
The (LA)TEX project: A case study of open source software

Alexandre Gaudeul
University of Toulouse
France
alexandre.gaudeul@univ-tlse1.fr

Abstract

The TEX typesetting software was developed by Donald E. Knuth in the late
1970s. It was released with an open source license and has become a reference in
scientific publishing. TEX is now used to typeset and publish much of the world’s
scientific literature in physics and mathematics.

This case study serves as a critical examination of the stylized facts uncovered
in previous studies of other open source software projects, such as GNU/Linux, an
operating system, and Apache, a web server. It is sponsored by CNRS, a French
research agency, and is supported by the University of Toulouse in France and
the School of Information Management and Systems in Berkeley.

The comparison centers on the historical development of the project, the
organization, both formal and informal, that supports it, the motivations of the
developers, and the various dynamics that are at work and influence the project.

The case study explores the economic impact of the TEX software which
is sold through TEX-based commercial applications and used in the typesetting
industry and various institutions. It is an exploration of how the open source
nature of the program made a difference relative to what would have happened
had it been commercial software.

1 Motivation

I have been working for one year now on a case study
of TEX as open source software. Since TEX branched
out into many different projects, this case study is
in fact a sum of case studies about those different
projects, and a reflection on the dynamics of the
whole project. This whole project will be called the
TEX project or simply ‘TEX’. My aim is to pro-
vide some elements to improve the way in which
open source software projects (‘OSSPs’) are man-
aged, and also help policy makers gain a better un-
derstanding of the open source (‘OS’) phenomenon.1

This case study serves as a critical examination of
the stylized facts uncovered in previous studies of
other open source software projects. Some better
known and studied OSSPs are GNU/Linux, Perl and
Apache (an operating system, a programming lan-
guage and a web server, respectively). The TEX

This research paper includes open-ended questions and
projects for future research. This is very much a work in
progress, and no statements here are definitive. I am very
interested in feedback from all participants in the TEX com-
munity, and you are invited to point out my errors, false
opinions and omissions.

1 For simplicity, the difference between free and open
source software will not be dealt with here, and the term
‘open’ will be used.

project differs from those projects: While TEX did
fulfill unmet software needs and was general-purpose
software, its users’ community was not necessarily
technically sophisticated, and the software was not
part of a computing infrastructure. It was indeed
quite specialized (font design, typesetting) and what
is more, had to face intense competition on all sides,
from word processing software to industrial publish-
ing software.

There are few case studies that deal with one
open source software project and try to look at its
functioning in economic terms. In the last few years,
open source software economics has been the subject
of much empirical and theoretical research. That
research relied on an examination of the most well-
known and successful OS projects, or on the study
of limited aspects of open source software, based on
some partial statistical measures like the number of
contributors, lines of codes, bugs or release dates.

This case study tries to go beyond these well-
trodden areas by studying a less well-known software
project, which differs in many ways from those that
have already been studied; it also aims at having a
global vision of its history and functioning so as to
generate new measures of the economic impact of
open source. The conclusions from this study chal-

132 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

lenge the consensus built from previous case studies
on open source software (‘OSS’) development. This
case study goes deeper into the complexity of the in-
ternal working of the various TEX projects, and elim-
inates the ‘survivor’ bias present in previous case
studies by going into the TEX project problems en-
countered along the way as much as the successes.

This case study is sponsored by GREMAQ, a
CNRS research group in mathematical economics at
the University of Toulouse in France, and IDEI, a
research institute in industrial economics. A widely
attended conference on the economics of the soft-
ware and Internet industries is held in Toulouse ev-
ery year, and open source software is one important
research area for those two laboratories. This case
study also benefited from the support of the School
of Information Management Systems in Berkeley. I
have worked with Jacques Crémer and Jean Tirole
in France and Hal Varian in the USA, and I thank
them for their advice and suggestions. I also thank
the many TEX developers, maintainers and associ-
ations members who answered my questions with
unflappable kindness.

In the first part of this paper, the theoreti-
cal background to this case study is presented; in
the second part, the choice of TEX as a case study
subject is motivated; and the third and main part
presents some preliminary findings.

2 Research background

There are three main themes in the existing body
of economic literature on open source software.
Economists first tried to explain how people could
collaborate freely and for free and produce in that
way valuable information goods. Some principles
were then expressed for the regulation of such eco-
nomic activity, and finally, tools were devised to
evaluate the welfare impact of OS production.

How do open source software projects work,
and why do they work so? The literature on this
topic builds upon the theory of incentives: the way
somebody is motivated determines what he will do.
Bessen (2002) defined the different categories of par-
ticipants in an OSSP and their motivations. Core de-
velopers are those whose work determines the pace
of the overall development, as other developers’ work
depends on what they do. Satellite developers are
those who build upon the work of core developers
to add features that are geared to special inter-
ests. Other developers make that work available to
the general public by building interfaces to the pro-
gram, maintaining distributions, or reporting prob-
lems with the software. There is generally an organi-
zation that coordinates the work of every developer

and defines some goals for the project. That organi-
zation usually builds around an individual, usually
the initiator of the project but, with time, coordi-
nation and development tasks are shared.

The existence of OSSPs can be explained with
simple economics — OS software is cheaper than pro-
prietary ones, developers want to work on it to de-
velop their reputation and then trade on it in the
job market or to develop an expertise in software
they use professionally. It can also be explained
with other reasons that Richard Stallman of the Free
Software Foundation was instrumental in promot-
ing — free expression of creativity, sense of belonging
in a community, ideological motivations, wanting to
reciprocate the gifts in software codes made by oth-
ers, etc. From a technological point of view, the
birth of OSSPs may have been inevitable: as people
learned how to program and could customize soft-
ware to their own needs, they developed a common
body of work and shared it like general knowledge.

The second theme in economic research on OSS

deals with the economic principles that must inform
their regulation and legal environment. It uses the
theory of organization and public economics to de-
termine how OSSP should be regulated to produce
maximum welfare. There is for example an impor-
tant debate over what license terms are best in what
setting. License terms balance the need for control
over the development of the software versus the pos-
sibility of change under the influence of others, and
balance private incentives versus group incentives:
Proprietary license terms give individual develop-
ers more control over their work, while GPL-type li-
censes reduce individual economic incentives — the
economic surplus generated by software cannot be
appropriated— but may generate higher overall wel-
fare. BSD-type license terms stand in between. The
legal environment also influences the level of in-
novativeness in software design— people may not
want to contribute their best ideas to OSSPs — but
a wider pool of developers who are not concerned
about the acceptability of their ideas to the wider
users’ community may end up generating more orig-
inal ideas. License terms also influence how the wel-
fare will be distributed, as they may favor develop-
ers vs. end-users. Finally, proprietary software fa-
vors efficient coordination in a closed environment at
the expense of keeping development secret to most
people.

