
TUGBOAT

Volume 24, Number 2 / 2003

General Delivery 159 From the president / Karl Berry

160 Editorial comments / Barbara Beeton

162 Daniel Taupin, 1936–2003 / John Plaice

163 What is TEX? / Douglas Waud

Typography 165 Maths = Typography? / Richard Lawrence

169 On musical typesetting: Sonata for TEX and METAFONT, Op. 2 /

Federico Garcia

Font Forum 183 There is no end: Omega and Zapfino / William Adams

200 The METAFONT approach: Implicit, relative, and analytical font design /

Timothy Hall

Resources 205 CTAN plans / Robin Fairbairns, Jim Hefferon, Rainer Schöpf, Joachim Schrod,

Graham Williams, Reinhard Zierke

LATEX 208 Some notes on templates / Lars Hellström

211 Writing a big book— A first experience with LATEX / David Walden

216 Designing packages for Λ: An overview / Apostolos Syropoulos

221 LATEX news, issues 14–16, 2001–2003 / LATEX Project Team

224 ednotes— critical edition typesetting with LATEX / Uwe Lück

Software & Tools 236 Hyphenation patterns for minority languages / Kevin Scannell

240 (LA)TEX, genealogy, and the LifeLines software / Andrew Caird

245 Generating LATEX documents through Matlab / S. E. Talole, S. B. Phadke

249 mlBibTEX’s Version 1.3 / Jean-Michel Hufflen

Hints & Tricks 262 Glisterings / Peter Wilson

265 The treasure chest / Mark LaPlante

Book Reviews 275 The LATEX Companion, Second Edition / Claudio Beccari

278 Guide to LATEX, 4th Edition / Douglas Waud and Mimi Burbank

Abstracts 282 Les Cahiers GUTenberg : Contents of Issue 42 (July 2003)

283 MAPS : Contents of issues 27–28 (2002)

286 TEXemplares : Contents of issues 4–6 (2003–04)

Reports 288 Report on the Pune workshop on LATEX and free mathematical software /

S. A. Katre, Manjusha Joshi

291 TUG at Bay / Nelson Beebe, Wendy McKay, Ross Moore

News &

Announcements

294 Calendar

295 TUG 2005 announcement

c3 EuroTEX2005 announcement

Late-Breaking

News

296 Production notes / Mimi Burbank

296 Future issues

TUG Business 296 Financial statements for 2003 / Robin Laakso

298 TUG 2005 election

293 Institutional members

Advertisements 299 TEX consulting and production services

299 The LATEX Companion, 2nd edition, by Frank Mittelbach et al.

300 Easy Table, Khanh Ha

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2004 dues for individual members are as follows:
Ordinary members: $75.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org) or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2003 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,

distributed or translated without their permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

Sam Rhoads∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Steve Grathwohl
Jim Hefferon
Ross Moore
Arthur Ogawa
Gerree Pecht
Steve Peter
Cheryl Ponchin
Michael Sofka
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: November 2004]

TUGboat

This issue (Vol. 24, No. 2) is the only regular issue
of the 2003 volume year. Vol. 24, No. 1 was the
TUG 2003 conference proceedings, and No. 3 will be
the EuroTEX 2003 proceedings.

We are unfortunately not able to set a definitive
schedule for the appearance of the next few issues.

TUGboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

Owing to the lateness of the present issue, and
the scarcity of material submitted for future issues,
suggestions and proposals will be gratefully accepted
and processed as received.

Manuscripts should be submitted to a member
of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should be
addressed to the Editor-in-Chief, Barbara Beeton,
to the Managing Editor, Robin Laakso, or to the
Production Manager, Mimi Burbank.

The TUGboat “style files”, for use with either
plain TEX or LATEX, are available from CTAN and
the TUGboat web site, http://tug.org/TUGboat.
For authors who have no network access (browser or
FTP), they will be sent on request. Send e-mail to
TUGboat@tug.org, or write or call the TUG office.

This is also the preferred address for submitting
contributions via electronic mail.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation. Volunteers are invited to submit
their names and interests for consideration; write to
TUGboat@tug.org.

158 TUGboat, Volume 24 (2003), No. 2

TUGboat Editorial Board

Barbara Beeton, Editor-in-Chief

Robin Laakso, Managing Editor

Mimi Burbank, Production Manager

Victor Eijkhout, Associate Editor, Macros

Alan Hoenig, Associate Editor, Fonts

Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team

William Adams, Barbara Beeton, Karl Berry,
Mimi Burbank (Manager), Robin Fairbairns,
Baden Hughes, Steve Peter, Michael Sofka, and
Christina Thiele

Other TUG Publications

TUG is interested in considering additional man-
uscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form.

If you have any such items or know of any
that you would like considered for publication, send
the information to the attention of the Publications
Committee at tug-pub@tug.org or in care of the
TUG office.

TUGboat Advertising

For information about advertising rates and options,
write or call the TUG office, or see our web page:
http://tug.org/TUGboat/advertising.html.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.
Unix is a registered trademark of X/Open Co. Ltd.

TUGboat, Volume 24 (2003), No. 2 159

General Delivery

From the President

Karl Berry

I’m honored to serve as the new TUG president
(as of the TEX Users Group 2003 annual meet-
ing), following in the footsteps of many past and
present TEX stalwarts (Pierre MacKay, Nelson
Beebe, and Christina Thiele come immediately to
mind; see http://tug.org/tugpres.html for a
rogues’ gallery).

2003 TUG organizational matters

• TUG once again has an executive director! The
board has given Robin Laakso this title, which
more accurately reflects her many various tasks
and responsibilities. Congratulations, Robin.

• As has been mentioned in electronic postings,
we’ve opened a small online TUG store: http:

//tug.org/store/. Software releases, TUG-

boat issues, and various past memorabilia are
available; members get a 10% discount.

• As of 2003, we are officially shipping three is-
sues of TUGboat per year. This is to help us get
back on track, without publishing ersatz “dou-
ble” issues. The regular U.S. postal permit for
periodicals requires at least quarterly publica-
tion; fortunately, our new nonprofit status (see
http://tug.org/tax-exempt/) gives us lower
mailing rates in general, so our mailing costs
are not increasing unduly.

• We now ask that members explicitly request the
CTAN archive on CD, instead of mailing it to
everyone. (This can be requested when join-
ing or renewing, or by mailing office@tug.org

at any time.) In our surveys, we found a sig-
nificant proportion of members did not use the
CTAN CD’s, and so this allows us to save consid-
erably on production and mailing. The CTAN

archive is also included on the TEX Collection
DVD, which is sent to all members. (We very
much hope that the 2004 TEX Collection will be
available soon, but can’t give a precise date.)

Icelandic TEX user group

A new TEX user group was formed in the summer of
2003 for Icelandic TEX. We congratulate them and
wish them much success. The group’s web page:
http://www.rhi.hi.is/istex/

A list of all user groups and information thereof
is available at http://tug.org/usergroups.html.

Board resignation and appointments

In January 2004, Stephanie Hogue resigned from the
board, owing simply to lack of time. We thank her
enormously for her efforts on behalf of TEX and TUG

over the years.
In my capacity as president, I have appointed

several hard-working TEX folks to the board, to
fill some of the vacant positions: Jim Hefferon
(long-time maintainer of TUG’s CTAN node), Ger-
ree Pecht (long-time TEX enthusiast at Prince-
ton), Steve Peter (linguist, translator, and very ac-
tive TEXxie), and Steve Grathwohl (in charge of
TEXnical operations at Duke University Press).

I’d like to thank them all for agreeing to serve.
More information about them and the other board
members can be found via the web page http://

tug.org/board.html.
To continue in office, appointed directors must

stand in the next regular election, which will be in
2005; you’ll find an announcement about that else-
where in these pages.

Notable TEXnical events

• The MacTEX TUG Technical Working Group
was formed at the TUG 2003 meeting, led by
Wendy McKay and others. Its goal is to work
on action items that would enhance current and
future development of TEX on Mac OS X. They
are in continuing contact with Apple. There
are many interesting items on their web page:
http://tug.org/twg/mactex/

• John Hobby, author of MetaPost, has dele-
gated bug fixing and general maintenance to
a group led by Taco Hoekwater and Hans Ha-
gen. Activities are coordinated via a Meta-
Post project at http://metapost.sarovar.

org/. (Sarovar, supported by the TUGIndia
user group, is a public software repository site
reasonably analogous to sourceforge.net and
savannah.gnu.org.) John retains overall guid-
ance and direction for MetaPost.

• A small update of the TEX Directory Structure
document (version 1.1) is available via CTAN

and http://tug.org/tds/. The most notable
changes are better definitions for font map and
encoding files.

I will close with a reminder that the TUG board
welcomes input or questions at any time; email us
at board@tug.org.

⋄ Karl Berry

president@tug.org

http://tug.org/tugpres.html
http://tug.org/store/
http://tug.org/store/
http://tug.org/tax-exempt/
office@tug.org
http://www.rhi.hi.is/istex/
http://tug.org/usergroups.html
http://tug.org/board.html
http://tug.org/board.html
http://tug.org/twg/mactex/
http://metapost.sarovar.org/
http://metapost.sarovar.org/
sourceforge.net
savannah.gnu.org
http://tug.org/tds/
board@tug.org

160 TUGboat, Volume 24 (2003), No. 2

Editorial Comments

Barbara Beeton

Adieu, Daniel Taupin

Daniel Taupin, perhaps best known in the TEX com-
munity as the creator of MusixTEX, was killed in a
mountaineering accident in the Pyrenees on August
26, 2003. His love of the mountains was great, and
he has been honored by his colleagues with a com-
memorative plaque on the Viaduc des Fauvettes (an
old railway bridge that provides access to a num-
ber of climbing venues), which was restored in large
measure through his tenacious urging. A web site in
his memory is at http://www.pyrenees-pireneus.
com/taupin.htm.

I met Daniel at several meetings of TUG and
other groups, and enjoyed his company. He held
strong opinions, but always had something interest-
ing to say.

Several papers by Daniel were published in TUG-

boat, beginning with the proceedings of the 1993
annual meeting (14:3), where his two main hobbies
were introduced in two papers, the first on “Using
TEX and METAFONT to build complicated maps”—
a description of a “tentatively exhaustive catalog of
all the 1500 known climbable crags of France outside
the high mountains”, and the second, “MusicTEX:
Using TEX to write polyphonic or instrumental mu-
sic”.

Another memorial to Daniel appears at http:

//icking-music-archive.org/Memorial/Taupin/

Statements.html.

Don Knuth to Michael Downes

I received a note from Don Knuth which had been
intended for Michael Downes, written just an hour
before he read Michael’s obituary. Since the note is
on a matter of historical record, it’s presented here
with Don’s permission.

10 Sep 03

Dear Michael

Your fine article in AMS Notices (Dec 2002)
sent me to my diary re footnote 2 on page
1389.

TEX 2.0 was installed on Saturday 04 Jan-
uary 1986, on Stanford computers via inter-
net connection from my apartment in Boston
where Jill & I were on sabbatical . . . the same
day as METAFONT 1.0. The diary also says
“typed the index of Volume C thru ‘Davis’;
never took time to get dressed today

– don knuth

The article in question is entitled “TEX and
LATEX2ε”. It briefly describes the history of TEX,
its use at the AMS, development of the AMS pack-
ages, and some future directions. The cited footnote
refers to November 27, 1985, as the date on which
TEX 2.0 was released:

Conjectural; the historical record for this re-
lease seems to be unclear. The 11/27/85 date
is the date of the last change recorded in
tex82.bug after the release of version 1.5 and
prior to other changes designated as belong-
ing to version 2.1. An announcement by David
Fuchs in the March 1986 issue of TUGboat

stated that “TEX 1.5, when used with the new
CM fonts, is officially called TEX 2.0.” Should
this be interpreted, perhaps, to mean that the
release date of 2.0 is the same as for 1.5?

Another honorary degree for DEK

On June 5, 2003, Don Knuth received the Doctor of
Science degree from Harvard University. The cita-
tion, he observed, was rather poetic:

Donald Ervin Knuth, Doctor of Science
Font of digital ingenuity, icon of algorithmic
invention, whose artful efforts have programmed
the course of a powerful modern science.

Background information in support of the cita-
tion can be found in the June 5 edition of the Har-

vard Gazette, at http://www.news.harvard.edu/

gazette/2003/06.05/01-honorary.html.

Help save the French Imprimerie nationale

The French Imprimerie nationale, an institution
broadly equivalent to the US Government Print-
ing Office or the HMSO in the UK, is heir to the
centuries-old tradition of French government print-
ing, starting with the Imprimerie royale, set up by
Cardinal Richelieu under King Louis xiii in the 17th
century, with forerunners from the Renaissance.

This institution is being disbanded by the French
government, with no thought to the preservation
of its historic heritage —part of the institution is
classified as a “historic monument”— other than to
pack it into crates for permanent storage. This move
is scheduled for the first half of 2005, destination un-
known.

A petition is posted at
http://www.garamonpatrimoine.org

for the purpose of encouraging the French govern-
ment to preserve this unmatched resource. Please
read and sign it. The following text is excerpted
from the petition.

http://www.pyrenees-pireneus.com/taupin.htm
http://www.pyrenees-pireneus.com/taupin.htm
http://icking-music-archive.org/Memorial/Taupin/Statements.html
http://icking-music-archive.org/Memorial/Taupin/Statements.html
http://icking-music-archive.org/Memorial/Taupin/Statements.html
http://www.news.harvard.edu/gazette/2003/06.05/01-honorary.html
http://www.news.harvard.edu/gazette/2003/06.05/01-honorary.html
http://www.garamonpatrimoine.org

TUGboat, Volume 24 (2003), No. 2 161

The historic collection of the Imprimerie is a
unique, priceless testimony of the history of the writ-
ten form, from the 16th century to the present. It
includes the Cabinet des poinçons, or Punch Room,
holding hundreds of thousands of letterform and char-
acter punches, for both western and oriental scripts;
functional workshops — a foundry, presses for typog-
raphy, lithography and copper-plate engraving work,
stitching and binding —as well as a library with over
30,000 volumes, and the archives of the State print-
ing works. Set up in 1539 by King Francis i, at the
same time as the Collège de France, the national cen-
ter of academic excellence, this collection stands as
the memory of specialized know-how and expertise,
and as a center for creation, now fated to disappear
if its continued survival is not ensured.

This whole must not be scattered or split up, as
regards either its contents, or its functions: museum
and conservation, typeface creation, publishing and
research. It must be released from the oversight of
a ministerial department driven by concerns of eco-
nomic profitability. This heritage must be housed in
Paris, held by an institution guaranteed adequate re-
sources, having the capacity to further enlarge and
expand it. Better still, it could be set up as a founda-
tion—a controlled, non-profit organization— which
would be a dedicated space for conservation, but
equally of interfacing with outside elements, and for
research. Concurrently, and as of now, measures
should be taken to ensure that the transfer of equip-
ment and expertise proceed speedily, using a tran-
sition formula, with no interruption to production,
conservation, research or training activities.

Priceless artifacts must be saved, but equally
persons, skills, a store of knowledge must be safe-
guarded, that are at risk of being lost to all hu-
mankind.

−− ∗ −−

A message from Jef Tombeur to the TYPO-L

discussion list (July 28, 2004) communicated this
additional information from the French organization
Convention typographique and the European Mono-
type University:

Just imagine if the Eiffel tower was made by
hand. Not just as it is, but even more so—
each bolt, each and every component forged
and adorned with care, craft and art. So
what? Would just be another French mon-
ument. The Cabinet des poinçons (punches),
and the French Imprimerie nationale library,
are something really different. Not just an-
other French landmark. It is your history,

since the [16th] century, that is to disappear,
buried, forgotten, maybe dispersed. Because
it [is] not only French writing, but Chinese,
Arabic, Greek, Hebrew, etc., that are con-
cerned: there are punches and fonts for nearly
every written language known till the last
century. And books in all writings and lan-
guages. But there is another way. And that
[is] why, we, the [not] for profit organiza-
tion Convention typographique, and so many
[other] organizations, and individuals, from
so various countries, ask you to add your name
to the petition (on-line :
http://www.garamonpatrimoine.org,
or print it, or ask for a PDF in your own lan-
guage or a language [you] understand, to be
sent to you; Xerox it, and spread the word
around).

Avoid obsolescence: Guidelines for LATEX

users

A couple of years ago, a document by Mark Tret-
tin arrived at CTAN, listing a number of things of
which a user of LATEX2ε should be aware. This doc-
ument, originally in German, has now been trans-
lated into English (“An essential Guide to the dos
and don’ts of LATEX2ε, or obsolete Commands and
Packages, and some more Mistakes to avoid”) and
several other languages. A search of CTAN for the
keyword “l2tabu” will find it. The suggestions here
are helpful for even experienced LATEX users, giving
reasons as well as directives.

Hidden TEX use in Germany

Need a personalized train schedule? If you’re trav-
eling on the German railway (Deutsche Bahn AG),
you can get one —prepared under the covers using
TEX. The company providing this service, and a
lot of others, has an interesting web site: http:

//www.hacon.de/hafas e/print2web.shtml. The
site http://www.travelinfosystems.com/palm/

query/query-p2w.cgi/en provides a similar service
for the UK.

Bank statements and similar documents are also
created in the same way, but only in Germany, as far
as I am aware. (Certainly the statements from my
bank aren’t produced this way.) Thanks to Volker
Schaa for calling these services to my attention.

⋄ Barbara Beeton

American Mathematical Society

201 Charles Streed

Providence, RI 02904 USA

bnb@ams.org

http://www.garamonpatrimoine.org
http://www.hacon.de/hafas_e/print2web.shtml
http://www.hacon.de/hafas_e/print2web.shtml
http://www.travelinfosystems.com/palm/query/query-p2w.cgi/en
http://www.travelinfosystems.com/palm/query/query-p2w.cgi/en

162 TUGboat, Volume 24 (2003), No. 2

Daniel Taupin, 1936–2003

It was with great sadness that I heard of Daniel
Taupin’s fatal fall from the Rochail, in the Oisans
region of the French Alps last year, after a successful
solo ascent.

I first met Daniel in 1994 at CERN in Geneva,
at the inaugural presentation of Omega by Yannis
Haralambous and myself. Lots of grey hair going
off in all directions, a big booming heavily French-
accented voice, strongly held opinions — just who
was this guy?

Over time, at EuroTEX and GUTenberg meet-
ings, I got to know Daniel better. He always focused
on the details and the exceptional cases. I share this
concern and always try to instill it in my software
engineering students.

But he didn’t just talk. He built working soft-
ware. His MusixTEX, used to produce many of to-
day’s online musical archives, is a highly complex
piece of software, that deals with all of the excep-
tions. It can be used to typeset just about any piece
of music in the Western musical tradition, and prob-
ably more.

Daniel was also well-known in French climbing
circles, and played a key rôle in developing standards
for sharing popular climbs between the competitive
and recreational styles. Courageous and generous
to the core, he was even labelled a “dangerous ter-
rorist” by the French state in 1992 for having, with
some friends, removed the fixed pitons from the via

ferata climb of the famed Aiguille du Midi, done to
restore the integrity of the climbing experience.

He brought his typesetting and climbing inter-
ests together by using TEX and MetaPost together
to produce typeset maps of France showing some of
the most popular climbs, thereby showing the way
forward.

Daniel’s death was untimely. My research team
here in Sydney had started to examine questions of
high-quality typeset music and maps. Just as we
were preparing to get in touch with Daniel, with fu-
ture collaboration in mind, we received a copy of an
email from Fabrice Popineau, announcing Daniel’s
fall.

I last saw Daniel at the Toulouse GUTenberg
meeting in 2000. The evening of the banquet, held
in Cintegabelle, the village where Lionel Jospin, the
French Prime Minister, was also counsellor-general,
we visited the church, which holds one of the finest
organs in the French south-west. After the talk and
recital, Daniel was explaining to us the difficulties
of playing an organ that he had recently found in
a church near Paris that was not tuned as a well-
tempered clavier. Only certain pieces, in certain
keys, could be played with success.

As always, this colourful personnage had some-
thing to say.

Farewell Daniel, you will be missed.

⋄ John Plaice

TUGboat, Volume 24 (2003), No. 2 163

What is TEX?

Douglas Waud

This journal, TUGboat, first appeared in 1980 and
has been going strong since. It provides a contin-
uous stream of articles which inform the reader on
the latest developments in the field. And there is
the problem — the journal has been in production
so long that readers are often assumed to know the
context. This automatically provides a barrier to an
outsider who might stumble onto the journal and ask
“What’s going on here?”

The editors have therefore decided periodically
to insert a primer, a brief summary, to let such a
newcomer know what we are so excited about.

1 So what is the object of our affections?

The simple answer is ‘TEX’. This is formally called a
typesetting program, computer software for produc-
ing nicely printed output. TEX came about when
Professor Donald E. Knuth, at Stanford University,
was planning to publish a series of books on com-
puting. He discovered that the classical process of
typesetting books was no longer viable and its vari-
ous replacements were rapidly declining in quality—
and so he decided to take a year off to rectify that
omission. He got hooked and the year turned into
ten. The centerpiece of his final solution was the
program TEX. In a nutshell, TEX allows ordinary
people to produce beautiful output of top quality.

Now, one unfamiliar with TEX may think “But
I can do that with my word processor!” However,
that is a misconception. First, the output will gen-
erally be a notch below that of TEX. The situation
is analogous to good cooking; you may not know
what you are missing until you get a taste of a top
quality product. The word processors are getting
better these days (for example, they are starting to
incorporate many of TEX’s tricks) but there is still
catching up to do.

There is still another significant distinction. A
word processor is described as “WYSIWYG”. This
is an acronym for “What you see is what you get”,
with the implication that, as you type, the end result
will appear precisely on the screen in front of you.
The TEX community interprets WYSIWYG tongue-
in-cheek as “What you see is all you get!” The point
is that, once you get spoiled by TEX, you will not
be satisfied with anything less than perfection.

The WYSIWYG issue underlies an even more
profound theme in TEX. There is a clear division of
labor. The job of deciding what you want to say is

separated as much as possible from that of deciding
what final form it should take. This has several ad-
vantages. For example, as I am typing this, I pay
no attention to how it will finally come out on the
page. That will be determined by TEX and ancil-
lary programs written by people who are far more
competent than I to produce an esthetically opti-
mal final result. Now, if I have strong views, special
training, or an area off the beaten track where what
I want is just not available (rare these days) I can
tweak to my heart’s content. But I don’t have to. If
I simply want to “get the job done”, I can do just
that without distractions as to how everything will
or should be printed. The only formatting I do is
tell the program things like “This is what the title
will be”. In the present case, all I had to do was type
‘\title{What is \TeX?}’ which, incidentally, shows
you how easy “talking TEX” can be; even if you
know nothing whatsoever about TEX, I think you
can read that segment of code. You have one foot
stuck in the flypaper already!

Now we come to the jewel in the TEX crown—
its ability to typeset mathematics properly. In this
area there is no competition. The American Math-
ematical Society, in fact, was one of TEX’s princi-
pal sponsors; the vast majority of mathematicians,
physicists, and other scientists write their papers us-
ing TEX.

When TEX was first developed computers were
rather primitive compared to today’s. Knuth rec-
ognized this and built in modularity. Thus, when
TEX processes a file, it does not know what sort
of printer or display will be used to view the result.
Knuth therefore had TEX put its output in a general
form which could then be used as input by “drivers”
designed to talk to whatever new printer or moni-
tor came along. This intermediate form is called
a “device independent file” (with the file extension
.dvi). In turn, there are file viewers, like xdvi in
GNU/Linux, for displaying such files on a computer
screen.

2 Now meet the family

So far, I have been using the term TEX in its original
context —the program Knuth wrote to carry out the
magic. However, nowadays, the term “TEX” can
also imply a whole family of related programs. TEX
is just the grand-daddy of a family of related tools.
We can list the main cast now.

TEX First, TEX itself has gone through several up-
dates. TEX78 came first, TEX82 next, and the
current and final version is TEX90. (You don’t

164 TUGboat, Volume 24 (2003), No. 2

really have to know these details since you will
only use the final version now.)

Metafont Next, a critical part of typesetting is the
fonts used. Therefore Knuth also pursued the
design of typefaces for TEX. The result was a
companion program Metafont which can be
used to produce tailored characters. (Again,
this is more for information; you will not be
jumping into font design your first day!)

LATEX Now we come to LATEX. This is a component
designed to shield the author from the details
of TEX. Leslie Lamport, the author of LATEX,
recognized that, although TEX is very accessible
for the sort of person who loves to wallow in
things computer, it can be very formidable to,
shall we say, more normal folks. Thus he put
together a simpler system designed to protect
the author still further from the details of the
underlying machinery. For example, he allows
the author simply to put something that is to to
be written exactly as it is typed between paired
begin and end verbatim commands and allows
the author to completely avoid having to make
any decision as to what type face to use, what
size, what style, and the like.

History: The original version, LATEX 2.09, has
been replaced by LATEX2e.

BibTEX BibTEX is an ancillary program to help
organize bibliographic references.

MakeIndex MakeIndex is another ancillary pro-
gram, this time for facilitating of creation of
an index.

dvips Earlier we mentioned .dvi files as a generic
form of output. With time, the need for a gen-
eral file format was recognized more widely and
the company Adobe Systems Inc. created the
PostScript language. The TEX community re-
sponded with programs like dvips to convert
.dvi files to .ps files.

pdfTEX and pdfLATEX The next step is where we
are currently. PostScript has been augmented
with the “Portable Document Format” (PDF),
also a creation of the folks at Adobe. If you have
used the Acrobat reader to read a file, you have
been looking at a .pdf file. The TEX community
has kept up with this develoment with the pro-
gram pdfTEX and its LATEX variant pdfLATEX.
These allow one to use tricks available in the
.pdf format, in particular, to create “hyperref-
erences”, links to stuff on the web.

3 What next?

At this point I encourage you to get your feet wet.
Specifically, try to create some documents in LATEX
(easier than pure TEX but not out on the “bleeding
edge” enough to be overwhelming). First I would
recommend getting a manual. There are many out
there but I would suggest you start with Lamport’s
original guide [2]. Next you need to have a TEX
system on your computer. If you use Linux, life is
easy; your distribution will probably already have
it installed. If you use Windows or a Macintosh I
suggest you start with Flynn’s excellent introduc-
tion [1]. If you do not have access to back copies of
TUGboat you can get it online from:

http://www.tug.org/

tex-archive/info/beginlatex/html

where, in particular, the chapter “Installing TEX”
will be a succinct guide to getting a system installed.

One final parting word of advice: start with
something simple, perhaps just try an example from
Lamport’s book, and then add frills one at a time,
i.e. crawl before walk!.

4 Online column

At the same time they are launching this column,
TUG is planning an online journal which will include
a column “\begin{here}” which will be directed to-
ward the person first trying to come to grips with
TEX. This column will attempt to identify and clar-
ify standard stumbling blocks. This online journal
will be available at

http://www.tug.org/pracjourn

References

[1] Peter Flynn. Formatting information.
TUGboat, 23(2):115–237, 2002.

[2] Leslie Lamport. LATEX: A Document

Preparation System. Addison-Wesley, Reading,
MA, 2nd edition, 1994.

⋄ Douglas Waud
Department of Pharmacology
University of Massachusetts

Medical School (retired)
17 Lantern Lane, Shrewsbury, MA,

USA
douglas.waud@umassmed.edu

http://users.umassmed.edu/

douglas.waud/

TUGboat, Volume 24 (2003), No. 2 165

Typography

Maths = Typography?

Richard Lawrence

Introduction

This paper is written for a conference with the theme
‘Hidden typography’. Broadly the author’s interest
is in mathematical printing and typesetting in par-
ticular. So, as is usual for academic conferences,
the author’s task is to persuade you, the reader,
that there is some connection between the confer-
ence subject and the author’s personal interest. To
see if this can be done it is pertinent to ask a few
questions:

* What is typography and so what is hidden
typography?

* What is mathematics?

* Is there any typography in mathematics and
is there any hidden typography in it?

The last of these questions is the one that is central
to the subject of the conference; answers to the other
two help to explain the author’s answer to it. So to
start with the conclusion:

* There is typography in mathematics.

* The typography in written mathematics is
not hidden, it is overlooked.

* There is a strong case for saying that written
mathematics is a very highly developed
example of typography: it may even be
possible to say ‘Maths = Typography’.

What is typography?

The art or process of setting and arranging types
and printing from them. (Concise Oxford

English Dictionary, 10th edition, 2001)

Typography may be defined as the craft of rightly
disposing printing material in accordance with spe-
cific purpose; of so controlling the type as to aid
to the maximum the reader’s comprehension of the
text. (Stanley Morison,

First principles of typography, 1951, CUP)

Here are two definitions of typography, one short
and written for a general audience, the other longer
and written for an audience wanting to know more.

This paper was presented at the 2003 St. Bride Printing

Library Conference on “Hidden Typography”, and appears

here with permission. The texts of all the talks from

the conference can be viewed at http://www.stbride.org/

conference2003/.

Both are pertinent to the purposes of this paper: it
is the aspect of ‘arranging’ or ‘rightly disposing’ ma-
terial ‘to aid to the maximum the reader’s compre-
hension’ that will be emphasized. Some will argue
that both these definitions are rather utilitarian and
omit any feeling for the art and beauty that typog-
raphy can bring to the printed document. However
the question of beauty in mathematical typography
is also addressed.

So what is hidden typography? In the best
sense it is Beatrice Warde’s crystal goblet typog-
raphy: invisible or unobtrusive but making the
reader’s task easier and more pleasant. It is design
that helps the reader to extract meaning from the
written word. This is very much the sense relevant
to the printing of maths. Enough people have trou-
ble grappling with the abstraction of maths that it
would not be a good idea to add typographical flour-
ishes and quirks to its written form. Good ‘crystal
goblet’ typography is what the complexity of maths
typesetting really does need.

What is mathematics?

The branch of science concerned with number,
quantity, and space, either as abstract concepts
(pure mathematics) or as applied to physics, engi-
neering, and other subjects (applied mathematics).

(Concise Oxford English Dictionary, 2001)

Mathematics is its own branch of science (like
physics or chemistry) and comes in two forms, pure
and applied. Both forms are concerned with ‘num-
ber, quantity, and space’, one in the abstract, one
in practical terms. The graphic representation of
maths then has to be able to encompass both ab-
stract notions and practical applications if it is to
be any use to mathematicians and those who use
maths (physicists, engineers, etc.). It has to deal
with ‘number, quantity, and space’. It also has to
be able to describe a whole branch of science (part
will not do). As we know the result is that the print-
ing of mathematics is challenging and specialist work
largely avoided by many.

Another common view of mathematics, par-
ticularly popular with those who use maths (engi-
neers, physicists, etc.) is that it is a language that
is used to describe physical situations and relation-
ships. Mathematical equations are used to describe
the motion of a pendulum, the decay of radioactive
waste, the flow of traffic on congested roads, and
the relationship between infinitely large groups of
objects in multidimensional space. Mathematics is
the language that scientists (physical scientists at
least) use to communicate their ideas and observa-
tions. Like mathematics in the dictionary definition

166 TUGboat, Volume 24 (2003), No. 2

above, the physical scientist is interested in ‘number,
quantity, and space’. The graphic representation of
maths has to reflect this.

Having used the standard trick of looking at
a dictionary definition of the subject it may be in-
structive to consider the popular views of its users
and practitioners. A physicist uses a variety of
strange machines to investigate the rules that gov-
ern the physical world and records observations as
mathematical relationships. A biologist grows then
experiments on living things in order to understand
more about them perhaps using statistics to sup-
port arguments and observations. An engineer de-
signs and builds machinery to exploit the discover-
ies of other scientists and uses approximate equa-
tions to predict how the machinery will behave.
The mathematician sits and thinks and scribbles
and rearranges equations on paper or blackboard.
The mathematician has no machinery or plants or
animals to work with. The mathematician’s only
prop in this populist view is the piece of paper or
blackboard, or more specifically equations written
on these. Mathematics is in some sense the written
equations on these surfaces. If this is indeed so, then
it can be appreciated that the optimal arrangement
of the symbols in the equations is of some conse-
quence.

So we have three views of mathematics: it is
a branch of science dealing with the description of
the abstract and real and quantity, number, and
space; it is a language; and it is written equations.
Properly, and not just as a result of undue deference
to the majesty of the Oxford English Dictionary, it
is only the first of these. But mathematics’ very
singular distinction is that it is dependent on its own
language to communicate it. That language is only
easily communicated in its written form (equations
on paper or blackboard). While the individual
components of an equation can be read out loud and
their relative positions can be described, it is not too
far-fetched to say that maths is an unpronouncable,
even a silent, language. So that its written form,
equations, has to be able to communicate matters
of ‘quantity, number, and space’.

Printing’s influence on mathematics

Before pursuing the intellectual argument that writ-
ten maths involves a lot of typography, it is instruc-
tive and interesting to look at the influence of print-
ing on the development of maths. It is also instruc-
tive to see the consequences of trying to write math-
ematics without symbols to understand why the lan-
guage of mathematics is necessary.

One of the very earliest mathematical works
is the Algebra of Al-Khowarazimi, a ninth-century
scholar in Baghdad. Florian Cajori (A history of

mathematical notation, 1929, Open Court) quotes a
translation of an example from this work:

What must be the amount of a square, which,
when twenty-one dirhems are added to it, becomes
equal to the equivalent of ten roots of that square?
Solution: Halve the number of the roots; the moiety
is five. Multiply this by itself; the product is
twenty-five. Subtract from this the twenty-one
which are connected with the square; the remainder
is four. Extract its root; it is two. Subtract this
from the moiety of the rots, which is five; the
remainder is three. This is the root of the square
which you required and the square is nine. Or you
may add the root to the moiety of the roots; the
sum is seven; this is the root of the square which
you sought for, and the square itself is forty-nine.

In modern notation the statement of the problem
and its solution is:

x2 + 21 = 10x

Solution: x = 10/2 ±
√

[(10/2)2 − 21]
= 5 ±

√
(25 − 21)

= 5 ±
√

4
= 5 ± 2
= 7, 3

Even if the reader can not follow the mathe-
matical notation, it should be apparent that the ver-
sion written using symbols is potentially much eas-
ier to comprehend. It is enormously more compact.
This compactness and its consequences for intelligi-
bility were commented on a long time ago. William
Oughtred (quoted by Cajori), an English mathe-
matician promoting his own work in 1647 noted:

. . .Which treatise being not written in the usuall
synthetical manner, nor with verbous expressions,
but in the inventive way of Analitice, and with sym-
boles or notes of things instead of words, seemed
unto many very hard; though indeed it was but
their owne diffidence, being scared by the newness
of the delivery; and not any difficulty in it selfe.
For this specious and symbolicall manner, neither
racketh the memory with multiplicity of words, nor
chargeth the phantasie with comparing and laying
things together; but plainly presenteth to the eye
the whole course and processe of every operation
and argumentation.

The essence here is Oughtred’s observation that by
writing ‘with symboles or notes of things instead of
words’ the argument is ‘plainly presenteth to the
eye’. The ‘symboles’ used by early mathematicians
are dictated by what the printer had available. So
in one of the earliest printed maths books, Cardan’s
Ars magna (1545, quoted in Cajori) the author

TUGboat, Volume 24 (2003), No. 2 167

contents himself with using abbreviations set in
the text roman type to express unknowns. Vieta
in 1591 (quoted by Cajori) uses single text roman
capitals for unknowns. It was René Descartes in
1637 who finally established the use of lower case
italic letters for unknowns. He also started the
useful distinction of using letters near the beginning
of the alphabet for unknown constants and letters
at the end of the alphabet for unknown variables.
Significantly by this date it was reasonable to expect
a printer to have matching roman and italic types
that could be set together. Mathematical setting is
notorious for the diversity of sorts it exploits. In
early mathematical works the choice of these sorts
is limited to what the printer has. For example in
early printed books on ‘algebra’ much use is made
of a capital R with a scratched tail to denote root, a
sort ordinarily deployed in liturgical work to denote
‘Response’ (e.g. Cardan, 1545).

One of the more amusingly documented discov-
eries made by an author seeking out unexploited cor-
ners of the printer’s stocks is the eventual use of bold
to denote vector quantities. Electromagnetic theory
was undergoing rapid development in the late nine-
teenth century and this called for the development
of notation in mathematics capable of distinguish-
ing quantities which possessed both direction and
size (vectors) from other non-directional quantities
(scalars). The first attempt used greek type, but this
failed because of confusion with other greek sym-
bols. Maxwell in 1873 promoted German (Fraktur)
type for the job. Oliver Heaviside (a populariser of
Maxwell’s work) was the one who started using bold
(Electromagnetic theory, 1893, Ernest Benn Ltd):

Maxwell employed German or Gothic type. This
was an unfortunate choice, being itself sufficient to
prejudice readers against vectorial analysis. Per-
haps a few readers who were educated at a commer-
cial academy where the writing of German letters
was taught might be able to manage the German
vector without much difficulty; but for others it is
a work of great pains to form German letters leg-
ibly. Nor is the reading of the printed letters an
easy matter. Some of them are so much alike that
a close scrutiny of them with a glass is needed to
distinguish them unless one is lynx-eyed. This is a
fatal objection. But, irrespective of this, the flour-
ishing ornamental character of the letters is against
legibility. In fact, the German type is so thoroughly
unpractical that the Germans themselves are giving
it up in favour of the plain Roman characters, which
he who runs may read. It is a relic of mediaeval
monkery, and is quite unsuited to the present day.
Besides there can be little doubt that the prevalent
shortsightedness of the German nation has (in great

measure) arisen from the character of the printed
and written letters employed for so many genera-
tions, by inheritance and accumulation. It became
racial; cultivated in youth, it was intensified in the
adult, and again transmitted to posterity. German
letters must go.

Rejecting Germans and Greeks, I formerly used
ordinary Roman letters to mean the same as Max-
well’s corresponding Germans. They are plain
enough, of course; but, as before mentioned, are
open to objection. Finally, I found salvation in
Clarendons, and introduced the use of this kind of
type so called, I believe for vectors (Phil. Mag,. Au-
gust, 1886), and have found it thoroughly suitable.
It is always in stock; it is very neat; it is perfectly
legible (sometimes alarmingly so), and is suitable
for use in formulae along with other types, Roman
or italic, as the case may be, contrasting and also
harmonising well with them.

Sometimes block letters have been used; but
it is sufficient merely to look at a mixed formula
containing them to see that they are not quite
suitable.

This rather long quote illustrates several points
about mathematicians and mathematics.

* Mathematicians are quite passionate about
how their maths is presented

* Mathematicians do have a keen appreciation
of the utility of notation

* Mathematicians have a real (if idiosyncratic)
idea of the aesthetics of maths printing

It is also clear from this quote what a real influence
the printer can have on advancing mathematical
notation and maths and science themselves.

The beauty of mathematics

The somewhat eccentric writings of Oliver Heavi-
side do show that mathematicians have a very keen
sense of what works in the notation they use to con-
vey ideas. Beyond this utilitarian view of notation,
mathematicians also appreciate wider principles in-
volved in the proper written display of their work.
This appreciation is linked to an appreciation of the
maths itself. A mathematician will be very pleased
if s/he is able to simplify an argument or equation
and render the mathematical content more compre-
hensible. Mathematicians speak of the ‘beauty’ of
a well-presented and succinct proof or newly found
link between branches of mathematics. The quest
for such ‘beauty’ keeps mathematicians busy try-
ing to refine existing proofs. The proof of the Four
Colour Map problem (any map can be coloured us-
ing only four colours without the same colour ad-
joining itself) reported a few years ago is acclaimed,

168 TUGboat, Volume 24 (2003), No. 2

but relying as it does on thousands of hours of com-
puter calculations, it is regarded as very inelegant.
There are many mathematicians busy trying to sim-
plify it. The writing of equations that are compact
and convey meaning easily is central to ‘beautiful’
mathematics.

The written language of mathematics is easily
given the attributes of compactness and beauty by
mathematicians. It is not surprising to see a long
and close association between mathematicians and
their printers, the mathematicians exploiting all the
available special sorts and skills that the printer can
provide. There is such density of meaning in the
choice of letter, its style (roman, bold, italic), its
typeface (serif, sans serif, script, outline), its al-
phabet (latin, greek, hebrew), its size, its position
relative to other characters (subscript, superscript),
that the printer’s job is very challenging. The chal-
lenge is to follow the very detailed requirements of
the mathematical author without any understand-
ing of the content.

The curious thing from a typographer’s point of
view is how little a typographer can contribute once
the mathematician has made all the choices neces-
sary to convey the mathematical meaning. It is not
too controversial to suggest that the mathematician
is in fact his/her own typographer, at least in the
matter of writing equations.

Maths = typography?

If mathematicians define the typography of the
equations they write and ‘beautiful’ mathematics
is well-presented equations whose meaning shines
through the density of notation that they bear, then
perhaps mathematics is just a highly refined typo-
graphical game? Going back to Stanley Morison’s
definition of typography as ‘so controlling the type
as to aid to the maximum the reader’s comprehen-
sion of the text’, then that is exactly what a mathe-
matician does. Given that mathematics’ only phys-
ical reality (its only props) are written equations,
then perhaps maths really is typography.

Modern mathematical typography

Mathematical typesetting has always challenged the
printer (Smith: The printer’s grammar 1755):

Gentlemen [authors] should be very exact in their
Copy, and Compositors as careful in folowing it,
that no alterations may ensue after it is composed;
since changing and altering work of this nature is
more troublesome to a Compositor than can be
imagined by one that has no tolerable knowledge of
Printing. Hence it is, that very few Compositors are
fond of Algebra, and rather chuse to be employed

on plain work, tho’ less profitable to them than the
former; because it is disagreeable and injures the
habit of an expeditious Compositor.

It is not only challenging, it is also expensive. In
the 1970s and 1980s publishers sought cheaper al-
ternatives to hot-metal typesetting and used strike-
on systems (IBM, Varityper) extensively. Mathe-
maticians grumbled, but mostly accepted arguments
about costs. One however was so appalled by the
standards of typesetting from Varitypers that he re-
belled, spent time studying typography and typeset-
ting, exploited the just-available raster-scan type-
setters, and wrote his own type design and type-
setting programs. That is Donald Knuth, Professor
of Computer Science at Stanford. His type design
program is Metafont and the typesetting program
is TEX. This is not the place to go into the work-
ings of TEX, but it is interesting to remark that the
program is a very good example of what computer
scientists call an ‘expert system’ that is modelled
to some degree on the workings of the Monotype
sytem that it replaces. Typographers hated it be-
cause of its associated typeface, Computer Modern
Roman which Knuth modelled on the maths books
of his youth (set in Modern Series 7). Typeset-
ters couldn’t understand its input coding: this was
not modelled on the mechanical requirements of the
Monotype system, but is written to make sense to
mathematicians. The program was also free. It has
been hugely successful to the point that it is the only
word-processing system any self-respecting mathe-
matician will use. Typesetters have then found the
economic necessity of dealing with it. Several are
able to do something about its associated typeface,
which pleases typographers.

