is not possible, \dataplot

simply calls \listplot.

Table 2: Possible options for a ”quick plot“

plotstyle options macro

line all, except quick plot

linearc, showpoints,

arrows,

\listplot

polygon all, except quick plot

linearc, showpoints \listplot

dots all quick plot

bezier all, except quick plot

arrows, showpoints \listplot

cbezier all, except \listplot

showpoints quick plot

curve all \listplot

ecurve all \listplot

ccurve all \listplot

\dataplot needs to be passed a macro holding the

data. The data is typically saved in an external file, which

can be read by (for instance) the \readdata macro, as

follows:

\readdata{<object name>}{<data file>}

For example:

\readdata{\feigenbaum}{feigenbaum.data}

The amount of data is limited only by TEX’s mem-

ory. The above example can be plotted with:

\dataplot{\feigenbaum}

Overlays with different data files are also possible.

For example, figure 5 shows the use of two different data

files which are plotted using one coordinate system. It

shows the sorting time for “Bubble-Sort” and “Select-

Sort” as a function of the number of the elements.

Listing 5: LATEX source for figure 5

1 \psset{xunit=0.0005cm,yunit=0.005cm}

2 \begin{pspicture}(0,-50)(10000,1100)

3 \readdata{\bubble}{bubble.data}

4 \readdata{\select}{select.data}

5 \dataplot[%

6 plotstyle=line,%

7 linecolor=blue]{\bubble}

8 \dataplot[%

9 plotstyle=line,%

10 linecolor=red,%

time

elements

Bubble-Sort

Select-Sort

Figure 5: Example for \dataplot

11 linewidth=2pt]{\select}

12 \psline{->}(0,0)(10000,0)

13 \psline{->}(0,0)(0,1000)

14 \rput[l](20,995){time}

15 \rput[r](9990,-20){elements}

16 \rput[l](4500,800){Bubble-Sort}

17 \rput[l](7500,200){Select-Sort}

18 \end{pspicture}

In short, the advantage of \dataplot is the possi-

bility of a ”quick plot“, and the advantage of \listplot

is that it is easy to manipulate the data values before they

are plotted.

4 Examples for \fileplot

\fileplot can be used whenever (x|y) data that is saved

in a file is to be plotted. The values must be given as

pure numerical values in pairs, one pair on each line,

and may have spaces, commas, parentheses, and braces

as punctuation, as follows:

x y

x,y

(x,y)

{x,y}

The tab character (\t or ASCII \009) is often used

as a separator, but tab is not valid here. Tabs may be

converted to spaces in many ways, for example with the

standard Unix utility tr:

tr ’\t’ ’ ’ <inFile >outFile

The data files may also contain % characters, but no

other characters are allowed.

Our first example for \fileplot is shown in fig-

ure 6, which is an UV/VIS absorber spectrum A = lg
I0
I

as a function of the wavelength. The second example

(figure 7) shows the evolution of a population as a func-

tion of the spawn factor (Feigenbaum diagram [5]). The

source code for these images is shown in listings 6 and 7.

318 TUGboat, Volume 22 (2001), No. 4

0 400 800 1200 1600

0

1

2

3

Figure 6: Example for \fileplot

Listing 6: LATEX source for figure 6

1 \psset{xunit=0.0025cm,yunit=1.1cm}

2 \begin{pspicture}(-25,-.25)(1950,4)

3 \fileplot[plotstyle=line]{fileplot.data}

4 \psaxes[dx=400,Dx=400]{->}(1900,4)

5 \multido{\n=200+200}{9}{%

6 \psline[linestyle=dotted](\n,0)(\n,4)%

7 }

8 \multido{\n=+1}{5}{%

9 \psline[linestyle=dotted]%

10 (0,\n)(1800,\n)%

11 }

12 \end{pspicture}

� � � �� �
�

�
�

�
�

� �
� �� �� � � � � � � � � � � � �� � � � � � � � � � � � ����������� �

�
�

� �
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

����
�

�

�

�

�

�

�

��
�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0 1 2 3
x

y

Feigenbaum-Diagram

Figure 7: Another example for \fileplot

Listing 7: LATEX source for figure 7

1 \psset{xunit=1.5cm,yunit=6cm}

2 \begin{pspicture}(-0.25,-0.05)(4.25,1)