The third theme in OSS economics is the inter-
action between not-for-profit and commercial soft-
ware. Industrial economics and game theory ex-
plain how both types of development methods com-
pete and complete, and how commercial firms use

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 133

Alexandre Gaudeul

OSS and draw on the OS developers’ community.
The various strategies for making money on OSS

are studied— selling CDs, manuals, developing pro-
prietary software based on OS and using it for pro-
fessional purposes or selling it to the public, selling
advice to OSS users, etc. The efficiency with which
both types of software are developed are compared,
as well as the end-product’s quality and how they
compete on the software market. Because we al-
ready have tools to evaluate the welfare effects of
proprietary software, the comparison between OSS

and proprietary ones gives some leads for the ap-
praisal of their welfare effects.

3 A reference point: GNU/Linux

Before presenting of some preliminary findings, the
main differences between TEX and Linux are out-
lined; this gives a reference point to people who
learned about open source from the example of
Linux. I also motivate the choice of TEX as the sub-
ject of this case study. The TEX project differs in
many important ways from the Linux project. They
were not developed in the same period, TEX has a
much longer history, and they are distributed un-
der different license terms. The TEX project’s size,
evaluated by the number of people who develop TEX
and LATEX, is considerably smaller than the size of
GNU/Linux project; as a matter of fact, GNU/Linux
distributions generally include TEX and LATEX. Fi-
nally, the goals of the projects were different.

Donald E. Knuth developed the TEX system
in the late 70s, before the Internet came to be the
tool it is today for organizing open source communi-
ties. The community surrounding the software went
through many changes over many years, accompa-
nying the evolution in the standards used for pub-
lishing and in the way software developer commu-
nities work. Linux, on the other hand, was started
in the 90s, relied on the existing open source com-
munity, and used tools already developed for the
GNU project and others. The TEX project provides
a long-term view of the history of an open source
software project. Its relatively self-contained devel-
oper community went through several stages in its
development: this study may thus help in predicting
the future of other more recent open source software
projects.

TEX is a medium size software project; it is not
an operating system like Linux, but is still a com-
plete typesetting system with many interdependen-
cies. TEX provides a sufficient level of complexity
to be the subject of a self-contained case study, but
small enough to be studied as a whole. The project
can be understood without relying on catch phrases

and slogans, unlike many studies of Linux.
The communities that grew up around the two

systems were different. TEX was developed by aca-
demics as part of their research programs, publish-
ers who used it for typesetting books and journals,
and developers who provided commercial versions
of the software. Development of TEX was prag-
matic, funded by government research programs and
universities, by its release under proprietary license
terms, or from the revenues of selling CDs and manu-
als. Linux on the other hand drew a community that
was motivated by more abstract, ideological goals —
building an alternative to Microsoft— or by the pro-
gramming challenge — getting to work on an oper-
ating system. Of course, the contrast should not be
pushed too far; independent, ‘amateur’ developers
who were not motivated by profit also contributed
to the development of TEX.

The license under which TEX is distributed is
essentially a BSD type license, while Linux was re-
leased under the GPL. Their license terms made
a difference in the way both software developed;
BSD licensed software must compete with propri-
etary systems based on the same source code. Be-
cause of that higher level of competitive pressure —
and maybe for other reasons too — BSD projects are
usually more disciplined than GPL ones; all OS de-
velopment efforts bear onto the same, coherent dis-
tribution. This guarantees in principle that no de-
velopment effort is wasted and that the OS software
doesn’t split into many incompatible projects.

The LATEX Project Public License thus pro-
moted the creation of a single common TEX distri-
bution; all changes to it must be distributed with
the original distribution. The TEX system was thus
very stable, but it was difficult for newcomers to
integrate and influence the team that decided what
that distribution was going to consist of. There were
times when many competing versions of the same
package existed until one became dominant and a
part of the standard distribution. Therefore, no one
person asserted him/herself as a leader for the TEX
project; its development was the product of the com-
petition between packages, and each package in TEX
remained under the control of one person or of a sta-
ble and limited set of developers.

Modules in Linux drew a more diverse set of
contributions and there was thus the need for a
leader who would coordinate and integrate contri-
butions. D.E. Knuth implemented changes in TEX’s
core (tex.web and the kernel) after consultation
with other developers but essentially alone, as he
took sole responsibility for the TEX core. Linus Tor-
valds, on the other hand, had to integrate changes in

134 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

the code that were proposed by others, because any-
one could take the kernel and make his own changes
in it. This is how D.E. Knuth’s authority was built
into the system while Linus Torvalds had to assert
his authority based on his charisma as a leader.

TEX was user-oriented from the beginning; it
was meant to provide an interface between authors
and publishers. People without any programming
background were to be able to learn how to use it.
This is in contrast with Linux or Apache, which
were meant for people with a programming back-
ground. This difference allows one to test whether
OSS can be popular beyond the programming com-
munity. While Linux versions were released very
frequently, the users’ orientation of TEX led its de-
veloper to release new versions of their packages only
after consultations with the user base, and only after
having made sure they would maintain compatibil-
ity with older versions of the software and that they
did not contain serious bugs. The development of
Linux was made in the open while TEX packages
were mostly created in small developers’ groups and
released only after full completion. In both cases,
though, the interface between developers and users
was taken care of by the people who managed the
distributions of the software — those who organize
and classify others’ independent work, make their
code work together, and choose which packages to
include in a standard installation of the software.

4 Some preliminary findings

This part shows you have to be very careful when
writing the initial code of a software project, as it
will influence all future development. Any choice at
this stage should be carefully evaluated using the
lessons from the past.

This part is organized into three main sec-
tions. The first deals with the output from the TEX
OSSP — the software code. Its initial quality influ-
enced its later development. The software’s quality
is evaluated by comparing it to equivalent propri-
etary software. The second section examines the
software development process and its dynamics, and
will focus on its leadership: OSSPs need independent
minded leaders who begin by implementing their
ideas and only then share the result with others.
The third section is a study of the framework in
which the development of the software took place —
it is concerned with the governance and institutional
design of OSSPs. TEX provides a rare example of an
OSSP where users organized to influence the devel-
opment of the software.

4.1 TEX code: Characteristics and quality

4.1.1 Importance of the initial code

There is a conflict between the perfection of the cod-
ing of the initial software and the ease with which it
can be changed afterwards. Knuth wanted to pro-
duce compact software that would run fast and be
devoid of any bugs. He thought a stable system was
preferable to an evolving one. This was justified for
TEX, as it was to become a system used by non-
specialists. The OS development model— ‘release
early and often’— would have led to much confu-
sion in the user community, and to compatibility
problems for those using different versions of TEX.