One significant aspect of TEX that is illustra-
tive of the theme of this paper is a little-remarked
feature of it. Knuth wrote an output program ab-
breviated to ‘dvi’ which allows TEX to be printed
on anything from a 64-pin dot-matrix printer to a
laser raster typesetting machine. In all cases the rel-
ative positioning of the characters of the equations
are perfectly maintained irrespective of the printer
used. A mathematician can email a dvi file to a col-
league on the other side of the world know exactly
what that colleague will see (‘dvi’ stands for device
independent). The exact arrangement of characters
is vital to the meaning of the equations. The exact
typography is vital. For Knuth typography is maths.

⋄ Richard Lawrence
18 Bloomfield Avenue
Bath BA2 3AB, UK
ZRLawrence@aol.com

TUGboat, Volume 24 (2003), No. 2 169

On musical typesetting:
Sonata for TEX and METAFONT, Op. 2

Federico Garcia

This article appears in the same TUGboat

issue as an obituary of Daniel Taupin, author

of MusiXTEX, who unexpectedly passed away

in 2003. I’d like to take the opportunity to

offer it as an homage to his memory.—FG

Modern software industry has provided tools for the
typesetting of music for some time already. Two
programs in particular —Finale and the more recent
Sibelius — virtually exhaust the music community:
almost all musicians use either one or the other.
Both are WYSIWYG (what you see is what you get)
applications, and both have reached that stage of
development in which new versions consist of little
more than new shortcuts, ‘cookies’ of questionable
relevance, and so on. Competition for ever wider
markets, on the other hand, has made these pro-
grams horribly ‘intelligent’: intended for standard
situations and the less-than-careful user, they make
customization beyond a certain point painstakingly
bothersome.

The problem is that non-standard situations
are the order of the day in music. On the one
hand, there is the so-called ‘new music’, the con-
temporary form of the ‘art music’ tradition, whose
notational requirements have proven to be hard to
standardize at all;1 traditional notational practices
are quite sufficient for popular and commercial mu-
sic (increasingly the target of commercial software),
but ‘new music’ overwhelms them in infinite ways.
On the other hand, there is musicology, in which
not the composition of new but the analysis of old
music might potentially require not-yet-conceived-
of typographical upheavals — to circle or otherwise
highlight certain notes, to tie them in unusual ways,
to superimpose staves, . . . Thus, any serious system
of professional musical typesetting has to give up
the hope of foreseeing all needs and possibilities. In
a word, it has to be programmable.

This is what some years ago got me started
thinking of TEX as a suitable environment for such a
system. Recently, after having had some experience
with MusiXTEX —the ‘officially approved’ (i.e., ac-
knowledged by Donald Knuth in his web page) ap-
plication of TEX to music —as well as a taste of what

1 Perhaps I should remind the reader that today’s mu-
sic, like other arts, is far removed from the conventions and
traditions of the ‘common-practice period’ (17th–19th cen-
turies)— for which, incidentally, the ‘standard’ notation was
developed. Everything has changed, from the nature of the
musical sound itself to its graphic representation.

Lilypond has to offer, I have put hands to work on
creating (yet another) system, with portability, flex-
ibility and adaptability as priorities.2 What follows
is a report of what I have done so far. If I’m sub-
mitting it to the public, it’s because I think I might
be onto something.

I wrote this article in two stages. First (Op. 1)
when I had just devised the main general model,
and anticipated the main algorithms needed to im-
plement it. That was toward the end of 2002. And
then now, mid-2004, when publishing it in TUGboat

became really plausible. Particularly the first part
(a history of the main idea of the system) features
a narrative approach, so I have avoided anachro-
nism: what I know now but didn’t know then should
not interfere too much. Along the way of telling
this story, there is a detailed review and ‘refutation’
of MusiXTEX. It’s admittedly sharp, but sincerely
well-minded and grateful.

Then, in the second part, I allowed myself to
‘upgrade’ the article a little more deeply, taking ad-
vantage of these two years of actual work of pro-
gramming. It’s interesting to see how getting con-
crete changes ideas in unexpected ways.

I think this article can be read without knowl-
edge of either music, TEX programming, or META-
FONT. Experience would surely make it easier to
understand some lines here and there, but I’ve tried
to make it all clear to any reader, above all to non-
musicians. I myself wasn’t very experienced with
TEX, METAFONT, or musical typesetting —and the
bulk of this article is re-telling the steps I’ve followed
and what I’ve learned from scratch.

PART I:
Qualitative design

1 The nature of musical typesetting (I)

It’s no coincidence that music typesetting programs
are, by far, closer to being graphic utilities than text
processors. Musical text is multi-dimensional. As

2 MusiXTEX is Daniel Taupin’s development of what was
originally a joint effort with Andreas Egler, MusicTEX.

Lilypond is the TEX-related but independent system devel-
oped by Jan Nieuwenhuizen and Han-Wen Nienhuys. I am by
no means familiar with Lilypond— in part because in 2002,
when I wrote a first version of this article, I had to give up
trying to install it under Windows. One might think that
I should have become familiar with it before embarking on
the creation of TEXmuse; but my intuition is that there is no
real overlap between the two. For one thing, Lilypond is not
a TEX package; for another, it boasts (rightly) of beautiful
fonts. TEXmuse, on the contrary, boasts of not having fonts
at all, and this shows how different their nature and approach
are. I have grown convinced that, as explained later on, not
having fonts is actually the best way to the flexibility I am
aiming at, as a musician and as a programmer.

170 TUGboat, Volume 24 (2003), No. 2

we all know from school, the horizontal dimension
is time, and the vertical dimension is pitch. But
that’s only part of the matter, since different voices
come in different staves (different vertical position).
The horizontal position of a note in a given staff
depends not only on what notes in the same voice
come before or after, but also, and typographically
most importantly, on what notes are played at the
same time by other voices. There is in effect a third
dimension involved. (A look at Figure 1 might be
in place to visualize all this. This piece being for
piano, each staff corresponds to one hand.)

❈❍❖ P ■ ◆ ✵ ✶
Figure 1: A fragment of a typical score (m. 9 of

Chopin’s piano prelude in c minor, Op. 28 No. 20).

Music is thus not a line of text (in which only
the horizontal dimension matters), but also not a
mathematical formula (in which the vertical dimen-
sion plays a role): it is an array of several two-
dimensional ‘strings’ that are mutually lined up. Ty-
pographically, what this resembles most is, of course,
a table. And yet there is an important difference:
a musical score usually goes on and on, for many
pages — the table has to be broken. Not broken as
longtable breaks tables, because in this case the ta-
ble is not too tall, it is too long. It has hundreds and
hundreds of columns, and there is no way to know
beforehand how many of them fit in each page.

2 The problem of horizontal spacing and
line breaking

An idea that suggests itself naturally when one med-
itates about this kind of page-breaking is an anal-
ogy with TEX’s output routine. Instead of collecting
lines and deciding when to break the page ‘verti-
cally’, here the task consists of collecting columns
and deciding on horizontal breaks. This would in-
deed be the case when the table is input in the
form of columns. Page-breaking when the table is
thus pre-set is actually a rather simple matter, and
we can see a solution in action in the workings of
MusiXTEX. In fact, that’s the latter’s main break-
through: “to address the above aim, a three pass
system was developed” [8, p. 9].

The ‘three-pass system’ works through an ex-
ternal program (MusixFlex), that reads a file (.mx1)
created by TEX, decides on page- (and, which is

analogous, system-) breaking, and writes another
file (.mx2) for TEX to read during a second TEX
pass.

I always wondered whether invoking an exter-
nal program was really necessary. TEX’s handling
of horizontal spacing, a substantial part of the line-
breaking algorithm for which Knuth takes and de-
serves much credit— “this, in fact, is probably the
most interesting aspect of the whole TEX system” [3,
p. 94] — seems so powerful, so flexible, and intu-
itively so fit to musical spacing, that MusiXTEX ap-
peared to be missing out. I had the impression that
music offers an opportunity to really take advan-
tage of this superb algorithm, whose capabilities go
far beyond assigning a little extra space to periods
and question marks in horizontal mode. . .

The authors of MusiXTEX lay aside this algo-
rithm on the grounds that it

implicitly assumes that a normal line of text will
contain many words, so that inter-word glue need
not stretch or shrink too much to justify the line.
This strategy does not work very well for music.
If each bar of music is treated as a word, in the
sense that inter-bar glue is placed at the end of
each bar, then the usual result is the appearance
of unsightly gaps before each bar rule. This fol-
lows naturally from the fact that the number of
bars per line is normally many fewer than the
number of words in a line of text. [8, p. 9, my
emphasis]

This is, in the main, correct. What is flawed is
the implicit analogy: it is not “each bar of music”
which has to be “treated as a word”, because its in-
ner components are also subject to spacing. Since
the defining characteristic of a ‘word’, as far as the
line-breaking algorithm is concerned, is that its com-
ponents remain packed together with rigid space in
between, measures (bars) do not qualify as words.

Therefore there is still a possibility of using
TEX’s line-breaking algorithm. My whole endeavor
has been ultimately moved by the intuition that
there must be some way to apply it. As we shall see,
this idée fixe led me — round-about and through a
faulty assumption— to the discovery of a promis-
ing possibility. But first, now that I have touched
MusiXTEX, let me complete my review of it.

3 A word on MusiXTEX

I said above that the problem of horizontally break-
ing a table is a simple one when the table’s columns
are input as such: as columns. And that that was
the case with MusiXTEX. In fact,

the fundamental macro [of MusiXTEX is] \notes
... & ... & ... \enotes where the character

TUGboat, Volume 24 (2003), No. 2 171

& is used to separate the notes . . . to be typeset
on the respective staff [sic] of the various instru-
ments, starting from the bottom. [7, p. 213]

So you input the first note of the bottom-most staff,
then use the magical &, then the first note of the
second-to-bottom staff, another &, the note in the
third-to-bottom staff, etc. After getting to the top
staff, you start again by going back to the bottom
staff, and inputting its second note. The process is
exactly analogous to LATEX’s tabular, only rotated
90◦.

A way to picture what is involved here is imag-
ining that to type a paragraph of text you have to
type a) all the first words, line by line, b) all the
second words, c) all the third words, d) . . . It is
terribly unnatural, and, as a result, the input is as
unreadable as it can get; both creating and reading
it is an excellent, but unwelcome, exercise in ab-
stract thought. Because music, after all, is thought
of much as text is: as horizontal lines. Many, inter-
connected lines, but lines still.3

Writing a MusiXTEX file is then most uncom-
fortable, and editing it can be really challenging.
But consider the task of ‘extracting parts’ (select-
ing, for separate printing, a subset of the staves in-
volved). This is a very common necessity, for players
of an ensemble need only their staff (not the whole
score), and the ability to do it automatically is prob-
ably the most important advantage of using a com-
puter for music typesetting. With MusiXTEX’s kind
of input, this is simply unthinkable (it is analogous
to, but more complicated than, extracting a single
column from a tabular environment, even a sim-
ple one; there is no way to copy-paste, not even to
automatically find the relevant pieces of the input).

David Salomon says that “the most important
feature of TEX is its line-breaking capabilities. . . .
The second most important feature of TEX is its pro-
grammability” [6, p. x]. As I have noted, MusiXTEX
ignores the first feature; but the way it neglects the

3 Taupin devotes section 1.1.1 of MusiXTEX’s manual to
argue that “the humanly logical way of coding music” is the
procedure described. This claim is as wrong as it is apode-
ictic. He draws from his perception of what reading key-
board music is like. Even here his point is questionable, be-
cause the musician reads horizontal chunks from every staff
(the whole tradition of sight-reading training is based on this
assumption). But, in any case, the composer and the typ-
ist (who really matter) certainly do not conceive of music
vertically. I have never seen anybody setting a score by
columns, but, again, by chunks of horizontal material. In-
complete drafts by composers throughout history, including
Bach’s Die Kunst der Fugue (one of the first MusiXTEX
projects), prove this. In my view, Taupin is here proving
what he believes, rather than believing what he proves: un-
derstandably, his system was “the humanly logical way” of
programming TEX for the task.

second one is actually more exasperating. I started
this article by complaining about how customization
is disregarded in commercial music software. For ex-
ample, three steps are needed to change a note-head

from its standard shape (the elliptical spot ❚), say
into a ⋄ or a × (both fairly usual nowadays). Of
course, if you happen to need many such changes,
you are doomed to follow the same three steps over
and over. . .

What is this like in MusiXTEX? Well, by it-
self, MusiXTEX cannot do it. You have to go to
musixtex.tex (naturally a very intricate file), find
the relevant definitions, and create your new macros.
Foremost, you have to know what you are doing—
after all, you are programming TEX at a fairly low
level. No hope of doing it if you are no TEXnician.4

Let alone trying to change temporarily the num-
ber of lines in a staff, or creating non-standard key
signatures, or connecting two notes from different
staves — all of which is excruciating, but at least
possible, in Finale and Sibelius. Requiring the user
to verticalize what is naturally thought of horizon-
tally is awkward; but prohibiting an efficient and
logical programming is — it seems to me —not far
short of deserting the very spirit of TEX.

In addition, little care was put in the choice of
command names —some bear ‘d’ and ‘u’ for English
down and up, others ‘b’ and ‘h’ for French basse and
haute; musical names are applied wrongly (‘accent’
for articulation, ‘sforzando’ for accent, ‘pizzicato’ for
staccato, etc.)— trying to memorize this could mean
forgetting what’s what. MusiXTEX is not flexible
(the limitations of slurring, for example, are severe);
it’s not even efficient: only nine (or twelve with an
‘extension library’) staves can be included, because
TEX registers are used for almost everything, and
they are exhausted quickly. And, this review al-
ready becoming far more odious than my intention,
I have to say that, with MusiXTEX, quality— O pre-
cious treasure and pride of TEX lovers — is poor: the
output is ugly.5

To sum up, MusiXTEX does not in my view take
advantage of TEX’s unique possibilities. Its typeset-
ting of non-standard music is as demanding as that
of WYSIWYG commercial programs, adding the in-
tricacy of an unreadable input. Sadly, I have had
to recommend musicians (even those few well ac-
quainted with TEX) to use Finale or Sibelius rather

4 The authors do provide an ‘extension library’ with ⋄, ×,
and other symbols implemented as note-heads; but this kind
of ad hoc procedure is not a solution, for the possibilities are
still limited.

5 And this is why Lilypond puts so much emphasis on the
beauty of its fonts (see note 2).

172 TUGboat, Volume 24 (2003), No. 2

than MusiXTEX: the result is better and the effort
is less if the situation is standard, and about the
same otherwise.

I’m not being just politically correct, however,
when I also have to say that, all in all, it is a wonder
that MusiXTEX was programmed at all. I regard its
creators with deep respect and admiration.

4 Premises for an alternative

The discussion above sets the grounds for what an
ideal system would be like. These are my basic
premises:

Programmability and flexibility. This is ‘simply’
a matter of constantly bewaring of rigid designs
in programming.

TEX’s glue has to be used. Somehow. It seems so
fit for musical spacing. . .

Horizontal input is necessary if we want a natural
and logical system, one that can compete, on
ease of use, with Finale and Sibelius.

TEX’s sufficiency No PostScript. Come on, no
cheating, please.

About the first two points, I think it can be said that
MusiXTEX simply slipped down the wrong way —
far greater difficulties were being tackled by its au-
thors, so we can forgive them.

But the third premise is a Pandora’s box. ‘Hor-
izontal input’ means that the user will input the
different lines (staves), one by one. But there is
nothing in a given particular line that indicates the
relationship of its notes to the notes in other lines
(and, remember, the horizontal position of a note
depends foremost on the notes in other staves). For
example, there is no way to know, by only reading
line 3, whether its fifth note will be played before,
at the same time, or after (graphically, to the left,
directly above, or to the right of) the tenth note of
line 6.

MusiXTEX solves the problem, as mentioned,
by asking the user to input columns: it is the user
who figures the vertical relationships out. But this
is precisely what we want to spare the user. Could
TEX possibly do it? Well, since these relationships
depend on (and only on) the rhythmic characteris-
tics of the notes involved, to figure them out TEX
would need to ‘understand’ those rhythmic charac-
teristics: nothing less than being taught music.

I still tried something else before committing
to TEX’s musical instruction: if the problem is to
horizontalize a vertical input, why not simply rotate
the score? The user will type staff by staff, as is
natural to him, but for TEX this will mean column
by column, which is natural for it. In addition, the

problem of page-breaking a horizontally long table
becomes the more manageable (and already solved)
one of page-breaking a vertically long one. Even
TEX’s glue would be automatically recovered, only it
would apply now to staves (rather than measures),
which do behave as words in the sense that inner
space is not stretched.

I was thrilled by this idea. I still think it is
worth exploring for a table-like approach like Mus-
iXTEX. But I soon realized this does not solve the
big problem. The input is simplified, but the user
still has to figure out the (now horizontal) rhythmic
correspondences. And, again, TEX’s spacing algo-
rithm would be under-used, being applied to the rel-
atively unimportant problem of inter-staff spacing.
The output routine, on the other hand, has noth-
ing resembling space factors with which to work on
inter-note spacing (which was my main motivation
to think about that algorithm).

So, no way out: for the third premise, TEX had
to take music lessons, and I would be the appointed
teacher. I was scared, and maybe that, along with
my taste for TEX’s line-breaking algorithm, is why
I focused first on the second premise: bringing back
TEX’s glue. It will be seen that this actually in-
volved a logical slip—but a fortunate one, because
by tackling the wrong problem I found a solution to
the real one.

What about the fourth premise? Why did I set
this ‘only-TEX’ requirement to my system? I don’t
really know — it must have been sheer love of TEX.6

5 Bringing glue back

The intuition that TEX’s spacing is useful for music
can be stated basically thus: different (rhythmic)
kinds of musical notes receive different amounts of
space to their right, similar to the way periods, com-
mas, and other characters, do in text.7 A succes-
sion of notes can thus be imagined as a succession
of words, separated by blank spaces; these spaces
will be stretched by TEX (in the same way TEX

6 And total ignorance of PostScript! (although I am will-
ing to learn if it proves necessary; Van Zandt’s miraculous
PSTricks is a compelling taste of what can be achieved by
‘cheating’).

7 A quick summary of the algorithm: TEX calculates how
much the line has to be stretched to reach the right margin
(to be justified). Then this total extra space is distributed
between all the blank spaces —elastic spaces, TEX’s ‘glue’ —
in the line, proportionately to the ‘space factor’ of the char-
acters before the spaces. Periods, for example, have a larger
space factor than letters, and therefore spaces after periods
will be given a bigger share of the total stretching.

Throughout this article I consider the algorithm only in
its ‘stretching’ aspect, and without interference from infinite
glue or ‘badness’ parameters.

TUGboat, Volume 24 (2003), No. 2 173

stretches spaces in a normal line of text), so that if
the space factors assigned to each note ‘map’ their
rhythmical nature, the final stretching will agree to
the rules of musical spacing.

So, the fruitful analogy is words = notes (as op-
posed to words = measures, which is ‘semiotically’
more natural, but typographically misleading— see
section 2).8 Another important aspect of this anal-
ogy will be treated in the following section.

However, it will be noted that the intuition
paraphrased above is not perfectly rigorous. In all
truth, as has been already said, the space at the right
of the musical notes depends not only on their own
rhythmic characteristics, but above all on the notes
(which, and how many) present in other staves. The
assumption that this spacing behaves similarly to
the spacing for justification of texts holds true only
in two cases: a) when there is only one staff; and
b) when the note in question is the smallest (rhyth-
mically) of all notes played by the different staves.9

OK, I can state b) now, with an a posteriori

conceptualization. At the time I was struggling with
‘bringing back TEX’s glue’, I could not possibly have
thought of this as rigorously. Had I considered spac-
ing for many voices, I myself would have probably
abandoned the analogy with glue-spacing. But any
thinking about many voices was then for me related
to ‘teaching music to TEX’, which was a task I had
decided to postpone. Thus I had automatically re-
duced the scope to one-voice situations — case a) —
inadvertently making the intuition (and the anal-
ogy) true and useful.

An incomplete intuition generated an incom-
plete consequence: the analogy words =notes (which
is right but not sufficient). But only through a fur-
ther development of this consequence could I start
imagining a complete strategy that would solve the
actual problem of music typesetting, namely the
problem of how to deal with polyphony.

6 The nature of musical typesetting (II)

A page of music type consists of a great many
small pieces joined together to represent continu-
ous lines and characters. For instance, this group

8 I’m using the term ‘word’ in a TEXnical way: it means
any succession of characters (‘letters’) bounded by spaces (or
\par’s). So ‘No!.’ is a four-letter word (‘!’ and ‘.’ being two
of the ‘letters’).

9 In other words: when the note in question is the smallest
in the whole polyphony, it follows that the next note will be
present in the same staff. Then, the only consideration for
its spacing is its own rhythmical nature—there will be no
need to make room for intervening notes in other staves. For
a ‘special case’ of the rule, pointed out by the authors of
MusiXTEX, see note 20.

T: ❚ e: ❡ X: ❳
Table 1: Three musical ‘letters’.

of notes ❛ is composed of twenty-four

pieces, thus: ❜ .

This is how F. H. Gilson [2, p. 11] illustrated, back
in 1885, the ‘microstructure’ of a musical text. In
it we can see how much sense it makes to say that
a note, in all its atomic character, is analogous to a
word (rather than, for example, to a letter). Gilson
analyzes his three notes into a series of smaller ele-
ments: these elements would be well thought of as
letters. Indeed, Finale and Sibelius build up notes
from several elements: note-heads, flags (❝) for short
values, etc. So does MusiXTEX, whose fonts do not
include complete notes at all.10

Notes, then, do seem to behave as words: ag-
gregates of letters. For example, imagine a font in-
cluding the three characters in Table 1. The word
TeX would produce ❚❡❳.11

Now, there are some important things to note:

• Many letters of this musical ‘alphabet’ would
have no width (such as the ‘letters’ T and e in
the example), since musical ‘words’ would tend
to be vertical rather than horizontal arrange-
ments. In fact, probably the most appealing
effect of ‘rotating the score’ (page 173) is that,

when rotated, musical ‘words’ such as ❚❡❳ (now✷) really resemble text. But with an unro-
tated score and zero-width characters, any dis-
turbances of ‘normal’ vertical alignment (that
occur frequently enough in music) would re-
quire the manual insertion of rigid space.

• In ordinary text, the space after a word depends
on the space factor of one of its characters (gen-
erally the last one). In music, the space depends
on the word— the note — in its entirety. The
musical letter ‘ ❚ ’, for example, will presumably
be part of many notes, each of them requir-
ing different spacing. But this is different from,
say, what happens with character ‘.’ in ordinary
text: the spacing of the whole word is deter-
mined by that single character, on its own and

always in the same way. In our musical font,

10 With the annoying result that it is not possible easily to
insert a note in ordinary text. Even the authors must have
regretted it when they had to do heavy code for this relatively
simple need when writing the program’s manual.

11 The vertical line missing here —called ‘stem’ —would
be directly drawn by today’s programs; Gilson included it as
part of the types.

174 TUGboat, Volume 24 (2003), No. 2

characters would have to be assigned different
space factors each time they are used, which is
kind of missing the point.

• The only difference between T and e (❚ and ❡)
is the vertical position of the little ellipse. This
is of course not the best solution— an infinite
alphabet would be needed to put note-heads
anywhere in the score. The musical alphabet
should have only one letter for the note-head,
and move it up and down as necessary.

Taking all this into account, our word would
no longer be ‘TeX’, but something along the lines of
(in LATEX) ‘T\raisebox{-1ex}{T}\sfactor‘\X X’.
Much less attractive!

7 The advent of METAFONT

There are other reasons why this approach wouldn’t
work, but at the time I was unable to see them. I
think it’s the ‘aesthetic’ disappointment that left me
unsatisfied. I rejected the approach, ‘arbitrarily’ if
you will, by the feeling that an originally elegant
use of TEX’s properties had become a ugly series of
ad hoc procedures.

I haven’t spoken of METAFONT yet. But the
truth is that, all along, I had been training in META-
FONT — after all, I would soon be forced to create
the fonts for my system. So every time I got tired
of thinking of TEX, I would go for a METAFONT

promenade. I was creating a musical font, imitat-
ing Finale’s ‘maestro’. Many of the symbols used
here for musical examples actually come from those
early, unexperienced trials. (That’s partly why they
are not very refined.) The point is that I was in-
creasingly getting to know and love METAFONT,
and many times I found myself, after having learned
to take good advantage of a new resource, think-
ing ‘Oh, if only TEX could do this. . . ’ This was
mainly in connection to arithmetic and the use of
variables, but in general a feeling was growing that
METAFONT was curiously well fitted to the kind of
graphic handling required by musical text.

What would have made one think that META-
FONT would be fitter for music than graphic utili-
ties? It was indeed curious. But then one day— it
was the summer of 2002— I made a slightly different
comparison, and the whole business became defin-
ing and foundational. I would actually say that’s
the moment TEXmuse was born. The point is not
that METAFONT is fitter than PostScript, or than
PSTricks, or than PICTEX. Truly relevant is the fact
that

METAFONT is fitter than TEX

I’m not claiming priority for this. Back in 1992, it

occurred to Tom [Thomas E. Leathrum] that it
might be possible to take advantage of the fact
that METAFONT is designed for drawing things.
[5, p. 1]

From this occurrence, Leathrum eventually devel-
oped the program mfpic.12 It took me a relatively
long time (probably because of my idée fixe of ap-
plying TEX’s glue), but I finally realized the rather
obvious fact that building notes up from elements
was much more of a ‘drawing-things’ than of a ‘com-
piling-words’ business. Then, Leathrum’s solution
came to my mind automatically: building the notes
is a graphic activity, and it should be done by META-
FONT, not by TEX. The latter only gives directions.

8 TEXmuse

So, that’s it: TEX collects the information for the
notes (how many note-heads, what kind, where to
put them, the direction of their stems, additional
signs, etc.), and writes a METAFONT program; run-
ning it, METAFONT creates a character for each
note. After that, everything is trivial: each note
will be like a single-letter word, with its own space
factor. TEX applies its stretching algorithm and,
almost without knowing it, spaces the music auto-
matically:

bach.tex ✤
✣

✜
✢TEX

bach1.mf

bach2.mf

. . .
✲ ✲

✑✛

✬
✫

✩
✪METAFONT✛

bach1.tfm

bach2.tfm

. . .

✤
✣

✜
✢TEX

bach.dvi

✫✲ ✲

Figure 2: TEXmuse at work.

12 Ramón Casares too had a similar idea in 1994. His
METATEX is a more direct application of it, different from
mfpic (and TEXmuse) in that it requires the user to know how
to use METAFONT — it “only builds the necessary bridges to
use TEX and METAFONT in a cooperative way” [1, p. 317].

TUGboat, Volume 24 (2003), No. 2 175

With this idea, I finally had the outline of a
system that seemed to work and fulfill the needs of
musical typesetting. This outline subsequently suc-
ceeded at all the tests that had beaten all other sys-
tems and ideas (the many-voice problem, the four
premises, and some other needs of music I haven’t
mentioned yet). I never performed these tests in
any ‘rigorous’ way, but I qualitatively (and more
or less intuitively) felt that the system would hold
fair. That’s when I went ahead and thought of a
name, designed a logo, and wrote an article about
it, toward the end of 2002. That article has formed
the basis of the present account, and I’ve so far re-
spected most of its contents and its structure, only
struggling to make it more clear.

Let’s have a look at how TEXmuse deals with
the mentioned challenges.

8.1 The many-voice problem

It has already been decided that TEX will be taught
the secrets of musical rhythm. This means that,
reading the horizontal input for each voice, it will
know what notes start sounding at any given time —
which, typographically, means knowing what notes,
and in what staves, are present in any given vertical
axis. So, in programming METAFONT, TEX is not
limited to building up single notes in each character:
instead, it is able to write a program that includes
all the notes of a vertical axis in a single, rather
tall character. Since TEX also knows what the next
note is (anywhere in the score), it can figure out the
shortest rhythmic value of the current character—
which, typographically, determines the spacing and
the character’s space factor. A correct application of
TEX’s glue — case b) on page 174 — is then possible.

With this the journey is complete: from the
wrong analogy ‘words=measures’, through the in-
complete halfway-station ‘words=notes’, we have ar-
rived at the solution ‘words=moments of music’;
from the score as a table exasperatingly input by
columns, through the score as a table impossibly in-
put by lines, to the score as a single line of text with
words automatically designed.

This raises only a minor (but potentially devas-
tating) concern: imagine a score with 24 staves, nor-
mal for a regular-size orchestra. A character includ-
ing notes for 24 staves can be several inches tall, and
will usually fill a page up. Is METAFONT really able
to handle such tall characters? Luckily, METAFONT

allows a maximum height of 2048pt# [4, p. 316]:
about 28.5 inches — enough for most needs.13

13 The largest score produced by regular, home-computing,
is usually set in pages of the ‘Folio’ size: 11 × 17. I have
certainly seen larger scores (some, but only a few, taller than

8.2 Premises and promises

The two middle premises (no Aristotelian pun in-
tended) of section 4, namely TEX’s glue and hori-
zontal input, were the driving impulses behind the
devising of the system in the first place —we can
assume they are met. About ‘only-TEX’, OK, now
METAFONT is involved, but we will all agree that
there is no cheating there. Look at the root di-
rectory of the TDS (TEX Directory Structure): it’s
called texmf. METAFONT is ‘part of the family’, and
in any case it was always intended to be the source
of any associated fonts.

Flexibility, on the other hand, is much favored
by a system that has no fixed alphabet of graphic
elements but constantly creates its own. Thanks to
this, the ‘core’ of TEXmuse— what it will have built
in— can reach a level of flexibility that ensures that
only the industrious user will have to resort to lower-
level programming. And then, good documentation
and an intelligent use of literate programming for
the METAFONT part of TEXmuse (as well as for the
TEX part, needless to say) will enable the industri-
ous to further customize the system.14

8.3 Other needs

The main idea of TEXmuse was found by realizing
that verticality is, typographically, the main sub-
stance of music. But, musically, horizontal construc-
tions are also of the utmost importance. The beams
that connect eighth-notes, or the slurs and ties that
group notes to indicate ‘phrasing’, for example, fall
in this category. How is TEXmuse, that builds char-
acters vertically, going to deal with this?

The common feature of these ‘horizontal ele-
ments’ is that they are entirely defined by the last
note involved. By ‘remembering’ which notes in
which staves have to be included in the group (the
beaming, the slur, etc.), TEX can postpone its type-
setting to the last note. The METAFONT program
for this last character can include the horizontal el-
ement, sticking out to the left. (This has in fact al-
ready been implemented for beams; slurs and other

28 inches). But to be noted is that all of them are set in
handwriting.

The other restriction on character height is that it can be
up to 16 times the design size. This could lead to fonts of
design size as large as 72pt (for a 16-inch-tall score). I can’t
foresee any problem with that.

14 Is this not, after all, what happens with TEX itself?
Most needs are already met, but in addition anybody could
program his own, learning from existing examples, noto-
riously those of LATEX and its packages, and, of course,
Plain TEX and The TEXbook. Look at me: I am a total
amateur, I have never taken even a lesson in programming.
But here I am, planning to teach music and METAFONT-
programming to TEX.

176 TUGboat, Volume 24 (2003), No. 2

elements are analogous. The ‘remembering’ takes
place in METAFONT, which is much better at han-
dling information.) Horizontal elements remain as
such: they are not ‘broken’ into different pieces for
different vertical agglomerates.

There are other elements that could imply a
disturbance of the basic model of TEXmuse. Notes
are often ‘adorned’ with all kinds of symbols: the
♯ and ♭ signs to begin with, but also many differ-
ent ‘accents’ (dots, lines, hats, . . .), fingering indica-
tions, dynamic markings, etc. Many of them are ac-
tually vertically aligned with the notes, so that they
can be included in the characters just as note-heads
are —no special treatment is needed. But others go
to the left or the right of the notes. The impor-
tant implication of this is that these elements make
spacing more complicated: in general, spacing is af-
fected by them only if they generate collisions. In
other words: if there is enough room for the element
to attach to a note without colliding with the pre-
vious (or the next) one, it is simply appended; but
if it doesn’t fit in the available space, the note has
to be moved (and, with it, all the notes in the same
vertical axis).

TEXmuse has to keep track of the width of the
characters and the space between them. This pro-
vided, the task is trivial: the extra space needed
can always be added to the right-most character
of the potential collision. It will never be neces-
sary to modify a previously built character (which
was the potential threat to the whole system). This
bears some relation to the matter of horizontal con-
structions treated above: there is actually no prob-
lem, because additions and adjustments can always
be made in the ‘current’ character, without second
thoughts about shipped-out notes.

9 Conclusion of the first part

The implementation of these two things — horizon-
tal and offset elements — has involved a deep change
in the nature of the whole system. But this was re-
served for me to discover only when I started pro-
gramming. We will see that many interesting things
would happen in the process: I found unexpected
and risible redundancies in my ideas (section 12.3), a
particular problem that seemed relatively easy but is
giving me trouble to this very day (section 14), and,
most strikingly, a slip on the part of the Grand Wiz-
ard: a minor but unjustifiable omission in META-
FONT, hard to believe coming from him. I shall
have occasion to complain later (note 23).

What matters is that the phase of qualitative
design was over: I had found a promising general
idea and I had tested it with all that was available

to me — all the challenges that had beaten other sys-
tem and other ideas. TEXmuse had survived, and it
was now due to come into existence.

PART II

Toward and into implementation

In the original version of this article (written before
any code whatsoever), this second part was devoted
to a more detailed description of the planned work-
ings of TEXmuse, all in future tense. Discussed were
the actual way TEX’s glue would be applied, the
handling of horizontal elements (beams, slurs, and
the like), and the basic idea behind ‘teaching music
to TEX’. After that came an example, in which I
played a computer running TEXmuse on a hypothet-
ical input, so as to illustrate the whole process.

Today, however, the actual activity of coding it
all has revealed many ‘flaws’, to name them gener-
ically. They are all amusing. For example, influ-
enced by Figure 2 above — and I don’t know by what
else — I was thinking that the TEXing of a TEXmuse

file would require three passes. I was even thinking
about ways to let the user know that more passes
were needed, and ways to ‘fake’ the final TEX box
just as the draft option does for the graphicx LATEX
package! Soon I was to realize that there was no
need for all this. . .

The point is that in the process of coding I
found these flaws, and the changes this has meant for
the system are of far greater importance than many
of the detailed descriptions of the original prospec-
tive account. This present second part will therefore
omit many of those descriptions in favor of the lat-
est developments. An original section on ‘teaching
music to TEX’ stays pretty much the same; the sec-
tion on spacing is still there, but essentially changed,
since here the most important revision took place.
Finally, I’m happy now to present a ‘sample’ instead
of the old ‘example’ —now I have a computer run-
ning (part of) TEXmuse on a real input. After all
that, I present a totally new set of open questions,
questions that were always present but have started
to come to focus as their eventual implementation
approaches.

10 Teaching music to TEX

The main consequence of the premise of horizontal
output, as discussed in section 10, is that TEX has
to understand the rhythmic characteristics of the
user’s input music. Thanks to that, it will be able
to extract, from the input for each staff, the notes
that need to be typeset in any given vertical axis
(representing a ‘moment’ in the music).

TUGboat, Volume 24 (2003), No. 2 177

Notes played at the same time have the same x
coordinate (the different instruments in which they
are played are represented by different y’s).15 All
that TEX needs is to assign a value —the value of
its x— to each note of each staff; then, it will sweep
all these values, and build vertical characters with
notes that have the same x. We are not yet deal-
ing with ‘material’ dimensions, measurable, say, in
millimeters. The actual horizontal placement of the
notes in the staff is not a direct function of their
x. So far the procedure gives TEX only the vertical
correspondences between horizontal input.

A ‘unit’ has to be defined for this virtual axis.
Since the rhythmically smallest note in usual prac-
tice is the 128th-note (a note with 5 flags, 32 of which
equal a ‘crotchet’ or quarter-note), a fourth of this
value would be safe as a unit.16 The quantum q is
then defined as the duration of a 512th-note. All
other notes can be interpreted in terms of q. For ex-
ample, the quarter note will be 64q, the whole note
will be 512q.

Armed with these ‘map of musical time’, TEX
reads the input a first time.17 All the first notes
in each staff occur at 0q. From then on, according
to the duration of the previous note, TEX finds the
value at which all the notes occur. An example is the
fragment in Figure 3. The first note (at 0q) in the
bottom staff is known to be a quarter-note (the user
specifies this), and therefore the second note will be
at 64q. This second note is an eighth-note, so that
the third one will come at 92q. The count goes on,
and then the procedure is done for the top staff, for
which the values 0, 16, 32, 64, 72, 80, and 112 are
found.

From this, TEX knows: there are notes in both
staves for position 0q; at 16q and 32q, on the other
hand, only the right hand has a note; and so on.
The vertical correspondences are thus understood.

15 Here I am ignoring the dimension of ‘pitch’, and talking
about the ‘third dimension’ of musical notation, as introduced
on page 171.

16 I have never seen a note of this kind in print, but it’s
good to provide for it. Besides, the smaller the unit, the
easier and more precise will be irregular subdivisions (triplets,
quintuplets, etc.), of frequent appearance in music.

17 Here it is that a ‘several-pass’ system is implied: TEX
reads the input a first time to deduce the correspondences,
and a second time to actually build the characters according
to those correspondences. In fact, the main programming
mechanism for this is to define the same commands differently
for each of the stages. Usual implementations of TEX today
run METAFONT automatically when tfm or pk files are not
present, so that the procedure does not require TEX to run
twice on the file, as I first thought.

0 16 32 64 72 80 96 112

❇ ❆ ❘ ✼ ✽ ❑ ❙ ✾
Figure 3: A fragment (m. 10 of Bartók’s
Sonatina) with its rhythmic ‘quantization’.

11 Horizontal elements

Figure 3 features also instances of the most impor-
tant kind of ‘horizontal element’: notes 2 and 3 in
the bottom staff, or notes 1–3 and 4–7 in the top
staff, are connected by ‘beams’. How are beams cre-
ated by TEXmuse? A boxed insertion of the second-
to-last character of Figure 3 disturbs the layout of
the present paragraph, but it gives the key to the

answer: ❙ . This character is fairly tall — it makes

room for the top staff, although there is nothing
there (moment 96q). But the important point is
that it contains, sticking to the left, the complete

beam that connects that note to the previous one
(as well as the stems for both notes).

Since the stems of all the notes included in the
beam are typeset when the beam itself is typeset,
every note in a beam except the last one features
only the note-head. For example, the character for
80q illustrates this (and also the procedure for mu-
sical ‘ties’, which is basically the same but simpler):

❑ . This beam is completed only at 112q: ✾ .18

This is how METAFONT creates the horizontal
elements. The other part of the problem is getting
TEX to instruct METAFONT to do so. When TEX

18 You might be wondering about the different number of
beams for different notes in the last illustration. This is an-
other thing that depends on the rhythm of the notes involved,
and this dependence is actually much more interesting and
challenging to express algorithmically than the ‘simple’ mat-
ter of compiling the map of section 10. I have found an al-
gorithm for this— a very nice one, I think, that uses META-
FONT’s weights and undraw technique— which I would like
to present. Unfortunately, the mere explaining of the require-
ments would take so much space that it’s hardly feasible.

On the other hand, a problem that I haven’t solved is how
to decide the angle of inclination of the beam. (In part, it’s
unsolved because I’ve been unable to find, explicitly stated,
the very complex rules concerning this angle.) For the present
examples I cheated, deciding the inclination on my own.

178 TUGboat, Volume 24 (2003), No. 2

❧✉t ♦ s ✇
Figure 4: Different spacing after different
note-values. (Excerpt from the violin part of

Lustos lawski’s Partita for Violin and Piano.)

finds an opening ‘|’ character in the user’s input,
the convention is that the following notes are to be
part of a beam. So it suppresses the generation of
stems, and starts building a list of the notes for the
beam. When it finds the matching ‘|’ (that closes
the beam), the list is complete, and TEX passes it to
METAFONT. Having kept track of exactly where all
notes were placed, METAFONT is able to draw their
stems and the connecting beam.

A paired ‘(’ and ‘)’ analogously indicates slurs
(TEX starts a list of notes when it finds the first, and
gives it to METAFONT when it finds the second);
while ‘=’ (as in Finale) indicates ties.

This is, in the main, how TEXmuse generates
horizontal elements from straightforward user in-
structions.

12 The spacing

Here we come to the heart of the matter. As noted
before, the main motivation for this whole project
was how to get spacing automatically without in-
volving the user at all (unless he wants to be in-
volved). It is finally time to put forward my solu-
tion.

Figure 4 will clarify — for the case of a single
voice — what the goal is when talking about ‘spac-
ing’. The five notes involved are different from each
other only in their rhythmic value, which increases
from note to note: eighth-note, dotted-eighth-note,
quarter-note, dotted-quarter-note, half-note. The
spacing has to increase accordingly.19

12.1 How to space the notes

The first thing to do is to generalize the goal, rig-
orously, for the many-voices situation. How is a
many-staff character to be treated, since it usually
contains notes of different rhythmic values? For ex-
ample, back in Figure 3, the first note contains a

19 There are several models as to how the space is a func-
tion of the rhythmic value. One is called ‘Fibonacci’, and
works by assigning to each note a space equal to 0.618 the
space of the immediately longer note. I tend to go for this
model; but Figure 4 is actually set with a binary model,
whereby each note receives twice the space of the immedi-
ately shorter one. This seems to work better when, as in the
example, there are dotted notes. Obviously, this parameter
will be user-modifiable in TEXmuse.

quarter-note and a 16th-note. Which one defines
the spacing? (The answer might seem obvious, but
we need to express it algorithmically).