3 \fileplot[plotstyle=dots]{%

4 feigenbaum.data}

5 \psaxes{->}(0,0)(4.05,1)

6 \rput(4,-0.05){x}

7 \rput(0.2,1.05){y}

8 \rput[l](0.2,3.75){Feigenbaum-Diagram}

9 \end{pspicture}

As you may see in listing 8, \fileplot does lit-

tle of its own. It first calls \readdata to read the data,

and then, depending on the kind of data and specified

options, \fileplot uses \dataplot for a quick plot if

possible. Otherwise, it falls back to \listplot.

Listing 8: The source of the \fileplot macro

1 \def\fileplot{\def\pst@par{}\pst@object{

fileplot}}

2 \def\fileplot@i#1{%

3 \pst@killglue

4 \begingroup

5 \use@par

6 \@pstfalse

7 \@nameuse{testqp@\psplotstyle}%

8 \if@pst

9 \dataplot@ii{\pst@readfile{#1}}%

10 \else

11 \listplot@ii{\pst@altreadfile{#1}}%

12 \fi

13 \endgroup

14 \ignorespaces%

15 }

\fileplot has the advantage of being easy to use,

but the disadvantage of needing a lot of memory: TEX

has to read the all the data values before it can process

anything. As a rule of thumb, when there are more than

1000 data entries TEX’s main menory must be increased.

Furthermore, the running time may be enormous, espe-

cially on slow machines.

To prevent such problems, one can use the macro

\PSTtoEPS to create an eps file. For more information,

see the documentation of pstricks [6].

References

[1] Denis Girou. Présentation de PSTricks. Cahier

GUTenberg, 16:21–70, April 1994.

[2] Michel Goossens, Frank Mittelbach, and Alexander

Samarin. The LATEX Graphics Companion. Addison-

Wesley Publishing Company, Reading, Mass., 1997.

[3] Nikolai G. Kollock. PostScript richtig eingesetzt:

vom Konzept zum praktischen Einsatz. IWT, Vater-

stetten, 1989.

[4] Glenn C. Reid. Thinking in PostScript. Addison-

Wesley, Boston, 1990.

[5] Herbert Voß. Chaos und Fraktale selbst program-

mieren: von Mandelbrotmengen über Farbmanipu-

lationen zur perfekten Darstellung. Franzis Verlag,

Poing, 1994.

TUGboat, Volume 22 (2001), No. 4 319

[6] Timothy van Zandt. PSTricks - PostScript macros

for generic TEX. http://www.tug.org/

applications/PSTricks, 1993.

[7] Timothy van Zandt. multido.tex - a loop macro,

that supports fixed-point addition. http://

ctan.tug.org/tex-archive/graphics/

pstricks/generic/multido.tex, 1997.

[8] Timothy van Zandt. pst-plot: Plotting two

dimensional functions and data. http://

ctan.tug.org/tex-archive/graphics/

pstricks/generic/pst-plot.tex, 1999.

[9] Timothy van Zandt and Denis Girou. Inside

PSTricks. TUGboat, 15:239–246, September 1994.

⋄ Jana Voß

Wasgenstr. 21

14129 Berlin GERMANY

Jana@perce.de

⋄ Herbert Voß

Wasgenstr. 21

14129 Berlin GERMANY

voss@perce.de

http://www.perce.de

http://www.tug.org/applications/PSTricks
http://www.tug.org/applications/PSTricks
http://ctan.tug.org/tex-archive/graphics/pstricks/generic/multido.tex
http://ctan.tug.org/tex-archive/graphics/pstricks/generic/multido.tex
http://ctan.tug.org/tex-archive/graphics/pstricks/generic/multido.tex
http://ctan.tug.org/tex-archive/graphics/pstricks/generic/pst-plot.tex
http://ctan.tug.org/tex-archive/graphics/pstricks/generic/pst-plot.tex
http://ctan.tug.org/tex-archive/graphics/pstricks/generic/pst-plot.tex

	Introduction
	Examples for \listplot
	Examples for \dataplot
	Examples for \fileplot