Knuth’s code was originally organized in mod-
ules but, as it got optimized, the code became very
tightly integrated. Each part became dependent on
each other and the whole began to look monolithic.
The language that was chosen at the beginning (Pas-
cal) soon went out of fashion, and the software’s re-
strictive license terms made it difficult to change, as
changes couldn’t gain official status.

On the other hand, while the software remained
monolithic, TEX82 was a complete reworking of
TEX78 that made many settings parametric instead
of automatic, making powerful macros from TEX’s
primitives possible. This satisfied TEX developers
for a long while, during which the core code re-
mained firmly under Knuth’s control.

This is why it is only quite late in TEX’s de-
velopment that the core’s limitations became ap-
parent, and it became necessary to make it eas-
ier to change, for example by organizing its mod-
ules into libraries. TEX’s license terms are such
that the name “TEX” is reserved, so that Knuth
was able to freeze TEX’s core. This would not have
been a problem — developers always could take the
TEX program and rename it — but since Knuth did
not designate a successor, there was no focal point
on which developers could synchronize. Developers
were not able to change the core, or more to the
point, couldn’t initiate a group dynamic to adopt
the changes they made. This would have required
a long-term commitment, perfect knowledge of the
program and close coordination since any change by
one would affect all the others. It soon became clear
it was not possible to lead such a project with peo-
ple linked only through electronic means; the core
of TEX had to be reworked by a devoted team so as
to make it modular.

This task was taken up by the NTS team, but
it took too long to deliver a finished product. When
NTS was finally delivered, it was not used except for
experimental purposes. This shows the importance

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 135

Alexandre Gaudeul

of getting things right in the first place; by the time
the program had been rewritten, most TEX users
and developers had preferred to base their future
use of TEX on other, less ambitious, alternatives,
such as pdfTEX.

In summary, independent development of the
program was delayed because TEX evolved into a
monolithic program that was intended to become
a standard in publishing and was developed in a
closed academic setting. While Knuth’s objectives
were realized, subsequent development was difficult,
in a new setting where TEX users and developers
had to coordinate through electronic means and the
OSS developer community was established around
concepts and tools different from those of the first
TEX implementors. The TEX program had to be
translated into the now-ubiqitious C programming
language, and when the rewriting of the core into a
modular structure proved impossible, the efforts had
to be directed towards helping TEX users manage
the TEX legacy by making it compatible with the
new typesetting standards.

On the other hand, it is not clear that TEX
could have been developed from the beginning in
an OS fashion. While the core did not get changed
in an OS way, the program did attract a lot of in-
dependent development, notably on LATEX. That
TEX’s core was not developed strictly according to
OS paradigms could be evidence that OSS develop-
ment methods are only appropriate when a base
product has already been completed but are diffi-
cult to put into practice for the base product. It is
also possible this was due to the nonexistence of an
organized OSS developer community at the time.

4.1.2 Impact of TEX on innovation and
welfare, and evaluations of quality

In this section, the quality of the software from var-
ious points of views — users, developers, and com-
puter science researcher— is compared with com-
peting proprietary software.

There was no software even remotely up to the
standards of TEX when it was developed.2 The gen-
eral program used at that time for typesetting was
called ROFF, a text formatting language/interpreter
associated with Unix, and for a long time there was
some competition between the partisans of ROFF

and TEX. The main competing software for the ca-
sual user is now Microsoft Word. Even though Word
is WYSIWYG while TEX is not, and the audience is
therefore very different, the two compete because

2 With the exception of a couple of very expensive, pro-
prietary systems, e.g., Penta. Ed.

TEX saw itself as a potential standard for document
exchange. The main competing software for type-
setting of complex mathematical documents in the
publishing industry is 3B2. Adobe Framemaker and
QuarkXPress are also popular alternatives.

A frequently asked question is whether OSS re-
places proprietary software and whether it under-
mines innovation by imitating proprietary compa-
nies. In the case of TEX, it is quite clear which way
the inspiration went. Some aspects of TEX were imi-
tated, for example the equation editor in MS’s Word
and TEX’s hyphenation and justification algorithm
in Adobe’s InDesign. Other commercial software
eased the use of TEX by adding a graphical user
interface and porting it to other platforms —this is
the case of Personal TEX’s PCTEX, the first IBM PC-
based TEX system, or of MacKichan Software’s Sci-
entific WorkPlace which integrates TEX and Maple.
It is TEX which inspired commercial development
much more than the reverse.

It is also not clear whether commercial and OS

products complement or substitute for one another.
There are examples of dual use, some typesetting
firms using TEX internally and delivering the fin-
ished product with 3B2. There are also examples
of users and firms switching back and forth between
OS and proprietary software. TEX Live, for exam-
ple, did take some business from commercial imple-
mentations, especially since it is easier to maintain
using Linux based network management software.
The competition is very rarely frontal, and few TEX
projects see themselves as ideologically opposed to
commercial software. TEX did take the place of
other commercial software though, but while it re-
placed obsolete proprietary typesetting software at
the AMS, it also inspired other proprietary software
(principal concepts, line breaking algorithm, syntax)
and it paved the way for getting typesetting software
in the hand of the users instead of that of the type-
setter. It initiated a new workflow in publishing.
Additionally, some of the first people to use TEX
did not see commercial software as an alternative
and TEX was a way for them to obtain functionality
not present in (affordable) commercial software.

Finally, the development of TEX was encour-
aged by potentially competing commercial software.
Hàn Thé̂ Thành received a scholarship from Adobe
to develop the pdfTEX program; this was in the in-
terest of Adobe as it wanted to gain more general
acceptance for its software and was also a way to
encourage exchanges with the OS community. The
competition between OS and proprietary software is
based on subtle mechanisms that are deserving of
further study.

136 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

While a comparison of the welfare generated by
TEX with that which would have been generated by
a proprietary program may appear to be a futile aca-
demic exercise, TEX was developed as an alternative
to commercial software that was used by the AMS in
its publishing section, and the AMS did ponder what
was the best option: wait for commercial software
to be released that would fit their need, or give the
impulse to a new, open source, software. The com-
parison between TEX and a hypothetical equivalent
commercial software can be made in terms of inno-
vation, responsiveness to users’ needs, pace of devel-
opment, capacity to integrate into existing systems
and the efficiency with which the software is devel-
oped.