Imagine the whole ‘map’ of musical time (as de-
fined in section 10) collapsing into y = 0— that is,
the projection of the whole thing into the horizon-
tal axis. (This projection, a series of dots scattered
along a line, is a representation of what is known
as the ‘compound rhythm’ of the entire ensemble.)
Spacing is inferred from this projection. For every
‘musical moment’, TEX knows how long it will take
for the next note to sound anywhere. Since between
the first two notes of Figure 3 there are 16q from
note 1 to note 2, TEX will treat the character as
precisely that: as a 16q (a 16th-note).

But don’t leap to conclusions too fast. Take
what happens at 80q: the next note comes in the
bottom staff at 96, i.e., 16q afterwards. Therefore, in
spite of being an eighth-note, this character will also
be treated as a 16th-note (16q long). It’s not simply
the shortest note present that determines spacing;
it’s the shortest note in the compound rhythm.20

12.2 Spacing them

Now that we know how to treat the notes, spacing-
wise, according to their rhythmical nature, let’s have
a closer look at how TEX actually does it in Fig-

ure 4. The notes are ✉t♦s✇, and TEX knows

what space factors to apply to them: the respective
values are 1000, 2000, 4000, 8000, and 16000. Thus,
the spacing required to fill out the line — i.e., the
amount of stretching of the inter-note spaces — will
be proportionally distributed in 1 : 2 ratios.

This alone doesn’t work. TEX’s algorithm is
designed to minimize stretching for text, so the dif-
ference between spaces will be hardly noticeable. In
fact, this is what you would get from regular TEX

spacing: ✉t♦s✇ . The difference is there, but

it’s by far insufficient for a musician’s needs. So you
need to ‘fool’ TEX, telling it the box is much wider

20 Under the heading “The spacing of notes”, the authors
of MusiXTEX write that “it can lead to interesting algo-
rithms.” For them, however, “it is not an important point
in practice.” Why? Because, owing to the fact that some-
times the spacing is not that of the shortest note present— as
happens at 80q in Figure 3— “the typesetter has to take care
of good readable spacings on his own.” [8, pp. 6–7] OK, to me
this is plain upside-down reasoning: ‘since we’re leaving this
task to the user, the algorithm has no practical relevance.’
My preference would be something like ‘since it is totally im-
practical for the user to figure the spacing out, we should go
and look for the algorithm.’

Devising the algorithm is not even the real difficulty. As
we saw, it’s immediately solved by inserting ‘in the compound
rhythm’. The hard part is how to implement the rule in TEX.
The quantized map of musical time offers a solution.

TUGboat, Volume 24 (2003), No. 2 179

than it actually is, so that it will stretch more dra-
matically. For example, telling TEX the box is twice

as wide gives ✉t ♦ s ✇ .21 In Figure 4

TEX was told the box was 2.5 times wider. The
correct setting of this parameter, or more likely the
dependence of this parameter on the music involved,
is yet to be discovered.

Anyway, the same procedure took place in Fig-
ure 3 (this time the box was doubled in width),
only applying space factors according to the com-
pound rhythm.

12.3 But. . .

This looks great. It is as satisfactory an application
of TEX’s stretching algorithm as it can get. My main
point is made.

And yet. . . it’s redundant. For one thing, you’ll
have noticed that the in-text illustrations above lack
a staff (the array of five lines). In the figures, the
staff has been printed on top of METAFONT’s char-
acters with TEX’s \rule commands. Since the be-
ginning this was known to be a temporary solution.
A professional system needs to provide for modi-
fiable ‘staff-ing’, both vertically (more or less than
5 lines), and horizontally (a portion with 5 lines, fol-
lowed by a portion without lines, followed by . . .).
The most reasonable solution is to attach the num-
ber of lines to each note: METAFONT will draw the
necessary lines when drawing the note. But if the
spacing is simply the stretching of blank spaces, who
will draw the lines there?

More important, however, is that the drawing of
horizontal elements involving many notes assumes,
as explained in section 11, that METAFONT knows
“exactly where those notes were placed”. Otherwise
it will be unable to draw slurs or beams that actu-
ally ‘hit’ the notes involved. I had concluded this
already in 2002: “METAFONT needs a way to calcu-
late beforehand the stretching that the construction
of the line will perform. This amounts to imple-
menting the relevant equations of the algorithm in
a METAFONT function”.

So I went ahead and did just that: I derived
the equations (see appendix B), implemented them
in METAFONT, and thus made it able to ‘foresee’
where TEX would finally place the notes. In this
way, it knew how long to draw the staff lines, and
where to find the notes under a beam.

OK, until one day something strange happens:
I see that METAFONT’s beams don’t quite hit their
notes. It took a lot of burdensome debugging for me

21 This example was achieved, in the present LATEX article,
with \makebox[2\width][s]. . .

to realize that, owing to a small mistake in the for-
mulas, TEX and METAFONT were applying slightly
different ‘versions’ of the algorithm. I even corrected
my formulas diligently. . . Only a couple days later,
I laughed when I noticed the real nonsense: the al-
gorithm was being applied twice!

So today this has changed. It is METAFONT,
not TEX, who applies stretching, according to for-
mulas derived from TEX’s stretching algorithm. The
spacing is thus included in the font, and TEX limits
itself to printing the characters out, one after an-
other, without any space.22

12.4 Offset elements

The last aspect of spacing concerns elements that
stick out to the left or to the right of their notes.
Many musical elements do: an example is the treble
clef ❧ in the middle of the bottom staff in Figure 3.

It sticks out to the left of the next note, being sep-
arated from it ‘rigidly’. If the note moves, the clef
moves with it.

And, conversely, if the clef had to be moved, the
note would move with it. That is how offset elements
could affect spacing. In this case it does not, because
the clef doesn’t have to be moved— there’s plenty
of room for it. But sometimes an offset element will
collide with something else, and then it has to be
moved. Its note will also move, and, with it, all
other notes on the same vertical axis.

This is implemented as follows: when META-
FONT completes a note, it finds its right extreme r
(with respect to the note’s axis), and saves this value
in memory. Then, when it is drawing the next note,
it will calculate the left extreme l (of the current
note, with respect to its axis).23 As seen in the pre-
vious subsection, METAFONT will know the space s

22 This change actually raises a basic, qualitative ques-
tion: in addition to the spacing of the notes, there are many
other things whose handling can be done either by TEX or
by METAFONT (for example, line breaking and justifica-
tion). Deciding where to handle them amounts to deciding
on the nature of TEXmuse: is it a TEX package with a META-
FONT underpinning, or a METAFONT package with TEX in-
terface? Needless to say, the criteria for the decision are too
subtle— it most likely will be an ‘arbitrary’ decision.

23 Now, just how is METAFONT to find the right and left
extremes of a character? When I faced this question, I went
confidently to the index of The METAFONTbook: there had
to be a function for this. Or at least one that would give me
the width of a character. I was amazed to learn that META-
FONT offers no ‘widthof 〈picture〉’ function of any kind. The
Grand Wizard introduces, in his ‘Dirty tricks’ appendix, an
algorithm for METAFONT to find the extremes of a pen (this
is necessary for some pen functions). The trick is truly dirty,
and Knuth is justified if he takes pride on it. But does this
not really hide an omission? I’m not the one to tell, but
given the way pictures are internally represented in META-
FONT, I would imagine that finding the extremes would be

180 TUGboat, Volume 24 (2003), No. 2

�✁✂✄☎✆✝✞✟✠✡☛☞✌✍✎✏✑✒✓✔✕✖✗✘✙✚✛✜✢✣✤✥✦✧★✩✪✫✬✭✮✯✰✱✲✳✴
Figure 5: Mm. 2–4 of Bach’s Invention in C, typeset by an incomplete TEXmuse on Aug. 25th, 2004.

between these notes (more precisely between their
axes) would be in the normal case, when no offset
elements are involved and spacing is simply a result
of rhythmic circumstances. It can then calculate
whether this regular space will be enough to accom-
modate the notes (separated at least by a minimum
‘framing space’ f): is s ≥ r + l + f? If it is, there’s
no problem; if it is not, the current note is moved to
the right so that the collision will be avoided. Ev-
erything solved, the right extreme is calculated for
the current note, and METAFONT is ready to go to
the next.

‘Moving the note to the right’ means increas-
ing its axis, which is shared by all other notes in
the character. Since space can thus only increase,
the adjustment can be done incrementally as offset
elements in other notes are discovered to create ad-
ditional collisions. The character is actually shipped
out when all the notes have been added, all the col-
lision tests have been made, and the axis has been
moved as necessary.

13 A working sample

Figure 5 is a sample of what TEXmuse is capable
of (as of today, mid-2004). I’ve been actually de-
veloping the system with this sample — it’s like a
snapshot of TEXmuse’s growth. The present article
actually loads the current TEXmuse version, and the
input cited below is a verbatim copy of the com-
mands used to generate Figure 5. I am willing to
distribute the code to anyone interested.

Measures 2–4 of Bach’s Invention in C were
chosen for several reasons: rhythmic simplicity, one-
voice-per-measure, no slurs or ties, no key- or time-
signatures, no clefs. These things are not yet imple-
mented; but none of them pose challenges, I simply
haven’t implemented these parts of the code (which
are rather boring). Challenging things missing from
the system will be mentioned in section 14.

an easy thing to program at the low level — just as META-
FONT routinely calculates the ‘total weight’ of a picture, why
should it not compute its extremes?

Knuth’s roundabout method of finding the extremes of a
pen can’t be always applied, since a pen is a continuous and
convex picture. Most pictures, and in particular musical char-
acters, seldom fulfill those conditions. I had to develop a
function from scratch (see note 25), but it turns out it’s not
right. A solution is yet to be found.

What I do want to show with this sample is
that the system seems to be in fact possible. I would
point mainly at the simplicity and naturality of the
input that TEXmuse demands from the user. Com-
parison is odious, and I shall refrain from citing the
code that would be necessary in MusiXTEX to pro-
duce the three measures of Figure 5. But the point is
important enough to ask MusiXTEX users to imag-
ine it.

In TEXmuse, all starts with the definition of the
instruments involved. The system, as it stands to-
day, rigidly assumes the top staff to be in treble-clef
and the bottom one in bass-clef; of course, it will
eventually provide for changes.

\newinstrument{righthand}

\newinstrument{lefthand}

Then, in the texmuse environment, actual mu-
sic is input for each instrument. The initial string
DGAB, for example, corresponds to the first four notes
of the right-hand staff (whose standard names are,
precisely, d, g, a, and b). Conventions are stated
more fully in appendix A.

\begin{texmuse}

\meter44

\righthand{\rangefrom{G4}

3|DGAB||CABG|\rangefrom{C5}|4DGFG|

|3EAGF||EGFA||GFED||CEDF|

\rangefrom{F4}|EDCB||ACBD||CBAG||\#FAGB|}

\lefthand{\rangefrom{G3}4|GG-|5R3R|GAB|

|CABG||4CBCD||EG||AB|

|CE-||\#F-G||AB|5C}

\end{texmuse}

Up to this point nothing has been typeset. The
command \musicbox now tells TEXmuse which in-
struments, and in what order, to build the fragment
from. The user can thus use instruments flexibly,
extract parts, re-order them, etc. There will also
be additional musical-box commands, for example
a \musicparbox, maybe a \musicpage, etc. That
way, the layout is — for good— dissociated from the
notes themselves.

In this case, we want a figure, so:

\begin{figure*}

\centering \musicbox{lefthand,righthand}

\caption{Mm.~2--4 of Bach’s ..., 2004.}

\label{sample}

\end{figure*}

TUGboat, Volume 24 (2003), No. 2 181

The result is in Figure 5. I’m satisfied with
the way TEX is able to find all that it cares about,
without making the user care about it too.

14 ‘The unanswered question’

In addition to obvious incompleteness, the sample
shows signs of two particular problems that haven’t
been totally solved: the barlines, to begin with. Not
only should they be drawn across the two staves
(not just on them), but, if you look carefully, you’ll
notice that they have enlarged the spacing of the
second note next to them. Barlines have proven a
hard thing to implement, even qualitatively.24

The second problem can be seen in the last
sharp-sign (♯): it features a spurious horizontal line.
This is a result of METAFONT not having a direct
way to find the extremes of its pictures (see note 23).
To do that, the picture has to be made continuous,
and therefore all ‘additions’ to the notes, such as
offset elements like the sharp-sign, have to be joined
to the note-head. The first ♯ also has this spurious
line, only it’s covered by the staff line. The horizon-
tal line would of course be deleted after the extremes
have been found— I haven’t just coded that. The
procedure strikes me as ad hoc, and I am definitely
on the watch for better options.25

It was mentioned that TEXmuse is not yet able to
decide the angle of inclination for beams. There are
other problems of this very interesting kind, that
involve looking for (or deducing) the explicit list of
requirements for good music typesetting: the most
important ones are an algorithm to decide the order
and placement of accidentals in a chord; a function
for the ideal, context-dependent, ratio of space fac-
tor from rhythmic values to each other; a procedure

24 There are in principle three ways of interpreting barlines
in TEXmuse terms: they could be treated as an extra note,
0q-long; they could be thought of as ‘offset elements’ to the
left of the next note; or as ‘offset elements’ to the right of the
previous one. Each of these approaches generates a series of
side effects, surprising enough to make me unable to recall
them all. The sample uses the second approach, and the
repeated move of the note’s axis confounds TEXmuse about
its real extremes.

This whole issue has led me to a recent rethinking of the
whole process of drawing the characters. It’s been decided
that TEX (or METAFONT? —see note 22) ‘orders’ the ele-
ments of the notes, rather than following a first-come-first-
drawn attitude: note-heads are drawn first, stems second,
offset elements third, horizontal elements fourth, barlines fifth
(or something like that). This ordering frightens me, though,
because it might cut down on flexibility: what if the user
wants something that cannot be easily classified and ordered?

25 In fact, this solution is incomplete: there is no easy way
of deleting precisely and only the line. I had imagined it
would be done by culling appropriately (the line has a dif-
ferent weight from the signs), but it’s much more complicated
than that.

to shift note-heads in chords with seconds; and the
rigorous definition of the aspect of slurs and ties.

Another problem has to do with rhythms that
are not binary: triplets, quintuplets, etc. There is
an embryonic model for this, but it is as yet only
qualitative: ‘tuplets’ can be treated as horizontal el-
ements. Long pieces, on the other hand, will raise
problems not yet dealt with, ranging from defining
a concept of system-breaking (like a mixture of line-
breaking and page-breaking procedures) to the good
handling of space and justification of lines.

The most important issue is, however, keeping
the design flexible. Up to this moment, only stan-
dard notation has been implemented— and there’s
still a long way to go with it. ‘Programmability’ is
the only premise in which the sample shows no real,
positive progress.

15 Conclusion

I hope this article has been interesting, or at least
provocative. This report has to end here, but the
project is only started. I look forward to any reac-
tion from the TEX community, particularly of course
from those interested in typesetting music with TEX.
Just as happened with the first version of this arti-
cle, the task of writing this has clarified many things
to me. With the picture a little more clear now, I’m
ready for a new session of actual coding. I’ll keep in
touch if anything interesting comes along.

References

[1] Ramón Casares. METATEX. TUGboat,
23(3/4):313–318, 2002.

[2] F. H. Gilson. Music typography: Specimens of

music types. F. H. Gilson, Boston, 1885.

[3] Donald E. Knuth. The TEXbook. Addison
Wesley, Reading, Mass., 1986.

[4] Donald E. Knuth. The METAFONTbook.
Addison Wesley, Reading, Mass., 1986.

[5] Thomas E. Leathrum, Geoffrey Tobin,
and Daniel H. Luecking. Pictures in TEX

with Metafont and MetaPost. 2002. File
mfpicdoc.tex, documentation to mfpic 0.6.

[6] David Salomon. The Advanced TEXbook.
Springer Verlag, New York, 1995.

[7] Daniel Taupin. MusicTEX: Using TEX to write
polyphonic or instrumental music. TUGboat,
14(3):212–220, 1993.

[8] Daniel Taupin, Ross Mitchell, and Andreas
Egler. MusiXTEX: Using TEX to write

polyphonic or instrumental music. 2001. File
musixdoc.tex, documentation to MusiXTEX
version T.98.

182 TUGboat, Volume 24 (2003), No. 2

Appendices

A The user’s input

The conventions for the input of the notes are designed
to minimize the burden on the user’s memory:

Rhythm is indicated through a convention standard-
ized by Finale (and taken on by Sibelius): 5 means
‘quarter-note’ (crotchet); higher numbers are longer
notes (6=half-note, 7=whole note, etc.); and lower
numbers are shorter notes (4=eighth-note, 3=16th-
note, etc.). So, when TEX finds a 3, it takes all
following notes to be 16th-notes, until a new num-
ber changes the value.

Pitch is given by upper-case letters following the usual
note names: A through G (and optionally H for Ger-
man users). Since there are many A’s, many B’s,
etc., TEX needs a way to know which one the user
means, which is achieved by \rangefrom. For ex-
ample, \rangefrom{C3} means that the following
notes are in the octave of the middle-c (which is in
fact c3). If a note needs to be an octave higher or
lower than set by \rangefrom, the modifiers + and
- can be used (there’s a G- in the left hand in the
sample). \rangefrom can be used multiple times to
set new ranges for different passages.

Rests are indicated by an ‘R’. (In the sample, there’s a
quarter-rest, and there should be a 16th-rest, but I
haven’t yet created the METAFONT picture for it.)

Beams are set, as mentioned, by enclosing the involved
notes between two ‘|’s. TEXmuse inserts beams ap-
propriately according to rhythmic nature. Even-
tually, an optional argument to | will be available
that allows the user to beam individual notes to
each other, across measures, staves, etc.

Slurs are not yet implemented, but will be produced
by enclosing the notes between ‘(’ and ‘)’. As in
Finale, a ‘=’ will create a tie.

Accidentals and accents, being of frequent use, are
taken care of by one-character, visually-suggestive
commands (such as \# for the ♯s in the sample).

License is given to the user about things like extra,
meaningless and unintended blank spaces (that are dis-
astrous for MusiXTEX), or where to type the rhythmic-
value numbers (in the sample there are both ‘3|’ and
‘|3’, but both work the same way).

B Formula for the horizontal position
of a character

This appendix explains how the formula for the final hor-
izontal position of a character has been found (because
METAFONT needs to know it, see section 12.3).

The musical line consists of single-character words,
separated by stretchable spaces. The position before the
nth character in the line is then the sum of the widths
of all the previous characters and the spaces after each
of them. These spaces are stretched according to TEX’s
glue rules given in [3, pp. 75ff.].

The particular use TEXmuse makes of this algo-
rithm implies the following assumptions:

• The line is always stretched.

• There is no infinite glue (\hfil, . . .) in the line.

• The normal interword space and the extra space
of the font are 0 (this to allow dealing with space
factors less and greater than 2000 with no change
in behavior).

Let li be the width (‘length’) of the ith character of
the line, and gi the space (glue) added after it. It is then
clear that the horizontal position for the nth character
is given by

n−1
∑

i=1

(li + gi).

Now, gi (the space after the ith character) is a nor-
mal interword space plus the additional space due to
stretching. But the normal interword space is 0, so gi is
limited to the stretching. If the line has a natural width
of X, and a desired width of W , W − X is the total
amount of space added to it by stretching, this is, the
total sum of gi’s in the line. Of this total stretchability,
each character receives a portion according to its space
factor fi, thus:

gi

fi

=

∑

gi
∑

fi

=
W − X
∑

fi

But X, the natural width of the line, is actually
the natural width of all the characters, since the normal
(non-stretched) space between them is 0. So, X =

∑

li,
and therefore

gi = fi

W −

∑

li
∑

fi

.

‘Expanding’ this gives the sought-for position for the
nth character (with z being the last character):

n−1
∑

i=1

[

li + fi

W −

∑z

j=1
lj

∑z

j=1
fj

]

.

Note that the result does not depend on the stretch-
ability of the font, and that because of the assumptions
there is no need to invoke either the concept or the rig-
orous definition of glue set ratio r.

⋄ Federico Garcia
Music Department
University of Pittsburgh
Pittsburgh, PA
feg8@pitt.edu

TUGboat, Volume 24 (2003), No. 2 183

Font Forum

There is no end: Omega and Zapfino

William F. Adams

Abstract

The future of type is OpenType (Adobe and Mi-
crosoft’s successor to Apple’s “Royal” font technol-
ogy which was licensed to Microsoft as TrueType),
Unicode, and other extensions of TrueType and the
Type 1 font format such as ATSUI (Apple Typo-
graphic System for Unicode Information). While
TEX has been extended to support other new for-
mats and standards such as .pdf, support for the
new font formats has been limited at best.

Fortunately, for Unicode in TEX, we have Omega,
which coupled with the other strengths of TEX, can
be sufficient to take advantage of new technologies
even without explicit support, by using the proper
(or improper) techniques.

This paper will be an explanation and explo-
ration of this, looking at a specific font and format
(the .dfont ATSUI-enabled version of Zapfino), ar-
guably very nearly a worst-case scenario, and how
it can be dissassembled into individual glyphs and
seamlessly stitched back together to automatically
insert ligatures and swash and variant forms using
ASCII markup in an otherwise ordinary .tex source
file which can then be used in a prepress ready work-
flow.

Introduction

Apple’s Mac OS X derives from NeXTstep, by way
of OPENSTEP, with a grafting of Apple Macintosh
user interface concepts. In terms of font support, it
handles Mac Resource/Suitcase fonts (both Type 1
and TrueType) and PC TrueType fonts, but loses
support for Unix .pfa NeXT style .font bundles.
Apple’s QuickDraw/GX is added as well, now known
as ATSUI (Apple Typographic System for Unicode
Information) or as AAT (Apple Advanced Typogra-
phy) depending on the specific context or emphasis
desired.

Mac OS X provides many of its system fonts
in the new .dfont format, which, while a straight-
forward storing of a Mac-style TrueType font in the
file proper (the datafork in Mac parlance) instead of
the resource fork as was done with Mac OS 9 and
earlier, is not equivalent to a PC format TrueType
font stored in a .ttf file. Although there are now
programs which can open and parse fonts stored in
a .dfont (Pfaedit1 is a notable example), my inter-

1 Renamed to FontForge, this wonderful program is avail-
able from http://pfaedit.sourceforge.net.

pretation of Apple’s licensing agreement leads me to
believe that any such parsing or conversion would
not be allowed by that license.

However, having purchased Mac OS X and its
$10,000 worth of fonts, one cannot help but wish
to use them. Although Zapfino works well in “Co-
coa” programs in Mac OS X such as TextEdit.app,
its special features such as ligatures are enabled by
AAT which is unfortunately not supported by the
more traditional “Carbon” Macintosh applications
in which class all mainstream graphic design appli-
cations are, at this writing.2 This is unfortunately
quite limiting: either one must limit oneself to Co-
coa applications, or in applications such as InDesign,
make use of its Glyph palette to insert alternates and
ligatures by repetitive pointing-and-clicking. Since
there is no TEX variant which can access system
fonts on Mac OS X as of this writing,3 one must
develop a work-around which allows one to access
arbitrary fonts from within TEX and to simulate the
sophisticated typesetting capabilities of OpenType
or Apple Advanced Typography.

The large character sets of fonts such as Ap-
ple Chancery or Zapfino make accessing characters
in 8-bit blocks untenable, so Omega is an obvious
choice. This serves two purposes: first, it makes the
typeface, Zapfino by Prof. Hermann Zapf available
for use in TEX by way of Omega; second, it provides
an encoding scheme and mechanism to access arbi-
trary ligatures and alternates which may be of use
for other projects.

History

Zapfino had its origins in Prof. Zapf’s 1944 sketch-
book, when he was a mapping officer during World
War II. A previous attempt to render those letter-
forms as type, Virtuosa Script for D. Stempel, had
been rather compromised by the limitations of hot
metal matrices, especially the swash letters. This
design was revived when David Siegel in 1993, after
working on the Euler project with Prof. Zapf, and
after graduating approached him about a chaotic
calligraphic typeface based upon an example done
for the Society of Typographic Arts in Chicago. Re-
membering the page from his sketchbook, Prof. Zapf
saw the chance for a design without compromises

2 Since then, the open source drawing program Cenon has
been released for Mac OS X as well as OPENSTEP 4.2 and
GNUstep. It is available from http://www.cenon.info. There
are also SoftMagic’s “Project-M”, Stone Design’s Create or
Purgatory Design’s Intaglio, but none are widely used.

3 Jonathan Kew has since released XeTeX, a successor to
his TEX/GX program for Apple’s QuickDraw/GX, which runs
on Mac OS X, thus making AAT fonts accessible. It is avail-
able from http://scripts.sil.org/xetex.

184 TUGboat, Volume 24 (2003), No. 2

due to the advantages afforded by digital type tech-
nology.

Digitization was done by Gino Lee, but pro-
duction halted due to personal problems, and lan-
guished until Prof. Zapf showed the design to Lino-
type. It was then rendered as a traditional, multiple
alphabet typeface family.

Installation

This then begs the question of how does one install a
font into a program (system) which doesn’t have di-
rect support for that font format or its capabilities?
The solution is quite obvious in retrospect: consider
what the system does support (PostScript by way of
dvips and the \special mechanism) and where that
intersects with the capabilities of systems which can
use the font to its fullest (Encapsulated PostScript
File graphics). The solution then is to load all of
the characters of a font into a file so that they may
then each be output as individual .eps files, stitch
said files together as a virtual font and then rely on
dvips to put everything back together.

Zapfino, however, has so many characters
(1,417 in the version bundled with Mac OS X 10.2

“Jaguar”4) that Omega, with its support for Uni-
code which provides for large character sets, is
needed. Omega also affords the Omega Transla-
tion Process (OTP), which is far more efficient at
enabling long ligatures than the standard TEX or
PostScript mechanisms. Fortunately, odvips sup-
ports the aforementioned special mechanism.

Although font metric information is probably
not protectable, there is no reasonable method at
present to access the data stored within the Zapfino
font file which wouldn’t run afoul of Apple’s license
forbidding decompilation or other modification. Pre-
sumably, however, a program using the nsText ob-
ject could access such data on a per character basis
and write that out in a useful format. In lieu of
such, a copy of the .afm files provided by Volker
Schaa (he had received a copy of the original Lino-
type Zapfino CD-ROM from Prof. Zapf as a gift)
was used as a beginning point. These files were con-
verted into standard .tfm files using afm2tfm and
thence to .pl files using tftopl. The file for the font
Zapfino One served as the basis for zapfino.ovp,
the base font file. The utility ovp2ovf was then
used to create ovf and ofm files for Omega to use.
The files are stored in (as appropriate)

4 Since this writing, Linotype has released Zapfino Ex-
tra OpenType which provides even more characters, most
notably small caps, and Forte which provides five ad-
ditional weights. The technique here should also work
with this new version. More information on Zapfino
Extra is available from http://www.linotype.com/1897/

linotypezapfinoextra-folder.html

~/Library/texmf/fonts/ovp/apple/zapfino

~/Library/texmf/fonts/ovf/apple/zapfino

~/Library/texmf/fonts/ofm/apple/zapfino

Before testing could begin, it was necessary to
have the letterforms themselves accessible to output.
This was done by using Adobe InDesign to typeset
an Adobe Tagged Text file which enumerated all of
the characters in Zapfino. First, a single character
was set in the font Zapfino in InDesign at 72 points
size with 96 points leading and then exported (File
| Export. . . , select “Adobe InDesign Tagged Text”
in the Formats: pop-up), yielding a file with the fol-
lowing line needed for our purposes:

<cTypeface:><cSize:><cLeading:><cFont:><cHang:>

<pHyphenationLadderLimit:><pHyphenation:>

<pHyphenationZone:><pTabRuler:><ParaStyle:>

<pHyphenationLadderLimit:0><pHyphenation:0>

<pHyphenationZone:0.000000><pTabRuler:

28.000000\,Left\,.\,0\,\;56.000000\,Left\,.\,0

\,\;84.000000\,Left\,.\,0\,\;112.000000\,Left\,.

\,0\,\;140.000000\,Left\,.\,0\,\;168.000000\,

Left\,.\,0\,\;196.000000\,Left\,.\,0\,

\;216.000000\,Left\,.\,0\,\;224.000000\,Left\,.

\,0\,\;252.000000\,Left\,.\,0\,\;280.000000\,

Left\,.\,0\,\;308.000000\,Left\,.\,0\,

\;336.000000\,Left\,.\,0\,\;>

<cTypeface:Regular><cSize:72.000000>

<cLeading:96.000000><cFont:Zapfino>

<cHang:Baseline>A<0xFFFD><cTypeface:>

<cSize:><cLeading:><cFont:><cHang:>

<cSpecialGlyph:><cTypeface:Regular>

<cSize:72.000000><cLeading:96.000000>

<cFont:Zapfino><cHang:Baseline>

<cNextXChars:Page>

(The exported character was “A”— there is some
additional text above and below said line, but it
need merely be preserved in its entirety for later
use.) After a little study and experimentation,
it was found that the placed character could be
replaced with <cSpecialGlyph:####> where ####

was a number ranging from 1 (the first character,
“A” shown in the Unicode glyph palette in in Mac
OS X) to 1417 (the last character, the open Ap-
ple symbol), so an Excel file was created with 1,417
rows and three columns. The first column was ev-
erything before the “A” endlessly repeated, with
<cSpecialGlyph: added. The second column in-
cremented the current row number starting from 1.
The third column closed out the line, adding a >

to close the cSpecialGlyph directive. This was ex-
ported as text and replaced the line shown above
in the Adobe InDesign Tagged Text file which was
then saved.

Next, a template file was created, as shown in
Figure 1 (File | New | Document. . . , the Facing Pages
checkbox cleared, the one for Master Text Frame

TUGboat, Volume 24 (2003), No. 2 185

checked, the Page Size set to Letter, Orientation
to Landscape, Margins and Columns left at their
default). After clicking “OK” and getting a new
document the “A-Master” page icon in the “Pages”
palette (Window | Pages) was double-clicked to al-
low editing of the master text frame. The master
text frame is then selected and set to the coordi-
nates X: 43p6, Y: 31p6, W: 39p0 and H: 33p0 us-
ing the “Transform” palette (Window | Transform) as
shown in Figure 2. The main document is then re-
turned to by double-clicking on Page 1 in the Pages
palette. Clicking with the Text tool in the text
block, one then chooses File | Place. . . and navi-
gates to the Adobe InDesign Tagged Text file cre-
ated above and places it in the document so that
it auto-flows to create 1,417 pages with one charac-
ter per page (click on the Master Text Frame while
holding down the <Shift> key). The file is then
saved as Zapfino-chars in a convenient location.

Figure 1: Adobe InDesign New Document Dialog

Figure 2: Adobe InDesign Transform Palette
settings for master page text frame

Once we have this document with all of the de-
sired characters, it is then a matter of exporting each

Z

Figure 3: Z

page as a .eps. Fortunately, Adobe InDesign affords
a menu option specifically for this, File | Export. . . ,
which includes direct support for the .eps format.
Choosing “EPS” in the Formats pop-up menu takes
one to a dialogue box where one can select various
settings. For the initial font the settings used were:
PostScript: Level 2, Color: Gray, Preview: None, Em-
bed Fonts: Subset, Data Format: ASCII. InDesign
is able to subset fonts in such a way that individ-
ual subsetted fonts may be recombined seamlessly
within a PostScript file or .pdf without any of the
encoding conflicts sometimes seen in fonts subset-
ted by Adobe Acrobat or other programs. The Data
Format: must be set to ASCII, since (o)dvips can-
not handle a binary encoded .eps file created in
this fashion. The files are exported to ∼/Library/
texmf/fonts/eps/Apple/Zapfino for later usage.

Then the .pl file for Zapfino-One was used as
a basis for the initial zapfino.ovp Omega Virtual
Font Property List. Notable settings which were
necessary included setting the font’s natural opti-
cal size (DESIGNSIZE R 24). This technique is size-
specific, and a different font must be made for each
size which one wishes to typeset at. See the section
Peace below for a work-around for this limitation.

With the character outlines now available, it is
possible to place them within the virtual font us-
ing the special mechanism in odvips. Where each
character has an entry like:

(MAP

(SETCHAR O 353)

)

this is replaced with something like:

(MAP

(SPECIAL PSfile=Zapfino-chars_277.eps)

)

Unfortunately, when this is typeset the character is
not positioned on the baseline, nor is it set to the
correct size. Adjustments for the size and location
of the .eps file placement must be worked out man-
ually. Mostly a matter of trial and error, a test file

186 TUGboat, Volume 24 (2003), No. 2

was created which placed a rule on the baseline, the
test character and then another rule.

\font\zapfino=Zapfino at 24pt

\nopagenumbers

\overfullrule 0pt

\zapfino

\vrule depth 0pt \hskip-.5pt X

\vfill\eject\bye

Commands for controlling the position of the char-
acter and its size were then added to the .pl file and
it was retypeset and adjustments were made until it
was correct (see Figure 4). For example, the “IJ”
entry looks like the following:

(MAP

(PUSH)

(MOVELEFT R 1.5734)

(MOVEDOWN R 1.724)

(SPECIAL PSfile=Zapfino-chars_277.eps

hscale=13.28 vscale=13.28)

(POP)

(MOVERIGHT R .543)

)

First the current position is stored (PUSH), then an
adjustment is made for the offset of the character
origin on the .eps file (MOVELEFT) and (MOVEDOWN),
the character is placed (SPECIAL PSfile=Zapfino-

chars_277.eps, and scaled with hscale and vscale.
Then the previous position is restored (POP) and the
position advanced to match the CHARWD (MOVERIGHT

R .543) (where .543 is the width of the “IJ” char-
acter).

With all of this done, one can begin testing the
font so as to check the metrics of the characters. A
number of the characters in Zapfino were re-drawn
between the original Type 1 format and the ver-
sion Apple bundled with Jaguar, so this step could
not be skipped. How to space and test a new type-

X
Figure 4: Final, correct .eps scaling and
placement

Figure 5: TextEdit.app options for Zapfino in
Mac OS X 10.2 were rather minimalistic

face design is well documented in several excellent
references, most notably Stephen Moye’s Fontogra-

pher: Type by Design and Walter Tracy’s Letters of

Credit, both of which are highly recommended to
the aspiring type designer (or installer). In short,
one sets various “standards” and other characters
between them, adjusting the most common and eas-
ily spaced characters (“n” and “o”) first, working
toward those which are more difficult and assigning
predetermined sidebearings to similar characters (so
“m” gets the same sidebearings as “n”). Often when
designing a new typeface, the initial attempt to set
the sidebearings will result in a determination that
certain characters must be re-drawn. Naturally that
was not at issue here, and with the data gleaned
from the .afm files, the metrics quickly reached a
usable state. Much hastened in this case since the
left sidebearings are preserved in the consistent plac-
ing of the characters on the page in the source file,
so only the right sidebearings needed to be checked
or adjusted.

With the base character set available, next the
ligatures and alternates needed to be provided for.
Initially, Apple’s options for Zapfino were somewhat
limited as is evidenced by TextEdit.app (see Fig-
ure 5). WorldText.app, née GX/Write, exposed all
of the capabilities encoded within the font, however
(see Figure 6), and Apple has since expanded the ns-
Text object to fully support Zapfino’s myriad capa-

TUGboat, Volume 24 (2003), No. 2 187

Figure 6: WorldText.app, provided in Apple’s
Developer Tools Samples folder, provides access to
all of Zapfino’s capabilities

bilities.5 Although one may make various menu se-
lections, or select characters from a Unicode “Char-
acter Palette” in Cocoa apps, or the Glyph palette
in Adobe InDesign and other Adobe graphics appli-
cations, these options are not readily available in a
text-stream composition-oriented tool like TEX.

Further, although OpenType and AAT are able
to access characters by name, instead of directly
with a number —and many of the more interesting
characters in rich fonts such as Zapfino or Hoefler
Text do not have Unicode code points —TEX and
its variants (with the exception of the new XeTeX)
require a number in an encoding vector for any given
character. Toward this end, an encoding scheme
was worked up to allow arbitrary ligatures of up
to three characters in length, and to accommodate
up to 32 variants for any given (unaccented charac-
ter). While that last number may seem overkill, the
OpenType specification provides for up to 20 vari-
ations of a character in its salt tag.6 Having 16
bits available with Omega, the available bits were
split into three sets, an initial set 6 bits long and
two successive sets 5 bits long. The first set is long
enough to encompass basic Latin capitals and mi-
nuscule (lowercase) letters as well as the numerals 0
through 9, with two bits left over. One of these was
used as a “swash” bit, while the other remains avail-
able for use. The second and third sets encompass
lowercase letters.

5 See “Panther’s Major Text Services Upgrade”,
http://www.codepoetry.net/archives/2003/10/24/

panthers major text services upgrade.php
6 See Tag: ’salt’ in http://partners.adobe.com/asn/

tech/type/opentype/appendices/features pt.jsp

Za

Figure 7: Za

With all characters assigned to slots, it was then
possible to create an Omega Translation Process
(OTP) to replace characters with their appropriate
ligatures:

input: 1;

output: 2;

states: VERBATIM;

expressions:

‘0’‘0’ => "{\zapfinoexpert " @"035A"}";

‘1’‘s’‘t’ => "{\zapfinoexpert " @"0653"}";

‘2’‘n’‘d’ => "{\zapfinoexpert " @"09A3"}";

‘3’‘r’‘d’ => "{\zapfinoexpert " @"0E23"}";

...

‘C’‘i’‘e’ => "{\zapfinoexpert " @"3504"}";

‘C’‘o’‘.’ => "{\zapfinoexpert " @"35DA"}";

‘D’‘r’‘.’ => "{\zapfinoexpert " @"3A3A"}";

...

‘T’‘h’ => "{\zapfinoexpert " @"78FA"}";

...

‘f’‘i’ => "{\zapfinoexpert " @"A91A"}";

%‘f’‘i’ => "{\zapfinoexpert " @"10DD"}";%fi-alt

%‘f’‘i’ => "{\zapfinoexpert " @"10DE"}";%fi-swash

...

‘g’‘g’ => "{\zapfinoexpert " @"ACDA"}";

%‘g’‘g’ => "{\zapfinoexpert " @"ACDB"}";%gg-alt

...

‘u’‘z’ => "{\zapfinoexpert " @"E73A"}";

‘w’‘n’ => "{\zapfinoexpert " @"EDBA"}";

@"F000 => <push: VERBATIM> ;

<VERBATIM>@"0021-@"007F => #(\1 + @"F000) ;

<VERBATIM>@"F001 => <pop:> ;

. => \1;

The Omega documentation7 explains OTPs in de-
tail. Each line in an OTP to handle a particular

7 Draft documentation for the Omega system (John
Plaice and Yannis Haralambous, 7 March 1998, avail-
able from http://www.loria.fr/services/tex/moteurs/

omega7mar1998.pdf

188 TUGboat, Volume 24 (2003), No. 2

case is fairly straightforward. First the characters to
be replaced are identified (the => indicates a replace-
ment is being made), then a verbatim sequence of re-
placement commands is given within quotes, with a
character’s encoding being provided in an “escaped”
fashion outside of the quotes (hence, ^^^^035a is
"035A). This was saved in a file lat2zapf.otp and
processed with the command

otp2ocp lat2zapf.otp lat2zapf

and the files moved to ∼/Library/texmf/omega/

otp and ∼/Library/texmf/omega/ocp respectively.
A number of font transformations normally han-

dled with ligatures are transferred to the OTP. Al-
though not shown, em and en dashes are created in
the OTP, as are “smart” quotes. Similarly, the stan-
dard ligatures ff, fi, fl and ffi are handled in the OTP

(there is no ffl). There are several reasons for this:
conformance with other Omega fonts, to preclude
ligature formation interfering with contextual pro-
cessing of alternates, efficiency (OTPs can process a
single string of arbitrary length, but TEX’s ligature
mechanism requires sequential processing of all iter-
ations leading up to the final form; see below) and
the small matter of Omega crashing when forming
a ligature past the 8-bit point.

partial listing of cmr10.pl

(LIGTABLE

...

(LABEL C f)

...

(LIG C f O 13)

...

(STOP)

(LABEL O 13)

(LIG C i O 16)

...

Note that there were several ligatures which
were commented out with %, alternate or swash forms.

� � � � � ���	
 �
. �������Su�ivan��� !"
$%&'(
)orn ,cot /aw pr2a3 f5 typ7 affianced effect fit fluent a? e@ ABmus

Et ZaG Hone haJy ALal aN meO Pe� maQ Ray S maTe PLU Vo oW
Figure 8: Initial test output

It was then possible to test the font for the first
time with a (Plain) TEX file like:

\font\zapfino=Zapfino at 24pt

\font\zapfinoexpert=Zapfino-expert at 24pt

\ocp\zapfOCP=lat2zapf

\ocplist\zapfOCPlist=%

\addbeforeocplist 1 \zapfOCP

\nullocplist

\nopagenumbers

\overfullrule 0pt

\zapfino\pushocplist \zapfOCPlist

00 1st 2nd 3rd 4th 5th

6th 7th 8th 9th 10th

Cie. Co. Dr. Esq. Ht. Jr. Ltd. McSullivan

Mlle. Mme. Mr. Mrs. Ms. No. 9 Sig. Sr.

Sra. Srta. St.

Thorn dicot draw presage fez type. affianced

effect fit fluent aft egg isthmus out

Zapf phone happy Arial art mesh spell

mass stay the matte spritz uzo own

\vfill\eject\bye

which shows all of the ligatures, as well as point-
ing out that perhaps using old-style figures as the
default wasn’t such a great idea, at least not if one
intends to use the “0th” ordinal ligature.

Once the basic sidebearings of the font were set
and the ligatures “wired up”, the interplay of spe-
cific letterpairs needs to be addressed— the graph-
ical interface which Mac OS X provides for Zapfino
provides some hints on this, most notably, “Avoid d

collisions.” As one can see in figure 9, the standard,
forward slanting lowercase d in Zapfino collides with
the preceding character quite often, especially when
preceded by a capital letter. Figure 8 also hints
at awkward character interactions such as the near-
intersection of ppy.

TUGboat, Volume 24 (2003), No. 2 189

Id, Nd, Ud, Wd, Yd
bd, fd, hd, kd, ld
Id, Nd, Ud, Wd, Yd
bd, fd, hd, kd, ld

Figure 9: In Zapfino, d ’s collide

While one is tempted to merely set the second
style of d described in the font file, or Linotype’s
Adobe Type 1 version of Zapfino as d.2,8 this brings
to light an excellent chance to add some “chaos” to
the typeface and pick different character versions.

