
TEX File Server

Karel Skoupý

Computer Systems Institute
ETH Zürich, Switzerland

PrevPg NextPg Back Next TOC Quit 1/11

Motivation

• The ls-R database is read for every run of
a program (TEX, METAPOST)

• Each program has its own copy of the ls-R hash table

• Let’s read the ls-R database only once for all programs

• Let’s share the ls-R hash table

PrevPg NextPg Back Next TOC Quit 2/11

The Idea

TEX MetaPost

TFS

TEX

PrevPg NextPg Back Next TOC Quit 3/11

File Finding and Transport

local sockets
tcp sockets
file access
http (ftp)

TEX

kpathsea

MetaPost

kpathsea

TFS

kpathsea

TEX

kpathsea

FS

HTTP
server

PrevPg NextPg Back Next TOC Quit 4/11

Protocol

• Client requests:

− FIND filename path LF
− MAKE filename path LF
− FINDALL filename path LF
− MAKEALL filename path LF

• Server answer:

− OK LF
file-location LF
file-location LF
....
LF

− ERR number mnemo LF

PrevPg NextPg Back Next TOC Quit 5/11

Configuration

• Server side:

− standard texmf.cnf

• Client side:

− TEXMFDBS without the ls-R-enabled elements

− TEXMF with the ls-R-enabled elements replaced
by: tcp/hostname=port/path
or: unix/=port/path

PrevPg NextPg Back Next TOC Quit 6/11

Implementation Size

• Server: simple C++ program on top of kpathsea

− tfs.h: 101 lines of code
− tfs.C: 371 lines of code
− total: 472 lines of code

• Client: small change to kpathsea

− remote.h: 15 lines of code
− remote.c: 264 lines of code
− changes to pathsearch.h: 5 lines of code
− changes to pathsearch.c: 15 lines of code
− total: 299 lines of code

PrevPg NextPg Back Next TOC Quit 7/11

Efficiency Formula

Timetfs = Timeold − x + n× y

• x = time of reading ls-R databases
• y = overhead of socket communication for one query
• n = number of queries during processing

PrevPg NextPg Back Next TOC Quit 8/11

First Performance Measurements

Simple presentation A lot of METAPOST calls

100 90.4 92.5 100 86.8 82.6 (%)

Normal, TCP sockets, UNIX sockets

PrevPg NextPg Back Next TOC Quit 9/11

Plans

• Implementing of HTTP/FTP transport

• Turning prototype into a ready-made software

• Windows port

• Providing support for flexible distributed configuration

PrevPg NextPg Back Next TOC Quit 10/11

Conclusion

• Saving time

• Saving resources

• Potential reduce of local installation

• Network transparency

• More flexible setup

PrevPg NextPg Back Next TOC Quit 11/11

TOC

1 Motivation

2 The Idea

3 File Finding and Transport

4 Protocol

5 Configuration

6 Implementation Size

7 Efficiency Formula

8 First Performance Measurements

9 Plans

10 Conclusion

11 TOC