Proprietary software is sometimes out of touch
with users, as developers are not users. But in OS,
developers are sophisticated users, which means the
software may not be at the reach of the average
user. As far as OSS is a tool for average users
whose needs are not fulfilled by proprietary firms,
then its development may be as misdirected as that
of closed-source software, although in other ways.
However, the development of TEX and LATEX was
made after consultation with professionals from the
publishing industry and meetings with the AMS —
the first sponsor and user of TEX. In the summer of
’79, Barbara Beeton of the AMS and Michael Spi-
vak —both of whom went on to important positions
in the TUG organization and others — spent time
in Stanford developing TEX macros to test TEX ca-
pabilities for such AMS requirements as generating
indexes. Their work led to a series of suggestions for
improvements, and to the AMS giving its backing to
the project.

The LATEX3 project members also consulted
with the AMS and various TEX user groups, pub-
lishers such as Addison-Wesley and Elsevier, and
got support from companies, some that sold TEX-
based software — Blue Sky Research, TCI Research,
PCTEX —but also Digital Equipment Corporation,
Electronic Data Systems, etc. David Rhead gath-
ered the wishes of users from email discussion on
the LATEX discussion list. Those wishes were mainly
about the page layout specifications and the user-
interface design, things that are of primary concern
to users and not so much to developers. This close
collaboration with professionals in the typesetting
and publishing industry, which can be illustrated in
many other examples, goes against the view that
OSS that is too geared towards specialist use will
not be successful (Schmidt and Porter [2001]).

It is often said that the pace of improvements is
quicker in OSSPs. Improvements in proprietary soft-

ware are not released frequently, since there is a cost
to doing so, and their owners want the improvement
to be valuable enough for existing users to buy it.
But with OSS, it is difficult to coordinate the user
community on the most recent improvement; this is
a problem as the software is used for collaborative
work, and people want stability. In the case of TEX,
the solution was to design standards for the classifi-
cation of packages and requiring new packages to be
distributed with older, approved ones so as to guar-
antee the availability of a complete working set of
packages to users.

Standards are difficult for proprietary software
firms to adhere to because they want to protect their
user base — prevent it from switching —and also be-
cause the source is closed, so that it is difficult to
create applications linked to it. However, software
firms that propose development platforms to pro-
grammers are also interested in the promotion of
their platform, and usually are able to establish and
maintain them as a standard. OS projects on the
other hand generally find it difficult to coordinate
on a standard. While this may not be a problem
because OS is usually platform independent, it is dif-
ficult to keep code operational when there are con-
stant changes to the underlying operating system
and compiler platform (Torzynski [1996]).

While the sharing of information may be done
less efficiently in OS projects than in proprietary
firms, the pool of information that can be shared is
expanded. Many contributors to TEX would prob-
ably never have worked in a commercial firm, and
even when they were hired in commercial firms, such
as Elsevier, they continued contributing their im-
provements to the wider community. Overall, if it
is possible to prove that OS developers would not
be able to do what they do in a closed environment
and that what they do would not be done by propri-
etary software, then OSS is beneficial. As an OSSP

develops however, it can grow to come into competi-
tion with closed source: there is competition at the
fringe, when users could use both.

The situation is complicated by the fact that
some proprietary software may be based on OS and
compete with pure proprietary software. Some work
would need to be done to compare publishing firms
that use OS software (Hans Hagen’s Pragma ADE

in the Netherlands, B. Mahesh’s Devi Information
Systems in India) versus firms that use proprietary
software. There is a difference in the nature of up-
front cost, maintenance efforts, level of support, pos-
sibility of improvements, capabilities, etc.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 137

Alexandre Gaudeul

4.2 The process

4.2.1 Dynamics of the project

Various forces direct the development of TEX, due to
the different concerns, objectives and priorities of its
developers who come from different fields and make
use of TEX in different ways. Over time, with the
user base changing and the software’s environment
evolving, different types of priorities have emerged:
in the first period, Knuth’s own objective was to de-
velop software that could do mathematical typeset-
ting by computer that was worthy of the best man-
ual typesetting tradition. Then, when he felt his
objective was achieved, the AMS wanted to make
this instrument available to the wider mathemati-
cal community, and sponsored the development of
AMS-TEX and its subsequent merging with LATEX.

Later on, the objective of the subsequent core
developer teams was to make use of new computer
capacities and make TEX more easily extendable
with the use of new programming tools (Ω, NTS),
while also establishing a standard LATEX to pre-
vent forking— LATEX2ε by the LATEX3 team. At the
same time, some work was necessary in making TEX
able to produce not only pdf and html documents,
but also Framemaker and Word documents. The
work on making TEX compatible with proprietary
standards was first done by commercial companies.
Among the priorities, keeping up with competitors’
functionality, such as Adobe or WordPerfect, does
not seem to have been important, as TEX develop-
ers advocated the use of free source fonts instead
of commercial fonts, and mark-up-based document
writing instead of Word-like WYSIWYG programs.
There are, however, some open source projects try-
ing to achieve greater user friendliness — David Kas-
trup’s preview-LATEX package to ease editing, LyX, a
document processor using LATEX in the background,
GNU TEXMacs, inspired by TEX and GNU Emacs,
etc.

Competition between different development
philosophies also worked to determine what works
and what doesn’t and which way the overall project
had to go. An illustration is the difference in philoso-
phy between the NTS project and pdfTEX: the NTS

team wanted to keep compatibility with the initial
version of TEX, while totally rewriting the code —
rewrite the WEB Pascal program into the Java pro-
gramming language. pdfTEX, on the other hand,
was based on the C implementation, less general-
ized in scope, but easier to work on (Taylor [1998],
Hàn Thé̂ Thành [1998]).

4.2.2 Limits of the project

Does the OS development process or the specific OS

institutions that support development put limits on
the growth and success of open source software?

Growth and success are important because even
if the software functions in accordance with the
stated aims of the project initiator and the initial
user community, it will quickly become obsolete and
useless, even to those same people, if it is not main-
tained to keep up to date with the changing software
environment. This can justify changing the aims of
the software’s community, even in ways not to the
advantage of the project initiators, if that can make
the software more attractive to new developers.

The pace of development slowed over time.
The graph represents the number of bugs found by
Knuth in the core program through time. After
TEX82 was released, Knuth stopped implementing
general user requests, except for allowing 8-bit input
in 1989. Since the whole TEX system refers back to
the core of TEX, its pace of development is indicative
of what is happening in the wider TEX community.

There is however a difference between develop-
ment and diffusion. As the software’s main tree de-
velopment is blocked, it can still be adapted to new
platforms, translated, and people trained to use it.
Nonetheless, it is still true that it will be more diffi-
cult to diffuse if there is nobody ready to make the
necessary tinkering in the software code to permit
adaptation to new usage.