The overall intent is to create a system which
will make use of all possible characters in some cir-
cumstance, and a collection of test files which will
test all such circumstances. While one is tempted
to just “fix” all such occurrences, this leads to un-
necessary processing effort. Instead, a listing of all
possible digraphs (letterpairs) in the English lan-
guage was created (drawing from Webster’s Dictio-

nary, The Complete Works of Shakespeare and The

King James Bible — NeXT users will recognize the
choice of references as those bundled with NeXTstep
or readily available as texts for NeXT’s Digital Li-
brarian program), so that it was possible to deter-
mine that only Id, Nd, Ud, Wd, and Yd needed to be
considered for the capitals (thus saving by not cre-
ating entries for Fd, Hd, Jd, Kd, Td, Vd, Xd, and Zd

which do not occur in the English language sample
set used). The following lines in the OTP prevent
such collisions by replacing the normal d with the
d.2 alternate.

‘I’‘d’ => "I{\zapfinoexpert " @"FC62"}";

‘N’‘d’ => "N{\zapfinoexpert " @"FC62"}";

‘U’‘d’ => "U{\zapfinoexpert " @"FC62"}";

‘W’‘d’ => "W{\zapfinoexpert " @"FC62"}";

‘Y’‘d’ => "Y{\zapfinoexpert " @"FC62"}";

With the obvious change taken care of, more
subtle changes were then considered. Working from
the most frequently occurring letters to the rarer

8 Apparently, this route was taken by Apple and Linotype
in the implementation in Mac OS X 10.3 “Panther”.

Zap

Figure 10: Zap

ones, a file for each letter, containing a word for each
letterpair extant in the sample texts was typeset in
the font Zapfino and then examined carefully for
awkward interactions. When one was found, a test
file was typeset with a basic macro to set the word
with all possible variations for a given letter:

\def\testa#1#2#3{{#1}{#2}{#3}\par% a

{#1}{\zapfinoexpert ^^^^fc02}{#3}\par%

{#1}{\zapfinoexpert ^^^^fc03}{#3}\par%

{#1}{\zapfinoexpert ^^^^fc04}{#3}\par%

{#1}{\zapfinoexpert ^^^^fc05}{#3}\par%

{#1}{\zapfinoexpert ^^^^fc06}{#3}\par%

}

allowing the selection of the best choice.
The normal usage was to set the text to be

tested without any special treatment, and then to
insert the macro into the text so as to call out alter-
nates.

...

halfcock

\testf{hal}{f}{cock}

...

Twenty-six such macros were created, and a second
set with only two arguments was also made for the
capitals. Often it was necessary to test the charac-
ters before or after as well.

halfcock
halfcock
halfcock halfcock halfcock halfcock

Figure 11: Test macro output

190 TUGboat, Volume 24 (2003), No. 2

Zapf

Figure 12: Zapf without the pf ligature

The pair nf and a number of other pairs ending
in f did not work well because the f in Zapfino One
does not connect to the character before it, so a
number of lines similar to the following were added
to the OTP to handle such cases:

‘n’‘f’ => "n{\zapfinoexpert " @"FCA4"}";

‘o’‘f’ => "{\zapfinoexpert " @"FDC2 @"FCA4"}";

‘i’‘f’ => "i{\zapfinoexpert " @"FCA4"}";

‘i’‘j’ => "i{\zapfinoexpert " @"FD24"}";

Examining that file will show the reader which char-
acter pairs were felt to require adjustment. For the
most part, replacing one character or the other (oc-
casionally both) with an alternate provided an æs-
thetically pleasing combination, though a few un-
common pairs (gj, Kz) did not yield such.

Interestingly, the gj pair actually convinced me
to revisit an initial decision to set the normal j (from
the font Zapfino One) only at the end of characters,
instead choosing it as the only appropriate form to
use after a g.

Zapfino’s many lowercase ligatures required
that the list of digraphs be extended to encom-
pass the trigraphs and tetragraphs which encom-
pass these lettersets in addition to the digraphs men-
tioned above. For each such letter or ligature there
is a file (e.g., di-.txt which is shown next), which
encompasses the extant lettersets including said let-
ter or ligature’s letters with the hyphen indicating
the location of the letters being checked for, so that

infamy infamy

logjam
Kzyl-Orda

logjam
Kzyl-Orda

Figure 13: Alternate treatments

cauldron

gilding
caul
on
gil�ng

Figure 14: Ligatures required examination of
trigraphs and tetragraphs

file ranges from “Diagram” through “dizzy.” Since
the di and dr ligatures do not reach as far to the
left, most such letterpairs were acceptable. Notable
exceptions were “ldr” and “ldi” which were set to
make use of the alternate character l.4 as shown in
Figure 14.

Diagram diagram

Dibs dibs

Dice dice

Did did

Died died

Different different

Dig dig

Dihedron dihedron

Diiodemethane diiodemethane

Dijon Jehudijah

Dikdik dikdik

Dill dill

Dim dim

Din din

Diode diode

Dip dip

Diquat diquat

Dire dire

Distill distill

Ditto ditto

Diurnal diurnal

Divine divine

Diwali diwan

Dixie dixie

Diyarbakir

Dizzy dizzy

One hundred and fourteen such files were created.
Usage with a leading capital is shown first if possible,
followed by lower-case usage, again, if possible (diy
apparently is only possible when capitalized as in
Diyarbakir). If only lowercase usage is possible (not
shown above) that line is indented by a space.

Zapfino is so narrow, however, with such a low
x-height, and such large ascenders, that it is actu-
ally possible for the ascender on a d to collide with a
character two characters before it as in, “led.” Thus
a set of test files encompassing all characters with
ascenders followed by any letter, followed by a “d”
was created. Unfortunately, it is also possible for a

TUGboat, Volume 24 (2003), No. 2 191

“d” at the beginning of a word to clash with the pre-
vious word if it ends with an ascender. Suggestions
for dealing with this situation would be welcome.9

Doubled characters required special attention
if there is no ligature for them, requiring that one
check to determine which letter versions look attrac-
tive together.

After all such files were typeset and examined
twice (once to establish the initial replacements, a
second time to check for interactions between the
replacements and characters which follow or pre-
cede them) it was possible to begin using Zapfino
in Omega. The first such usage was for a holiday
card as discussed in the section Peace.

Swash markup

That initial usage did not however, allow for user-
level control of individual characters. One could
of course use direct access with constructs such as
{\zapfinoexpert\char^^^^2804}, but that’s not
exactly user-friendly (or even mnemonic). Although
the use of swash alternates has been considered for
Omega before,10 and Alan Hoenig has considered
macro-based schemes,11 there exists no generally ac-
cepted system for indicating “swashness” in running
text. The following version of a markup scheme
for accessing arbitrary alternates and swashes is an
experimental interface to determine how well this
could be done using just an OTP.

The “swash” OTP uses the following options:

+----a (first level alternate)
+-----a (second)
+------a (third)
+-------a (fourth)
...

a----+ (first level alternate at the end)
a-----+ (second level alternate)
&c.

As always, the best laid plans ran into problems
of implementation. The original intent was to add
additional +s instead of continuing to add -s, but
this became infeasible when a limit in the number
of instructions (10,000) in a given state in an OTP

was reached.12

9 This is probably why Apple and Linotype chose to
change the default “d” as noted in footnote number 8.

10 Yannis Haralambous and John Plaice, “First applica-
tions of Ω: Adobe Poetica, Arabic, Greek, Khmer”. TUG-

boat 15(3), 1994.
11 Alan Hoenig, “The Poetica family: Fancy fonts with

TEX and LATEX”. TUGboat 16(3), 1995.
12 My thanks to Giuseppe Bilotta for his patience and tech-

nical acumen, not merely determining the nature of the dif-
ficulty, but also providing a sample file showing how to work
around it.

Za�

Figure 15: Zapf with the pf ligature

Before adding swash variations, here is a text
using a modest set of alternates and most ligatures:

Always ��ve to find
some interting va�ation.

At the first level of ornamentation, which would
be indicated as follows:

+-----Always strive to find-----+

+-----some interesting variation-----+

it appears thus:

Always ��ve to find
some inter�ting va�ation

Continuing, the process yields:

Always ��ve to find
some inter�ting va�ation

or even:

Always ��ve to find
some inter�ting va�ation

Adding and subtracting hyphens, one might fi-
nally arrive at:

Always ��ve to find
some inter�ting va�ation

Left unaddressed is the matter of arbitrary
swash variants in the middle of a text. Either of
the above schemes can be used within a word, but
interferes with spell-checking.

192 TUGboat, Volume 24 (2003), No. 2

�� card was typ�et
using � Omega va�ant of Donald Knu�’s TEX sy&em
created by Yann� Haralamb+s and John Plaice
in � typeface.created by Prof. Hermann Za1

wi� David Sie3l and Gino Le5
It � mode7ed on Jean-Yee Wong’s

fam+s polyglot card for UNICEF.
�e French translation was provided by Jef Tombeur,
� tra?tional German, also used for Händel’s MeAiah, by David Ka&rup,
� Latin by DK , Bruno Vo�in and JohnECh�ney-Y+ng
� Dutch by Henk GianoGen, � Frysian by Gerben Wierda,
� Swe?H by FreIik Wa7enberg,
� Finn�h by Pekka Sorjonen,

� Italian by GiuseKe BiloGa,
� Span�h by Jor3 de Buen U.
� Portugu�e by Jor3 N. R. Vilhena,
and � Dan�h by Mogens Lemvig Hansen.

Translations for o�er languages w+ld be gratefu7y received.
Created by Wi7iam F. Adams for � TEX Showcas5

Figure 16: Peace on Earth card back page

TUGboat, Volume 24 (2003), No. 2 193

Peace on Ear�
Good Wi
 Toward Men

Figure 17: Peace on Earth interior

Peace

The first use of this Zapfino install in Omega was
to set a holiday card modelled on Jeanyee Wong’s
famous polyglot card for UNICEF.13 After this was
initially set, it was announced on Usenet and vari-
ous mailing lists related to TEX or typography in the
hope of readers providing additional translations.
Jef Tombeur and Apostolos Syropoulos were kind
enough to provide translations for French and Greek
respectively (though since Zapfino doesn’t contain a
full Greek alphabet the latter was provided typeset
in the Kerkis font), and a revised version was made
available as a part of the TEX Showcase.14

In the course of preparing this paper, a sec-
ond, more successful, announcement and request for
translations was made, with many people provid-
ing translations and commentary (I had neglected
to mention the text, “Peace on earth, good will to-
ward men” as being the latter part of the verse Luke
2:14 from The King James Bible, so in addition to
straightforward transcriptions from various Bibles, I
also received a number of personal interpretations —
this verse is also quite controversial due to varying
transcriptions of the original Greek text and subse-
quent emendations by various scribes) resulting in
an expansion of the card to three pages, almost a
dozen languages (Greek has been temporarily omit-
ted) and twenty names.

Once typeset as a three page .pdf, the first and
last pages (which were not filled completely) were
cropped, then each page was exported as a .eps

and imposed in Macromedia FreeHand where each
was scaled appropriately to fit nicely on a tabloid or
A3 sheet which could then be folded twice to make
a gatefold card. This affords the illusion of having
three different sizes of Zapfino available, despite only
one font at a fixed size (24 pt.) having been made.

13 Exhibit 214. UNICEF Christmas Card. Jeanyee Wong.
1962. Two Thousand Years of Calligraphy: A Three-part

exhibition organized by the Baltimore Museum of Art, the

Peabody Institute Library and the Walters Art Gallery, June

6–July 18, 1965, A Comprehensive Catalog: Baltimore,
Maryland, 1965.

14 http://www.tug.org/texshowcase

Za�i

Figure 18: Zapfi

Paix sur terreBonne entente entre t+t� et t+s
F�ede auf Erdenund den Menschen ein Wohl3fa7en

In terra pax
hominibus bonæ voluntat�
Vrede op aardeaan de mensen van goede wil

Frede op ierdeûnder minsken fen it wolbehagen
F�d på jorden,ti
 männ�korna eG goG behag
Rauha MaaAaJa Ihm�i7ä Hyvä Tahto
Pace in terra
agli uomini ? buona volontà
Paz en la tierraa los hombr� de buena voluntad

Paz na terraentre os homens de boa vontad5
Fred til menn�kermed Guds velbehag!

Figure 19: Peace on Earth card front page text

194 TUGboat, Volume 24 (2003), No. 2

�e Duck &�M
se

by Je�ica Adams

One day in June a *DUCK* and a *MOUSE* were walking in a field when
� *DUCK* saw a *TULIP*. �e *DUCK* said, “Look at � pre#y
li#le red flower.”

“Y' it’s very pre#y, but look...” said � *MOUSE*.
“What?” asked � *DUCK*.
“What 0 10 funny long r2nd 1ing?” asked � *MOUSE* 34ing in �

leav' benea1 � *TULIP*. “It’s very pre#y too.”
“It’s a people 1ing, a *PEN*.” answered � *DUCK*.
“I wonder why it’s here?” asked � *MOUSE* as it pu7ed � *PEN* 2t

onto � pa1.
“Shhh! L0ten!” wh0pered � *DUCK*.
“Humans! Hide!” hi;ed � *MOUSE*, and � two hid behind �

TULIP.
“Don’t worry, 1ey’re chil>en.” said � *DUCK*.

�e big girl human asked, ”Why’d y2 take my good *PEN*, Charlie?"
“But Lizzie, I 3dn’t mean to lose it!”
“Look my *PEN*!” D2ted � girl as De picked up her *PEN* from �

gr2nd where � *MOUSE* had >oEed it.
�e *DUCK* and � *MOUSE* brea1ed a sigh of relief and toge1er 1ey

walked into � sunset.
�e End.

Figure 20: A child’s story

TUGboat, Volume 24 (2003), No. 2 195

\font\zapfino=Zapfino at 24pt

\font\zapfinoexpert=Zapfino-expert at 24pt

\ocp\zapfOCP=lat2zapf

\ocp\swashOCP=sws4zapf

%uncomment the rebusocp lines for pictures

%rebus\ocp\rebusOCP=rbs4zapf

\ocplist\zapfOCPlist=%

\addbeforeocplist 1 \zapfOCP

\addbeforeocplist 1 \swashOCP

%rebus\addbeforeocplist 1 \rebusOCP

\nullocplist

\nopagenumbers\overfullrule 0pt

\zapfino\pushocplist \zapfOCPlist

The +------D\kern2ptuck (-------ET{}

the +------Mouse \smallskip

by +------Jessica +-----Adams

\smallskip

One day in June a *DUCK* and a *MOUSE*

were walking in a field when the *DUCK*

saw a *TULIP*. The *DUCK* said,

‘‘Look at the pretty little red flower.’’

‘‘Yes it’s very pretty, but look...’’

said the *MOUSE*.

‘‘What?’’ asked the *DUCK*.

‘‘What is this funny long round thing?’’

asked the *MOUSE*, digging in the leaves

beneath the *TULIP*. ‘‘It’s very pretty too.’’

‘‘It’s a people thing, a *PEN*.’’

answered the *DUCK*.

‘‘I wonder why it’s here?’’ asked the *MOUSE*

as it pulled the *PEN* out onto the path.

‘‘Shhh! Listen!’’ whispered the *DUCK*.

‘‘Humans! Hide!’’ hissed the *MOUSE*,

and the two hid behind the *TULIP*.

‘‘Don’t worry, they’re children.’’

said the *DUCK*.

The big girl human asked,

’’Why’d you take my good *PEN*, Charlie?"

‘‘But Lizzie, I didn’t mean to lose it!’’

‘‘Look, my *PEN*!’’ shouted the girl

as she picked up her *PEN* from the ground

where the *MOUSE* had dropped it.

The *DUCK* and the *MOUSE*

breathed a sigh of relief and together they

walked into the sunset.

The End.\vfill\eject\bye

Za�in

Figure 21: Zapfin

And pictures too

In addition to alternates and ligatures, Zapfino also
has a number of ornaments available. Typically, ac-
cess to such ornaments in TEX has been rather pro-
saically done using a macro which calls a particu-
lar ornament by its number. Although serviceable,
this requires the user to have access to a chart which
matches things up, and is not well-suited to usage in
running text, or to easy typing or proofing. Oddly,
although Helvetica seems to have a “Rebus” option
in Mac OS X 10.3 “Panther”, this does not seem to
have been implemented for Zapfino, reducing one
to point-and-clicking to access them from a glyph
palette of some sort. Since that’s not an option for
normal TEX usage, an alternative scheme needed to
be worked up.

Drawing upon the “Rebus” option for inspira-
tion, a descriptive text was matched up for each or-
nament, and a new OTP was created to allow said
text, set in all caps and surrounded by asterisks
(e.g., *PEN*) to be replaced by the appropriate or-
nament when the OTP is loaded.

I prevailed upon my daughter to write a story
making use of animals and things represented as or-
naments in the Zapfino font. A typical setting of
the story for proofreading purposes is shown on the
facing page. The source text is shown to the left.

Some of the ornaments available with Zapfino
include:

� ��� �� ��	
 �� ��� ¶

Figure 22: Ornaments

Lastly, the story with appropriate words re-
placed with ornaments from Zapfino (a rebus text)
is shown on the following page in Figure 23.

Unfortunately, as noted above, the ornaments
are numbered, not given descriptive labels. While
some of them are obvious, others are less so. Sug-
gestions on tags for unnamed ornaments would be
welcome.

196 TUGboat, Volume 24 (2003), No. 2

�e Duck &�M
se

by Je�ica Adams

One day in June a � and a � were walking in a field when � � saw a
�. �e � said, “Look at � pre�y li�le red flower.”

“Y� it’s very pre�y, but look...” said � �.
“What?” asked � �.
“What ()(funny long r*nd)ing?” asked � � +,ing in � leav�

benea) � �. “It’s very pre�y too.”
“It’s a people)ing, a /.” answered � �.
“I wonder why it’s here?” asked � � as it pu0ed � / *t onto � pa).
“Shhh! L(ten!” wh(pered � �.
“Humans! Hide!” hi5ed � �, and � two hid behind � �.
“Don’t worry,)ey’re chil9en.” said � �.

�e big girl human asked, ”Why’d y* take my good /, Charlie?"
“But Lizzie, I +dn’t mean to lose it!”
“Look my /!” @*ted � girl as @e picked up her / from � gr*nd where

� � had 9oAed it.
�e � and � � brea)ed a sigh of relief and toge)er)ey walked into �

sunset.
�e End.

Figure 23: A child’s picture story

TUGboat, Volume 24 (2003), No. 2 197

Za�ino
Figure 24: Zapfino without full ligation

Overview

Thus is it shown that with a complete disregard for
efficiency, storage space and processing time, one
can access any font from within TEX so long as it
is supported on a platform whose capabilities some-
where intersect those utilities and variations which
have grown up around TEX. This technique is com-
pletely platform agnostic after the initial stage, and
if one foregoes the best font handling, can be done
with bundled and free software, without recourse to
commercial applications such as Adobe Acrobat.

Take an application which can access all of the
characters in the OpenType or AAT/ATSUI font to
typeset every character one wants to get at as a
document, convert each page into .eps files, then
create a virtual font which places the appropriate
.eps file for a given letter, which is then used to
typeset a PostScript file which places each character
as necessary. When the resulting file is distilled with
Adobe Acrobat Distiller the subsetted fonts in the
.eps files are transparently stitched back together in
a fashion which any reasonably capable PostScript
interpreter or PDF viewing program can handle.

Advantages The good things about this technique
include:

• No font conversion necessary

• No issues with licensing (Apple’s software li-
cense forbids derivative products, so one may
not convert or decompile typefaces covered by
Apple’s licensing agreements — Apple has even
been stripping out tables to cripple their fonts
so they won’t work on other platforms if con-
version is attempted)

• One can get at all 1,400+ characters in Zapfino
without re-encoding or using awkward macros
or active characters.

• Version invariant— already there have been four

distinct versions of Zapfino, and little provision
for backwards compatibility has been made.

�
Figure 25: Zapfino

• One is not limited to the normal TEX color
models, but may use anything which InDesign
has access to, including spot colors.

Disadvantages As alluded to above, this technique
does have a number of drawbacks:

• Must make and store the individual .eps files
(hundreds of megabytes, requires commercial
software for the best results).

• Large file sizes (tens of megabytes for a single
lengthy sentence — an attempt to create a com-
plete sample of all digraphs and trigraphs ran
into the Windows 9x file size limit of 512MB).

• Processing time (distill times in the tens of sec-
onds for a couple of sentences, generating the
.ps file with odvips takes even longer).

Future developments The following things remain
to be done for this particular technique for accessing
Zapfino:

• The base font needs to be filled in beyond just
ISO Latin 1 so as to provide the balance of the
Unicode-encoded characters available in Zapfino.
This would be much easier if utilities such as
afm2tfm and fontinst would completely support
character sets larger than 8 bits.

• Similarly, most accented letters have swash vari-
ants, but the encoding scheme worked up for
handling swashes and ligatures doesn’t encom-
pass such. Suggestions for a solution for this
would be welcome.

• The text test set should be enlarged to encom-
pass all possible trigraphs or even tetragraphs,
and the OTP adjusted to at once increase ran-
domness, and also reduce the incidence of cer-
tain characters which have a stronger presence
than might be desireable.

• A LATEX2ε package should be put together to
move usage out of the realm of hackery and into
more mainstream production.

• Examine usage with Mac OS X Panther.

198 TUGboat, Volume 24 (2003), No. 2

The X Factor

Since this presentation was made, Jonathan Kew
has released XeTeX, the successor to TEX/GX, a
TEX-variant which made use of QuickDraw/GX,
from which Apple Advanced Typography is derived.
Rapidly improving, it is well suited to personal use,
or production use in an up-to-date production envi-
ronment which is not hobbled by a need for back-
wards compatibility with older PostScript RIPs or
other software.

It is especially well suited for use with languages
which use character sets other than those based on
Latin (which is its main focus).

By way of comparison, here is the source code
for the Apple acknowledgement/“Thank You” which
appeared in the TUG 2003 proceedings:

%&personaltex

%

%Copied from the XeTeX example file ‘‘XeTeX-notes.tex’’

\font\tx="Hoefler Text:Number Case=Upper Case Numbers" at 12pt

\font\txsmall="Hoefler Text:Number Case=Upper Case Numbers" at 11pt

\font\sc="Hoefler Text:Letter Case=Small Caps" at 11pt

\font\it="Hoefler Text Italic" at 12pt

\font\mt="Hoefler Text Black" at 16pt

\font\sh="Hoefler Text Black" at 12pt

\font\tt="Courier" at 11pt

\font\lg="Lucida Grande" at 11pt

\font\lgb="Lucida Grande Bold" at 16pt

\def\LaTeX{\leavevmode L\kern-.25em\raise.5ex\hbox{\sc a}\kern-.1em\TeX}

\def\XeTeX{\leavevmode

\setbox0=\hbox{\lg X\lower.5ex\hbox{\kern-.1667em }\kern-.15em \TeX}%

\dp0=0pt\ht0=0pt\box0 }

\def\mtXeTeX{\leavevmode

\setbox0=\hbox{\lgb X\lower.5ex\hbox{\kern-.1667em }\kern-.15em \TeX}%

\dp0=0pt\ht0=0pt\box0 }

\def\TeXgX{\TeX\lower.5ex\hbox{\kern-.15em G}\kern-.25em X}

% don’t like how the hyphen in Hoefler appears, so we hack it:

\catcode‘\-=\active \def-{\lower.2ex\hbox{\char‘\-}\penalty0 }

%Copied from the XeTeX example file ‘‘story-zapfino.tex’’

\font\zapfinoreg="Zapfino" at 14pt

\font\zapfinofirst="Zapfino:Stylistic Variants=First variant glyph set" at 14pt

\font\zapfinosecond="Zapfino:Stylistic Variants=Second variant glyph set" at 14pt

%Copied from the XeTeX example file ‘‘FontSamples.tex’’

\frenchspacing % often works better with XeTeX

\baselineskip16pt

\parindent0pt

\parskip\medskipamount

\nopagenumbers

\font\1="Hoefler Text Italic:Letter Case=Small Caps" at 12pt

\font\1="Hoefler Text Italic" at 12pt

The TEX Users Group gratefully acknowledges Apple Computer’s generous contributions,

especially to the Pra�ical TEX 2004 and TUG 2003 Conferences.

�ank y�.

The Apple Store in San Francisco is located at One Stockton Street, San Francisco, CA 94108

�This was typeset with the TEX variant XƎTEX created by Jonathan Kew using the Apple System fonts

H T by Jonathan Hoefler, Z by Hermann Zapf and S by Matthew Carter.&

http://www.apple.com/retail/sanfrancisco http://scripts.sil.org/xetex

1

2

1 2

Figure 26: Thanking Apple

TUGboat, Volume 24 (2003), No. 2 199

A note about Figures 3, 7, 10, 12 15, 18, 21,

24, 25 and 27

After my presentation in Hawai‘i, Barbara Beeton
specifically asked that I include an animation of the
sequence of typing Zapfino, the contextual replace-
ment of letters with the appropriate ligatures in the
on-line version. Due to time constraints, I did not
manage to do so. However, creating animated .gifs
has always reminded me of study hall in my younger
school days and doodling little figures in the margins
of notebooks and pads, and of a Warner-Brothers
book I had as a child which featured Wile E. Coy-
ote and the Roadrunner of cartoon fame with such
a sequence in its margin. I believe this is the first
TUGboat article to include a flipbook (the figures
in the upper right-hand corner of the recto pages).
If present, a matching figure on the upper left of
a page shows one what the text looks like without
ligatures.

\font\italt="Hoefler Text Italic:Ligatures=Rare Ligatures,Diphthongs;

Smart Swashes=Archaic Long s Swash;

Character Alternatives=Swash Caps"

at 12pt

\font\sr="Skia Regular" at 11pt

\font\1="Skia Regular:width=1.25" at 12pt

\font\1="Skia Regular:width=0.8" at 12pt

\font\1="Skia Regular:width=0.8;weight=1.5" at 12pt

\font\1="Skia Regular:width=0.8;weight=2.5;Number Case=Upper Case Numbers" at 12pt

\font\1="Skia Regular:width=0.8;weight=0.6;Ligatures=Rare Ligatures" at 12pt

\font\1="Skia Regular" at 18pt

\tx%

The \TeX\ Users Group gratefully acknowledges Apple Computer’s generous contributions,

especially to the {\italt Practical \TeX\ 2004}

and {\italt TUG 2003} Conferences.

\bigskip

\hfill{\zapfinosecond Thank you.}

\bigskip \strut \bigskip

\centerline{\sr The Apple Store in San Francisco is located at One Stockton Street,

San Francisco, CA 941081}

\medskip

\centerline{\txsmall (This was typeset with the \TeX\ variant \XeTeX2 created by Jonathan Kew

using the Apple System fonts}

\smallskip

\centerline{{\sc Hoefler Text} by Jonathan Hoefler, {\sc Zapfino} by %Prof.

Hermann Zapf and {\sc Skia} by Matthew Carter.)}

\smallskip

\centerline{1\tt http://www.apple.com/retail/sanfrancisco ~ 2http://scripts.sil.org/xetex}

\vfill\eject\bye

�
Figure 27: Zapfino ornament

⋄ William F. Adams
ATLIS Graphics
75 Utley Drive, Suite 110
Camp Hill, PA 17011
USA
willadams@aol.com

Of the making of books, there is no end.

—The Prophet Muhammad

The METAFONT approach: Implicit, relative,

and analytical font design

Timothy Hall

Introduction

A past article in Time R© magazine’s On-Line
monthly “submagazine” explored the world of do-
it-yourself font creation and manipulation. The
orientation of the article was to help a relative
novice choose the right tools and techniques for
whatever kind of font work was desired. The article
was heavy on facts concerning a four-step process
that might be familiar to readers of TUGboat:

1. Scan in a hand-drawn or copied glyph to form
the basis for a character in your font.

2. Import the scanned image into a graphics
software package, such as Illustrator,
Fontographer, or CorelDraw.

3. Use the functionality of the package to trace
the outline of the glyph.

4. Export the captured outline to an ASCII

file that contains coded concatenated path
segments.

In METAFONT syntax, the coded path segments will
usually look something like this for a curved path:

z0 .. controls u1 and v1 .. z1

or like this for straight lines:

z0 -- z1 -- · · · -- z8

or perhaps combinations of these two forms. If each
of these segments is named in a path array (path

pth[];), e.g., the third segment would be

pth[3]=z2 .. controls u3 and v3 .. z3

then these path segments may be concatenated
by the METAFONT operator “&” to form a cycle
returning to the first point, such as this:

pth[0]=pth[1] & pth[2] & cycle

Finally, this path is typically filled to form the
definition of the glyph:

fill pth[0];

As an example of this methodology, consider
the following code for an arbitrary “mystery”
character:∗

R© Time is a registered trademark of AOL Time

Warner, Inc.
∗ The material found herein does not depend on the

particulars of any glyph definition.

200 TUGboat, Volume 24 (2003), No. 2

1. numeric u; u = 1pt;

2. designsize := 10;

3. beginchar(99, 4.092pt#,

4. 5.80801pt#,

5. 0.264pt#); "myst";

6. fill (0.594u,-0.264u)

7. -- (0.594u,0.957u)

8. & (0.594u,0.957u)

9. .. controls (1.716u,2.046u)

10. and (2.211u,2.805u)

11. .. (2.31u,3.366u)

12. & (2.31u,3.366u)

13. .. controls (2.508u,3.927u)

14. and (2.409u,4.686u)

15. .. (2.013u,4.851u)

16. -- (1.617u,4.917u)

17. -- (0.693u,4.917u)

18. -- (0.693u,5.808u)

19. -- (1.881u,5.808u)

20. .. controls (2.805u,5.808u)

21. and (3.564u,5.412u)

22. .. (3.399u,2.508u)

23. & (3.399u,2.508u)

24. .. controls (3.531u,1.32u)

25. and (3.564u,0.693u)

26. .. (3.696u,0u)

27. -- (2.673u,0u)

28. & (2.673u,0u)

29. .. controls (2.574u,0.726u)

30. and (2.475u,1.353u)

31. .. (2.442u,1.782u)

32. & (2.442u,1.782u)

33. .. controls (1.881u,0.957u)

34. and (1.221u,0.198u)

35. .. (0.594u,-0.264u)

36. -- cycle ;

37. cull currentpicture dropping (0,0);

38. endchar;

This form of code is perfectly acceptable to META-
FONT, and this character definition (utilizing several
unlisted parameter defaults) produces the glyph in
Figure 1 (under \mag=8).

�✁✂✄☎✆✝✂✞✟✠✡✟✠☛☞☞☛✌✍✍✌☞✎✏✍☛✎✑✒✓✔✕✍✖✗✓✘✓✙✠✕✘☛✚✛ ✜✢✣✤✠✥

✦✧✧✧✧✧✧✧✧✧✧✧✧✧★★★★★★✩✩✩✩✪✪✫✫✫✬✬✭✭✮✯✯✰✱✲✦✳✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧★✩✪✬✭✯✰✲✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✴✵✵✵✵✵✵✶✶✶✶✶✷✷✦✧✧✧✧✧✧✧✧✧★✪✭✰✸✹✺✻✼✴✶✦✧✧✧✧✧✧✧✧✪✮✸✻✶✦✧✧✧✧✧✧✧✧✭✳✧✧✧✧✧✧✧✧★

✯✩
✦✳✧✧✧✧✧✧✧✧★

✲✯
✫✦✳✧✧✧✧✧✧✧✧✧

✲✰✮✬
✩✳✧✧✧✧✧✧✧✧✧✧

✲✱✯✭✬
✪★✳✧✧✧✧✧✧✧✧✧✧✧✴

✱✰✯✭✬
✫✩★✳✧✧✧✧✧✧✧✧✧✧✧✧✧✰

✲✱✯✮✭✬
✪✩★✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✧✮

✲✱✰✯✮✬
✫✪✩★✳✧✧✧✧✧✧✧✷✶✴✽✼✻✺✸✵✧✧✧✧✧✧✧✧✧✬

✲✱✰✯✮✭✬
✫✪✩★✧✧✧✧✧✧✧✧✷✶✵✽✼✾✺✹✸ ✾✧✧✧✧✧✧✧✧✧✪

✭✬✫✪✩★✳✧✧✧✧✧✧✧✧✷✶✵✴✽✾✻✺✹ ✸✴✦✳✧✧✧✧✧✧✧✧★
✱✳✧✧✧✧✧✧✧✷✶✵✽✼✾✻✺✹✸ ✺✶✦✳✧✧✧✧✧✧✧✧✭

✳✧✧✧✧✷✶✵✴✽✼✾✻✺✹✸ ✾✦✳✧✧✧✧✧✧✧✧★
✯✧✷✶✵✵✴✽✼✾✻✺✺✹✸ ✸✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✾✿

✹✸✸

Figure 1: The original

However, there are several things “wrong” with the
code in lines 6–36. METAFONT approaches font
development from an implicit, relative, and ana-
lytical point of view, as compared to the explicit,
absolute, and algorithmic calculations in Illustra-
tor, Fontographer, and CorelDraw (among many
others). In these other packages, Bézier curves are
described in terms of control points, which are ex-
plicitly calculated within the software based on the
absolute positions of critical points as parsed by the
software. Illustrator, for one, when automatically
tracing the outline of a glyph, decides where these
critical points are, based on criteria and principles
hidden from the user.

METAFONT, on the contrary, demands that the
user decide where the critical points are located
based on criteria and principles left to the designer,
and expects the user to supply relative positions
based on implicit relationships between the critical
points. Only then will METAFONT calculate the
control points for the glyph subpaths, and proceed
to generate bitmaps for the image based on those
calculations and numerous user-supplied parameter
values.

In essence, simply stating a set of control points
that blindly point to the outline of a glyph is not
font design, and approaching font development this
way is certainly not worthy of the amazing power
and flexibility of METAFONT.

There is another thing “wrong” with the code
in lines 3–5. The width, height, and depth of the
character are stated as floating point numbers, one
of which is given to five decimal places! This is
definitely the work of a machine, and not a font
designer. The control points listed in lines 6–36 also
suffer from this feature. If the image had been held
in a slightly different position when it was scanned
using Illustrator, or a user had twitched slightly
differently in positioning a serif in Fontographer,
or a different version of the graphics software had
been used with CorelDraw, or different hardware

TUGboat, Volume 24 (2003), No. 2 201

had been used in generating the numbers in lines 3–
5, then slightly different numbers would be found
there (certainly in the fifth decimal place).

This would not happen if the code develop-
ment was under the control of a font designer who
applied “the METAFONT approach.” No amount of
alignment issues, mouse sentitivity settings, version
control aspects, or platform dependencies will ever
affect the implicit, relative, and analytical relation-
ships between critical points in the description of a
font glyph, so none of these should be present in a
METAFONT description of the glyph.

The METAFONT approach

Suppose you were interested in designing a font with
hundreds of characters that followed the look and
feel of the mystery character given in lines 1–38.
You could scan and trace all of your images, and
hope that the variations introduced by this process
do not get in the way of your font’s consistent
look— or you might approach this task in the
METAFONT way.

There are three straightforward transforma-
tions we may apply to lines 1–38 (and any others
like them) to help reveal the underlying design
structure of the mystery character, and help us
apply it to all other characters in our desired font.
This will go a long way towards ensuring a consis-
tent look and feel to the entire font, and not simply
be something applied to characters one by one.
It is also possible that these transformations will
reveal the absence of a consistent look and feel in
the entire character set, thereby helping us modify
lines 1–38 into a better glyph.

Implicit. The first transformation applies to all
lines that contain explicit point definitions. If we
label the first subpath as follows:

z1=(0.594u,-0.264u)

z2=(0.594u,0.957u)

z3=(2.31u,3.366u)

then we have:

x1=x2=0.594u; x3=2.31u;

y1+0.264u=y2-0.957u=0; y3=3.366u;

The resulting subpath would be:

z1--z2..tension α2 and β2..z3

The control points will be implicitly supplied by the
tension statements during a later transformation.

The next subpath would be transformed as
follows:

z4=(2.013u,4.851u)

z5=(1.617u,4.917u)

z6=(0.693u,4.917u)

z7=(0.693u,5.808u)

z8=(1.881u,5.808u)

. . . which produces:

x3=x4+0.297u=2.31u;

y3=y4-1.485u=3.366u;

z5=(1.617u,4.917u);

z6-z5=(-0.924u,0);

z7-z6=(0,0.891u);

z8-z7=(1.188u,0);

The resulting subpath would be:

z3..tension α3 and β3..z4

--z5--z6--z7--z8
Continuing this process, we arrive at the im-

plicit description of the glyph, excerpted here.

55. numeric u; u = 1pt;

56. path pth[];

57. designsize := 10;

58. beginchar(99,4.092pt#,

59. 5.80801pt#,

60. 0.264pt#);"myst";

61. x1=x2=0.594u;

62. x3=x4+0.297u=2.31u;

63. x9+0.297u=x10=x11+1.023u=3.696u;

64. x12+0.231u=x11; x12-x13=1.848u;

65.

66. y1+0.264u=y2-0.957u=0;

67. y3=y4-1.485u=3.366u;

68. y10=y11=y9-2.508u=y12-1.782u=0;

69. y12-y13=2.046u;

70.

71. [...]

72.

73. pth[1]=z1--z2;

74. pth[2]=z2..

75. controls(1.716u,2.046u)

76. and(2.211u,2.805u)

77. ..z3;

78. pth[3]=z3..

79. controls(2.508u,3.927u)

80. and(2.409u,4.686u)

81. ..z4--z5--z6--z7--

82. z8..

83. controls(2.805u,5.808u)

84. and(3.564u,5.412u)

85. ..z9;

86.

87. [...]

88.

89. fill pth[1]

202 TUGboat, Volume 24 (2003), No. 2

90. for i=2upto6: & pth[i] endfor

91. --cycle;

92. cull currentpicture dropping(0,0);

93. endchar;

The choice of points assigned to a given subpath
is arbitrary, as long as the order of progression is
retained. Indeed, the glyph produced by lines 55–93
looks exactly like that produced by lines 1–38 (see
Figure 1 again), and would remain so should, for
example, pth[3] be split into two subpaths each
associated with a set of control points.

Relative. The next transformation enables the
relative advantages of METAFONT design: Stating
all points in terms of positions that are relative to
the height, width, and depth of the character. In
this way, you don’t have to recalculate the points
z1, z2, etc., every time you rescale the character
to a different design size. Indeed, enabling the
incredible variety of font characteristics found in
the Computer Modern family is only possible when
relative design policies are utilized.

The first question to answer in relative font
design is, “on which dimension should the font be
based?” If the font is to be monospaced, then
standardization on the width would be appropri-
ate. This would mean replacing the dimensions in
lines 58–60 with

ds*pt#,

ds*(0.580801/0.4092)*pt#,

(0.264/0.4092)*pt#

in their respective positions, where ds is the design
size. If the font is to have a uniform height, then
the replacement dimensions would be

ds*(0.4092/0.580801)*pt#,

ds*pt#,

(0.264/0.580801)*pt#

Although it would be an odd design aspect, it is
possible to standardize on a uniform depth, with
the corresponding dimension adjustments as before.
Finally, other standardizations are possible, with
different corresponding numerical calculations on
the dimensions, which would not change the overall
look and feel of the font, as long as the aspect ratio
(height + depth/width) remains the same.

For our purposes here, let’s use a constant
width equal to the design size, and make all other
dimensions proportional to the width. Even though
the width is the same for each character in the
font design, each glyph need not occupy the same

horizontal space available to a character.1 The
implicit and now relative form of lines 1–38 can now
be seen.

100. path pth[];

101. designsize := 10;

102. ds := designsize;

103. beginchar(99,ds*pt#,

104. ds*(0.580801/0.4092)*pt#,

105. (0.264/0.4092)*pt#);"myst";

106. x1=x2=0.594/(0.4092*ds)*w;

107. x3=x4+0.297/(0.4092*ds)*w

108. =2.31/(0.4092*ds)*w;

109. x9+0.297/(0.4092*ds)*w

110. =x10=x11+1.023/(0.4092*ds)*w

111. =3.696/(0.4092*ds)*w;

112. x12+0.231/(0.4092*ds)*w=x11;

113. x12-x13=1.848/(0.4092*ds)*w;

114.

115. y1+(0.264/0.264)*d=0;

116. y2-0.957/(0.580801*ds)*h=0;

117. y3=y4-1.485/(0.580801*ds)*h

118. =3.366/(0.580801*ds)*h;

119. y10=y11=y9-2.508/(0.580801*ds)*h

120. =y12-1.782/(0.580801*ds)*h=0;

121. y12-y13=2.046/(0.580801*ds)*h;

122.

123. [...]

124.

125. pth[1]=z1--z2;

126. pth[2]=z2..

127. controls(1.716/(0.4092*ds)*w,

128. 2.046/(0.580801*ds)*h)

129. and(2.211/(0.4092*ds)*w,

130. 2.805/(0.580801*ds)*h)

131. ..z3;

132.

133. [...]

134.

135. fill pth[1]

136. for i=2upto6: & pth[i] endfor

137. --cycle;

138. cull currentpicture dropping(0,0);

139. endchar;

Note that the u unit is no longer needed, as it
is now a constant function of the chosen design
size, and all dimensions are expressed in terms of
the width, height, and depth, which are in turn
multiples of the design size. Once again, the
glyph produced by lines 100–139 looks exactly like

1 This consideration is the basis for the adjust_fit

function in plain METAFONT.

TUGboat, Volume 24 (2003), No. 2 203

that produced by lines 1–38 (so once again, see
Figure 1). The fractions in the critical and control
points need not be left as explicit reminders whence
they came; simplified values, such as those found in
the following excerpt, are often more convenient.

140. path pth[];

141. designsize := 10;

142. ds := designsize;

143. beginchar(248,ds*pt#,

144. ds*(1.419357)*pt#,

145. 0.645*pt#);"myst";

146. x1=x2=0.145161w;

147. x3=x4+0.07258w=0.564516w;

148. x9+0.07258w=x10=x11+0.25w

149. =0.903226w;

150. x12+0.056452w=x11;

151. x12-x13=0.451613w;

152.

153. [...]

154.

155. pth[6]=z12..

156. controls(0.459677w,0.164772h)

157. and(0.298387w,0.034091h)

158. ..z13;

159.

160. fill pth[1]

161. for i=2upto6: & pth[i] endfor

162. --cycle;

163. cull currentpicture dropping(0,0);

164. endchar;

Analytical. The final transformation finishes the
numerical calculations begun in earlier work. In par-
ticular, the explicit control points must be changed
to implicit tension statements. This ensures that
the glyph shape is defined by analytical considera-
tions between critical points, and not by arbitrarily
chosen “magic” control points.