The diffusion of TEX can be evaluated by look-
ing at the number of requests for support in TEX-
related newsgroups, the number of TUG members,
and the number of academic papers written with
TEX. While postings to the English-speaking news-
group reached a plateau— probably because most
questions were already answered in English and ref-
erenced in FAQs! — newsgroups in other languages
attest to the vitality of the international growth of
the user base.

There are some technical limits to the develop-
ment of an OSSP, and those are different from those
that limit the growth of proprietary software. Those
limits are due to coordination problems in the devel-
opment and support. Initial choices in the software
programming are hard to change because that re-
quires more coordinated effort over a longer period
of time than most OSSPs are able to provide. This
means a project can get stuck with outdated stan-
dards. There is also difficulty in keeping the original
programmers to remain committed to the project.

There are only a limited number of people who
may use the software, even if it tries to broaden

138 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

Cumulative number of bugs in TeX by day of discovery.

0

100

200

300

400

500

600

700

800

900

1000

3/
10

/7
8

9/
10

/7
8

3/
10

/7
9

9/
10

/7
9

3/
10

/8
0

9/
10

/8
0

3/
10

/8
1

9/
10

/8
1

3/
10

/8
2

9/
10

/8
2

3/
10

/8
3

9/
10

/8
3

3/
10

/8
4

9/
10

/8
4

3/
10

/8
5

9/
10

/8
5

3/
10

/8
6

9/
10

/8
6

3/
10

/8
7

9/
10

/8
7

3/
10

/8
8

9/
10

/8
8

3/
10

/8
9

9/
10

/8
9

3/
10

/9
0

9/
10

/9
0

3/
10

/9
1

9/
10

/9
1

3/
10

/9
2

9/
10

/9
2

3/
10

/9
3

Figure 1: The bugs of TEX.

Number of postings to TeX newsgroups by months.

0

1000

2000

3000

4000

5000

6000

7000

Feb-
90

Jul-
90

Dec-
90

May
91

Oct-
91

Mar-
92

Aug-
92

Jan-
93

Jun-
93

Nov-
93

Apr-
94

Sep-
94

Feb-
95

Jul-
95

Dec-
95 96

Oct-
96

Mar-
97

Aug-
97

Jan-
98

Jun-
98

Nov-
98

Apr-
99

Sep-
99

Feb-
00

Jul-
00

Dec-
00

Oct-
01

comp.text.tex de.comp.text.tex fr.comp.text.tex Total newsgroups

May May
01

Figure 2: Monthly postings to TEX-related newsgroups.

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 139

Alexandre Gaudeul

its appeal. The software progressively reaches all
of its intended audience, or is supplanted by other
software for that audience.

Some aspects of the software’s basic concept are
difficult to change, for example its typesetting mark-
up language, and this put limitations to its appeal.
The concept becomes fatally obsolete, even if it
made sense when it was first thought up. Here, other
mark-up languages appeared (MathML), and other
typesetting engines did not necessitate as much
learning— Microsoft Word is less powerful than TEX
but has a more gradual learning curve — or were
more tightly integrated with new standards and nec-
essary capabilities — Adobe’s InDesign to produce
pdf files or to use Quark XPress document files.
The ConTEXt and pdfTEX projects were attempts
to broaden the capabilities of TEX to keep them up
to date with what was necessary for online publish-
ing. TEX was oriented toward printing, and was not
able to easily provide the kind of interactive color
complex documents with figures needed for online
publishing. It is also based on a document exchange
standard (DVI) that has never achieved the popu-
larity of the pdf format. The pdfTEX and ConTEXt
projects thus had to make changes in TEX’s concep-
tion to adapt it to new needs. Other projects made
TEX XML-compatible.

In summary, TEX was at first in the forefront
of mathematical publishing, but then had to adapt
and borrow concepts from new and popular soft-
ware projects — and this process met with some re-
sistance. The number of people who were interested
in those improvements was limited to a fringe, and
they found it difficult to advertise their projects be-
yond the people who already were using TEX.

Finally, the OS organization imposes some lim-
its: the originator is ready to support only a lim-
ited number of people; Knuth had other priorities,
the writing of his monumental series The Art of
Computer Programming. TEX was in fact originally
meant only to typeset those books.

Limited explicit mechanisms (interface specifi-
cations, processes, plans, staffing profiles, reviews),
extensive reliance on implicit mechanisms (personal
relations, customs and habits) and on one-to-one
interactions in small teams (communications only
mechanism), mean that the development process did
not scale easily. Choosing an OS development pro-
cess put limits on some areas of the software’s de-
velopment.

4.2.3 Leadership

There is a need for a leader in an OSSP. The produc-
tion of an OSS cannot be described as being peer-

based. Patterns in the history of the projects re-
lated to TEX provide lessons on what constitutes
good leadership in an OSSP because they provide
a broad sample extended though time. The reason
for the projects’ successes and failures, which can
only be determined through time, can thus be ana-
lyzed. The most effective type of leadership seems
to consist in first developing independently some im-
plementation of an original idea and only releasing
it into the public when it is already well advanced.
Projects that began by announcing their goals with-
out backing their ideas with some implementation
generally failed because other developers contested
their technological decisions or couldn’t contribute.
There is therefore a limit to the power of consen-
sus building and cooperative development; it is fre-
quently better to go it alone and then ask for help
once the project is well along.

Knuth’s leadership was characterized by a
heavy involvement in the beginning and the choice
to leave later development to others. That leader-
ship style was very successful for the beginning of the
software’s development, but the desire to preserve
some stability in the program produces the danger
of impeding its development. This could have led to
forking if the community built around TEX had not
been so cohesive.

Although there is a need for a leader, there also
are problems in coordinating on one leader. An ex-
ample of a successful leader was Hàn Thé̂ Thành,
who initiated the pdfTEX project to directly out-
put pdf files from TEX. This is seen as a successful
project because Thành released his work only after
having done the preliminary groundwork, and was
then able to let other developers take the initiative
in applying and enhancing his work. The Omega
project encountered problems because, while it com-
municated its goals early, and implemented innova-
tive ideas to enhance the multi-lingual capabilities
of TEX, it did not at first attract developers beyond
the initiators and had problems convincing the TEX
community it would one day become fully imple-
mented. That project was first presented in 1995
and it is only now that it is gaining momentum and
being supported by the TEX community.