The transformation from control points to
tension statements is accomplished by the Matlab-
based cp2ab utility.2 Documentation for using this
utility is included with its distribution. For example,
for pth[6] (lines 155–158), using

z12,

(0.459677,0.164772*1.419357),

(0.298387,0.034091*1.419357), and

2 If a user does not have access to Matlab, the
freely available source code for cp2ab may be easily
ported to many analytical calculation applications,
such as MAPLE and S. A user may even use the code
to make manual calculations.

z13

as input (so that all calculations take place in units
of ds*pt), the corresponding tension statement
would be

z12{dir-124.2156}

..tension0.9276and1.1893

..{dir-143.6158}z13

The cp2ab utility has the feature that all results
are invariant under scaling. The cp2ab utility also
accepts vector input (with corresponding vector
output) so that all sequential post- and pre-tension
values may be calculated simultaneously, as shown
in this partial Matlab session.

z1 =

0.1452 + 0.2339i

0.5645 + 0.8226i

u1 =

0.4194 + 0.5000i

0.6129 + 0.9597i

[...]

[a1,b1,ppath1,diru1,dirv1]

=cp2ab(z1,u1,v1,w1)

a1 =

0.8004 0.7771

1.0488 -1.0000

b1 =

1.2963 1.3193

1.2967 -1.0000

ppath1 =

0.1452 + 0.2339i

0.4486 + 0.5766i

0.5645 + 0.8226i

0.5645 + 0.8226i

0.4919 + 1.1855i

-1.0000

diru1 =

44.1449 55.0882

70.5599 -1.0000

[...]

The following excerpt shows the results of the ana-
lytical transformation, which still has not changed
the appearance of the glyph from Figure 1.

202. pth[1]=z1--z2;

203. pth[2]=z2{dir44.1449}

204. ..tension0.8004and1.2963

205. ..{dir55.0882}

206. (0.4486*ds*pt,0.5766*ds*pt)

204 TUGboat, Volume 24 (2003), No. 2

207. ..tension0.7771and1.3193

208. ..{dir79.9923}z3;

209.

210. [...]

Final product. To complete the METAFONT ap-
proach to font design, an effort should be made
to minimize the number of tension values used in
a glyph definition. This ensures a consistent look
and feel from one character to another, especially
along edges. For example, the use of 1.2963 and
1.2967 may be replaced by a single 1.3 value, such
as in pth[2] and pth[3]. The final form of the
mystery glyph, completely utilizing the METAFONT

approach, may be found in Figure 5, and is listed
in lines 211–258.

211. path pth[];

212. designsize := 10;

213. ds := designsize;

214. beginchar(248,ds*pt#,

215. ds*(1.419357)*pt#,

216. 0.645*pt#);"myst";

217. x1=x2=0.145161w;

218. x3=x4+0.07258w=0.564516w;

219. x9+0.07258w=x10=x11+0.25w

220. =0.903226w;

221. x12+0.056452w=x11;

222. x12-x13=0.451613w;

223.

224. y1+d=0;

225. y2-0.164772h=0;

226. y3=y4-0.255681h=0.579545h;

227. y10=y11=y9-0.431817h

228. =y12-0.306818h=0;

229. y12-y13=0.352272h;

230.

231. z5=(0.3951613w,0.846589h);

232. z6-z5=(-0.225806w,0);

233. z7-z6=(0,0.153409h);

234. z8-z7=(0.290323w,0);

235.

236. pth[1]=z1--z2;

237. pth[2]=z2{dir44}..tension0.8and1.3

238. ..{dir55}(0.4486*ds*pt,0.5766*ds*pt)

239. ..tension0.75and1.3..{dir80}z3;

240. pth[3]=z3{dir70}..tension1and1.3

241. ..{dir157}z4--z5--z6--z7--

242. z8{right}..tension1and1

243. ..{dir-34}(0.6652*ds*pt,1.3680*ds*pt)

244. ..tension1.3and0.75

245. ..{dir-76}(0.8026*ds*pt,1.1374*ds*pt)

246. ..tension1.3and0.75..{dir-93}z9;

247. pth[4]=z9{dir-84}..tension0.75and1.3

248. ..{dir-79}z10--z11;

249. pth[5]=z11{dir98}..tension0.8and1.3

250. ..{dir94}z12;

251. pth[6]=z12{dir-124}..tension1and1.3

252. ..{dir-144}z13;

253.

254. fill pth[1]

255. for i=2upto6: & pth[i] endfor

256. --cycle;

257. cull currentpicture dropping(0,0);

258. endchar;

�✁✂✄☎✆✝✂✞✟✠✡✟✠☛☞☞☛✌✍✍✌☞✎✏☛☛✍✑✒✓✔✕✍✖✗✓✘✓✙✠✕✘☛✚✛✜✢✣✤✠✥

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✧✧✧✧✧✧✧✧✧✧★★★★★★★✩✩✩✩✩✪✪✪✪✫✫✫✫✬✬✬✭✭✭✮✮✮✯✯✯✰✰✱✱✦✦✧✧★★✩✩✪✪✫✬✬✭✮✮✯✰✱✲✳✦✦✧★✩✪✫✬✭✮✯✰✳✦✦✦✧★✩✫✬✭✯✰✲✳✦✦✦★✩✫✭✯✰✳✦✦✦✩✫✭✯✴✴✵✵✵✵✵✵✶✶✶✶✶✶✷✷✷✷✷✷✸✸✸✸✸✸✸✹✹✹✹✹✹✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦★✫✮✱✺✺✻✼✼✽✾✾✴✵✶✷✸✹✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦★✫✮✻✼✽✴✵✷✹✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✪✮✺✼✾✶✹✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✪✯✻✾✷✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✩
✯✻✶✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✩
✰✾✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✬

✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✪
✬✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✫

✯
✩✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

✱✭
★✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✧

✮✫★
✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

✯✫
✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

✰✭
✪✧✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

✱✮✬
✪✧✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

✱✯✭
✫✩✧✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✻

✰✯✭✫
✩✧✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

✰✮✭✫
✪★✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✾

✰✯✭✬
✪✩✧✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✭

✱✰✮✭
✫✪✩✧✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✪

✱✰✮✭✬
✪✩★✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦★

✱✯✮✭
✫✪✩★✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✰

✱✯✮✭✬
✫✩★✧✦✦✮

✱✰✯✮✭✬
✫✩★✧✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✹✷✶✵✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✬

✱✰✮✭✬
✫✪✩★✧✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✸✷✶✴✾✼✻ ✽✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✪

✱✰✮✭✬
✫✪✩★✧✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✹✷✶✵✾✽✼✺ ✻✹✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦★

✱✰✯✮✭✬
✫✪✩★✧✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✹✷✶✵✾✽✼✺ ✶✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

✰
✱✰✯✮✭✬
✫✪✩★✧✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✸✷✶✵✾✽✼✺ ✽✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦

✭

✱✰✯✮✭✬
✫✪✩★✧✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✹✸✶✵✴✾✼✻✺ ✶✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✫

✬✫✪✩★✧✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✹✸✷✵✴✾✽✼✺ ✼✸✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦★
✱✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✹✸✶✵✴✾✽✼✺ ✾✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✮✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✹✸✷✶✵✴✽✼✻✺ ✵✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✪

✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✹✸✷✶✵✴✾✽✼✺ ✻✷✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦
✭✲✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✹✸✷✶✵✴✾✽✻✺ ✽✹✲✳✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✩
✰✲✦✦✦✦✦✦✦✦✦✦✦✦✹✸✷✶✵✴✾✽✼✻✺ ✴✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✪
✰✦✦✦✦✦✦✦✦✦✹✹✸✷✶✵✴✾✽✼✻✺ ✺✶✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✦✪
✰✲✳✦✦✦✦✦✹✸✷✷✶✵✴✾✽✼✻✺ ✼✵✵✵✿

✲✦✦✹✸✷✷✶✵✴✾✽✽✼✻✺
✴✾✽✽✼✻✺✺

Figure 5: Final form

Summary. The METAFONT approach combines
the irreplaceable advantages of implicit definitions
(making the position of critical points refer to each
other), relative policies (stating dimensions relative
to the width and height of the bounding box), and
analytical considerations (using tension statements
rather than control points) to ensure the consistency
and style of the resulting glyphs across all characters
in a font.

With practice, practice, practice, and the right
analytical tools, such font design far outshines,
in flexibility and functionality, the let-us-do-it-
for-you approach imposed by popular fontmaking
applications.

⋄ Timothy Hall

PQI Consulting

P.O. Box 425616

Cambridge, MA 02142-0012

info@pqic.com

http://www.pqic.com/TUG

TUGboat, Volume 24 (2003), No. 2 205TUGboat, olume (2003), No.

Resources

CTAN plans

Robin Fairbairns, Jim Hefferon,
Rainer Schöpf, Joachim Schrod,
Graham Williams, Reinhard Zierke
ctan@dante.de

Abstract

The readers of TUGboat likely know the Compre-
hensive TEX Archive Network as a great pile of TEX
stuff. That is, it is full of TEX materials and it is
great, but it is also perhaps a pile — a bit of a mess.

We will sketch some plans for improving CTAN.
As part of that, we will outline its architecture, his-
tory, and some issues.

1 Preamble

Taking it from the top: CTAN is an Internet archive
of material related to TEX that is available for public
download. We now hold five gigabytes of material.
Each day about ten thousand visitors download a
large number of files, and others upload some more.

We try hard to be definitive, to live up to our
“Comprehensive” name. We hold everything from
LATEX macro packages up to entire distributions such
as MikTEX and teTEX.

2 Present

CTAN is not a single site, but instead is a set of
sites. Three of these actively manage the material,
for instance installing new or updated packages.

• dante.ctan.org in Germany is sponsored by
the German TEX group Dante, and is main-
tained by Rainer Schöpf and Rienhard Zierke.

• cam.ctan.org is sponsored by UK-TUG and is
maintained by Robin Fairbairns, in England.

• tug.ctan.org in the USA is sponsored by TUG,
and maintained by Jim Hefferon.

To ensure that we have the same policies, we rely
on an active mailing list. To ensure that we hold
the same material, we rely on a number of custom
scripts.

In addition to the core sites, about seventy-five
sites around the world help out by offering a mir-
ror— every day they sync up with a core site and
then make their copy also publicly available. This
gives users more options and eases network traffic.
We encourage people to use the mirrors.1

1 See http://www.dante.de/mirmon/ and also ftp://tug.

ctan.org/tex-archive/README.mirrors.

206 TUGboat, Volume 24 (2003), No. 2

3 Past

Before CTAN there were a number of sites with TEX
materials available for download but there was no
authoritative collection. At a podium discussion
that Joachim Schrod organized at the 1991 EuroTEX
conference, the idea arose to bring together the sep-
arate collections. (Joachim was involved because he
ran one of the largest FTP servers in Germany at
this time, and had heavily modified the basic tool
mirror.pl for this purpose.)

CTAN was built in 1992, by Rainer Schöpf and
Joachim Schrod in Germany, Sebastian Rahtz in the
UK, and George Greenwade in the US (George came
up with the name). The site structure was put to-
gether at the start of 1992 —Sebastian did the main
work— and synchronized at the start of 1993. TUG

provided a framework, a Technical Working Group,
for this task’s organization. CTAN was officially an-
nounced at the EuroTEX conference in Aston, 1993.

When CTAN was founded, the main way to ac-
cess files over the network was FTP. So the system
was built with an expectation that visitors would
get materials that way (and perhaps also with an
expectation that visitors are experienced users). In
1999 a try at a more extensive web interface was put
on the TUG site, but it is weak and was not adopted
by the other two core sites.

4 Problems

Nobody likes complainers, but to describe our plans
we must describe the issues that they address. There
are problems with the collection itself, and problems
with the administration of that collection.

One problem with the collection is that it is big.
Its structure has been outgrown and needs updat-
ing. Most people in the TEX community have had
the experience of being unable to find the solution
to a problem, only to later discover that a solution
was in fact on CTAN. That is, we have found that as
we have grown, the information available to archive
users to help locate materials has not grown fast
enough to allow them to find what they need. This
has been eased by the metadata2 assembled by Gra-
ham Williams into his Catalogue.3 But nonetheless,
we need to be more information-rich.

A longstanding request about the collection4

has been for CTAN to keep histories of packages,
so that users can compile documents that rely on
old versions. (Now, when a package author sends
an update, we overwrite the old material.)

2 Data about data, that is, information about the pack-

ages.
3 http://www.ctan.org/tex-archive/info/Catalogue
4 Notably by Nelson Beebe.

Another problem in the didn’t-think-we’d-get-
big (or-old) category involves mirrors. Often, the
best way for a user to get a package from CTAN is
to get its entire directory at once, so that they don’t
miss some files. To that end, the core sites support
on-the-fly creation of .zip and .tar.gz file bun-
dles.5 The web front end at http://www.ctan.org
uses this capability, and something like it must be
a part of any future interface. However, it doesn’t
work with mirrors. In order to send users who want
a bundle to a mirror, the system needs to know
which mirrors correctly do on-the-fly-ing. So we
wrote a script to check. When we ran it we found
that not one mirror actually made both .zip and
.tar.gz bundles without error. Consequently, the
great majority of downloads come from the three
core sites.

The flip side of people getting things from us
is our getting things from the community. We are
concerned by a trend whereby some package authors
do not upload their work, but instead leave it on a
personal web server. This is bad because it brings
us back to the pre-CTAN days of materials that are
scattered and that may disappear; that is, CTAN

could end up not-comprehensive. It is also bad be-
cause, even if we know that the author’s work exists,
we have trouble gathering this material since the
web protocol HTTP makes it hard for us to fetch
things into our holdings.6 Obviously we must work
with the world as it is, but this is a problem.

The final collection issue that we will mention
is that early developers, including Knuth, expected
that most users would be fairly sophisticated: they
would have developed basic typographic knowledge,
and would need a minimum of computer and devel-
opment support (e.g., they would write their own
macros). This has not proved to be so. We perceive
instead that the majority of TEX users want a dis-
tribution that comes with LATEX, etc., already set
up. If they need to get something else, then they
would like the distribution to have a module that
can interface with CTAN and set it up for them. So
a key goal is that we must— in conjunction with
distributions— produce a system that meets those
expectations.

We next describe some issues with the admin-
istration of the archive. Users do not see these di-
rectly, but they have an effect on what users do see.

5 For example, visiting the url ftp://ftp.ctan.org/

tex-archive/macros/latex/contrib/shadethm.zip will get

the entire shadethm directory as a zip archive. From a

command line FTP client, get /tex-archive/macros/latex/

contrib/shadethm.zip will do the same.
6 On the scale at which we work, this is not as simple as

just using a program like wget.

TUGboat, Volume 24 (2003), No. 2 207

The first is that we are a shoestring operation.
The machines have been granted by user groups, but
the critical network connections are donated by each
maintainers’s institution. The maintainers are far
apart — some mailing list members have never met
any other member — which slows progress and adds
chances for miscommunication. All of the maintain-
ers are volunteers and satisfy CTAN’s time demands
in the face of other things that must come first.

The time demands on maintainers are relevant
because they have slowed our development. In par-
ticular, we must promptly handle materials that are
uploaded. To help a reader get a sense of it —and
for the satisfaction of bellyaching —consider a new
package upload. The machine’s maintainer gets it
from the upload area and unpacks it. He checks the
license, and decides where the package will go. He
checks that there is a README file, and that there
is documentation in PDF format that uses Type 1
fonts. Often, these checks involve corresponding
with the author or with the CTAN mailing list, in-
troducing a delay of a day or more. He then uses
our custom install script to copy the material into
the public area, and to trigger the mirroring pro-
cess. He notifies the CTAN announcement list (and
thus comp.text.tex). Finally, he edits the package
Catalogue metadata and puts it into the CVS tree.
In all, it averages perhaps a half hour per package.

More people in the administration might help.
However, in addition to the necessary expertise with
TEX, systems administration, and with the layout
of CTAN, our work takes place in the context of
an increasingly complex computing world. To name
one example, in recent years licenses have become a
big issue. We need people, but we also need a way
to bring them in so that they can learn gradually.

5 Plans

Suppose that a colleague gives you a paper that re-
quires a package not in your TEX setup. At present,
you would visit CTAN, find the package, and then
install it. Imagine if, instead, your TEX distribution
got the package, installed it, and proceeded with
running the paper, without your having to know
anything about it. Technology that would make
this kind of negotiation between the user’s computer
and CTAN reasonable is called “web services”.7 Our
most important goal is to develop — in coordination
with existing distributions— a capable spectrum of
web services for CTAN to offer.

7 A rough definition is: a web server will respond to queries

beyond just requests for pages.

One step toward that, and toward accomplish-
ing present goals also, is to better organize our hold-
ings. For instance, we have already combined the
subdirectories supported and other of /macros/

latex/contrib, and we plan also to meld the /info
and /help directories. A bigger job is to break all
of our holdings into packages, and have each pack-
age in its own directory (no more misc). This is the
natural way to answer a web services query, “what
is the latest version of the file f in the package p?”

In support of web services, and also to help vis-
itors get more information out we must get more in-
formation into the Catalogue. We must both (1) ex-
pand the information of the kind that is in there
already, and (2) also expand the kinds of informa-
tion that can go in there.

Part of (1) is an effort to provide an easy way to
edit this metadata on the web, for instance, when an
author uploads or updates a package. As a bonus,
this may provide a way to bring people in to help
CTAN. A person could make a reasonable contri-
bution by editing metadata and checking it into the
CVS tree, without having to do system administra-
tion of a CTAN site.

An example of (2) is that we need to retain
keywords, so that users can search for a package
in this way (this search could happen on a CTAN

web page, or from a user’s desktop through a web
service). For some time we’ve been discussing the
underlying model for the metadata and in support
of this, the Catalogue recently moved to a CVS tree.8

All that information should be in a database.
This fits into our plans in many ways because, while
CTAN grew up as an FTP archive, the web has
changed everything and we need to fix our web sys-
tem to be database-backed. It should provide an
interface that is uniform across all three core sites.

That interface could allow users to find pack-
ages in alternate ways (this was first suggested by a
comment made by Sebastian). At present, users can
look through the FTP directories, can search the list
of all files, can do a crude text search of the Cata-

logue, or can do a web search of our holdings using a
standard search engine, and we’ve mentioned above
that we’d like to add a keyword search. But, we’d
also like to add a search of packages by functional-
ity: a user trying to work with page headers might
click through a branch of choices like Top > LaTeX >

Page layout > Headers and footers.
One of the things that a modern site should

have is the ability to search documentation. At
present, many packages do not have documentation,

8 http://texcatalogue.sarovar.org

208 TUGboat, Volume 24 (2003), No. 2

or have it in a format that is not suitable as a search
result (e.g., if the result of a search is a link to a .dtx
file then clicking on it is unlikely to be helpful). We
have begun enforcing that package contributers pro-
vide documentation just in PDF format, which is the
only format that combines widespread accessability
and typographic excellence.

Two problems listed above are the question of
keeping package histories, and the question of mir-
rors providing .tar.gz and .zip bundles. We be-
lieve that we can solve these together, saving each
version of a package as a bundle — then we have a
bundle available, and mirrors need not create them.

We need to convince authors to upload their
materials. We have in the past urged authors to do
so,9 but here also a volunteer, who can find materials
and politely persuade authors, would help.

Finally, we are constantly thinking about the
maintainer’s work flow. There has been some wild
talk about an administration GUI, but the prob-
lem is that there are so many exceptions and special
cases that we often cannot see how to do it any other
way than by hand.

6 Prognosis

We plan to make CTAN more of a “Comprehensible”
TEX Archive Network. These plans have been under
discussion and in development for two to three years.

Dante has helped out greatly by sponsoring key
people to come to meetings in the last two years, at
Bremen and at Darmstadt, for in-person discussions.
We must say that even beyond the grace of the in-
vitations, the Dante people were kindness itself: in
particular, Volker and Klaus moved the entire pro-
cess forward greatly.

At present, the Catalogue format has been ad-
justed to allow development (in addition, moving
it to the CVS tree allows contributions in parallel),
structures for the databases are in place, and we
have beta code for the web editing of metadata and
other parts of the new web system. Now, we must
test that system. Also, we must supply the static
data: the web page content, the keywords, the by-
function categories, etc.. Finally, we need more data
about packages for the database.

Briefly: progress is maddeningly slow, but there
is progress.

9 If you have something that others would find useful,

please consider sharing it!

TUGboat, olume (2003), No.

LATEX

Some notes on templates

Lars Hellström

Over the last few years, the LATEX3 project team has
been making and releasing some packages belonging
to what they call LATEX2ε∗, which is a sort of inter-
mediate step before LATEX3. Unlike the previously
released l3 suite of packages [2], which deals mainly
with very basic programming structures such as lists
and stacks, the LATEX2ε∗ suite of packages is more
about producing better results in more concrete ar-
eas of LATEX. Examples include the xor package,
which is a new and much more versatile output rou-
tine, and the xparse package, with which one can
easily define commands with complicated mixtures
of mandatory, optional, and *-type arguments. The
elegant interfaces and functionality of these pack-
ages promise well for the future.

Yet, most of them are still in a rather experi-
mental state and they are currently only available
from the experimental code directory on the LATEX
project web site [4]. Some of the packages are how-
ever not too far away from a more general release —
in the event of which they will probably become part
of the Required suite of LATEX packages — and the
first of these will most likely be the template pack-
age [1]. This is a very interesting package, because
it provides the means for a whole new (and very
promising) style of LATEX programming, which I had
the opportunity to try out during my work on the
docindex package [3]. This note is an attempt to
summarize the observations I’ve made about this
programming style, in the hope that it may guide
others in their first experiences of it. I am quite con-
vinced it will become an important part of LATEX3
and also of the further development of LATEX2ε.

Even though the name of it all is template, one
shouldn’t overrate the importance of the templates.
Most of the things you actually keep around are not
templates, but instances, and an instance is basi-
cally a very familiar object: a macro which performs
some action. Of course, in TEX programming almost
everything is a macro in one way or another, but
some things are macros only because TEX doesn’t
provide any better way of storing some kinds of data,
and some macros only exist to help other macros
parse their arguments. Instances are rather the kind
of macro you write because you want to modularize
your code; typical actions are to typeset a float cap-
tion and to set the paragraph justification.

TUGboat, Volume 24 (2003), No. 2 209

An instance is not just any nice collection of
simpler commands, though. To begin with, every
instance has a type, which specifies the syntax and
most of the semantics of the instance. All instances
with the same type do roughly the same thing, but
they usually differ in the details. If one instance of
a certain type, say, takes some text and typesets it
as a section heading, then another instance of the
same type could typeset the same text as a subsec-
tion heading or a part heading. If one instance of a
certain type causes the index to be typeset (in the
same sense that \printindex does) then another in-
stance of that type might cause the glossary to be
typeset. The simpler an instance is the more de-
tailed the type specification usually gets, but it is
generally about what the instance does, not about
how it does it. Two instances of the same type are
exchangeable in the sense that replacing one with
the other doesn’t cause any errors, although it will
almost certainly change the typeset appearance of
something.

That the instances are typed is incredibly use-
ful, because it means you can redefine any instance
without having to worry about breaking anything
(as long as your redefinition conforms to the type
specification)! An average LATEX package usually
comprises a couple of user level commands, a couple
of parameters, and a number of private macros. The
user level commands and parameters tend to have
well-defined syntax and semantics, even though the
choice of parameters is often less than satisfactory,
but the syntax and semantics of the private macros
are generally something about which everyone but
the package author knows very little. There is often
no other way to achieve a certain layout modifica-
tion than to redefine a private macro, but that is
always a risky operation because inferring the se-
mantics of something from its implementation is no
exact science.

In an implementation employing template tech-
niques, many of the private macros would instead be
instances, and thus this wouldn’t be a problem; the
type specification would say everything one needs to
know. In the case of new types there is of course a
bit of extra work needed for writing down the specifi-
cation, but that work is usually well spent as it helps
pointing out weaknesses in the implementation. An
interesting side-effect of using instances is that there
is much less need for package parameters, as many
of these can instead be embedded into the instances
which are easily redefined. Thus the net effect of
using template techniques in a package can actually

be that the interface to the package becomes simpler
as well as more powerful and versatile.

The other thing about instances is how they
are defined; this is where the templates get into the
picture. A template is also basically a macro, and
like an instance it has a type, but a template ad-
ditionally has an associated set of parameters. In-
stances are defined by specifying a template (of the
correct type) and the values that the parameters of
the template should have. A typical instance defini-
tion looks something like

\DeclareInstance{justification}

{flushleft}{std}{

rightskip =0pt plus 1fill,

leftskip =0pt,

startskip =0pt,

parfillskip=0pt plus 1fill

}

Here justification is the type, flushleft is the
name of the instance being defined, and std is the
name of the template it is based on. The last argu-
ment is a keyval list of parameter names and values.
What happens internally is that a couple of con-
trol sequences (the respective storage bins for the
parameters of the template) are set to these values
whenever the instance is used and the code in the
template accesses the values by using the storage
bins in very much the same way as we currently use
a package parameter.

A parameter value need not be a length or some
other numeric quantity, however; it can just as well
be a function (which in this case is a fancy name for
a command), a name, a boolean, or another instance
(usually, but not necessarily, of a different type). A
very common use for function valued parameters is
to handle formatting of short pieces of text; for ex-
ample, the heading of the theorem environment. A
template which handles this might for example have
a function valued parameter heading-format which
receives the theorem number as its only argument.
Then to get headings in the default “Theorem 6.2”
style one could say

heading-format = \textbf{Theorem~#1}

whereas the reverse “6.2 Theorem” style would be
the result of

heading-format =

\textbf{#1\hspace*{0.5em}Theorem}

Generalizing slightly, one could also imagine there
being a function parameter named-heading-format
with two arguments which is used instead of the
heading-format parameter when the theorem has
a name (e.g., “Inverse Function Theorem”). Passing

210 TUGboat, Volume 24 (2003), No. 2

this name as the second argument, a suitable value
for named-heading-format in the first case might
be

named-heading-format =

\textbf{Theorem~#1 (#2)}

or even

named-heading-format =

\textbf{Theorem~#1 (\textit{#2})}

whereas the second value for heading-format might
go better with

named-heading-format =

\textbf{#1\hspace*{0.5em}#2}

e.g., “6.3 Inverse Function Theorem”.
I personally find the separation of code into on

one hand a template and on the other hand values
of the parameters of that template quite a relief,
because it physically separates two different levels
of programming. The actual template usually only
contains the “hard”, programming-like parts of the
code—arithmetic, decision-making, interpretation
of arguments, and so on — whereas “soft” parts like
the layout specification are put in the parameters.
This means whenever the code actually does some-
thing that is directly visible in the layout —such as
insert a skip or format a heading — it simply uses
the value in a parameter or passes the relevant data
on to a parameter for further processing. The re-
sulting code in the template looks very much like a
skeleton of only the hard parts with some sprinkled
markers saying “insert soft thing doing . . . here”,
but it is actually complete and working. It cannot
be used until the parameter values have been spec-
ified as well, though, and the normal way of doing
this is to define an instance of the template.

Since the soft programming of selecting values
for parameters is much more like writing a LATEX
document than the hard programming, it is not sur-
prising that the many LATEX users who have not
mastered the hard programming will find that their
ability to modify the behaviour of a package is much
higher for templated packages than for traditional
ones. For those who have mastered hard program-
ming the advantages may seem less clear, but my
personal experience was that programming became
simpler. How can this be if I am actually restricting
the ways in which I may write the code? I think it
has to do with how one thinks about the problem

at hand. When one is doing hard programming one
also gets into a “hard” mode of thinking, whereas
when one is doing soft programming one gets into
a “soft” mode of thinking. In the traditional style
the hard and soft parts are often heavily mixed and
consequently one is forced to constantly switch be-
tween two modes of thinking. In the templated style
the mixing is much less pronounced due to the afore-
mentioned separation and consequently one does not
have to switch mode that often. As it does require
some effort for the mind to switch mode, the less
one has to switch the better!

There are many other things which could be
said about the template package— how one can use
calc type expressions as parameter values, how one
can use collections to effectively have several def-
initions of an instance in memory simultaneously
and quickly switch between them, what one actu-
ally does to declare a new template— but these are
things one can easily find in the template package
manual. I certainly hope that you will give it a try,
because this is one of these things after which LATEX
programming will never again be quite the same.

References

[1] David Carlisle and Frank Mittelbach.
The template package. Available from
http://www.latex-project.org/code/

experimental/template.tgz, 1999.

[2] David Carlisle, Chris Rowley, and Frank
Mittelbach. The LATEX3 programming
language—a proposed system for TEX
macro programming. Available from CTAN,
macros/latex/exptl/project/expl3/, 1998.

[3] Lars Hellström. The docindex package.
Available from CTAN, macros/latex/
contrib/xdoc/docindex.dtx, 2001.

[4] Various authors. LATEX project web site
directory for experimental code. Located
at http://www.latex-project.org/code/
experimental/, 1999–present.

⋄ Lars Hellström

Sand 216

S-881 91 Sollefte̊a

SWEDEN

Lars.Hellstrom@math.umu.se

TUGboat, Volume 24 (2003), No. 2 211

Writing a big book — A first experience

with LATEX

David Walden

This paper is in response to TUGboat editor Bar-
bara Beeton’s Editorial Wish List on the TUG web
site for papers by non-experts for non-experts. I also
thought my experience might be interesting because
many other people have had to struggle with a book
or journal publisher that has no interest in LATEX;
while my approach is quite ad hoc with many manual
rather than computerized steps, such an approach
can be (or at least seem to be) faster than seeking a
fully computerized approach.

Section 1 describes why I decided to write a sub-
stantial book in LATEX, absent prior experience with
LATEX, starting from a manuscript of a prior edition
of the book prepared in Word, for a publisher with
no knowledge in LATEX. My steps included convert-
ing the prior Word manuscript to LATEX (section 2),
massively changing the manuscript in LATEX to pro-
duce a fully designed manuscript output in PDF for-
mat (section 3), and then converting the LATEX via
HTML into Word files containing ASCII text for the
publisher to input into QuarkXPress for production
of the pages to be sent to the printer (section 4). I
conclude with some reflections on my process (sec-
tion 5).

1 Background

Several years ago, the publisher of a text book [1]
I had co-authored asked for a second edition. The
original book was 575 pages long. Because of ad-
vances in the field since the first edition’s publica-
tion, the second edition would be significantly longer
and quite different from the first edition. In effect,
we would be writing a new 755 page book [2].1

At about the same time the request came from
my publisher, my frustration with composing large
documents in Microsoft Word was reaching a peak.
Because of new releases of Word and switches I made
from using Word on early IBM PCs to using it on
Macs to using it again on circa 2000 PCs running
Microsoft Windows, I was having trouble access-
ing Word files I had created years before. I vowed
never again to create a large document that had
proprietary2 formatting information as Word has; I
wanted ASCII text with explicit markup commands,

1 Throughout all of the steps described in what follows,
my co-author Shoji Shiba worked collaboratively with me to
create the content of the book; however, I did all the key-
boarding and other computer-based work.

2 Invisible and not able to be made visible, undocumented
or unpublished, totally controlled by Microsoft.

so I could reprocess a document at any later time
using a text editor and its macro capability or by
writing a small text transformation program (for ex-
ample, in Perl).

Also, I didn’t know how to make Word do the
following sorts of things (if it can do them at all):

• automatically adjust chapter, section, figure,
etc., numbering as chapters, sections, figures,
etc., are added, subtracted, and reordered;

• automatically order table of contents entries
and insert page numbers;

• automatically adjust cross-references to chap-
ters, sections, figures, etc., as necessary;

• support a file of include-file commands to per-
mit working with various portions of the book
at different times;

• allow global switching on and off of various
manuscript components (such as marginal notes
to myself about what still needed to be done);

• including EPS files of figures at specified points
in the manuscript while avoiding awkward page
breaks.

Therefore, I decided to learn and use LATEX
which I had long known about but never used.3 My
learning of LATEX was a bit hit and miss, as I started
rewriting my book.4 Over time, I did the following:

• bought some books on TEX and LATEX;

• found www.tug.org and thus the MiKTEX col-
lection of software (see www.miktex.org);

• began watching the comp.text.tex newsgroup
and thus stumbled across the series of lectures
on LATEX and PDF by David Arnold of Califor-
nia’s College of the Redwoods;5

• learned of WinEdt (www.winedt.com);

• configured WinEdt to run LATEX, run DVIPS,
and Distill the result into PDF files.

2 Moving the first edition book into LATEX

I got the first edition Word files back from the pub-
lisher and repeatedly used WinEdt’s Find and Re-
place commands to convert the Word file for each
chapter into a LATEX file:

3 I had used programs such as RUNOFF (under the CTSS

operating system), MRUNOFF (under TENEX), and TROFF-

NROFF (under UNIX).
4 There were many more steps in learning LATEX and

rewriting my book than I describe in this paper, including
plenty of missteps. In this paper, I skip much confusing detail
and simplify the ordering of steps a little to allow the reader
to understand the main thread of my story. Any reader who
wants more detail should ask me for it.

5 http://online.redwoods.cc.ca.us/instruct/

darnold/index.htm.

212 TUGboat, Volume 24 (2003), No. 2

• open and close smart double quotes from Word
were changed to ‘‘ and ’’, and open and close
smart single quotes were changed to ‘ and ’;

• em-dashes were changed to ---;

• hyphens between numbers were changed to --;

• footnotes (with the invisible, proprietary Word
markup) were changed to use the \footnote

command in LATEX;

• the escape character \ was inserted before $, %,
etc.;

• ellipses (three periods in a row) were changed
to the \dots command;

• chapter and section titles were enclosed in ap-
propriate \chapter and \section commands;

• the command
\addcontentsline{toc}{chapter}{title}

was used to add table of contents lines without
chapter numbers for the title of the five major
parts of the book;

• italic text was enclosed in \emph commands,
bold face text was enclosed in \textbf com-
mands, various non-English letters were han-
dled with a \ and appropriate diacritical mark,
etc.

The steps just listed took half an hour or so per file
for each of the 20 or so files of the first edition book.

Next, I wrote some new LATEX environments
and commands, including the following:

• blist, nlist, and dlist environments for enu-
merated, numbered, and description lists with
tighter inter-item spacing than the LATEX de-
fault;6

• \mnote{text} command to put text to myself
in the margin and \CK command to put a bold
CK in the manuscript to highlight facts that
needed checking;

• \snfig, \snufig, \swsnfig, etc., commands to
include EPS figures in the text with the option
of having them numbered and captioned, un-
numbered and uncaptioned, sideways on a page,
etc., and a similar set of commands to insert ta-
bles7 in the text. See Figure 1 for an example
of the definition of one of these commands.8

6 After I finished the effort described here, I learned about
the memoir class that includes support for tighter spacing of
list items.

7 I used LATEX’s \tabular, etc., features to format a few
simple tables. Mostly, however, I already had tables or cre-
ated tables as EPS files with Illustrator.

8 The macro for \snfig inserts the figure using the
graphics package with parameter dvips, creates a label for it
derived from the figure’s file name for cross-referencing from
elsewhere in the book, and prints enough of the figure’s file

\newcommand{\snfig}[3]{ %scaled numbered figure

\begin{figure}[htbp]

\hfil\scalebox{#3}{%

\includegraphics{figures/fig#2.eps}%

}\hfil

\caption{\label{fig:#2}#1%

\texttt{\small[fig#2]}%

}

\end{figure}

}

Figure 1: Definition of \snfig

Once these environments and commands were
available,

• I converted the lists in the original manuscript
to use the appropriate new environments by
typing the necessary \begin, \end, and \item

statements into each file of the manuscript.

• I converted absolute figure and table references
from the first edition into references to labels,
using \ref and \pageref.

• I converted absolute chapter and section refer-
ences to \ref and \pageref references to ap-
propriate labels I had inserted in the LATEX ver-
sions of the chapter files.9

Finally, I compiled the LATEX files and printed
them out to compare them with the first edition
book, looking for instances where I had missed some-
thing that needed to be converted to LATEX.

3 Rewriting and updating the book

With the first edition fully converted to LATEX as de-
scribed in the previous section, it was time to move
on to updating the book.

I drew additional text from other papers I and
my co-author had written since the first edition of
the book was published, doing the same brute force
but fast enough conversions from Word to LATEX.
We wrote lots of new text that I typed into the LATEX

name in square brackets on the page to which the figure floats
so that I could find the figure’s file when I saw a figure needing
a change.

The macro as shown here has extra new lines (so it fits
within a single column) that were not in the macro as I ac-
tually used it.

9 I didn’t redefine the \chapter and \section commands
to automatically produce appropriate labels because I didn’t
want to take the time to learn how to do this and discover
whether it was actually a good idea or not. Perhaps I should
have. Generally I was focused on getting the new book writ-
ten and sent to the publisher rather than on learning to be a
LATEX expert.

TUGboat, Volume 24 (2003), No. 2 213

files. We created many new figures and tables that
I input into Illustrator files.10

An important aspect of the book was a substan-
tial number of real life case studies and examples.
Thus, I decided to include a table of case studies
(to go after the table of contents), listing the title
of each case study and the page number on which it
began. Rather than learn how to define a LATEX con-
struct that worked like a table of contents such that
a new entry was automatically added each time a
new case study was added, I simply typed the case
study name and a \pageref into a case-study-list
file in the order of the case studies in the book.
When I rearranged parts of chapters so the order
of case studies changed, I had to do a parallel re-
arrangement of the lines of the case-study-list file.
It was easy to see when rearrangement of the case-
study-list file was needed by the out-of-order page
numbers.

Eventually, I was ready to show a first draft of
the new book to the development editor from the
publisher’s staff. I used the command
\setlength{\parskip}{.24in}

to (sort of) produce a double-spaced copy of the
manuscript for the development editor to review.11

Based on the development editor’s comments,
I further revised and reordered the manuscript. In
particular, the editor asked that a single bibliog-
raphy be created as part of the backmatter of the
book to which cross-references could be made from
the main text, a significant change from the first
edition which included citations in the end notes for
each chapter. Thus, I began to use BibTEX, creat-
ing a .bib file of all bibliographical items and re-
placing citations in the text with appropriate uses
of the \cite command. If there is one thing I wish
I’d done differently in my work on the new book,
it is to use BibTEX and a .bib file from the start.
Note only did it eliminate lots of chapter end notes;
it also provided a single extensive bibliography, ar-
ranged alphabetically by author, which has been a
valuable addition to the book.

In time,12 a final manuscript was available.

10 The publisher did the first edition figure finish work in
Illustrator from MacDraw Pro figures I submitted with the
Word manuscript. Therefore, I used Illustrator to draw new
figures and tables and to modify old figures and tables. Alto-
gether, the finished book had hundreds of figures and tables
in EPS format.

11 I always did my own proofreading and reviews of what I
was writing using a single-spaced copy of the manuscript be-
cause it helped me better picture the final book I was aiming
toward.

12 The total elapsed time to rewrite the book was about
18 months, most of which was involved with content rather
than formatting.

Again, I provided double-spaced pages for copy edit-
ing. However, by this time, the publication dead-
line was looming, so as I finished the final draft of
each chapter, I sent it as an email attachment to
the copy editor, who did his work and then Fedexed
red-marked pages back to me from which I made
appropriate changes in the LATEX files.

4 Producing the final book

With a finished manuscript in hand, it was time to
refine the book design so the publisher could see
precisely what I wanted. This required using the
fancyheadings package to set up page headers and
footers, using the titlesec package and then mak-
ing a tiny change to a private copy of the titlesec

style to adjust chapter headings, and slightly re-
defining (in the LATEX preamble) LATEX’s book class
(\@makecaption and \thechapter as used in ta-
ble and figure captions) to get captions to look as I
wanted. I learned how to do these redefinitions by
sending a query to comp.text.tex.

It was also time to discover the format the pub-
lisher wanted the final manuscript in —a topic I had
been avoiding because I didn’t want to hear any
back pressure against my use of LATEX for the book
rewrite. I offered some choices to the publisher’s
production manager for the book:

1. I could finish the job in LATEX (getting rid of
strange page breaks, etc.) and deliver a ready-
to-print PostScript file for the book.

2. I could convert the manuscript back to Word,
fully formatted (I didn’t know how I would ac-
complish this with other than lots of manual
work).

3. I could do something in between 1 and 2.

The publisher’s layout person and I communi-
cated. He stated that he would be using Quark-
XPress to lay out the book. Once he understood
what I had in LATEX, he asked me to provide him
with ASCII text in Word files with no formatting: he
wanted Word files because in his experience special
characters such a non-English vowels including dia-
critical marks translate best into XPress from Word;
he wanted no formatting so he wouldn’t have to re-
move anything unnecessary before adding format-
ting in XPress.

My problem, therefore, was how to convert the
output of LATEX (with all the benefits of LATEX’s
chapter, section, figure, citation, etc., numbering
and cross-referencing) into Word files (without any
LATEX markup, LATEX-produced hyphenation, etc.).
I decided that moving from files with LATEX markup
through HTML produced by LATEX to ASCII in Word

214 TUGboat, Volume 24 (2003), No. 2

files would result in what the publisher’s layout per-
son needed.

Therefore, I spent a few days (just a few days)
doing the following:

1. Sent the layout person a single-spaced copy of
the fully designed and fully formatted book out
of LATEX so he had that to guide him as he did
his work in XPress.

2. Replaced the \footnote commands in all 30 or
so LATEX files with instances of a newly defined
\enote command that produced end notes fol-
lowing each chapter, using the endnotes pack-
age.13

3. Modified my figure- and table-producing com-
mands (like \snfig shown in Figure 1) so they
dropped the marginal notes indicating the fig-
ure file names, did not actually insert the EPS

file, and instead just included the figure num-
ber and caption on its own line at an appropri-
ate place in the manuscript along with the file
name of the figure or table. The locations of
the modified figure- and table-producing com-
mands were always immediately after the the
paragraph of first reference to the figure or ta-
ble. Thus, the person doing the layout had the
information necessary to place each EPS figure
or table with its number and caption at an ap-
propriate place on an appropriate page.

4. Added the command
\setlength{\defaulthyphenchar}{-1}

in the preamble to turn off hyphenation to avoid
artificial within-word breaks within paragraphs.

5. Bought a copy of VTEX, the advertising for
which claimed it to be the best program for
generating HTML from LATEX because it gener-
ated HTML from the LATEX itself and not from
DVI output of LATEX.14

6. Changed a few small items to conform with
VTEX, e.g., from using the graphics package
I had been using with MiKTEX to using the
graphicx package.

7. Got a small modification to VTEX from Mi-
croPress Inc. so that VTEX generated no extra

13 While I was writing the new book I used bottom-of-the-
page footnotes because of their proximity to the text they
augmented. However, my publisher preferred all such notes
to be at the end of the book as a collection of end notes, to
avoid having many footnotes on text pages that might make
the book look quite technical and, thus, less popular. We
compromised on having end-of-chapter end notes.

I made a couple of tiny modifications to a private copy of
the endnotes.sty file in order to format the chapter end notes
as I wanted them to be.

14 I have heard that other software packages, such as
latex2html, also generate HTML directly from LATEX.

characters in its HTML output (e.g., no gra-
tuitous spaces surrounding bibliographic refer-
ence numbers).

8. Processed each LATEX chapter individually (us-
ing \includeonly) through VTEX to produce
an HTML file for the chapter.

9. For each chapter, selected and copied (using
control-C under Windows) the entire text of the
HTML output file and pasted it (using control-
V) into a new WinEdt file.

10. Configured WinEdt to have essentially in-
finitely long lines of text and touched each para-
graph with the mouse and keyboard so that
each paragraph became one line. In other
words, I removed intra-paragraph new lines
that would interrupt the flow of text on to pages
in XPress.

11. Selected and copied (again using Windows’
control-C command) all the text for the chap-
ter in WinEdt and pasted it into an empty
file in Word (using control-V). Somehow mov-
ing all the text from the HTML file to WinEdt
and then to Word discarded all of the HTML

markup commands and left only ASCII text of
the manuscript in the Word file, which wouldn’t
have happened with a direct copy from the
HTML file to Word.

12. Reviewed the Word file for anything that might
confuse the layout person and clarified it.15

13. Sent each Word file to the layout person to cut-
and-paste into XPress and there to format it for
printing.

The layout person did the layout of the whole
book and then sent it to a proofreader. The proof-
reader reviewed the entire set of page proofs, marked
them where corrections were apparently needed, and
sent them to me. I reviewed the proofreader’s notes,
changed my LATEX files appropriately (to keep them
in sync with the book as published), and sent the
page proofs back to the layout person with instruc-
tions to ignore the few changes from the proofreader
I didn’t want made. Somewhere around this same
time, the page proofs went to the indexer who cre-
ated the index and sent it to the layout person to
include at the end of the book.16

15 Somewhere along the line, about this time I formatted
the output of \tabular commands so the layout person would
recognize it and format the content with XPress.

16 I may misremember some of the ordering of the passing
of nearly final manuscript from person to person. In any case,
what I have described in this paragraph is what, in effect,
happened (including no use of LATEX’s indexing capabilities).

TUGboat, Volume 24 (2003), No. 2 215

5 Reflections

5.1 On using LATEX

I surely could have been smarter about the way I
used LATEX. I feel like I could have made more
use of redefining environments and commands. I
could have done a better job of making it possible
to change one environment or command definition
to change the behavior (e.g., switching it off or on) of
all instances of use of the environment of command.
I learned to do almost nothing with fonts other than
use the built-in ones and switch among their stan-
dard modes (and, since my book had no math in it,
I learned nothing about LATEX’s math layout capa-
bilities). I am sure there were “right ways” to do
things that I did with the first string of commands
or characters that I stumbled across that achieved
the effect I wanted.

I will welcome suggestions from readers about
smarter use of LATEX.

5.2 On writing a book in LATEX

The choice to rewrite the new edition of the book
in LATEX is one I would make again. Conceivably
it would have taken less overall effort to do it all in
Word.17 However, I would not have been as happy
as I was seeing and flexibly reorganizing and rewrit-
ing the book-like manuscript with embedded figures
I had with LATEX. (Also, I benefited by learning a
lot about LATEX.) The final conversion from ASCII

text in LATEX files to ASCII text in Word files for
input to the layout person and XPress was a simple
and quick enough step, given the VTEX capability
to generate HTML without extra HTML formatting.

I will welcome critiques and suggestions for a
better overall strategy for creating the design and
manuscript of a big book in a way that provides
me as author with lots of flexibility and a thorough
image of the final product while at the same time
working with a publisher apparently unacquainted
with the likes of LATEX and not used to authors so
willing to get deeply into the computer aspects of
creating the files to be sent to the printer.

17 It might also have been more efficient for me to do the
entire rewrite of the manuscript in XPress for continuity with
the final layout work by the publisher. However, at the begin-
ning of the project the publisher’s art department was ada-
ment that an author could not be allowed near XPress— that
was a domain reserved for the publisher’s layout people.

Acknowledgments

The publisher’s production editor, Michael Ryder,
and composition person, William Brunson, cooper-
ated completely in my effort to convert the LATEX
files into files the publisher needed to have the book
printed.

Michael Vulis of MicroPress Inc. quickly pro-
vided a needed small change to VTEX. Peter Flynn
answered my query to the comp.text.tex news-
group regarding making captions look as I wanted
them to. I also used many other resources available
to the TEX community, for example, at CTAN and
on the TEX Live CDs that come with membership
in the TEX Users Group (along with a subscription
to TUGboat).

Of course, many other people helped with the
non-LATEX-related aspects of writing the book. They
are acknowledged in the book itself.

I appreciate the guidance for preparing this pa-
per for publication that I received from Barbara Bee-
ton, Karl Berry, and from the anonymous reviewer.

References

[1] Shoji Shiba, Alan Graham, and David Walden.
A New American TQM. Productivity Press,
Portland, OR, 1993.

[2] Shoji Shiba and David Walden. Four Practical
Revolutions in Management. Productivity Press,
Portland, OR, 2001.

Author’s biography

Over a thirty-plus year career in high tech computer
R&D, David Walden worked successively as a techni-
cal contributor, a technical manager, and a general
manager. Most of this time, he was with Bolt Ber-
anek and Newman Inc. of Cambridge, MA, where
he was part of the original ARPANET development
team and involved in many other early Internet ac-
tivities. He has done much writing on technical,
management, and other topics.

⋄ David Walden

12 Linden Road

E. Sandwich, MA 02537

dave@walden-family.com

http://www.walden-family.com

216 TUGboat, Volume 24 (2003), No. 2

Designing packages for Λ: An overview

Apostolos Syropoulos

1 Introduction

The Ω typesetting engine was introduced about ten
years ago [2]. Roughly speaking, it is a Unicode TEX
extension, and, in our opinion, it is the best TEX
extension available. But even after ten years, there
are certain things which remain undocumented. For
example, there is no single document describing how
one can prepare a Λ package! However, this lack of
documentation is somehow justified since Ω is still
an evolving system. Thus, sometimes it makes no
sense to document an experimental feature that may
not be present in the next release of the system.
Still, there are certain features that are frozen and
so we need proper documentation for at least these
features.

Generally speaking, any LATEX package is a Λ
package, but the inverse does not hold. The pre-
vious assertion is true just because Ω provides the
so-called Ω Translation Processes (ΩTP, for short),
which are used to transform the character encod-
ing of the input stream and are among the novel-
ties introduced in Ω. Thus, new Λ packages, whose
functionality relies on ΩTPs, should provide the “fa-
miliar” user-interface (i.e., thru package options and
commands) for their activation/deactivation.

It is our belief that Λ packages should accept
Unicode encoded files just like TEX accepts ASCII

files. In practice, this means that we need Unicode-
encoded fonts. Since Type 1 fonts do not provide
such a facility, and the use of OpenType fonts is
still an item of active research, we need to create Ω
virtual fonts in order to create virtual Unicode fonts.

In this paper, we begin by presenting a few par-
ticulars about the Inuit people and their language.
Next, we present the general functionality of the
oinuit package. We continue with the implementa-
tion details of the package. In particular, we describe
how we implemented the various package options,
the language switching commands, and the design
of the various ΩTPs involved. In addition, we out-
line the implementation of Ω virtual property list
files, which are used to create virtual fonts, and we
finish with a description of the implementation of
the hyphenation rules of the Inuktitut language.

2 Inuits and their language

The Inuit (here we also include the closely-related
Yupik) are a native people of the Canadian Arctic,
Greenland, Alaska, and the Chukotka Autonomous
Okrug of the Russian Federation. Inuktitut (the lan-

guage of the Inuit) and Yupik together form the
Eskimo branch of the Eskimo-Aleut language fam-
ily. The Eskimo branch is estimated to have 73000
speakers at present. Although linguists continue to
use the term Eskimo, the people themselves prefer
the term inuit, which is the plural form of the word
inuk, meaning “human being”.

Morphosyntactically, Inuktitut is an agglutina-
tive or polysynthetic language. This means that mul-
tiple morphemes combine into what can be called
words, which represent concepts that may require
entire sentences in other languages. Inuktitut also
features a morphological process called incorpora-
tion. A fuller discussion of these topics is beyond
the scope of this paper.

James Evans, a Wesleyan (Methodist) mission-
ary, is the creator of the Inuit syllabary. This writing
system was initially created for the Ojibwe language,
based on Pitman shorthand. Later Evans learned the
Cree language and adapted his syllabary to write a
translation of the New Testament in the Cree lan-
guage. Rev. Edmund Peck adapted Evans syllabary
and introduced it to the Inuit people at Little Whale
River in 1876.

It is interesting to note that the syllabics are
used by Inuit who live in Canada, especially in the
new Canadian territory of Nunavut. On the other
hand, Inuit in (what is now) the Northwest Terri-
tories, Labrador Coast and in Alaska use the Ro-
man alphabet, as do the Inuit of Greenland (Green-
landic). Siberian Inuit use the Cyrillic script to write
Inuktitut. Unfortunately, the use of the Inuktitut
language has declined in those areas where syllabics
are not used (with the lone exception of Greenland).
In Table 1 the reader can view the Inuktitut syl-
labary currently in use as well as the Latin transcrip-
tion of each symbol. For more information on the
history of the Inuktitut syllabary the reader should
consult the excellent article by Kenn Harper [1].

3 Typesetting Inuktitut with Λ

We now briefly describe the functionality of the
oinuit package.

The package provides five options: nunavut (de-
fault option), quebec, iscii, utf8, and ucs2, which
respectively correspond to source text using the
Latin transcription of Inuktitut and the Anglican
orthography, the Latin transcription of Inuktitut
and the Catholic orthography, the Inuit ASCII (see
Table 2), the UTF-8 Unicode encoding, and the
UCS-2 Unicode encoding. Note that the Inuit ASCII

is based on a PC Inuit Character Table proposed
by Everson Typography (see the page at www.

evertype.com/standards/iu/iu-tables.html).

TUGboat, Volume 24 (2003), No. 2 217

@ i B u D a ß h

G pi I pu K pa M p

N ti P tu Z ta \ t

] ki _ ku b ka d k

e gi g gu j ga l g

m mi q mu s ma u m

w ni y nu { na } n

§ li © lu « la
 l

~ si ¢ su ¤ sa ¦ s

® ji ° ju ® ja ´ j

¼ ri ¾ ru À ra Â r

µ vi ¹ vu ¹ va » v

Ã qi Å qu Ç qa É q

Ê ngi Ì ngu Î nga Ð ng

Ø lhi Ú lhu Ü lha Þ lh

Ñ nngi Ó nngu Õ nnga × nng

Table 1: The Inuit syllabary and its Latin
transcription.

Also, note that when using the Anglican orthog-
raphy, one places a dot over a symbol to denote
that the vowel of that syllable is “long”; whereas
when using the Catholic orthography, the difference
in vocalic length is indicated by duplicating the
symbol for the vowel which is long.

To assist people who happen to use an ASCII

editor to prepare their documents, we defined a few
commands that can be used to switch languages and
fonts. The command \textinuit assumes that its
argument is a piece of Inuktitut text that is type-
set accordingly. Similarly, the command \inuittext

changes the internal state of Λ and everything from
now on is assumed to be Inuktitut text. The en-
vironment inuit does exactly what the command
\textinuit does. In addition, it is possible to switch
between languages with the \selectlanguage com-
mand. Notice that all these commands implement
the functionality of the corresponding commands
that the LATEX babel package provides. Naturally,
our aim was to provide an “established” interface
and not to re-implement the babel package.

Last but not least, the command \InuitToday

is the Inuktitut version of the \today command.

4 The implementation details

We believe that good software should always have
good documentation. Apart from creating TEX and
METAFONT, Donald E. Knuth created the so-called
literate programming methodology for program de-
velopment. Roughly, this methodology is based on
the observation that when one describes what he
wants his program to do, he can implement it more

easily. This program methodology is an offspring
of the structured programming methodology of the
1960’s. Although nowadays there are many new pro-
gram development methodologies (e.g., generative
programming), we still believe literate programming
is quite adequate for the development of LATEX/Λ
packages. So we decided to implement our package
using the literate programming tools for LATEX (i.e.,
the doc package and the docstrip.tex TEX pro-
gram originally developed by Frank Mittelbach).

Another decision we had to make was which
character set to use. Naturally, since the “default”
character set for Ω is the UCS-2 character set, one
may opt to use this set. However, UCS-2 encoded
files cannot be viewed “out of the box” on most
computer platforms. Practically, this means that one
should stick to good old ASCII even when develop-
ing Λ packages. Of course, many readers will object
to this idea, but for the moment I believe this is the
best option for development of packages for Λ.

Now we proceed with the various implementa-
tion details. In what follows we assume familiarity
with ΩTPs. Readers not familiar with ΩTPs should
consult the Ω documentation (e.g., see [2]).

4.1 The macros

By default, Λ uses the UC font encoding for mono-
spaced fonts. However, it is quite possible that the
user has a Λ format built without the necessary
patch, so we first need to make sure that UC is the
default font encoding for monospaced fonts:

\IfFileExists{ot1uctt.fd}{%

\def\ttdefault{uctt}}{}%

As we noted in the previous section, the oinuit pack-
age offers a number of options. Here we describe how
we implemented this facility. We present the relevant
code for only two options for reasons of brevity:

\DeclareOption{nunavut}{%

\ocp\InInuit=Qinuit2uni

\ocplist\InInuitList=

\addbeforeocplist 1 \InInuit

\nullocplist

}

%

.............................

%

\DeclareOption{ucs2}{%

\ocp\InInuit=id

\ocplist\InInuitList=

\addbeforeocplist 1 \InInuit

\nullocplist

}

%

218 TUGboat, Volume 24 (2003), No. 2

0 1 2 3 4 5 6 7 8 9 a b c d e f

20 SPC ! " # $ % & ' () * + , - . /
30 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
40 @ A B C D E F G H I J K L M N O

50 P Q R S T U V W X Y Z v \ à ˆ

60 ‘ a b c d e f g h i j k l m n o

70 p q r s t u v w x y z { } ˜ DEL

80 @ A B C D E F G H I J K L M N O
90 P Q R S T U V W X Y Z [\] ^ _

a0
NB

SP a b c d e f g h i j k l m n o
b0 q r s t u w x y z { | } ~ ¡
c0 ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬
 ® ¯ ° ±
d0 ² ³ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á
e0 Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ
f0 Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß

Table 2: The Inuit character table that the inuitscii ΩTP implements.

\ExecuteOptions{nunavut}

\ProcessOptions

Each option corresponds to some input encoding.
Thus we declare an ΩCP list that can be pushed on
the ΩCP stack to become the default input method.
Note that since UCS-2 is the default input encoding,
we need to leave the input intact when this option
is used. This is the reason we load the id ΩCP.

Before we proceed with the definition of a num-
ber of commands, we need to input the font encoding
file.

\input litenc.def

The encoding file contains only absolutely necessary
information:

\DeclareFontEncoding{LIT}{}{}

\DeclareFontSubstitution{LIT}{cmr}{m}{n}

\DeclareErrorFont{LIT}{cmr}{m}{n}{10}

In the case of the Λ format being built with
more than one set of hyphenation patterns, we need
a command that can be used to select the hyphen-
ation patterns we wish. We opted to implement a
command that is available with the babel package,
so that users are familiar with its use:

\def\selectlanguage#1{%

\expandafter

\ifx\csname l@#1\endcsname\relax%

\typeout{^^J Error:No hyphenation

patterns for language #1 loaded,}%

\typeout{ default hyphenation

patterns are used.^^J}%

\language=0%

\else\language=\csname l@#1\endcsname%

\fi}

The declaration \inuittext should be used to per-
manently change the font encoding and pop the cor-
responding ΩCP list:

\def\inuittext{%

\fontencoding{LIT}\selectfont%

\def\encodingdefault{LIT}%

\selectlanguage{inuit}%

\pushocplist\InInuitList%

}

Now it is easy to implement a new environment that
has the same functionality. We invite the reader to
try to implement this new environment and to com-
pare his/her implementation with ours.

As we have already explained, the command
\InuitToday prints the current date in the Inuk-
titut language. Here is the code:

\DeclareRobustCommand{\InuitToday}{{%

\fontencoding{LIT}\selectfont%

\number\day\space%

\ifcase\month%

\or ^^^^1528^^^^14c4^^^^140a^^^^1546

\or ^^^^1555^^^^1433^^^^140a^^^^1546

.................................

\fi%

\number\year}}

Note that the Inuktitut letters are typed in using
Ω’s ^^^^hhhh notation, where hhhh are lowercase
hexadecimal digits. With this notation we can spec-
ify the code point of any UCS-2 Unicode character,
analogous to TEX’s ^^hh notation.

TUGboat, Volume 24 (2003), No. 2 219

4.2 The Ω Translation Processes

To provide the functionality described above, we
designed three ΩTPs: inuitscii, Ninuit2uni and
Qinuit2uni. The first of these implements the 8-bit
codepage presented in Table 2, while the other two
allow users to enter Inuktitut text using the Latin
transcription presented in Table 1. The Ninuit2uni
ΩTP produces Inuktitut text that follows the An-
glican orthography, while the Qinuit2uni ΩTP pro-
duces text that follows the Catholic orthography.

Because Ninuit2uni produces a character set
that is a superset of the one Qinuit2uni produces,
we describe only the structure of the first ΩTP. To
begin with, we present the input and output sec-
tions:

input : 1;

output: 2;

Ω reads single byte characters and produces two-
byte characters. The first thing we must handle in
the expressions section is the vowels of the syllabary:

expressions:

‘i’ ‘i’ => @"1404;

‘i’ => @"1403;

‘u’ ‘u’ => @"1406;

‘u’ => @"1405;

‘a’ ‘a’ => @"140B;

‘a’ => @"140A;

‘h’ => @"157C;

Here we see that two consecutive vowels are mapped
to one character, which is actually the dotted version
of the character that the single vowel is mapped to.
Note that if we change the order and try to handle
the short vowel first, it will not be possible to handle
the long vowel. So one must be very careful when
designing ΩTPs.

Now, we will describe how we handle syllables
that start with a particular consonant. If the con-
sonant is the last character of the input stream, we
simply push its Unicode equivalent to the output
stream. If the consonant is not followed by one of
the vowels, then we push the character that immedi-
ately follows the consonant back to the input stream
and push the corresponding Unicode character to
the output stream. Finally, depending on the vowel
(or vowels) that follow the consonant, we push to
the output stream the Unicode character that cor-
responds to this syllable. Here we show only the case
for the consonant p:

‘p’ end: => @"1449;

‘p’ ^(‘i’|‘a’|‘u’) => @"1449 <= \2;

‘p’ ‘i’ ‘i’ => @"1432;

‘p’ ‘i’ => @"1431;

‘p’ ‘a’ ‘a’ => @"1439;

‘p’ ‘a’ => @"1438;

‘p’ ‘u’ ‘u’ => @"1434;

‘p’ ‘u’ => @"1433;

The other consonants are treated the same way.
The inuitscii ΩTP is programmed in a dif-

ferent way. Here we are dealing with an 8-bit code
page (namely ISCII) that is essentially an extended
ASCII character set. This means that the lower part
of the character set will be identical to ASCII and the
upper part will contain the Inuktitut letters. So we
define an array whose elements are the code points
of the Inuktitut characters:

tabInuitSCII[@"81] = {

@"1403, @"1404, @"1405,

@"1432, @"1433, @"1434,

................................

@"1672, @"1673, @"1674,};

Now, we need a way to map the Inuktitut letters to
the corresponding Unicode characters. The mapping
is not difficult:1

@"00-@"7F => \1;

@"80-@"FF => #(tabInuitSCII[\1-@"80]);

. => @"FFFD;

Characters that belong to the lower part of the ISCII

are mapped to themselves. Characters that belong
to the upper part of the ISCII are mapped to a table
entry that is located at c−128 where c is the ordering
number of the Inuktitut letter in the ISCII character
set. Note that the hexadecimal number 80 is equal
to the decimal 128.

4.3 The fonts

The oinuit package uses virtual fonts that are built
around the Computer Modern sans serif font and a
PostScript version of the Nunacom TrueType font
developed by Nortext (http://www.nortext.com),
which is redistributed with permission from Nortext.
We use the Computer Modern sans serif font because
this better matches the Nunacom font we use.

Here we present only the general structure of
the Ω virtual property list files that we had to create
to allow users to enter UCS-2 encoded text directly.
In the beginning of each ΩVP file, we have the iden-
tification part and the assigment of the various font
dimensions:

(FAMILY OINUIT)

(CODINGSCHEME Unicode Inuit)

(DESIGNSIZE R 10.0)

(FONTDIMEN

(SLANT R 0.0)

1 After all, in computer science arrays sometimes are

treated as functions or, more generally, as mappings.

220 TUGboat, Volume 24 (2003), No. 2

(SPACE R 0.5)

(STRETCH R 0.3)

(SHRINK R 0.1)

(XHEIGHT R 0.583)

(QUAD R 1.0)

)

Each virtual font includes the ASCII characters and
the characters used in Inuktitut. So the font dimen-
sions are really “average” font dimensions. The two
different fonts are introduced with MAPFONT defini-
tions:

(MAPFONT D 0

(FONTNAME Inuit)

(FONTDSIZE R 10.0)

)

(MAPFONT D 1

(FONTNAME cmss10)

(FONTDSIZE R 10.0)

)

Although character entries are quite standard, we
present just one so that readers can see what has to
be done.

(CHARACTER H 0021

(CHARWD R 0.256)

(CHARHT R 0.689)

(CHARDP R 0.004)

(MAP

(SELECTFONT D 0)

(SETCHAR O 41)

)

)

It is important to note that we had to create the
font cmssbxo10 in order to have the matching Com-
puter Modern sans serif bold oblique font for the
corresponding Nunacom font.

4.4 Hyphenation patterns

Hyphnenating Inuktitut documents written in syl-
labics is fairly easy because there are no hyphenation
rules! However, breakpoints cannot appear before
any final consonant (or diacritic signs), except for
bigger symbols — such as the symbols for ng or q —
which include a final consonant within the symbol
itself.

By default, all these Inuktitut letters have cat-
code “other”, so we set it to “letter”. In addition, we
set the lowercase codes and the uppercase codes of
each symbol. Since there are no uppercase or lower-
case letters, we define that the uppercase/lowercase
of a symbol is the symbol itself. Here is an example
declaration:

\catcode‘^^^^1403=11

\lccode‘^^^^1403=‘^^^^1403

\uccode‘^^^^1403=‘^^^^1403

The fact that we can break a word at any point
can be expressed as follows: Given a letter c , the
pattern c 1 means that it is possible to break a word
just after this letter. In addition, the exception is
expressed as follows: Given a letter c , the pattern
2c prohibits hyphenation before the letter c . Here
is an “excerpt” from the patterns declarations:

\patterns{%

^^^^14031 ^^^^14041

............................

2^^^^1449. 2^^^^1466.

}

5 Conclusions and future work

We have presented our views regarding package de-
velopment for Λ, and along these lines we presented
the design principles of a particular package. We be-
lieve that our work can be used as a starting point
for development of a set of widely-accepted princi-
ples for the development of Λ packages. This would
be particularly useful in the framework of the LATEX3
project. At any rate, we plan to use our experience
to implement a number of other packages that will
provide the TEX community with new typesetting
capabilities.

6 Acknowledgments

I would like to thank Andrea Tomkins for giving
me the right to redistribute the Nunacom font. I
also thank Luis-Jacques Dorais, who explained to
me the hyphenation rules of the Inuktitut language,
and Dimitrios Filippou, who clarified the secrets of
transforming these rules into hyphenation patterns
suitable for use with TEX/Ω. Finally, thanks to the
TUGboat reviewers Steve Peter and Karl Berry for
clarifying the linguistics section and offering other
general suggestions.

References

[1] Kenn Harper. Writing in Inuktitut: An Histor-
ical Perspective. Available from http://www.

nlc-bnc.ca/nord/h16-7301-e.html, Septem-
ber 1983.

[2] Apostolos Syropoulos, Antonis Tsolomitis, and
Nick Sofroniou. Digital Typography Using LATEX.
Springer-Verlag, New York, N.Y., USA, 2003.

⋄ Apostolos Syropoulos

366, 28th October Str.

GR-671 00 Xanthi, Greece

apostolo@ocean1.ee.duth.gr

TUGboat, Volume 24 (2003), No. 2 221

LATEX News
Issue 14, June 2001

Future releases

We are currently exploring how to best support the very
large community of individuals, organisations and
enterprises that depend on the robustness and
availability of the current standard LATEX distribution.
The results of this may lead to some changes in the
regular release schedule and the handling of bug reports
during the next year.

New release of Babel (required)

Earlier this year a new release of Babel (3.7) became
available. You can read about its new features in
http://www.ctan.org/tex-archive/macros/

latex/required/babel/announce.txt

One of the bugs that got fixed in this release deals
with how labels are handled by LATEX. Because this
part of the kernel is modified by babel, the relevant
changes need to be coordinated. Therefore to use Babel

with this release of LATEX you will need to update your
version of babel to at least 3.7.

New input encoding latin9

The package inputenc has, thanks to Karsten Tinnefeld,
been extended to cover the latin9 input encoding. The
ISO-Latin 9 encoding is a useful modern replacement for
ISO-Latin 1 that contains a few characters needed for
French and Finnish. Of wider interest, it also contains
the euro currency sign; this could be the killer argument
for many 8-bit texts to use Latin-9 in the future.

According to a Linux manpage, ISO Latin-9 supports
Albanian, Basque, Breton, Catalan, Danish, Dutch,
English, Estonian, Faroese, Finnish, French, Frisian,
Galician, German, Greenlandic, Icelandic, Irish Gaelic,
Italian, Latin, Luxemburgish, Norwegian, Portuguese,
Rhaeto-Romanic, Scottish Gaelic, Spanish and Swedish.
The characters added in latin9 are (in LATEX notation):
\texteuro \v S \v s \v Z \v z \OE \oe \" Y

They displace the following characters from latin1:
\textcurrency \textbrokenbar \"{} \’{} \c{}

\textonequarter \textonehalf \textthreequarters

New tools

The new package trace provides many commands to
control LATEX’s tracing and debugging output, including
the excellent new information available with ε-TEX such
as the extremely useful tracing of local assignments.
You will find it in the tools distribution.

It offers the command \traceon, which is similar to
\tracingall but suppresses uninteresting stuff such as
font loading by NFSS (which can go on for pages if you
are unlucky). It also offers \traceoff to . . . guess
what! Full details are in the documented source file,
trace.dtx.

In the base ifthen package we have added the
uppercase synonyms \NOT \AND and \OR.

New experimental code

In LATEX News 12 we announced some ongoing work
towards a ‘Designer Interface for LATEX’ and we
presented some early results thereof. Since then, at
Gutenberg 2000 in Toulouse and TUG 2000 in Oxford,
we described a new output routine and an improved
method of handling vertical mode material between
paragraphs. In combination these support higher
quality automated

1 page-breaking and page make-up
for complex pages—the best yet achieved with TEX!

More recently we have added material to handle the
complex front matter requirements of journal articles;
this was presented at Gutenberg 2001 in Metz.

A paper describing the new output routine is at
http://www.latex-project.org/papers/xo-pfloat.pdf

All code examples and documentation are available at
http://www.latex-project.org/code/experimental

This directory has been extended to contain the
following.

galley Prototype implementation of the interface
for manipulating vertical material in galleys.

xinitials Prototype implementation of the interface
for paragraph initials (needs the galley package).

xtheorem Contributed example using the template

package to provide a designer interface for theorem
environments.

xor A prototype implementation of the new output
routine as described in the xo-pfloat.pdf paper.

xfrontm A prototype version of the new font matter
interface.

1The stress here is on automated!

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2001, all rights reserved.

222 TUGboat, Volume 24 (2003), No. 2

LATEX News
Issue 15, December 2003

Anniversary release

Yes, it’s now 10 years since the first release in this series
and, for Knuthists, this release also contains Issue 16 !

Meanwhile this Issue 15 describes the major new
features in the current release whilst Issue 16 looks
a little way into the future of LATEX.

LPPL – new version

Most importantly, there is now a new version, 1.3, of
the LATEX Project Public Licence. Many of you will
be thrilled to know that, following the exchange of over
1600 e-mail messages dissecting various aspects of its
philosophy such as ‘how many angels can appear in the
name of a file before it becomes non-free’, this version
is now officially a DFSG (Debian Free Software
Guidelines) approved license. The discussions start at
http://lists.debian.org/debian-legal/2002/

debian-legal-200207/threads.html with high
traffic throughout August to October 2002
and further heated discussions starting in
April 2003 and concluding around June at
http://lists.debian.org/debian-legal/2003/

debian-legal-200306/msg00206.html.

The important features of the new version are useful
clarifications in the wording, and revised procedures
for making a change to the Current Maintainer of a
package. Special thanks to all those people from
Debian Legal who worked constructively with us
on this onerous task, especially but not exclusively
Jeff Licquia and Branden Robinson.

Small updates to varioref

The English has been corrected in \reftextbefore (an
incompatible change). There are other extensions such
as \labelformat, \Ref, \Vref and \vpagerefnum.
Some Dutch text has also been changed and two
new options added: slovak and slovene.

New and more robust commands

Many of the math mode commands for compound
symbols have been made robust and a new robust
command has been added: \nobreakdashes. This last
is a low-level command, borrowed from the amsmath

package, for use only before hyphens or dashes. It
prevents the line break that is normally allowed
after the following sequence of dashes.

Fixing font sizes

The new fix-cm package, by Walter Schmidt, changes
the CM font definition (.fd) files so that similar design
sizes are used in both the OT1 and T1 encodings.

Font encodings

A number of options have been added to the textcomp

package, enabling only available glyphs to be used.
Also, the ‘NFSS font families’ are now divided into five
different groups according to the subset of glyphs each
provides from the full collection of symbols in the TS1
encoding. Given sufficient information about a font
family textcomp will use this in order to limit the
typesetting to those glyphs that are available.

Use of this mechanism has also enhanced
\oldstylenums to use the current font if possible.

Displaying font tables

With the nfssfont package you can now specify the font
to display by giving its ‘NFSS classification’, rather
than needing to know its external font file’s name. It is
also now possible to generate large collections of font
tables in batch mode by providing a suitable input file.

New input encodings

The inputenc package has been extended as follows:
macce input encoding (Apple Central European),
thanks to Radek Tryc and Marcin Wolinski; cp1257

for Baltic languages; latin10, thanks to Ionel Ciob̂ıcă.
The euro symbol has by now been added to several
encodings: ansinew, cp1250 and cp1252 (which also
has another addition), whilst cp858 adds it to cp850.

Unicode input

Partial, experimental support for text files that use the
Unicode encoding form UTF-8 is now provided by the
option utf8 for the inputenc package.

The only Unicode text file characters supported by
the current version are those based on the most
common inputs for glyphs from the small collection
of standard LATEX Latin encodings.

And finally . . . pict2e

The old, non-functional version of this package has been
removed as there is now a fully working version from
Hubert Gäßlein and Rolf Niepraschk. It is described in
The LATEX Manual.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2003, all rights reserved.

TUGboat, Volume 24 (2003), No. 2 223

LATEX News
Issue 16, December 2003

Anniversary news

This anniversary Issue 16 takes a brief look into the
future work of the LATEX3 Project Team, both short
and and longer range. Please let us know if you want to
get involved with us in any of this work (see below).

An overview of the 10th Anniversary Release, dated
2003/12/01, is can be found in Issue 15.

TLC2: The LATEX Companion – 2nd edition!

Since you are reading this newsletter, there is a good
chance that you, or a friend, has already bought this
encyclopedic volume: the incomparable Second
Edition of this work that is every LATEXie’s
ultimate lucky charm.

If by some chance you have not yet purchased your
own copy then get into training, get shopping, and get
flexing your muscles (both physical—it’s 1100+ pages,
and intellectual) by using it to discover masses of
invaluable ‘insider information’ about:

• the latest release of Standard LATEX;

• over 200 extension packages;

• plus related software and systems.

For more information on this all new (??. . . OK,
not all, but over 90%!!), all accurate (we hope!)
10th Anniversary Edition, check out
http://www.awprofessional.com/titles/0201362996.

Future maintenance

We are currently exploring how best to support the very
large and rapidly growing community of individuals,
organisations and enterprises that depend on the
robustness and availability of the current standard
LATEX distribution. Although we remain firmly
resolved not to make changes in the base distribution
(the kernel) of Standard LATEX, there is still much that
needs doing to maintain its reliability and utility and to
keep up the necessary level of communication with users
and supporters. Also, as with all advanced software
systems, bugs are still turning up occasionally so some
fixes are still essential.

One major impediment to providing adequate service
levels in this area is, of course, the difficulties inherent
in obtaining the time and commitment of skilled
minds—hence the appeal above to anyone interested in
getting involved.

LPPL certification

There are still some outstanding diplomatic tasks
around the LATEX Project Public Licence: these include
e.g., getting it ‘OSF certified’ and ensuring that it gains
more support and wider use, even in the FSF world
where it has long been tolerated.

Use of ε-TEX/pdfTEX

We expect that within the next two years, releases of
LATEX will change modestly in order to run best under
an extended TEX engine that contains the ε-TEX
primitives, e.g., ε-TEX or pdfTEX. The details of this
possible upgrade need further work so we are not
making a definite announcement yet.

Although the current release does not require ε-TEX
features, we certainly recommend using an extended
TEX, especially if you need to debug macros.

End of ‘autoload’ support

As computer systems generally grow in capacity,
requirements change and so we believe that the autoload

variant of LATEX is no longer required. Thus, although
the code remains it is no longer supported. We hope
this does not cause any problems.

New models, new code

In the period 1999–2001 we published many results of
our work over the previous decade on the development
of new concepts and models for automated typesetting
based on TEX as the underlying platform. These can be
found at http://www.latex-project.org/papers/ and
http://www.latex-project.org/code/experimental/.

Since then a very large proportion of the The Team’s
efforts have been diverted to provide the core author
team for TLC2, which provides over 1000 pages of
carefully researched and tested documentation of many
aspects of the vast world of LATEX related software that
was developed over that same time period and that
continues to grow and improve prodigiously.

Completion of that task . . . until TLC3!! . . . presents
the possibility of getting back to this more exciting
development work, or even to more radical work on
non-TEX-based models and implementations.

Of course, any such ideas are predicated on our
ability to organise (with you, we hope) an efficient
but responsive maintenance and support system
for Standard LATEX.

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2003, all rights reserved.

224 TUGboat, Volume 24 (2003), No. 2

Macros

ednotes — critical edition typesetting with
LATEX

Uwe Lück

1 Overview

1.1 Introduction

For typesetting critical text editions in the tradi-
tional manner, using TEX, there are currently three
packages available from CTAN: EDMAC, LEDMAC

and our ednotes. We list virtues and shortcomings
of these three solutions and explain the features and
usage of ednotes.

To be sure, there is a fourth package poemscol,
available from the CTAN directory macros/latex/

contrib/poemscol, written by John Burt, espe-
cially for critical editions of collections of poems
(Burt, 2001). We do not include this package in
our comparison —we have not studied it.

We are reporting on version 3.17 of edmac.doc,
version 0.51 of ledmac.dtx, and version 1.0 of our
ednotes.sty. (We will also report on other files, with-
out listing all their version specifications.)

1.2 Summary of comparisons

Essentially, only either EDMAC or LEDMAC on one
side has to be compared with ednotes as the “oppo-
nent” on the other side. (We support this claim at
the beginning of section 2.3 and undermine it at the
same section’s end.)

We list a number of tasks that a package for
critical editions should accomplish. Some of these
tasks are only accomplished by EDMAC and LED-

MAC and not by ednotes. On the other hand, as to
some solutions that all three packages accomplish
the ednotes solution might be considered superior
(with respect to the user interface). There even are
a few little things which ednotes can do and EDMAC

and LEDMAC (at present) cannot.

1.3 Sketch of ednotes features

ednotes provides, firstly, a command \Anote such
that the input

〈lcode〉\Anote{〈lemma〉}{〈note〉}〈rcode〉

yields the following output:

• in the main text (of the page or column at which
TEX is currently working), printed output is the
same as resulting from 〈lcode〉〈lemma〉〈rcode〉.

• 〈note〉 is printed in the uppermost of all foot-
note “layers” (of which there may be up to five)

of the same page. 〈note〉 is there preceded with
the number(s) of the main text line(s) in which
〈lemma〉 appears, with a repetition of (a variant
of) 〈lemma〉, and with some separating stuff—
see the input in figure 2 for the sample output
in figure 1. At the user’s choice, some of the
line numbers mentioned appear in the margin
of the main text.

1 There is nothing special to note in the first

2 line, neither in the second one.

1 first] upper 2 second] lower

Figure 1: Output of critical edition sample

\begin{linenumbers}

There is nothing special to note in

the \Anote{first}{upper} line, neither

in the \Anote{second}{lower} one.

\end{linenumbers}

Figure 2: Source for critical edition sample

By calling the package with extra options, you can
create commands \Bnote etc. as well as new foot-
note layers, and you can choose their style (one com-
mon block on each page vs. single blocks —see (T4)
below). 〈lemma〉 may have shapes like

〈start lem〉\<〈inner lem〉\>〈end lem〉

to indicate what short version of 〈lemma〉 is to pre-
cede the note. There are many facilities to customize
appearance of notes. Commands

\Anotelabel{〈label〉}, . . .

plus

\donote{〈label〉}{〈note〉}

vary \Anote so that lemmas may overlap. Further
facilities allow use of the former commands even in
some LATEX tabular environments.

2 Task(s) and “rival” solutions

2.1 The task(s) of critical edition
typesetting

Critical editions are needed in historical text-based
work in the arts or sciences when the goal is finding
a “definitive” version of a handwritten manuscript
or of text that has been edited (in print or in copying
by hand) several times. (For this and the following,
cf. the exposition of the task in (Burt, 2001), whose
author is obviously better informed on the subject
than U. L.)

TUGboat, Volume 24 (2003), No. 2 225

In a critical edition, the “true” text is printed
as the main body of a page, and variant readings, re-
marks, and the like are printed at the bottom of the
page. The traditional style of critical editions has
the following features, which are thus also the tasks
that the packages we discuss here have to handle.

To summarize the main feature in advance:
variant readings, remarks and the like (let us call
these things ‘notes’) do not appear as standard
footnotes, as, e.g., LATEX provides them through
\footnote. There are no footnote marks for in-
dicating which note comments which passage of the
main text. Rather (and here come the single partial
tasks):

(T1) (Marginal line numbers) Consecutive num-
bers of the lines of the edited text are printed
in the margin.

(T2) (Keying) To which passage of the main text a
note refers is indicated by preceding the note
with the line number and a (partial) repetition
of that passage (which scholars call ‘lemma’ and
which often is just a single word).

(T3) (Multiple notes series) Typically, there are
at least two separate kinds of notes— such as
variant readings, text-critical notes, and testi-
monia— which use different layers at the bot-
tom of each page.

(T4) (Formatting notes compactly) Notes of cer-
tain typical kinds are so short that much space
would be wasted if each note was printed on
its own line(s) (as would happen with a LATEX
\footnote). Rather, all the notes of a page be-
longing to one kind (“layer”, “series”) are ar-
ranged in (a) a single paragraph (block for-
matting) or even in (b) one layer of two or
three columns (columnar formatting).

The above tasks are “musts”; a package not
accomplishing them would be of no practical utility
for critical editions. There are other goals which
some authors would like or even urgently need, but
which other authors do not require. Such are:

(X1) (Cross-references to lines) Neither PLAIN

TEX nor LATEX provide a mechanism for cross-
referring to the line number(s) of a certain pas-
sage. This might be needed especially for com-
mentary paragraphs between edited texts (e.g.,
if they are letters and need a long exhibition of
background). Indeed, such a mechanism could
be used for accomplishing task (T2).

(X2) (Line numbering switches) Depending on
how long edited texts are and whether you need
main text commentary surrounding them, it
must be possible to switch numbering of lines

on and off, or to restart numbering. Moreover,
authors should be able to choose whether line
numbers appear on the left or on the right side
of the main text. It might also be desirable
to choose whether all line numbers or whether,
e.g., only every fifth linenumber is printed in
the margin.

(X3) Editing plays often requires treatment of “sub-
lines” and their numbering. As well, additional
features for editing poetry are valuable.

(X4) (Columnar notes formatting) We repeat the
problem (b) of arranging notes in columns at
the bottom of the page from task (T4), since
when when block formatting (T4) (a) notes,
there is no longer a vital need for (b).

(X5) While footnotes may be appropriate for some
kinds of notes, endnotes might be more ap-
propriate in other cases.

(X6) (Lemma abbreviations) When the lemma is
rather long, it should be displayed partially only
preceding the note at the bottom of the page.

(X7) (a) Nested or even (b) overlapping lemmas
may sometimes be needed.

(X8) (Count word occurrences) The “referring”
feature (T2) is ambiguous if the lemma word
occurs more than once in the given line. Tradi-
tionally this problem has been handled with an
index n in the repetition of the lemma word pre-
ceding the note when the note refers to the n

th

occurrence of the word in the line. Doing this
manually is quite tedious, and so TEX macros
to automate this job are often asked for.

(X9) Publishers like “crop marks” on camera-ready
copies.

(X10) (Lemmas in bad places) Some features seem-
ing very natural to TEX-laymen turn out to
somewhat “resist” implementation (essentially
due to some weaknesses of the TEX program).
One example is the case of (a) lemmas inside
math expressions— especially in (equation)
displays; another is (b) lemmas in tables.