A large part of the difference between those two
projects is often attributed to the leadership style of
their initiators; the fact that the Omega developers
did not deliver on their claims rapidly made the es-
tablished leaders in the TEX community doubt that
project was worth getting involved in. As we will
see below, however, the main difference between the
two projects was perhaps not the difference in the
way they were led and in the ability of its program-

140 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

mers, but in the acceptability of the project to the
existing developers and users. The pdfTEX project
did encounter some resistance at its beginning from
people who thought other ways to generate pdf files
from TEX input were preferable, but the importance
of the ultimate goal was not in question. This was
not the case of the Omega project.

In short, a project leader will be seen as a good
leader depending on whether he is allowed to work
within the existing system. If he is not accepted
and does not get the support of other developers,
then his project may end up badly in a self-fulfilling
prophecy. A project will find it difficult to thrive
if it doesn’t get the support of the establishment,
so that most successful projects will serve the needs
of existing users and developers, and not those of
potential newcomers.

The most consistent leadership was given by
organizations: the AMS, which ensured that TEX
served the mathematical community, and TUG,
which ensured it was user-friendly. The AMS was
the main leader of TEX’s development. It provided
financing for a user group, made propositions to de-
velopers, and gathered them to establish objectives.
The involvement of the AMS was thought out well
in advance, as they wanted to become involved in
helping to develop a document preparation system,
instead of waiting for a commercial system to be pro-
vided to them. They needed a system that was com-
patible with most hardware, simple, flexible, and
cheap; it was to run on mainstream computers. The
AMS, as well as other TEX sponsors, were conscious
that there was competition between the various pos-
sible uses of the software. Because of limited human
resources, the product’s development could not be
led in the way each constituency would like.

There was therefore a need to define an allo-
cation process for development resources. This is
how the AMS decided to sponsor the development
of a modern system based on TEX that would fit
its own use (AMS-TEX), and also sponsored TUG.
Its role was to form a group of people who would
be able to use the tools recommended by the AMS.
The AMS couldn’t hope that academics would use
the TEX system if it didn’t also provide them with
the means and training to do so. This sponsoring
by the AMS had an impact on the development of
TEX that went far beyond the means involved be-
cause it served as a signal to other sponsors that
TEX was a valuable project that would ultimately,
willy-nilly, be a complete system. This is why TUG

also attracted sponsorship from various hardware
companies and universities. The AMS progressively

lowered its financial contribution to TUG and it is
interesting to note that TUG’s revenues and mem-
bership declined after the release of the final version
of TEX in 1990. It would be interesting to look fur-
ther into the impact AMS’s support had on TUG,
and the influence TUG had on TEX’s development.

Leadership was also provided by users and me-
diated by user group organizations. This part ex-
poses the many initiatives coming from the TEX
users. The identification that is often made between
users and developers is not correct, as even users
who are not developers have an impact on the de-
velopment. An OS project is not led through a com-
petition mechanism where the best project wins, it
is led by the user who is ready to devote time and ef-
fort to the project toward a defined goal, in this case
the goal of an association distinct from the TEX com-
munity. TEX had no purpose of its own, but TUG

did have a mission statement: To be a meeting place
for users and developers, of course, but also to use
that central position to serve the aims of its spon-
sors. TUG served as a meeting point between users
and developers of TEX, the two not being exclusive.
Articles in TUGboat were often written by users ex-
plaining the use they made of TEX in their respective
fields, and outlining the problems they encountered.
The various uses of the program led to various pulls
(queries to developers) and pushes (independent de-
velopment) on the program. The problem was then
to harness those, integrate interesting contributions
into the main distribution, and not have dead-ends.
This was done by encouraging independent develop-
ers to work with the core developers so as to attain
compatibility with the existing TEX system.

Users wanted to protect their investment in the
software. Given the weight of legacy, there was re-
luctance on the part of the user community when
faced with changes in the TEX system. Indeed, many
of them had written their own modifications of TEX
to fit their own use, and were not willing to aban-
don those in favor of a new system that would pro-
vide only minor improvements to them; multilingual
typesetting for example was of no use to most users
but requires extensive changes. There was no need
for change for most users, as any change they needed
could be done with macros — even though the TEX
macro language itself led to very complicated and
badly structured programs. It was very difficult to
attract older users on an alternative, and indeed,
the main hope for some developers who pursued
changes to TEX came from new users in non-Latin
countries — the Omega project. New categories of
users who did not have the same legacy issues suc-
ceeded in breaking the status quo. Various user con-

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 141

Alexandre Gaudeul

TUG revenues and membership by year

$0

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

$700,000

$800,000

19
82

19
83

19
84

19
85

 (B
ud

ge
t)

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

D
o

lla
rs

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
em

b
er

s

Total revenues Total expenses Members

Figure 3: TUG’s revenues and membership.

stituencies, or categories of users, had different re-
quirements: The Europeans came to adopt LATEX,
while the Americans used TEX, because LATEX had
not reached a sufficient stage of development to be
interesting to them at the time they adopted the
TEX system. The American organization had been
built under the lead of typesetters, publishers, soft-
ware companies and university institutions who were
interested in mathematical publishing, while the Eu-
ropean groups were led by individual users, some-
times active in universities or educational publish-
ing. Many of those users’ needs were not satisfied by
the user group based in the US. This is how many
initiatives were made in some European LUG before
being accepted by the main organization.

For example, while the US organization had an
established TEX tape distribution system, and while
American developers knew each other well enough to
coordinate development on a one-to-one basis or in
conventions, the European users saw the need for a
TEX code central repository. This was realized by a
group of volunteers at Aston University in the UK,
which made it possible for users to download the
latest developments in the TEX system. This group
inspired the development of a package classification
system, the TEX Directory Structure, which served
as the model for TEX distribution everywhere; this
common system facilitated the installation of the

TEX system. That initiative led to the creation of
the CTAN archives in 1990, which drew contribu-
tions from the American organization too.

Another example of user-led initiatives is the
initiative by the Netherlands LUG to develop and
distribute 4AllTEX in 1993, a TEX distribution on
a CD that was intended to be of use to an end
user with no programming background. While the
Netherlands LUG could not possibly have taken up
the task of delivering a complete user-friendly distri-
bution, it gave the impetus to a wider concerted ef-
fort, the TEX Live project. TEX Live adopted many
of the ideas in the 4AllTEX distribution— choice of
programs, organization of packages, and more.

The tensions between TEX constituencies trans-
late not only in user initiatives, but also in different
objectives for groups of developers. There was a
conflict between pursuing a standardization of LATEX
that would fit most users’ needs and allow easy in-
terchange of documents between all users, and going
forward without an overriding concern for compati-
bility, to serve the needs of larger classes of users.