2.2 History (and availability) of “rivals”:
EDMAC, LEDMAC, ednotes

Starting in 1987, John Lavagnino and Dominik Wu-
jastyk wrote TEX macros for critical editions, orig-
inally of plays. This work terminated in 1996 with
version 3.17 of the EDMAC package. Many re-
searchers have, for their professional publications,
used these macros by now, even for Arab and San-
skrit editions. Its manual and documentation are
available as a beautiful book (Lavagnino and Wu-
jastyk, 1996) from TUG; it also tells more about the

226 TUGboat, Volume 24 (2003), No. 2

history and usage of EDMAC. An overview appeared
in (Lavagnino and Wujastyk, 1990). An EDMAC

software distribution is freely available from CTAN,
in macros/plain/contrib/edmac. And finally, Do-
minik Wujastyk maintains a beautiful home page for
EDMAC at

http://www.ucl.ac.uk/∼ucgadkw/edmac/

from which also some of the packages mentioned
here can be downloaded. This web page also re-
ports on alternatives to EDMAC for critical edition
typesetting.

So all seemed to be happy. However, . . .
When John and Dominik started their EDMAC

project, Leslie Lamport’s LATEX format for TEX
already had been born and was spreading widely
among TEX users. By contrast, EDMAC had been
written for the PLAIN TEX format, as described in
Donald Knuth’s TEXbook (Knuth, 1996). EDMAC is
essentially incompatible with LATEX (cf. section 2.3
below). It seems that nowadays most TEX users
work with the LATEX format, while PLAIN TEX is
only used by a few exotics for, say, the history of
science or music. The historians were tied to PLAIN

TEX because they could not live without EDMAC.
In late 2002, Christian Tapp hired U. L. for

a research project at the Chair for History of Sci-
ence at the University of Munich. Christian ex-
pressed his sorrow that he needed TEX macros
for his critical editions in the project, while be-
ing very adverse to ‘learning PLAIN TEX’ beyond
LATEX just to be able to use EDMAC. Uwe ex-
pressed his joy in writing TEX macros. Christian
knew from many of his colleagues at the chair that
they found it a nuisance that there was nothing re-
sembling EDMAC that, at the same time, was com-
patible with LATEX. This was the birth of our ed-

notes, which is now available from CTAN in direc-
tory macros/latex/contrib/ednotes. (Christian
devised functions, and U. L. typed the definitions.)
So it seemed that from many’s lamenting and Uwe’s
joy with TEX macros (and knowledge of some LATEX
internals) much more happiness emerged than there
had been before in the EDMAC era. However, . . .

One item of bad news is that one of the most se-
vere bugs was fixed only in January 2004; until then
we did not really dare to claim that the package
worked. (However, we could help some test users
with the problems they had with ednotes.) And
more testing may be needed to see whether this sit-
uation has essentially improved. (However, at least
Christian indeed worked with ednotes, using some
awkward tricks to circumvent the bugs, or, at times,
just enduring the bugs.)

Another bad news is that there are still some
things that EDMAC can do and ednotes cannot, see
section 2.3. And there are still things which no
known package does as intended, see section 2.4.

Even the start was quite bad: Uwe saw that
doing something like EDMAC in LATEX needed a lot
of knowledge of TEX and LATEX internals and a
lot of work. We were near to giving up. At this
point, Christian luckily found two packages each of
which relieved almost half of our burden. Stephan
Böttcher’s lineno.sty does all the work concerning
line numbering —tasks (T1), (X1), and (X2) from
the above. Alexander Rozhenko’s manyfoot does
all the work concerning multiple series of footnotes,
some of which may be block formatted — tasks (T3)
and (T4) (a). We only needed to add a user inter-
face that would pass the author’s wishes to the two
packages in a nice way. Indeed, we did not try to
emulate EDMAC, but thought of an even somewhat
smarter user interface than EDMAC’s—concerning
overlapping lemmas (X7) (b), for example.

Finally, an issue arose when Peter Wilson came
forward in March 2003 with apologies for not having
known about our project (which, by then, had been
announced on the EDMAC home page) and for devel-
oping a(n almost entirely) faithful copy of EDMAC

for use with LATEX. He called it ‘LEDMAC’; it has
been freely available from CTAN, macros/latex/

contrib/ledmac, since a few days later.
The latter problem consisted in Peter, Chris-

tian and Uwe being afraid that all their work on
TEX macros for critical editions had been in vain.
At this point (re-)appeared Dominik Wujastyk on
the scene, bringing peace by encouraging all of us,
saying that it would be good if users had a choice.
Indeed, LEDMAC and ednotes have different user in-
terfaces and are implemented through quite differ-
ent mechanisms.— Since then, all have seemed to be
relatively happy. (Don’t forget the bugs we had for
such a long time.)

2.3 When to use which package

In this subsection we list virtues and shortcomings of
the three solutions introduced above, hoping to give
useful advice for readers pondering the question of
which solution they should adopt. (Originally, Do-
minik Wujastyk suggested that it would be nice if
such a comparison were offered in the documenta-
tion of both LEDMAC and ednotes.)

EDMAC incompatible with LATEX? Through-
out this paper the reader will find claims that ED-

MAC is not compatible with LATEX. However, these
claims are somewhat inspired by The TEXbook’s

TUGboat, Volume 24 (2003), No. 2 227

(Knuth, 1996, p. vii) didactic method of temporary
lying. At this point we try to stay closer to the
whole truth.

(1) The EDMAC bundle (i.e., the content of
the CTAN folder . . . /edmac) actually provides a
LATEX package edmacfss.sty for loading EDMAC un-
der LATEX. However, the purpose of this is primar-
ily to provide LATEX2ε’s (Frank Mittelbach’s and
Rainer Schöpf’s) New Font Selection Scheme (NFSS)
for use with EDMAC. So you run LATEX on some doc-
ument file which contains the command

\usepackage{edmacfss}

and use EDMAC commands in the document body.
A considerable portion of LATEX beyond NFSS will
then at the same time work — but another consid-
erable portion will not. First of all, edmacfss.sty re-
inaugurates the PLAIN TEX meaning of \end— so
none of LATEX’s “environments” are available. An-
other large portion is everything concerning floats
(including \marginpars) and page layout —since
EDMAC overwrites LATEX’s \output routine.

(2) One might just load edmac.doc (or a
docstripped version of it) to use EDMAC under LATEX.
This would at least preserve the LATEX meaning of
\end and thus LATEX environments. But the other
compatibility problems named in (1) above will re-
main.

To conclude: You may try using EDMAC with
format LATEX. You may luckily succeed, using only
a certain portion of LATEX. Drawing exactly the line
between the portions of LATEX compatible with ED-

MAC and the portions incompatible might be help-
ful, but we don’t try here; and for the sake of sim-
plicity we will go on to claim that EDMAC is incom-
patible with LATEX.— A variation of this theme is
the content of ed-nfss.txt which comes along with
EDMAC (in CTAN folder . . . /edmac as well as on the
EDMAC home page).

PLAIN TEX or LATEX? We assume throughout
(relying on Peter Wilson’s information) that LED-

MAC is (as intended) a faithful copy (port) of ED-

MAC into LATEX. This means that, except for a few
command names, the functionality and user inter-
face of EDMAC and LEDMAC are the same. (We will
report below that LEDMAC has become even more
powerful than EDMAC, but this need not bother us
for the next few paragraphs.) For convenience, we
therefore stipulate a hypothetical, imaginary being
called “(L)EDMAC” which is one of EDMAC or LED-

MAC with no definite decision as to which of the two
it is (cf. Schrödinger’s cat).

In the following, we will just compare (L)EDMAC

with ednotes. If the reader sees that she needs ed-

(L)EDMAC ednotes

experience +(+) (+)
documentation ++ (+)
(T1) – (T3) “basics” + +
(T4) “short notes” + (+)

(X1) cross-refer to lines + +
(X2) number switches + +
(X3) sub-lines, poetry +(+) −
(X4) columnar notes + −
(X5) endnotes + −
(X6) lemma substitutes + ++
(X7) (a) nested lemmas + +
(X7) (b) overlapping

lemmas
(+) ++

(X8) count occurrences − (+)
(X9) crop marks (+) (−)
(X10) (a) math mode (+) (+)
(X10) (b) tables + +(+)

Table 1: Performance of (L)EDMAC vs. ednotes

notes, not (L)EDMAC, she is bound to use LATEX, not
PLAIN TEX (ednotes really needs LATEX, there is no
didactical lie at this point). (If the question arises,
‘LATEX’ will mean LATEX2ε rather than LATEX 2.09.
Our goal was compatibility with LATEX2ε, while we
have not investigated which of the macros would
work with LATEX 2.09. Indeed, however, the ver-
sion of LEDMAC that we have scrutinized needs a
very recent version of LATEX2ε.) If she, by contrast,
rather needs (L)EDMAC, it is her personal choice be-
tween EDMAC with PLAIN TEX and LEDMAC with
LATEX.

Comparing ednotes to (L)EDMAC. We first refer
the reader to table 1 for an overview of comparing
ednotes to (L)EDMAC. What the signs (and paren-
theses) mean will be clear (‘+’ for implemented, ‘−’
for not implemented, etc.), and we will soon express
their meanings in ordinary words and in some de-
tail below. Tags (T1) etc. and (X1) etc., of course,
refer to the list of tasks in section 2.1. Concern-
ing the final “score”, the reader will immediately
observe that there is only one minus for (L)EDMAC

while there are several for ednotes, but she should
not overlook that, according to the table, ednotes is
superior to (L)EDMAC in some respects. This, we
hope, compensates for some missing features.

Moreover, this comparison should be consid-
ered a “snapshot” only. To be sure, John Lavagnino
and Dominik Wujastyk seem to have stopped their
work on EDMAC many years ago. By contrast, Peter

228 TUGboat, Volume 24 (2003), No. 2

Wilson has increased LEDMAC’s functionality still
this year and might continue doing so. ednotes’ au-
thors can conceive of removing some minus signs
from their column; however, their capacities and ea-
gerness are limited — but perhaps someone else will
do the jobs!? — Inspired by David Kastrup, we re-
mind the reader here explicitly and unashamedly
that writing/extending TEX macro packages may be
a question of money.

Most of the details of ednotes will be explained
in sections 3 and 4 of the article. Here we attempt
to compare ednotes to (L)EDMAC without giving the
exact specifications of corresponding ednotes and
(L)EDMAC features. So we will promise that some
features of ednotes are superior to their (L)EDMAC

counterpart, while the promises are kept only later.
However, we will partially anticipate the presenta-
tion of the ednotes features so that the reader can
make up her mind already through seeing the com-
parison.

We now simply work ourselves through table 1.

Experience: As told above, at least EDMAC

has been used for many years by scholars for many
professional publications. Experience with EDMAC

transfers to LEDMAC.— By contrast, ednotes is very
young, and we know of very few users. Christian
Tapp uses it, and we know of three other users, us-
ing ednotes for their doctoral dissertations or other
professional work. Other people have received an
ednotes distribution, but we do not know whether
they actually use it.

Documentation: As told above, there is
beautiful documentation of EDMAC, available as a
book. It is a user manual and at the same time doc-
umentation of the implementation. For LEDMAC,
Peter Wilson has turned edmac.doc (which is the
source code of the EDMAC book) into ledmac.dtx,
which is thus a printable user manual and imple-
mentation documentation for LEDMAC at the same
time. —By contrast, only each the ednotes source
files (see a few of them in section 4) carry some user
instructions and little explanation of implementa-
tion, little of which is printable at this point. The
present article will exhibit, as printed, part of the
user instructions and almost no hints on implemen-
tation. Nevertheless, the packages manyfoot and
lineno on which ednotes rests have printable docu-
mentations.

“Basics” (T1) – (T4); (X4): Line number-
ing, keying, multiple layers of footnotes, and com-
pact formatting of notes are provided by both (L)ED-

MAC and ednotes. ednotes, however, offers block
formatting of notes only, not columnar formatting.
Moreover, there is a difference in the user interface

for doing these things which we describe in section 3.
It depends on the kind of work and on person taste
which of the interfaces is nicer.

Cross-referring to lines (X1), line num-
bering switches (X2): (L)EDMAC and ednotes

offer the same features in these respects, only the
command names differ.

(X3) – (X5): sub-lineation, columnar for-
matting notes, endnotes, and editing poetry
are provided by (L)EDMAC, while not by ednotes.
More precisely, poetry is covered by LEDMAC, while
Wayne Sullivan’s EDSTANZA enhances EDMAC for
this purpose.

Lemma tricks (X6) and (X7): Both (L)ED-

MAC and ednotes support nested lemmas. Moreover,
(L)EDMAC offers facilities to change (i) the lemma
tag preceding the note as compared with the whole
lemma in the edited text (\lemma) and (ii) the line
numbers preceding the note (\linenum). These fa-
cilities could be used to handle overlapping lem-
mas (indicating boundary line numbers “manually”,
i.e., the user must know them “in advance”, cf. sec-
tion 2.3 of edmac.doc and section 3.7 below). ednotes

treats abbreviating or replacing lemmas as well as
overlapping lemmas with different user interfaces (to
be described in sections 3.6f.)— less tricky and more
perspicuous, we hope.

(X8)— Counting word occurrences in a
line automatically is not enabled by (L)EDMAC

at all, while ednotes provides a halfway solution, to
be described in section 3.10, where TEX and the user
“share” the job.

Crop marks (X9) are available in both al-
ternatives. EDMAC provides them with its own
macros. Under LATEX, crop marks are avail-
able from, e.g., crop.sty (generated from crop.dtx

and crop.ins), the latter available for download at
CTAN path macros/latex/contrib/crop— search
for similar packages on CTAN with the term ‘crop’.
In this respect crop marks are available with LED-

MAC and ednotes in the same way. (It is difficult to
express this situation in the table entries for (X9)
properly.)

Difficult positions (X10) —math mode,
tables: ednotes offers devices for lemmas in LATEX
tables (like tabular and and longtable). Very re-
cently, moreover, we found modifications that es-
sentially overcome the math mode problem (see the
mathnotes option described in the package for de-
tails).— EDMAC has been augmented by a package
tabmac.tex, maintained by Herbert Breger and Nora
Gädecke and available from CTAN path macros/

plain/contrib/edmac. This package offers some
facilities for building tables and critical editing of

TUGboat, Volume 24 (2003), No. 2 229

them using EDMAC. tabmac offers some devices
which do not even exist in LATEX. It even can be used
to edit displayed equations (or other math lines).—
Peter Wilson has incorporated tabmac into his LED-

MAC, with English command names instead of the
German ones from tabmac. At present, however,
there is only a German user manual (tabm11dc.dvi)
for the original German version of tabmac. There is
no user manual for its English LEDMAC version.—
(L)EDMAC has offered two further devices (“line
number substitutes”, “lemma substitutes”) which
could be used to cope with math text.

Further differences concerning items not
listed in table 1:

(L)EDMAC and ednotes differ in implementation,
viz., use of auxiliary files. However, this seems not
to have any practical effects nowadays. On very
old machines, (L)EDMAC might be slower than ed-

notes, while ednotes might cause memory overflow
with small TEX versions and many notes.

Meanwhile, LEDMAC — having originally been
a LATEX port of EDMAC — has grown in function-
ality beyond EDMAC. We have already reported
the tabmac functionality incorporated in LEDMAC.
Among other features that LEDMAC adds to ED-

MAC’s functionality are: (i) indexing by line as well
as by page; (ii) the functionality of Wayne Sulli-
van’s EDSTANZA for editing a certain kind of verse;
(iii) a minipage-like environment —even breaking
across pages— so that notes appear immediately at
its end (instead of at the bottom of the page), which
is useful for collections of short edited pieces (letters,
e.g.); (iv) “sidenotes” (however, since \marginpar

works with ednotes, it would not be too difficult to
add sidenotes as well); (v) “familiar” numbered foot-
notes (which exist under ednotes due to the under-
lying manyfoot package).

On the other hand, Alexander Rozhenko’s
manyfoot (which ednotes loads) supports different
styles of footnote rules, depending on which layers
of notes they separate from each other.

2.4 Tasks not accomplished by any package

This may be the right place to point out some short-
comings that all the packages have in common.

• If tables contain entries consisting of whole
multi-line paragraphs of running text, tricks
like the above-mentioned may help in some situ-
ations, but there is no user-friendly way to refer
to single lines of such paragraphs. Usually ta-
ble rows are numbered, not these “sub-lines”.
More precisely:

(i) We are sure concerning ednotes. The
usual way in LATEX of producing such paragraph

entries is using p{〈dimen〉} in the table pream-
ble, which works like \parboxes as table en-
tries. The entries in the corresponding column
are then single boxes. From ednotes’ view, such
a box is just a part of a line, ednotes cannot
“see” the “sub-lines”. The lineno package which
is loaded by ednotes (see next section) offers a
trick for numbering these “internal” lines and
another trick for referring to them, but this is
not nice. More generally (perhaps there is some
alternative to these \parboxes?) such a para-
graph entry must first be typeset in a vertical
box. In order for each line of this paragraph to
be viewed as a part of a line that ednotes can
recognize, it would be necessary for the lines of
the paragraph to be unpacked from the vertical
box and somehow rearranged. ((L)EDMAC and
parallel.sty do something like this, but it does
not help for ednotes.) There just are no macros
for doing this.

(ii) We do not know definitively for (L)ED-

MAC, and we could not obtain a definite answer
from its experts. However, we are convinced
that it does not fare better. The situation of
first typesetting the entry in a vertical box etc.
is essentially the same, and when we scan the
commands that EDMAC, tabmac, and LEDMAC

offer, we are unable to find one which could do
the unpacking and rearranging. With EDMAC

and tabmac, there is not even a macro resem-
bling LATEX’s \parbox.

• The packages are not compatible with the
parallel package which would help for display-
ing translations.

• None of the packages can handle footnotes in
the text to be edited.

Solving these problems would require mechanisms
that differ drastically from the present ones (cf. re-
marks in ledmac.dtx concerning parallel— “a very
different implementation for the functionality of
parallel seems to be necessary so that line number-
ing is possible”). Something similar holds for the
ensuing problem:

• All the devices for block formatting notes in all
the packages (all deriving from The TEXbook)
share the following problem: TEX decides on
page breaking considering the heights of the
footnotes. All the former macros estimate the
height of the final block from the horizontal
lengths of notes. So, e.g., there may be four
footnote blocks, and the macros tell TEX that
each is 2.25 \baselineskips high (because in
a very wide box, the notes form a line of two

230 TUGboat, Volume 24 (2003), No. 2

and a quarter \columnwidths). So TEX re-
serves 4 times 2.25 \baselineskips of verti-
cal space for all the notes on the page, i.e., 9
\baselineskips. In reality, however, if a note
block does not fit into two lines, it needs three
of them. So actually the four note blocks need
12 \baselineskips. This discrepancy of 9 vs.
12 \baselineskips may let the notes hang too
deeply on the page or even let them overlap
with the main text.

Therefore John Lavagnino (co-author of ED-

MAC) suggested (January 2003) a mechanism
very different from these common ones to us—
typeset the whole note block for measuring at
each note insertion.

David Kastrup suggested that this approach
is hopeless and informs us that rather the
bigfoot package on which he is presently work-
ing solves the problem (a report on David Kas-
trup’s work on critical editions is (Kastrup,
2004)). bigfoot is, in the long run, intended
to be a replacement for manyfoot, overcoming
the latter’s shortcomings; however, replacing
manyfoot by bigfoot in ednotes does not work
at present.

Recently both LEDMAC (\footfudgefiddle)
and manyfoot (\ExtraParaSkip, and thus ed-

notes) have been enhanced by interim remedies
for this problem. (Let us remark again that
a proper solution as indicated may depend on
money!)

Finally, as remarked above:

• Task (X8), that of counting word occurrences,
has no fully automated solution.

3 How to use ednotes

We now turn from comparisons between EDMAC,
LEDMAC, and ednotes to a more detailed descrip-
tion of ednotes. The present section describes the
commands that ednotes (or sometimes lineno) offers.

3.1 Line numbering

The edited text whose lines are to be numbered and
to which notes are to refer must be preceded by
\linenumbers or must be enclosed in

\begin{linenumbers}

. . .
\end{linenumbers}

(see figures 2 and 1 again for an example). These
and other commands for task (X2) are provided by
Stephan Böttcher’s lineno.sty, to whose source doc-
umentation (lineno.tex) we hereby refer. The user
manual (ulineno.tex) is not quite up-to-date, but the

instructions in the comment lines of lineno.sty are
easily understandable—see especially the list below
\endinput.

There is a bunch of package options for lineno.

sty. You can call them as options for ednotes.sty —
while their effects are explained in the documenta-
tion of lineno.sty. E.g., if you want the modulo fea-
ture of lineno (for printing in the margin only the line
numbers which are divisible by 5), include modulo

in the ednotes package options, as in

\usepackage[modulo,. . .]{ednotes}

You may also find the

\linelabel and \lineref

commands from lineno useful to refer to lines of the
edited text without using the procedure for notes
that ednotes provides. Even

\pageref{〈label〉}

works with \linelabel{〈label〉}.
In recent versions, lineno provides a command

\firstlinenumber

by which you can determine which line gets the first
visible number attached to it. E.g., if you want to
number lines 1, 3, 5, etc., type

\modulolinenumbers[2]

\firstlinenumber{1}

Without the last command, line numbers 2, 4, 6,
etc. would be printed.

3.2 Footnotes

ednotes provides (at your choice) up to five kinds
(“layers”) of notes. It is your choice which of the five
are installed and which of the two available formats
of footnotes they will have. ednotes.sty has package
options Apara (which is the default option), Aplain,
Bpara, Bplain, . . . , Epara, Eplain. Whenever you
choose the ‘para’ version, the corresponding “layer”
will be block formatted. If you choose ‘plain’ instead
of ‘para’, notes of that layer will be formatted just
as it would happen ordinarily in LATEX, every note
starting an own line.

Moreover, if you choose the “block formatting”
style for one of your footnote layers, you can addi-
tionally choose whether each block of notes should
start with an indent or not. You don’t have to do
anything if you want the indent; to omit the indent,
include para* as a package option:

\usepackage[para*,. . .]{ednotes}

ednotes passes package options and commands
for inserting notes to the underlying manyfoot pack-
age. In general, you need not know anything about
the commands that the latter package provides.

TUGboat, Volume 24 (2003), No. 2 231

However, Alexander Rozhenko has (kindly on Chris-
tian Tapp’s request) extended his manyfoot with
customizing features so you can specify the existence
and style of rules between certain footnote layers—
if you know how ednotes and manyfoot work to-
gether. A documentation file manyfoot.dtx for many-

foot is available from CTAN.

3.3 Keying notes to lemmas — basics

We now turn to the basic features of ednotes.
Recall from section 1.3 that ednotes provides a

command \Anote such that

\Anote{〈lemma〉}{〈note〉}

keys 〈note〉 to the occurence of 〈lemma〉 at the place
of that \Anote in main text. The package options
Aplain, Bpara, . . . , Eplain mentioned in section 3.2
above make the analogous commands \Bnote, . . . ,
\Enote available. E.g., options Bpara and Bplain

make \Bnote available, and

\Bnote{〈lemma〉}{〈note〉}

will send 〈note〉 into the footnote layer below that
of \Anote. Anything we say about \Anote holds for
the analogous commands obtained by these package
options.

We use this occasion to emphasize that— as so
often — at least two, and usually three, TEX runs
are required to get the line number references right.

3.4 Nesting lemmas

In, e.g.,

\Anote{〈lemma1 〉}{〈note1 〉}

〈lemma1 〉 may contain a nested note at the same or
different level, e.g.,

\Bnote{〈lemma2 〉}{〈note2 〉}

— cf. figures 3 and 4 (where \Anote is used instead
of \Bnote). ((L)EDMAC works similarly.— Here and
in future examples we omit linenumbers which
must appear somewhere according to sections 1.3
and 3.1.)

The same lemma may be used for notes of dif-
ferent kinds, e.g., in

\Anote{\Bnote{〈lem〉}{〈nB〉}}{〈nA〉}

\Anote{See \Anote{the}{inner}

sample}{outer}.

Figure 3: Code for nesting sample

3.5 Another comparison with (L)EDMAC

The previous example situations offer an occasion
for one comparison —to which we alluded earlier —

1 See the sample.

1 See the sample] outer 1 the] inner

Figure 4: Output of nesting sample

of the user interfaces of (L)EDMAC vs. ednotes. (We
choose LEDMAC for examples, EDMAC would just use
a slightly different syntax.)

(i) \Anote{〈lem〉}{〈note〉} of ednotes has the
same effect as

\edtext{〈lem〉}{\Afootnote{〈note〉}}

has under LEDMAC.
(ii) \Anote{\Bnote{〈lem〉}{〈nB〉}}{〈nA〉} in

ednotes has the same effect as

\edtext{〈lem〉}%
{\Afootnote{〈nA〉}\Bfootnote{〈nB〉}}

with LEDMAC.
What do these examples teach us?

• ednotes needs typing of one command name less
than (L)EDMAC. However, this can be changed
by some simple definitions under (L)EDMAC.
With LEDMAC, e.g.:

\newcommand*{\Anote}[2]{%

\edtext{#1}{\Afootnote{#2}}}

— so you get the ednotes syntax with (L)ED-

MAC.

• On the other hand, (L)EDMAC syntax looks bet-
ter adapted than ednotes’ when notes of more
than one kind refer to the same lemma.

So the basic syntax may look like an important as-
pect prima facie when you choose between (L)ED-

MAC and ednotes — but it is not. Rather, it is a
point in favour of (L)EDMAC. Cf. sections ‘The ap-
paratus’ and ‘Marking text for notes’ of the (L)ED-

MAC documentation. The advantages of ednotes’
user interface will be described later.

3.6 Short lemma substitute preceding note

In

\Anote{〈lemma〉}{〈note〉}

〈lemma〉 may appear as 〈l1 〉\<〈l2 〉\>〈l3 〉 (or this
sequence may end earlier: 〈l1 〉\<〈l2 〉, e.g.). The
lemma tag preceding the note then has form
〈l1 〉〈ell〉〈l3 〉 where 〈ell〉 is some ellipsis mark,
as explained below, while in the main text just
〈l1 〉〈l2 〉〈l3 〉 appears. The result is that you don’t
type anything twice, as is the case with EDMAC’s
\lemma.) Figures 5 and 6 exhibit an example.

What appears between 〈l1 〉 and 〈l3 〉 in the
lemma tag is customizable for the whole document

232 TUGboat, Volume 24 (2003), No. 2

This is

\Anote{a \<somewhat long\> lemma}

{no problem}.

Figure 5: Code for ellipsis sample

1 This is a somewhat long lemma.

1 a . . . lemma] no problem

Figure 6: Output of ellipsis sample

(cf. \renewcommand example below). There is a local
customization possible as well. In that sequence

〈l1 〉\<〈l2 〉\>〈l3 〉

the 〈l2 〉 may appear as

<〈ellipsis〉>〈ll〉

The tag preceding the note will then be

〈l1 〉〈ellipsis〉〈l3 〉

while the main text will be

〈l1 〉〈ll〉〈l3 〉

You may even let 〈l1 〉 be empty.
For the ellipsis, we propose a new symbol

\textsymmdots which differs from \dots in having
no space on the right hand side, so the dots can
appear really symmetrically between 〈l1 〉 and 〈l3 〉.
\textsymmdots is the default ellipsis, i.e., if in

〈l1 〉\<〈l2 〉\>〈l3 〉

‘\<’ is not followed immediately by ‘<’, it yields the
same output as

〈l1 〉\<<\textsymmdots>〈l2 〉\>〈l3 〉

does (look at figures 5 and 6 again).
Note, in figures 5 and 6, the blank space before

‘\<’ and the one after ‘\>’. These blank spaces are
needed for some space before and after the ellipsis
dots yielded by \textsymmdots. These dots would
look quite bad if they were not surrounded by any
spaces. Smaller spaces would do, they should at
least be \thinspace (—we feel). So you see that
we have decided that the user should care for these
spaces. However, the user can change this feature
by, e.g.,

\renewcommand{\lemmaellipsis}{%

\thinspace\textsymmdots\thinspace}

in the document preamble (after the \usepackage

line for ednotes), so she can move the blank spaces
into the code between ‘\<’ and ‘\>’. Note as well
that if 〈l1 〉 and 〈l2 〉 are separate words, you must
type a blank space either before or after ‘\<’, oth-
erwise they would appear as if they were parts of a
single word 〈l1 〉〈l2 〉[. . .] in main text. Something

analogous holds for \>. If the lemma is a single long
word 〈l1 〉〈l2 〉〈l3 〉, of which only 〈l1 〉 and 〈l3 〉 are to
precede the note, it should be typed something like
this, without full spaces:

\Anote{〈l1 〉\<<\thinspace\textsymmdots
\thinspace>〈l2 〉\>〈l3 〉}{〈note〉}

(It might be preferable to introduce an abbreviation
with \newcommand.)

3.7 Overlapping lemmas

\Anotelabel{〈label〉}〈lemma〉%
\donote{〈label〉}{〈note〉}

works just like

\Anote{〈lemma〉}{〈note〉}

— however, by using suitable 〈label〉s, you can indi-
cate which of overlapping lemmas begins and ends
where; look at figures 7 and 8.

Note that the second command is only \donote,
not \Adonote. Beware as well the blank spaces
which line breaks may cause, unless you elide them
with the comment mark ‘%’. Usually however, you
will rarely be forced into such a situation. We are
in such a situation here because the present column
width enforces so many line breaks.

\Anotelabel{l1}Observe

\Anotelabel{l2}this%

\donote{l1}{Look at this}

sample\donote{l2}{the present sample}.

Figure 7: Code for overlap sample

1 Observe this sample.

1 Observe this] Look at this 1 this sam-
ple] the present sample

Figure 8: Output of overlap sample

In 〈lemma〉,

\pause{〈label〉} and \resume{〈label〉}

act analogously to \< and \> above for lemma sub-
stitutes, and

\pause{〈label〉}<〈ellipsis〉>

employs your own 〈ellipsis〉 for the ellipsis. 〈lemma〉
may contain \Anote and the other way round (in
some way).

3.8 Further items

We do not deliver a complete user manual here.
Let us just note that there are various possibilities
to customize the appearence of the note and what

TUGboat, Volume 24 (2003), No. 2 233

precedes it. The easiest one is perhaps redefining
\Anote into something like \variant etc. The com-
plete instructions can be read in ednotes.sty.

3.9 Editing tables

For critical editing of tables, ednotes offers the op-
tions edtable and longtable. The first one de-
fines an environment edtable; the second redefines
longtable from David Carlisle’s longtable.sty (be-
longing to the Standard LATEX Tools Bundle).

Environment edtable:

\begin{edtable}{〈tabenv〉}[〈pos〉]{〈tmp〉}
. . .
\end{edtable}

works like

\begin{〈tabenv〉}[〈pos〉]{〈tmp〉}
. . .
\end{〈tabenv〉}

— where the first line is meant to be the standard
starting line of some LATEX tabular environment;
i.e., 〈tabenv〉 may be tabular or the like, 〈pos〉
is the positioning argument, and 〈tmp〉 determines
the form of each tabular line. The only difference
is that you can use ednotes commands within an
edtable.

Option longtable: With this ednotes package
option, you can use ednotes commands within
longtable environments— provided the latter are
in linenumber or like environments. Outside
such an environment, longtable environments work
without any change.

3.10 Multiple occurrences of lemma word

Here we turn to task (X8).
Recall the problem from section 2.1: Sometimes

the lemma word occurs more than once in its line.
Imagine, e.g., you are editing a Latin text with a line
in which the word ‘et’ occurs three times, and you
want to key a note to its second occurrence. The
traditional way to handle this situation is to supply
the lemma tag preceding the note with an index ‘2’.

Now, it is rather tedious work to check after
printing how often each lemma word occurs earlier
in its line. It would be nice if this could be done
automatically. However, this would be a very te-
dious labour for the macro programmer. (And per-
haps some part of the job would better be done by
a program other than TEX in the manner of, e.g.,
makeindex.)

Only this year we have offered a halfway solu-
tion for this job (this was tedious enough program-
ming labour). ‘Halfway’ means that there remains

a job for the author/user. This job is the following:
if you are typing some

\Anote{〈word〉}{〈note〉}

look some words back for other occurrences of
〈word〉. Each occurrence which is near enough to
your

\Anote{〈word〉}{〈note〉}

so that it might be printed in the same line should
then be made an argument of the command

\countword

and so should the occurrence of 〈word〉 which is the
first argument of \Anote. Like this:

\countword{〈word〉}. . .
\Anote{\countword{〈word〉}}{〈note〉}

The reader may feel cheated by this kind of
“solution”. However, think of a situation where
\Anote{et} is preceded by four occurrences of ‘et’
nearby. \countword then saves you from counting
how many of these occurrences occur indeed in the
same line as the lemma ‘et’. And this will be even
more helpful when you change text width or insert
some text before the lemma. Moreover, we think,
looking back for earlier occurrences is not too heavy
a burden.

\countword is defined only when ednotes.sty

has been loaded with the option countoccurrences.

4 Packages related to ednotes

4.1 Overview

So far we have mentioned the packages ednotes,
manyfoot, lineno, and longtable. Their names appear
in figure 9, among others. Indeed, all the “strings”
in figure 9 refer to package files, with the extension
‘.sty’ omitted. We now explain those packages which
have not yet been introduced.

The arrangement, in figure 9, of the package
names and of the boxes in which they reside alludes
to how they relate with or even “build” on each
other. I.e., if the box containing the name of one
package 〈file1 〉 partially “covers” (“rests” on) the
box containing the name of another package 〈file2 〉,
this means something from the following:

• 〈file1 〉 does not work when 〈file2 〉 has not been
loaded (earlier), or, at least, some option of
〈file1 〉 needs 〈file2 〉. 〈file1 〉 may load 〈file2 〉 au-
tomatically (in one case at least this does not
happen to avoid an option clash).

• 〈file1 〉 extends or at least modifies the function-
ality of 〈file2 〉.

If neither of 〈file1 〉 and 〈file2 〉 “covers” the other,
they can be used independently from each other.—

234 TUGboat, Volume 24 (2003), No. 2

edtable

mfparptc

ednotes ltabptch

manyfoot

nccfoots
lineno longtable

perpage

Figure 9: Packages related to ednotes

We will explain these interrelations more precisely
below. First, we introduce the packages (or expand
on them). We start at the bottom of figure 9 and
work our way upwards.

Unless indicated otherwise, the packages are
available from the CTAN directory macros/latex/

contrib/ednotes. However, that it is available
from a certain folder may mean that it is there “in
disguise” only, requiring you to run other commands
to actually create the .sty file.

4.2 Packages from other authors

The following packages have not been written by us
(i.e., by U. L. or Christian Tapp; or at least “not
originally”).

perpage by David Kastrup is available from CTAN

in macros/latex/contrib/misc. It switches to
pagewise numbering of footnotes. This is of lim-
ited use for critical editions where footnotes usually
are not numbered anyway. However, there may be
commentary or introductory passages by the edi-
tor(s) between edited texts, and these may have or-
dinary numbered footnotes. So ednotes.sty accepts a
perpage option and passes it to manyfoot.sty which
in turn loads perpage.sty, with customizations.

manyfoot and nccfoots by Alexander I. Rozhenko
are available (disguised) from CTAN in macros/

latex/contrib/ncctools; they provide multiple
“layers” of footnotes as ednotes needs them (sec-
tion 3.2). These are “disguised” because what is
on CTAN is actually manyfoot.dtx, nccfoots.dtx, and
ncctools.ins, for extracting the .sty files on your own.

lineno by Stephan I. Böttcher (and recently ex-
tended and modified, for supporting ednotes better,
by U. L., on his kind invitation) is available from
CTAN in macros/latex/contrib/lineno; it pro-
vides numbering of lines and referring to line num-
bers as is needed by ednotes (section 3.1).

longtable by David Carlisle is part of the LATEX

distribution; it provides a multi-page tabular en-
vironment which lineno, or ednotes through lineno,
modifies on request (longtable option) to enable
themselves to work within (section 3.9).

4.3 Our packages not needing ednotes.sty

mfparptc: The mechanisms for typesetting foot-
notes as “block formatted” (one paragraph per page)
known to us derive from Donald Knuth’s sugges-
tions in The TEXbook (Knuth, 1996, pp. 395 –
400). The (L)EDMAC documentation (section ‘Para-
graphed footnotes’) and a TUGboat article by
Michael Downes (Downes, 1990) describe shortcom-
ings of The TEXbook macros, and EDMAC modifies
these macros to remove those shortcomings.

Alexander Rozhenko’s manyfoot does not con-
sider these shortcomings and changes. Therefore,
we wrote mfparptc to render the manyfoot block
formatting mechanism working closer to EDMAC’s.1

ednotes.sty loads mfparptc.sty when given the pack-
age option edmacpara.

ltabptch is available from CTAN at macros/

latex/contrib/ltabptch. We are convinced that
there are three spacing bugs in longtable, see LATEX
Bug Database, tools/3180 and tools/3485, and
ltabptch fixes these bugs. (In essence, there is ver-
tical space missing above a “long” table, and the
interline glue below it is in general wrongly calcu-
lated.) We tried to convince David Carlisle to take
these fixes into longtable; however, he convinced us
that it is better to keep the bugs/features and offer a
fixing package. This preserves document layout with
source files written using the defective longtable. We
have proposed a compromise —due to our original
conviction, ednotes.sty loads ltabptch.sty given op-
tion longtable, whenever it is “visible” to LATEX.
An option nolongtablepatch enables the user to
avoid this.

edtable was made as an enhancement of ednotes

to cover LATEX tabular environments (as explained
in section 3.9). However, it does not really need
ednotes.sty and may instead be used as a mere
lineno extension. lineno.sty loads it given the op-
tion edtable, which indeed ednotes.sty passes. The
package may eventualy vanish, the options or at
least the functionality will stay.

1 We once hoped that Alexander Rozhenko would incor-
porate mfparptc into his manyfoot. The main reason not
to do so is that mfparptc, at present, disables manyfoot’s
\SplitNote. (We hope eventually to have the time to fix
this.) There are further difficulties; e.g., \linebreak is modi-
fied in notes to eschew one. So the name mfparptc— meaning
originally a “patch” — was somewhat arrogant, sorry.

TUGboat, Volume 24 (2003), No. 2 235

4.4 Installation and standalone packages

This section is concerned with matters of installa-
tion and with what choices users have with regard
to our packages. Installation will be interesting more
for actual users than for readers.

• ednotes always requires lineno and manyfoot,
and loads them automatically. manyfoot itself
also requires nccfoots.

• ednotes requires longtable only when given the
longtable option, loading it automatically in
the latter case.

• ednotes requires perpage only when given the
perpage option, loading it automatically then.
(manyfoot also supports the perpage option.)

• The edtable option for ednotes enables the
edtable environment described in section 3.9.
(lineno also supports the edtable option.)

• ltabptch can be used as a standalone patch to
the standard longtable package, to overcome the
problems mentioned in section 4.3. It is loaded
automatically by ednotes given the longtable

option, unless you forbid this with the further
option nolongtablepatch.

• mfparptc can be used as a standalone patch to
the manyfoot package, but take heed of the lim-
itations discussed in section 4.3. However, use
the package option edmacpara to use it with
ednotes, rather than loading it explicitly.

There are further interdependencies, but we
hope this covers typical usage.

“Visible to (LA)TEX”: Of course, nothing can be
loaded unless it is “visible to (LA)TEX”, that is, its
files can be found by (LA)TEX. This notion is, for
some users, somewhat difficult. So, a few hints:

• To be found, a package file must be in a folder
which (LA)TEX searches when compiling (your
main document file) \jobname.tex.

• You may put the file in the same folder as
\jobname.tex itself. This is inconvenient if you
want to use the package for several documents,
in different folders.

• You may put the file in the contrib folder of
the main latex folder.

• Or, you may put it in the same folder as another
.sty file that you are already using. If you have
used ednotes before, just put new package files
into the same folder where ednotes.sty is.

• You may find further hints at

tug.ctan.org/installationadvice

and at

www.tex.ac.uk/cgi-bin/

texfaq2html?label=wherefiles

Package options: lineno.sty has a lot of package
options; ednotes.sty accepts them all, and merely
passes them on to lineno.sty (renaming one of them;
we have described four of them). We have described
13 additional ednotes.sty options (two are passed to
manyfoot.sty; and there are some “obsolete” ones).

This may stimulate worrying about how to en-
ter all the options that one would like to use— they
may not fit into one line. Fortunately, you can safely
break code lines after the commas separating the op-
tion names in the \usepackage command:

\usepackage[〈option1 〉,〈option2 〉,
. . .]{ednotes}

5 Acknowledgments

We (U. L.) are indebted to Karl Berry, David Kas-
trup, Jerónimo Leal, Christian Tapp, and Peter R.
Wilson for having read carefully earlier drafts of this
article and for all their important hints, suggestions,
judgments, and corrections. Thanks also to Karl
Berry for (i) the invitation to write this article for
TUGboat — among our profits is that our ednotes

gets a printable description for the first time —and
for (ii) his patience and generosity with regards to
all our questions on setting up the article properly,
and editing our English.

We are, maybe, most indebted to Alexander I.
Rozhenko and Stephan I. Böttcher for changes to
their packages manyfoot and lineno in time for this
article. These changes simplified the structure of our
former bundle very much and, thus, simplified this
article. Indeed, Stephan Böttcher passed mainte-
nance of his lineno to me so I could make the changes
in favour of co-operation with ednotes on my own —
special thanks!

The ednotes package profited very much from
intense e-mail discussions with (“rival”) pack-
age authors Dominik Wujastyk, John Lavagnino,
Stephan I. Böttcher, Alexander I. Rozhenko, and
Peter R. Wilson as well as from substantial “com-
plaints” by our test users Robert Alessi, Florian
Kragl, and Sergei Mariev. Thanks moreover to all
the people mentioned for their encouragement of our
work.

Our work on ednotes developed in the course of
a research project entitled ‘Geschichte der Ordinal-
zahlanalyse und ihre Implikationen für die Philoso-
phie der Mathematik’, supported by the Deutsche
Forschungsgemeinschaft (DFG) 2001 – 2004.

References

Burt, J. “Typesetting critical editions of poetry”.
TUGboat 22, 353 – 361, 2001.

236 TUGboat, Volume 24 (2003), No. 2

Downes, M. “Line breaking in \unhboxed text”.
TUGboat 11, 605 – 612, 1990.

Kastrup, D. “The bigfoot bundle for critical edi-
tions”. In Preprints for the 2004 Annual Meeting.
TEX Users Group, 2004.

Knuth, D. E. The TEXbook. Addison-Wesley, Read-
ing, Mass., 1996.

Lavagnino, J. and D. Wujastyk. “An overview of ED-

MAC: a PLAIN TEX format for critical editions”.
TUGboat 11, 623 – 643, 1990.