4.3 The framework: The TEX rules and
culture, and how they evolved

The TEX rules and culture differ from those of other
communities, first due to the license terms, but also
because Knuth gave authority to some lieutenants

142 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

to act on his behalf. Initiators, like Knuth or Lam-
port, effectively blocked development until pressure
built up to a convincing expression of collective
choice, when for example users and developers came
to Knuth with requirements for TEX82 or TEX90.
That strategy did succeed in reducing the workload
on the initiators and in reducing unnecessary de-
velopments, but it did not encourage independent
development.

The development of the software became more
and more decentralized because of two effects. The
first one is that the program became more complex,
and the number of specialized programs linked to it
rose — programs to make figures, indexes, national-
izations of the software, programs to translate TEX
input into outputs other than DVI, various inter-
faces, various rewriting of the software into other
programming languages, etc. The second one is that
technology made it possible to coordinate projects
one-to-one through electronic means, instead of all
contributions going though a central body which
then reflected it to all after having filtered the noise
(errors, unwanted developments, etc.).

For example, the way submission of changes to
the TEX software were made evolved through time.
There is a contrast between new systems and older
ones. For TEX, bugs were submitted to Knuth via
filters, people who had to make sure the submission
was valid. Changes in the software were suggested
to Knuth, who then determined how those changes
were to be embodied in the software. In the LATEX3
project team, developers exchanged code via private
e-mail and met person to person to discuss changes.
Of the newer project, some like MikTEX were listed
on Sourceforge, and used all the tools now available
to coordinate OS projects — CVS files, central repos-
itory —and many, like preview-LATEX, accepted con-
tributions by totally unrelated volunteers.

One important part of the TEX community’s
culture was that it tried to develop user-friendly
software based on OSS. This makes TEX a different
case than other well-known OSSPs that have been
studied before (Apache, Linux), and will help to de-
termine if OSS can be user-oriented, a mass-market
product. From the beginning on, the program was
intended to be used by non-programmers: secre-
taries, researchers, . . . In fact, one of its main ‘sell-
ing’ points at the beginning was how easy it was to
install and learn; the syntax was meant to be natu-
ral, and Knuth wrote a complete manual for the pro-
gram at the same time as he developed it. Even the
programming language was meant to make the cod-
ing easy to understand; the coding was documented
along the way using a language and a method, lit-

erate programming, developed by Knuth.
Also, TEX was developed with non-program-

ming concepts in mind, i.e. concepts that were of
no use for the greater programmers’ community. In-
deed, TEX was meant to be a translation of the best
typesetting practices into a programming system.
This served the needs of the typesetters, the pub-
lishers, the academics, but not those of the typical
programmer who is not involved in typesetting. TEX
came from the lucky coincidence of one person hav-
ing the need for better typesetting and the ability
to follow up on that need.

The problems that have been classically invoked
to say that OS programming could not produce user-
friendly, mass-market programs are that it cannot
generate a good user interface, that a users’ orien-
tation requires a different turn of mind than that of
OSS developers, that it is not possible to coordinate
developers efficiently enough in an OSSP so as to
release a fully functional pre-packaged product, and
finally, that OSSP developers do not have the means
or the will to communicate with end-users.

A good user interface requires a lot of work and
is time consuming but is not needed by somebody
who already is able to use the software. Ulterior
(profit) motives must come into play: this is where
commercial organizations have a role, at least until
the OS organization is strong enough to be able to
produce an easy to install and use program. This
is what happened in the TEX community, where
commercial implementations of TEX appeared in the
mid-80s and provided the only user-friendly alterna-
tive during at least 10 years. MikTEX was the most
popular open source user-friendly interface to TEX,
but worked with Windows only, and it is only with
the release of the first TEX Live distributions that a
complete easy to install TEX distribution was made
available for Linux.

There were also individual OS initiatives to
make the software easier to use; preview-LATEX and
TEXview provided graphical interfaces. Other col-
lective initiatives were driven by ideology; LyX is
such an attempt at providing a convenient TEX in-
terface. All those encountered difficulties in pro-
viding an interface that would work with all differ-
ent possible and ever-changing installations of TEX.
They were surprisingly loosely coordinated with the
core group of TEX developers, maybe because the
development of those interfaces cannot possibly take
account of all the changes in the core program, so
that they were based on older versions; their de-
velopment thus didn’t necessitate close coordination
with leading core developers.

A stable user-level platform was needed because

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 143

Alexandre Gaudeul

TEX documents had to be easy to share for it to be
considered a standard and adopted widely. There-
fore a core product had to be defined, to which other
things were added and with which they had to be
compatible. This is where a central authority, and
defining limitations in what will be supported or not,
came into play. The LATEX3 team played that role
by defining a ‘core’ LATEX package, defined as what
the core team thought it had the time to maintain.
The TEX Live distribution helped in focusing en-
ergies by defining what would be distributed more
widely to the end-users, thus guaranteeing to devel-
opers that their work would have some impact in
the user community.

5 Conclusion: Work to be done

While many participants in the TEX community
were interviewed, and a large documentation on the
TEX system and the history of its development was
gathered, that knowledge still has to be organized in
a systematic way. Some salient features will be fur-
ther developed; for example, a more careful analysis
of the determinants in the success of an OSS sub-
project could be made. This would allow a better
definition of quality, leadership and support in an
open source environment.

6 Bibliography

6.1 (LA)TEX related articles

Bodenheimer B. [1996] “Questions souvent
posées sur (LA)TEX”, Cahiers GUTenberg, 23 April
1996.

Clark M. [1989] “Olde Worlde TEX”,
TUGboat 10(4), 1989 Conference Proceedings.

Gaudeul A. [2003] “The (LA)TEX project: A
case study of open source software”, Working
Paper, January 2003.

Hàn Thé̂ Thành [1998] “The pdfTEX
program”, Cahiers Gutenberg, 28–29 March 1998.

Knuth D.E. [1989] “Notes on the Errors
of TEX”, TUGboat 10(4), 1989 Conference
Proceedings.

Knuth D.E. [1989] “The Errors of TEX”,
Literate Programming, CSLI Lecture Notes, no.
27, 1992.

Knuth D.E. [1989] “The new versions of TEX
and Metafont”, TUGboat 10(3), October 1989.

Knuth D.E. [1991] “The future of TEX and
Metafont”, TUGboat 11(4), January 1991.

Knuth D.E. [1998] “The Final Errors of TEX”,
Digital Typography, CSLI Lecture Notes, no. 78,
1999.

Lammarsch J. [1999] “The History of NTS”,
EuroTEX ’99 Proceedings.

LATEX3 Project Team [1997] “Modifying
LATEX, ” TUGboat 18(2), June 1997.

Mittelbach F. and C. Rowley [1997] “The
LATEX3 project”, TUGboat 18(3), 1997 Conference
Proceedings.

Skoupy K. [1998] “NTS: A New Typesetting
System”, TUGboat 19(3), 1998 Conference
Proceedings.

Taylor P. [1996] “A brief history of TEX” in
“Computer Typesetting or Electronic Publishing?
New trends in scientific publications”, TUGboat
17(4), October 1996.

Taylor P. [1997] “Présentation du projet
ε-TEX”, Cahiers Gutenberg, 26 May 1997.

Torzynski M. [1996] “Histoire de TEX sous
DOS et Windows à l’ENSP de Strasbourg”, Cahiers
Gutenberg, 25 November 1996.

Advogato interview with Donald E. Knuth
[2000] http://www.advogato.org/article/28.
html.

Interview with Leslie Lamport [2000]
“How LATEX changed the face of Mathematics”,
DMV-Mitteilungen, January 2000.

LATEX Project Public License at http:
//www.latex-project.org/lppl.html.

The TEX Users Group (TUG) at http:
//tug.org.

The LATEX3 project at http://www.
latex-project.org.

NTG TEX future working group [1998] “TEX
in 2003”, TUGboat, 19(3), 1998 Conference
Proceedings.

6.2 General articles on open source

Anderson R. [2002] “Security in Open versus
Closed Systems—The Dance of Boltzmann, Coase
and Moore”, Working Paper.

Behlendorf B. [1999] “Open Source as a
Business Strategy”, Open Sources, O’Reilly editors

Benkler Y. [2001] “Coase’s penguin, or, Linux
and the Nature of the Firm”, Yale Law Journal,
112, October 2001

Bessen J. [2002] ‘OSS: free provision
of a complex public good’, http://www.
researchoninnovation.org/.

Bezroukov N. [1999] “Open Source Software
Development as a Special Type of Academic
Research (Critique of Vulgar Raymondism)”, First
Monday, 4(10), October 1999.

Brady R., R. Anderson and R. Ball [1999]
“Murphy’s law, the fitness of evolving species,
and the limits of software reliability”, Cambridge

144 TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting

The (LA)TEX project: A case study of open source software

University Computer Laboratory Technical Report
no 471, September 1999.

Crowston K. and B. Scozzi [2002] “Exploring
the strengths and Limits of OSS Engineering
Processes: A Research Agenda”, Second Workshop
on Open Source Software Engineering, 24th
International Conference on Software Engineering,
Orlando, USA, May 25, 2002.

Dalle J.-M. and N. Jullien [2001] “Open
Source vs. Proprietary Software”, Working Paper,
October 2001.

Dalle J.-M. and N. Jullien [2002] ‘OS vs.
proprietary software’, http://opensource.mit.
edu/.

Dalle J.-M., P. David and W. Steinmueller
[2002] “An agenda for integrated research on the
economic organization and efficiency of OS/FS

production”, Working Paper, October 2002.
Gaudeul A. [2003] “Open Source Software

Development Patterns and License Terms”,
Working Paper, February 2003.

Ghosh R. and V. Prakash [2000] “The Orbiten
Free Software Survey” at http://orbiten.org.

Halloran T.J. and W.L. Scherlis [2002] “High
Quality and Open Source Software Practices”,
Position Paper, Second Workshop on Open
Source Software Engineering, 24th International
Conference on Software Engineering, Orlando,
USA, May 19, 2002.

Hann I.-H., J. Roberts, S. Slaughter and
R. Fielding [2002] “Delayed Returns to Open
Source Participation: An Empirical Analysis of the
Apache HTTP Server Project”.

Hertel, G., S. Niedner and S. Herrmann [2002]
“Motivation of software developers in open source
projects: An Internet-based survey of contributors
to the Linux kernel”. Research Policy, July 2003,
vol. 32, iss. 7, pp. 1159–1177(19).

Hippel E. [2002] “Open Source Software
as horizontal innovation networks — by and for
users”, MIT Sloan School of Management WP

No. 4366-02.
Johnson J.P. [2000] “Some Economics of Open

Source Software”, http://opensource.mit.edu/,
December 2000.

Kuan J. [2002] “Open Source Software as
Lead User’s Make or Buy Decision: A Study
of Open and Closed Source Quality”, 2002 OSS

Conference, Toulouse, http://www.idei.asso.
fr/.

Kuwabara K. [2000] “Linux: A Bazaar at the
Edge of Chaos”, First Monday, 5(3), March 2000.

Lakhani K. and E. von Hippel [2000] “How
Open Source software works: ‘Free’ user-to-user
assistance”, MIT Sloan School of Management
Working Paper 4117, May 2000.

Lerner J. and J. Tirole [2000] “The Simple
Economics of Open Source”, NBER Working
Paper 7600.

Lerner J. and J. Tirole [2002] “The Scope of
Open Source Licensing”, Draft, 2002.

Mockus A., R. Fielding and J. Herbsleb
[2000] “A case study of open source software:
The Apache Server”, International Conference on
Software Engineering, pp. 263–272, 2000.

Mockus A., R. Fielding and J. Herbsleb
[2002] “Two case studies of open source software
development: Apache and Mozilla”, Working
Paper.

Mustonen M. [2002] “Why do firms support
the development of substitute copyleft programs?”,
Working Paper, October 2002.

Mustonen M. [2002] “Copyleft—the economics
of Linux and other open source software”, Working
Paper.

Nakakoji K. et al. [2001] “Toward Taxonomy
of Open Source: A Case Study on Four Different
Types of Open Source Software Development
Projects”.

Peyrache E., J. Crémer and J. Tirole [2001]
“Some reflections on Open Source Software”.

Pressman R. [1997] “Software engineering”,
4th edition, Mc-Graw-Hill editors.

Schmidt D.C. and A. Porter [2001]
“Leveraging Open Source Communities to
Improve the Quality & Performance of Open
Source Software”, Position Paper, First Workshop
on Open Source Software Engineering, 23rd
International Conference on Software Engineering,
Toronto, Canada, May 15, 2001.

Scotchmer S. and P. Samuelson [2002] “The
Law and Economics of Reverse Engineering”, Yale
Law Journal, April 2002.

Silverman D. [1999] “Doing Qualitative
Research: A Practical Handbook”, Sage.

Varian H. [1993] “Economic Incentives in
Software Design”, Computational Economics,
6(3–4) pp. 201–17, 1993.

OSS conferences in Toulouse [2001, 2002,
2003], http://www.idei.asso.fr/Commun/
Conferences/Internet/

GNU General Public License at http:
//www.gnu.org/copyleft/gpl.html

TUGboat, Volume 24 (2003), No. 1 —Proceedings of the 2003 Annual Meeting 145