Lavagnino, J. and D. Wujastyk. Critical Edition

Typesetting: The EDMAC format for PLAIN

TEX. TEX Users Group and UK TEX Users
Group, San Francisco and Birmingham, 1996.

⋄ Uwe Lück

Seminar für Philosophie, Logik und

Wissenschaftstheorie

Philosophie-Department

Universität München

Geschwister-Scholl-Platz 1

D-80539 München

Germany

ednotes.sty@web.de

T Gb t, lume (), .

Software & Tools

Hyphenation patterns for minority

languages

Kevin P. Scannell

Abstract

We present some techniques used in developing hy-
phenation patterns for the Irish language that we
hope will be applicable to other languages with
limited computational resources.

1 Introduction

Irish is one of six languages in the Celtic branch of
the Indo-European family (the others are Scottish
Gaelic, Manx Gaelic, Welsh, Cornish, and Breton).
Typesetting enthusiasts might be familiar with the
so-called “Gaelic” fonts (in Irish, seanchló, literally
“old type”) used to print the language until the
early part of the 20th century, and which trace their
roots back to the exquisite illuminated manuscripts

produced by Irish monks in the centuries preceding
the Norman conquest [4, 5, 6]:

�✁✂✄✂☎☎✆✝✞✟✞✞☎✠✡✁☛☞✂✌✝

✄✍✁✠✞✎✏✑✞☎✞✒✞☛✑✂✓✂☎☎✔

✂✠✕✁☛☛✞✠✏✍✄✖✞
✗✞✁✂☎✝✖

✎✘✌✞✆✏✙✂✠✞✁✂✄☎✝✂☎✚✂✌✂☎☎✛ 1

Once spoken by several million people, there are
now perhaps only 50,000 native speakers, mostly
in remote regions of the west of Ireland.2 English
remains a constant presence throughout, especially
in the contexts of technology and computing. This
has had the unfortunate tendency to reinforce the
view, especially prevalent among the young, that
Irish is “irrelevant” for modern life.

Since 1999 the author has been engaged in the
development of Irish language software as a way of
helping to stem the tide of language shift. Already
completed are a general purpose web crawler, spell
checker, and grammar checker, with a monolingual
thesaurus and various localization projects currently
in progress.3 Recently, a set of TEX hyphenation
patterns for Irish was completed as part of this
work.4 This topic forms the focus of this paper.

In most languages, the choice of font has no
effect on hyphenation, but typesetting Irish in Ro-
manized script (as is standard nowadays) implies
some important orthographic changes, most notably
the use of the letter ‘h’ to indicate “lenition”, or
softening, of the preceding consonant. This is in-
dicated by a ponc (dot) over the lenited consonant
in Gaelic type, as can be seen in the excerpt above.
The current version of the patterns is designed to
work with the modern orthography, but if desired
can be modified to work for seanchló as well.

In the following sections some of the techniques
used in developing the patterns will be described
in the hope that they will be applicable to other
minority languages. Indeed the main goal in writ-
ing this article is to encourage further work on
hyphenation and other natural language processing
(NLP) tools for marginalized and under-resourced
languages. Some relevant statistics are presented in
the final section for further reflection.

The so-called “information bottleneck” of NLP

is especially acute for minority languages. It is
accompanied in most cases by a lack of skilled

1 “Lovely the life of the scholar, diligently working; you

know well, good people, his is the sweetest lot in Ire-

land.” This Gaelic font, produced using METAFONT by Ivan

Derzhanski, is called eiad and is available from CTAN.
2 The language has the nominal support of the Irish

government and is taught in the schools, so a somewhat larger

number of people claim fluency.
3 http://borel.slu.edu/gaeilge.html
4 http://borel.slu.edu/fleiscin/

TUGboat, Volume 24 (2003), No. 2 237

software engineers, linguists, or both. This induces
one to exert effort in those areas where the materials
produced can be deployed as widely as possible.
In this context, it is worth noting (even to an
audience of TEX devotees) that Liang’s hyphenation
algorithm has come into much wider use over the
last two or three years. The TEX hyphenation files
themselves can be used directly by GNU Troff,5 and
slightly modified versions are now used by the free
software packages OpenOffice6 and Scribus.7 There
are, in addition, at least two implementations of
XSL-FO processors (these convert XML data plus
style sheet information into PDF and other formats)
that employ TEX hyphenation (including Apache’s
FOP8).

2 General techniques

Much of what is said here is well known; in particu-
lar, bootstrapping a database of hyphenated words
using PATGEN is a well-established technique; see,
e.g. [8]. Readers interested in creating new pat-
terns are encouraged to read Petr Sojka’s papers
(especially [8] and [9] with Pavel Ševeček), Yannis
Haralambous’ PATGEN tutorial [2], and the Master’s
thesis of David Antoš [1].

2.1 Parallel development

Just five years ago, there were virtually no Irish
language lexical resources in machine-readable form.
Based on the author’s experience, developing a full
suite of resources in parallel is easier than attempt-
ing each individually. In short, what is advocated
here is a synergistic approach to the development of
multiple NLP tools that exploits “feedback loops”
and synergies between them.

As a simple illustration, consider the simulta-
neous development of a web crawler, text corpus,
and spell checking database. The web crawler re-
ported here uses the Google API9 and words from
the spell checking database to search for potential
Irish language documents on the web; the spell
checker and some statistical techniques are used to
determine which documents (or sections thereof) are
actually in the Irish language. These are added
to the text corpus, and more statistical analyses
(frequencies, character n-grams) are used to find
reliable candidate words for the spell checker [7].
Such a system can be bootstrapped from a small
word list, and for much of its life cycle requires

5 http://www.gnu.org/software/groff/groff.html
6 http://www.openoffice.org/
7 http://web2.altmuehlnet.de/fschmid/
8 http://xml.apache.org/fop/index.html
9 http://www.google.com/apis/

no human intervention. Each of the three subsys-
tems improves over time. Like many individuals
working with small languages, I was led to employ
unsupervised, statistically-based NLP not from any
a priori fundamental belief in its effectiveness, but
simply because it appeared the most viable method
to achieve reasonable results in a limited timeframe.

2.2 Hyphenation and spell checking

In the context of hyphenation, feedback between
the hyphenation patterns and the morphological
and phonological data encoded in advanced spell
checkers like aspell can be exploited.10

At the most basic level, a spell checker is really
just a word list stored in some kind of hash table for
efficient lookup. The standard UNIX spell checkers
also offer affix compression. This is a way of encod-
ing portions of the morphology of a language in an
“affix file”; then, instead of storing all variants of a
given word in the word list, the approach is simply
to store something like a dictionary headword and a
flag indicating the rules that govern inflection of the
word. For heavily inflected languages like Irish, this
compresses the hash table by around 70%. Below
is shown a tiny chunk of the Irish affix file, showing
three future endings of one kind of verb. The left
hand side gives the ending to which the rule applies
(as a regular expression in general) and the right
hand side indicates which letters to strip off and
which to add:

A Í M > -AÍM,ÓIDH

A Í M > -AÍM,ÓIMID

A Í M > -AÍM,ÓFAR

Since Irish is generally hyphenated according
to morphological rules, the spell checker offers a
powerful means to insert all of these hyphen points
into the database at one go. For this, a “fake”
affix file was created containing all the same rules,
but which permitted an additional non-alphabetic
character to appear on either side of a rule (here
the use of ‘!’ is adopted since Irish has quite a
few explicitly hyphenated words). A command line
option to the spell checker allows one to expand all
affix flags from the (unmodified!) word list according
to these rules, resulting in a rich initial set of hyphen
points. One bootstrapping iteration with PATGEN

handled all irregular verbs which weren’t encoded
in the affix file.

To convince the reader of the importance of par-
allel development, this subsection is closed with an
example of feedback from the hyphenation patterns

10 http://aspell.net/.

238 TUGboat, Volume 24 (2003), No. 2

back to the spell checker. The easiest example of this
is the input to the “metaphone algorithm” imple-
mented as part of aspell. This algorithm depends
on the existence of a “coarse” phonetic encoding of
your language that can be used to improve sugges-
tions when a misspelling is encountered.11 Having
an accurate hyphenation database in place before
attempting such an encoding offers a significant
efficiency. For instance, the words garbhuille (gar
+ bhuille lit. “near + stroke” —an approach shot
in golf) and garbhghlórach (garbh + ghlór + ach

lit. “rough + voice + ish” — raucous) share their
first five letters, but these are pronounced quite
differently in each case. Having the hyphenations
in place while constructing the phonetic rules allows
one to avoid numerous special cases dealing with
situations like this.

2.3 Print sources and human informants

Another serious problem worth mentioning, as it
surely faces most other minority languages, is the
lack of explicit standards for, or printed dictionaries
of, Irish hyphenations. The only general observa-
tion beyond debate is that Irish is best hyphenated
according to etymological and morphological rules.
Knowing this, it becomes quickly and painfully
apparent when a given text has been hyphenated
according to an English (syllabic) computer algo-
rithm, or, as apparently happened quite often during
the early Irish revival, by a monolingual English-
speaking compositor.

The most abominable examples of this result
from the the convention, noted above, of using an
‘h’ in Roman type to indicate lenition; this rule
has the corollary that one should never split the
‘h’ from the preceding consonant. Unfortunately,
examples like com-halta or bót-har can be found in
abundance in printed books. Matters are somewhat
complicated by the fact that ‘h’ appears occasionally
in loanwords and in such contexts often is a good
hyphenation point: Bói-héam-ach (“Bohemian”).

Nevertheless, the author was able to assemble
enough suitable printed material to populate the
initial hyphenation database manually.12 Originally
it was hoped to extract, automatically, hyphenated
words from the many online PDF documents pro-
duced by the Irish government, but (presumably be-

11 This is especially important for Irish, which has many
silent consonants and which underwent a major spelling
reform in the 1950’s. For example, the top suggestion made
by aspell for the pre-standard form imfhiosach is, correctly,
iomasach, which has the same phonetic encoding.

12 For the Irish speakers among the readership, the best
choices were books published by Sáirséal agus Dill during the
1950’s and 1960’s.

cause of the lack of proper hyphenation technology)
many of these are set with a ragged right!

This work also benefited greatly from the input
of many Irish speakers who checked over the hyphen-
ations produced by early versions of the patterns
on the top 1000 most frequent Irish words; see
http://borel.slu.edu/fleiscin/mile.html.

2.4 PATGEN esoterica, final results

One of the most difficult aspects of using PATGEN

effectively is the choice of correct parameters. Some
good heuristics are offered in [1], with actual ex-
amples (size-optimized, precision-optimized, etc.) in
[9]. I found that with (the usual) five levels of
hyphenation, I consistently ended up with a couple
hundred bad hyphenations; adding a sixth (inhibit-
ing) level with parameters (1, 1000, 1) disposed of
these and only added 1K or so to the final pattern
file. Here is the full set of parameters which worked
best:

Level Lengths Parameters
1 2 . . . 4 (1,2,30)
2 2 . . . 5 (1,2,30)
3 3 . . . 6 (1,2,6)
4 3 . . . 7 (1,2,6)
5 3 . . . 8 (1,1000,1)
6 3 . . . 9 (1,1000,1)

The result is a large set of patterns (about 6000)
but an extremely accurate one: no bad hyphens and
just 10 missed hyphens from a database of 314,639
possible hyphen points in 234,789 words.

3 Other languages

According to the Ethnologue database (http://
www.ethnologue.com/), there are more than 6800
living languages; at least 2000 have some form of
writing system (based on a count of the number of
languages with at least partial Bible translations).13

By one rough count, however, there are only 36
languages having a reasonably complete desktop
computing environment available.14 Only half of
the world’s population are native speakers of one
of these 36 languages, meaning some three billion
people have no way of using a computer in a native
language context (ignoring the more fundamental
problems of poverty and illiteracy for many of these
same three billion).

13 For a nice discussion of this question, see http://www.

ogmios.org/117.htm.
14 For instance, version 3.1 of the KDE desktop for

GNU/Linux is at least half translated for exactly 36 lan-
guages; Windows and Mac localizations make up a (small)
proper subset of these.

TUGboat, Volume 24 (2003), No. 2 239

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04

 28

24

20

16

12

Figure 1: TEX hyphenation patterns by initial release date

The numbers are similar for TEX hyphenation
patterns; using the table in [9], the CTAN archives,
and some web searching, I found at least some
mention of the existence of patterns for 34 natural
languages (not surprisingly, 28 of these appear on
the list of 36 above). It seems, though, that produc-
tion is slowing down (although other explanations
are possible, e.g. lack of publicly released materi-
als). In figure 1, the horizontal axis represents time
(labeled with two-digit years). Each bar indicates
the initial release of TEX hyphenation patterns for
a new language, with the height of the bar given
by the base 2 logarithm of the number of native
speakers. For example, Estonian (patterns released
in 1992) has a hair over 220 or one megaspeaker.
The far left represents Liang’s thesis [3] (assuming
228.3 = 340, 000, 000 native English speakers) while
the far right represents the patterns for Irish (assum-
ing 215.6 = 50, 000 native speakers). Note that in
the past decade, patterns for just six new languages
have been released (Romanian, Indonesian, Sorbian,
Basque, Mongolian, and Irish) with just one in the
past five years.

There is a small research community con-
cerned specifically with NLP for minority lan-
guages (see, for instance, http://193.2.100.60/

SALTMIL/), but their work is confined largely to
the European sphere, encompassing perhaps thirty
languages beyond the three dozen or so noted above.
The author has undergraduate students currently
applying some of the techniques described in this
paper to the Maori and Inuktitut languages, but
this, of course, is just a drop in the bucket.

It is worth emphasizing, in closing, the impor-
tance of an open source approach to these problems,
leveraging the collective effort of small communi-
ties, and transcending the purely market-driven ap-
proach that has led to the current dismal state of
affairs. It is hoped that the work reported in this

paper makes a small contribution to addressing this
situation.

References

[1] David Antoš. Generation of Patterns with the
OPatGen Program. http://www.fi.muni.cz/
∼xantos/patlib/thesis.html, 2001.

[2] Yannis Haralambous. A small tutorial on the
multilingual features of PatGen2.
http://www.ctan.org/tex-archive/info/

patgen2.tutorial.

[3] Franklin M. Liang. Word Hy-phen-a-tion by

com-puter. Ph.D. thesis, Stanford University,
1983.

[4] E. W. Lynam. The Irish Character in Print.
Barnes and Noble Inc., New York, 1969.

[5] Dermot McGuinne. Irish Type Design. Irish
Academic Press, Baile Átha Cliath, 1992.

[6] Timothy O’Neill. The Irish Hand. The Dolmen
Press, Port Laoise, 1984.

[7] K. P. Scannell. Automatic thesaurus generation
for minority languages: An Irish example. In
Actes de la 10e conférence TALN à Batz-sur-

Mer, volume 2, pages 203–212. ATALA, 2003.

[8] Petr Sojka. Hyphenation on Demand. TUGboat,
20(3):241–247, 1999.

[9] Petr Sojka and Pavel Ševeček. Hyphenation in
TEX— Quo Vadis? TUGboat, 16(3):280–289,
1995.

⋄ Kevin P. Scannell

Department of Mathematics and

Computer Science

Saint Louis University

St. Louis, MO 63017

USA

scannell@slu.edu

http://borel.slu.edu/

240 TUGboat, Volume 24 (2003), No. 2

(LA)TEX, genealogy, and the LifeLines
software

Andrew Caird

Abstract

Another example of (LA)TEX’s utility as a portable,
platform-independent typesetting system is in its
use as an output format for genealogical informa-
tion from the freely-available cross-platform geneal-
ogy software LifeLines.

Introduction

Genealogy, the study of family histories, is a hobby
that can involve many generations and produce very
large amounts of data. For this information to be
useful from generation to generation (or even from
year to year), it must be stored in a format that
is portable between computer systems, useful even
without a computer, and flexible enough to produce
histories from different perspectives.

While (LA)TEX clearly meets the requirements
of consistency and portability, it is, just as clearly,
not a genealogical system. However, the same traits
that make (LA)TEX so good at long-term information
representation are needed in a genealogical package.
One such package, available under the permissive
open source MIT License [1], is called LifeLines.

LifeLines: A brief introduction

This is not a LifeLines journal, or even a geneal-
ogy journal, so this introduction to LifeLines will
be brief. Please see the LifeLines home page [2] for
more information.

LifeLines is a console-based program for Unix,
Windows, and Macintosh that manages genealogi-
cal relationships using a GEDCOM (GEnealogy Data
COMmunications) [3] database. GEDCOM is a very
prevalent format for genealogical data; it is main-
tained by The Church of Jesus Christ of the Lat-
ter Day Saints. Because LifeLines is freely available
and works on many platforms, storing data that has
such a potentially long lifetime in this software is
much less worrisome than storing such data in a pro-
prietary piece of commercial software that runs on
only one platform. Additionally, LifeLines can im-
port and export GEDCOM data to and from other
programs.

Installing LifeLines LifeLines can be installed on
Unix, Windows, and Macintosh OS X. For instruc-
tions on installing LifeLines on Windows, Mac OS X,
or specific Unix variants please see the aforemen-
tioned LifeLines web site. There are compiled pack-

ages for Windows, Linux (RPM), and Mac OS X that
make installation straightforward. For the general
case, however, following are the basic steps to install
LifeLines on a Unix system with the GNU C compiler
available. First download the latest version of Life-
Lines from the web site mentioned above; this will be
a file named similar to lifelines-3.0.29.tar.gz,
depending on the version. Uncompress the file by
typing gunzip lifelines-3.0.29.tar.gz and ex-
tract the tar file by typing tar xf lifelines-3.0.

29.tar. Now change directories into the source di-
rectory, in this case that is lifelines-3.0.29, and
compile the software with ./configure and then
make. On a 266 MHz Pentium II this takes less than
10 minutes.

After compiling LifeLines, install it by typing
make install in the source directory. Depending
on where you are installing LifeLines, this step may
need to be performed as a privileged user (typically
root). Installation options can be specified when
you run the configure script.

For more information on installation and build
options, run ./configure --help, read the README
and INSTALL files, or ask for help on the LINES-L

mailing list [2].
Confirm that there is a reports directory where

you installed LifeLines and that it contains files that
end in .ll. If you don’t see the directory, you’ll need
to create one by hand and tell LifeLines to look there
for its report programs. To do this, choose a sensible
location (a good choice is the share directory near
where you installed LifeLines; that is, if you installed
LifeLines in /usr/local, you would then put the re-
port programs in /usr/local/share/reports) and
create a directory called reports.

In the LifeLines source distribution you’ll find
all of the report programs in the reports direc-
tory. Copy those files to the directory you just
created. The last step is to tell the LifeLines pro-
gram where to find the report programs. When Life-
Lines starts, it looks for configuration information
in a file called .linesrc in your home directory. A
sample .linesrc is distributed with the LifeLines
source. Copy the sample configuration file to your
home directory and modify the line that starts with
LLPROGRAMS in that file to reflect the location of your
new reports directory.

If you haven’t seen any errors during any of
these steps, then you have successfully installed Life-
Lines on your system. If you did see errors, there
is an active LifeLines discussion list called LINES-L

that may be able to help. More information on this
is available at the LifeLines web site [2].

TUGboat, Volume 24 (2003), No. 2 241

Figure 1: The main LifeLines screen

Using LifeLines To use LifeLines you enter data
in the GEDCOM format and establish relationships
between people. Much like LATEX, LifeLines focuses
on the information, not the presentation; in fact, the
LifeLines interface is notably non-flashy (although
a richer GUI is under development), but is fast and
efficient. Typical LifeLines screens on a Unix system
are shown in Figures 1 and 3.

To demonstrate the basic usage of LifeLines,
we’ll step through the creation of a family consisting
of the ninth president of the United States, William
Henry Harrison, his wife, children, and parents.

LifeLines installs into /usr/local/bin by de-
fault on Unix systems, which is typically already in
the search path. If you have installed LifeLines else-
where, you will need to either specify the full path
to LifeLines to start it, or put that directory in your
PATH environment variable. For the purposes of this
example, I will assume that LifeLines is installed in
the default location, and that that location is in-
cluded in your PATH environment variable.

Before starting LifeLines, you should create a
directory where it will store your genealogical data-
bases; since we are storing information about Will-
iam Henry Harrison, I’ve created a directory called
whh. To start LifeLines type llines. The first
question it asks is which directory holds the Life-
Lines database. In my case, I enter /disk1/acaird/
whh and am then presented with the main LifeLines
screen, shown in Figure 1. At this point, you have
an empty database, and need to add a person. We’ll
start by adding the President; choose a from the
main menu, then choose p to add a new person from
the next menu. This will start your editor or default
to the vi editor. (Setting the EDITOR environment
variable specifies the application called to edit Life-
Lines entries.) The editor brings up a blank tem-
plate with places for the basic data on name, sex,
birth, and death. You can add other fields in this

Figure 2: Editing GEDCOM data with vi

Figure 3: Viewing a person’s data in LifeLines

file for other information; see the LifeLines manual
and the GEDCOM standard [3] for allowed fields.
A populated template for William Henry Harrison,
with the additional occupation field (OCCU) added,
is shown in Figure 2. After editing the template,
save the (temporary) file and quit the editor. Life-
Lines will then confirm that you want to accept this
information; if you have made mistakes while edit-
ing the information in the record and forgot what
you changed, you can say no here and the record is
unchanged. LifeLines will display the person in its
browse mode; this is shown in Figure 3. It doesn’t
show all of the information about the person, but
you can still see it if you edit the person’s record,
and the extra information will be included in certain
types of reports.

In the menu, as shown in Figure 3, there are
options in the middle column to “Add as spouse”,
“Add as child”, and “Create new family”. Using
these options and the “Add information to the data-
base” option from the main menu, you can construct
families and generations.

242 TUGboat, Volume 24 (2003), No. 2

Figure 4: Adding a spouse to create a family in
LifeLines

Figure 5: LifeLines’s display of a family

Continuing on in our genealogy of President
Harrison, we add his wife, Anna Tuthill, by return-
ing to the main menu, selecting “Add information to
the database” and adding her information. When,
after editing the template, LifeLines returns you to
the display of Anna Tuthill’s information in browse
mode, choose option a, “Create new family”. From
the next menu, choose option 2 to tell LifeLines
to use Ms. Tuthill as one of the spouses. When

Figure 6: LifeLines’s display of William Henry
Harrison’s complete record

prompted for the other spouse, type William Harri-
son’s name with a forward slash (/) before his last
name as shown in Figure 4. (LifeLines always ex-
pects a slash before the last name when it asks for
a person to search for.) After creating this family,
LifeLines will return you to browse mode, focused
on this family; this “family-centric” view of the data
is shown in Figure 5. By using the “Browse to fa-
ther” and “Browse to mother” options, you can get
to views of the data focused on individuals instead
of families.

At this point, you simply continue to add peo-
ple and associate them with others via wife–husband
relationships, or parent–child relationships. Will-
iam Henry Harrison’s complete record including his
spouse, parents, and children is shown in Figure 6.

LifeLines’s LATEX output

In addition to the already stated advantages of Life-
Lines (availability, portability, and based on non-
proprietary standards), one of the most powerful
features of LifeLines is that its output is all based
on external “programs” written in the LifeLines lan-
guage; these programs end in the .ll extension by
convention, although LifeLines will read these pro-
grams regardless of the extension on the filename.

Included with LifeLines are more than 80 pro-
grams to generate reports based on the data entered
into LifeLines’ database. There are programs to cre-
ate the traditional family-tree or a circular family-
tree in PostScript, to create HTML files of calendars
with all of the events in a family history in listed
in them, to create a report of all of the surnames
in the database with their corresponding SOUNDEX

codes, and, most interestingly for our purposes, a re-
port program to create a book in LATEX with many
of the details of a family history.

Because (LA)TEX lends itself so well to auto-
mated document creation, produces beautiful out-
put, and has tools for easy maintenance of tables of
contents, indices, and can include graphics, it is a
natural choice for a program like LifeLines for cases
where the output is complex.

The report program that creates a LATEX book
is called book-latex.ll. This program reads the
data from LifeLines and produces a LATEX file based
on the book class that is made up of sections for each
generation of a family and chapters for each family.
Within each section is a paragraph (or several para-
graphs) about each family member in that genera-
tion. These paragraphs are more or less rich depend-
ing on the information available. In addition to plain
text, you can include graphics with careful use of
LifeLines’ and GEDCOM’s NOTE field and the \image

TUGboat, Volume 24 (2003), No. 2 243

command in book-latex.ll. book-latex.ll also
uses LATEX’s integration with makeindex to create
an index by surname of everyone in the book. The
book can be created from a descendant or ancestor
perspective, and any person or people in the Life-
Lines database can be the “root” of the book. For
example, I can create a book with both my wife and
me at the “root”, so the details of all of our direct
ancestors are in the book. However, for my sister-
in-law, I can create a book with her at the “root”
and it will contain very little of my family (I would
only be mentioned in that I married her sister), and
the rest of the book is about her family.

Running the book-latex.ll program After as-
sembling the genealogical information, entering it
into LifeLines, scanning photos and documents such
as birth, marriage, and death certificates, it is a rel-
atively simple matter to create a book with a very
useful table of contents and index that is a complete
family history, using the book-latex.ll LifeLines
program.

To run book-latex.ll, to the main menu of
LifeLines and choose option “r”. When prompted
for a program to run, type book-latex. (If Life-
Lines gives you an error here, go back to the instal-
lation section and confirm that you have the report
programs installed and the .linesrc file set up cor-
rectly.)

At this point, book-latex.ll will prompt you
for its many options. The first choice is whether
you want and ancestor or descendant book; I think
the ancestor book is more interesting, so for this
example, choose that option. The next choice is
what level of notes you want included in the book.
GEDCOM has a NOTE field that you can include
if you want in the report. In this case we don’t
have any notes, so choose the first option, TEXT.
book-latex.ll next asks you to identify the person
you want to include in your book. Type the name
in the standard Firstname/Lastname LifeLines for-
mat and confirm your selection. book-latex.ll will
then ask you again to choose a person; if you have
a second person you’d like to include in the book
(most commonly a spouse, to make a complete fam-
ily tree) enter that person’s name, or, if you don’t
want to include a second person simply press en-
ter. book-latex.ll’s next question is the name of
the output file; choose something ending in .tex.
You will then be prompted for the name of the au-
thor of the book and the place (city, state, coun-
try) for the copyright; enter appropriate values or
press enter to leave these blank. The final question
book-latex.ll asks is for the name of a file to in-

clude as an introduction. This is a standard LATEX
file without the preamble that is included in the be-
ginning of the report. After you answer the last
question, the report program will run and you’ll see
the list of the people included in the report on the
screen.

You now have a LATEX file that is the report (if
you didn’t specify a path, it is in the same directory
as your LifeLines databases). The LifeLines distri-
bution includes the file tree.tex which is needed to
process the report. You can add this file to your TEX
installation or simply put it in the same directory as
the LifeLines LATEX output file.

To turn the LifeLines-generated LATEX file into
a DVI file that you can print or convert to PDF,
you need to run LATEX and makeindex on it several
times, as follows:

1. Run LATEX on the generated file. If this is the
first time you are doing this LATEX will stop
with the error:
! LaTeX Error: File ‘./whh.ind’ not found.

and prompt you for the name of the index file.
Since you can’t have one until running LATEX
at least once, simply press Enter and let LATEX
continue on. In the example I’ve been using up
to now, I named my LATEX file whh.tex, so the
first command is: latex whh

2. Next run makeindex to create an index file that
LATEX can read. In our example, the command
is simply: makeindex whh

3. Run LATEX again on your output file. This time
it won’t complain about any missing files but
it is likely to warn you that labels may have
changed and you should run LATEX one more
time. Do so one final time, and the resulting
DVI file will contain a nicely formatted and in-
dexed report. The commands are simply two
more invocations of: latex whh

Figure 7 shows an example of LifeLines’s LATEX
output. The output is easily modified by editing the
book-latex.ll script that LifeLines uses. If you
are comfortable with basic programming and LATEX
concepts, you will find book-latex.ll easy to un-
derstand and modify. You may want to make mod-
ifications because you may notice that the output
of LifeLines has some peculiarities: years without
months are preceded with an extra comma; spaces
after periods are post-sentence spaces. Hand-editing
before publication may be necessary. Alternatively,
the LifeLines maintainers would, I’m sure, be happy
to accept modifications to book-latex.ll to ad-
dress these oddities.

244 TUGboat, Volume 24 (2003), No. 2

1 William Henry HARRISON

William Henry Harrison, the son of Benjamin
Harrison(2) and Elizabeth Bassett(3), was
born on February 9, 1773 in Berkeley, Charles
City Co., Virginia. He married Anna Tuthill on
November 22, 1795 in North Bend, Ohio. Anna
was born on July 25, 1775 in Flatbrook, Sussex
County, New Jersey and died on February 25, 1864
in North Bend. William died on April 4, 1841 in
The White House, Washington, D.C. and was a
President of the United States from 11 January
1841 to 4 April 1841.
Children of William Henry Harrison and Anna
Tuthill:

i. Elizabeth Bassett Harrison was born on
September 29, 1796 in Fort Washington (now
Cincinnati), Ohio. She married John Cleves
Short on June 29, 1814. John was born in
, 1792 in USA and died in , 1864 in USA.
Elizabeth died on September 27, 1846.

ii. John Cleves Symmes Harrison was born on
October 28, 1798.

iii. Lucy Singleton Harrison was born on
September 5, 1800.

iv. William Henry Harrison Jr. was born on
September 3, 1802.

v. John Scott Harrison was born on October
4, 1804.

vi. Benjamin Harrison was born on September
8, 1806.

vii. Mary Symmes Harrison was born on Jan-
uary 22, 1809.

viii. Carter Bassett Harrison was born on Octo-
ber 26, 1811.

ix. Anna Tuthill Harrison was born on October
28, 1813.

x. James Findlay Harrison was born on June
21, 1818.

Figure 7: A segment of typical book-latex.ll
output

Conclusion

While (LA)TEX is excellent for typesetting “human-
created” documents, it is also very good at type-
setting computer-generated documents. LifeLines
takes advantage of this, along with LATEX’s strong
cross-platform support, to produce well formatted
and indexed genealogical reports. With some ex-
perimenting and relevant names and dates, you will
quickly find using LifeLines and its reports an inter-
esting and addictive pastime, with the added benefit
of creating something you can share with the rest of
your family and pass on to the next generations, se-
cure in the knowledge that the information about
your ancestors and contemporaries will survive op-
erating system upgrades, hardware changes, and all
of the other vagaries of modern computer use.

Thanks

Thanks to the original author of LifeLines,
Thomas T. Wetmore IV; the current SourceForge
project maintainers, Marc Nozell and Perry; the au-
thor of the book-latex.ll script, Dennis Nicklaus;
and all of the current developers.

References

[1] Information on the MIT Open Source Software
License: http://www.opensource.org/

licenses/mit-license.php

[2] The LifeLines web site: http://lifelines.

sourceforge.net/

[3] The GEDCOM web site: http://www.gendex.

com/gedcom55/55gctoc.htm

⋄ Andrew Caird
1065 Chestnut St.
Ann Arbor, MI USA

a_caird@yahoo.com

http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php
http://lifelines.sourceforge.net/
http://lifelines.sourceforge.net/
http://www.gendex.com/gedcom55/55gctoc.htm
http://www.gendex.com/gedcom55/55gctoc.htm

TUGboat, Volume 24 (2003), No. 2 245

Generating LATEX documents through

Matlab

S. E. Talole and S.B. Phadke

Abstract

Matlab, along with its family of toolboxes, is widely
used software for analysis and design of a large num-
ber of real life engineering problems encompassing
areas such as signal processing, control system de-
sign and so on. The output of a problem solved using
Matlab can be included in a Microsoft Word docu-
ment by using the Notebook supplied with Matlab
or the Matlab/Simulink Report Generator Toolbox
available separately. In academic institutions, doc-
umentation is commonly done using LATEX. While
the graphics generated by Matlab can be saved in
PostScript form and then included in a LATEX docu-
ment, at present there is no way to directly include
numerical data and text in a LATEX program. Man-
ual inclusion of such data is error prone and time
consuming.

The objective of this paper is to present the
idea of generating notes, precis or parts of books
through the use of Matlab engine for writing LATEX
programs. When sets of data or graphs are to be
included in a LATEX document, the programming
power of Matlab can be effectively employed. The
software presented here is written with feedback con-
trol applications in mind. The software needs the
Control Systems Toolbox Matlab module and aug-
ments its functionality.

1 Introduction

Matlab is one of the most widely used environments
for solving real-life engineering problems. It is a
valuable tool in teaching and research in several dis-
ciplines, such as control engineering, signal process-
ing and so on. A number of books have been written
illustrating the power and use of Matlab for solv-
ing practical problems. While solving a problem,
it is very important to document it along with its
solution; normally, this is done by typesetting the
problem and its solutions separately. Graphical re-
sults of the solution are incorporated by employing
copy and paste technique as is done with Microsoft
Word. Such a procedure is highly time consuming
and prone to errors. Even when the Notebook sup-
plied with Matlab is used, the output is of a poor
quality, especially when the document contains a lot
of mathematics.

LATEX (Buerger, 1990) is a highly regarded and
widely used publically available typesetting environ-
ment. Based on TEX, developed by Donald Knuth

(Knuth, 1986), LATEX provides a powerful means for
preparing high quality typeset documents and has
become a de facto standard for submitting techni-
cal papers in international journals and conferences
(Kwakernak, 1996). Many academic institutions as
well as universities and research establishments use
LATEX for typesetting.

In view of the wide use of LATEX, we felt that
when a problem is solved using Matlab, a documen-
tation of the problem and its solution in LATEX would
be highly useful. The power of Matlab as a compu-
tational engine needs to be combined with the power
of LATEX as a typesetting engine to achieve this end.
The purpose of this paper is to present a small de-
velopment to fulfill this need. The Matlab programs
described in this paper themselves generate the nec-
essary LATEX documents. Whenever repeated type-
setting tasks are involved, the programming power
of Matlab has been used to do the same.

2 Generating LATEX through Matlab

The software described in this paper is a set of Mat-
lab functions or script files designed to get time
and frequency response and write the text and/or
graphical output to a LATEX file. The LATEX file is
then processed separately. For example, the func-
tions PlaceLatex and BodeLatex developed here do
everything that the standard functions place and
bode in the Control Systems Toolbox do, while gen-
erating a LATEX file as output. As far as the user
is concerned, the only difference between the stan-
dard place and bode functions of Matlab and the
PlaceLatex and BodeLatex functions is that the
latter needs one extra argument, a string specify-
ing a filename in which the results are stored. In
addition, the legends and the plots are exported in
LATEX format without any additional manual entry.

Wherever several results of a similar nature are
needed, such as graphs generated by varying one or
more parameters, the programming power of Mat-
lab itself is used to do the job. This concept is illus-
trated by writing a Matlab script to obtain graphs
of a step response of a second order system as the
damping ratio is varied from 0.1 to 1 with a step
of 0.1. When this script file is executed in Matlab,
it generates a LATEX file containing all the graphs.
In the present version, functions have been written
to accomplish most of the common tasks needed in
time and frequency response and stability analysis,
and write corresponding LATEX documents.

The LATEX documents are generated by utiliz-
ing the file I/O and string functions provided in Mat-
lab. The LATEX commands provided in the Symbolic

246 TUGboat, Volume 24 (2003), No. 2

Math Toolbox can facilitate the document genera-
tion but are not essential. Knowledge of basics of
feedback control is utilized in generating appropri-
ate strings by interpreting the results generated by
Matlab so that the documentation will appeal to
the control engineer. In the next section the use of
PlaceLatex and BodeLatex for automatic genera-
tion of a LATEX document is illustrated by examples.
Further, a Matlab script file which generates a LATEX
document by employing the programming power of
Matlab is also presented.

The LATEX file generated by these programs can
be processed in any standard LATEX implementation.
It may be noted that many LATEX implementations
are freely available. On the Matlab side, the m-
file (Matlab scripts) functions require the Control
Systems Toolbox. Following similar procedures, sev-
eral other functions can be developed for step re-
sponse, Nyquist stability, Routh stability, lead and
lag compensation, etc., to provide for commonly
needed tasks in control system analysis and design.

3 Examples

In this section, the use of the new PlaceLatex and
BodeLatex functions, as well as the script file devel-
oped in the present software, are presented.

3.1 Pole placement problem

Consider a dynamic system, the state space model
of which is

ẋ =

0 1 0 0
20.601 0 0 0

0 0 0 1
−0.4905 0 0 0

x +

0
−1
0

0.5

u (1)

It is desired to place the closed loop poles at
−2 ± j3.464, −10, −10. The K=place(a,b,p)

command available with the Control Systems Tool-
box (Mathworks, 1998) gives the state feedback gain
vector K such that the closed loop poles of the sys-
tem are as specified in vector p. The arguments a

and b are the system and input matrix of the open
loop system. However, if one wishes to document
this problem and its solution, one will have to type-
set it separately by manually entering the arguments
of the Matlab function as well as the output gener-
ated by Matlab. We wish to avoid this manual entry.

To generate the documentation automatically,
a new Matlab function PlaceLatex has been writ-
ten, which when invoked along with its arguments,
generates a LATEX document. For example, using

PlaceLatex(a,b,p,‘placex.tex’)

creates placex.tex, which can be processed like any
LATEX document. The PlaceLatex function is writ-
ten by using the low level Matlab programming com-
mands. The function commences with the function
definition:

function out = PlaceLatex(a,b,p,filename)

which declares that the function needs four argu-
ments: the Matlab input data and the LATEX file to
write, as described earlier.

Next, the software checks whether four argu-
ments are in fact specified:

if nargin ~= 4

error(’Must have 4 input arguments!’)

end

The file named by filename as specified by user
is opened for writing:

fid=fopen(filename,’w’);

The function exports text as well as numerical
results through the Matlab command fprintf. The
function fprintf can be used in a variety of ways.
Static text relevant to the problem can be generated
by commands like

fprintf(fid,’Consider a system the state

space model of which is \n’);

Similarly, the statement

fprintf(fid,’\\begin{center}

$ \\dot x$’)

generates simple LATEX code for opening the cen-
tering environment and writing ẋ. Backslash is an
escape character in Matlab strings, thus we double
it to get one backslash in the LATEX output file.

The most interesting use of fprintf, however,
is for writing dynamic text that is not physically
entered by the user. An example of this is

fprintf(fid,’%g &’,a(i,j))

A section of code that can generate an array a of
numbers is as shown below:

ao=length(a);

for i=1:ao

for j=1:ao

if j==ao

fprintf(fid,’%g \\\\’,a(i,j));

else

fprintf(fid,’%g &’,a(i,j));

end

end

end

This Matlab code will insert the elements of a square
matrix in a LATEX document. With the addition
of suitable commands, full code for displaying the
matrix can be generated. A point worth noting is

TUGboat, Volume 24 (2003), No. 2 247

that the code remains the same irrespective of the
order of the matrix.

Returning to our PlaceLatex function, a tech-
nical check is made for the controllability of the sys-
tem; this code is omitted. Then, the pole placement
design is carried out with:

k=place(a,b,p);

The resulting gain matrix k is then written to
the user’s file with:

fprintf(fid,’\\begin{center}

\\mbox{State feedback

gain matrix,}

$ K = [’) for i=1:ao

fprintf(fid,’ \\ %g’,k(i));

end fprintf(fid,’]. $

\\end{center}’)

Finally, the output file is closed:

fclose(fid);

An excerpt from the typeset LATEX documenta-
tion for the present problem follows.

Pole placement:

Consider a system the state space model of which is

ẋ =

0 1 0 0
20.601 0 0 0

0 0 0 1
−0.4905 0 0 0

x +

0
−1
0

0.5

u

The open loop poles of the system are

Open loop poles = [0 0 4.53883 − 4.53883]

The open loop system is unstable as pole/s are lying in
RHP. The coefficients of the open loop characteristic
polynomial are :

Open loop characteristic polynomial coefficients =
[1 0 − 20.601 0 0].

The desired closed loop poles are given as : [. . .]

State feedback gain matrix,
K = [−298.146 − 60.6965 − 163.092 − 73.3931].

Two points about this output are worth noting:

1. None of the numerical data is physically en-
tered.

2. The program for generating the document is to-
tally independent of the problem being solved
and documented.

3.2 Bode plots

For our next example, consider a feedback system
the open loop transfer function of which is given as

G(s)H(s) =
20s + 20

s(s3 + 7s2 + 20s + 50)
(2)

Frequency (rad/sec)

P
h

a
s
e

 (
d

e
g

);
 M

a
g

n
it
u

d
e

 (
d

B
)

Bode Diagrams

−80

−60

−40

−20

0

20

10
−2

10
−1

10
0

10
1

10
2

−250

−200

−150

−100

Figure 1: Open loop bode plots

To generate its bode plot, one can use the bode
command as bode(num,den) where num = [20 20]
and den = [1 7 20 50 0]. Execution of this command
in Matlab with Control Systems Toolbox displays the
bode plot of the considered transfer function.

To generate the documentation of this problem
automatically, a new Matlab function BodeLatex

has been written, analogous to PlaceLatex. For ex-
ample, BodeLatex(num,den,‘bodex.tex’) creates
bodex.tex, which when latexed generates the fol-
lowing (excerpted).

Bode Plot:

This is an example of Bode plot report generated
through Matlab. Consider a feedback system having
open loop transfer function as

G(s)H(s) =
20(s + 1)

s(s + 5)(s2 + 2s + 10)

[. . .]
The open loop bode plots for the considered system
are as shown in Figure 1. To see the gain and phase
margins, one can use the margin command which gives
the bode plots as shown in Figure 2.
[. . .]
Since ωg < ωp, the system is stable.

248 TUGboat, Volume 24 (2003), No. 2

Frequency (rad/sec)

P
h

a
s
e

 (
d

e
g

);
 M

a
g

n
it
u

d
e

 (
d

B
)

Bode Diagrams

−80

−60

−40

−20

0

20

Gm=9.9293 dB (at 4.0131 rad/sec), Pm=103.66 deg. (at 0.44264 rad/sec)

10
−1

10
0

10
1

−250

−200

−150

−100

Figure 2: Open loop bode plots with gain and
phase margins

3.3 Matlab script files

Now let us consider a task of plotting a step re-
sponses of a second order system

G(s) =
ω2

n

s2 + 2ζωns + ω2
n

as its damping ratio, ζ is varied from 0.1 to 1.0 in the
steps of 0.1, thus, a series of 10 graphs. If one wishes
to include these 10 graphs in a LATEX document,
it’s clearly best not to write the code for inclusion
of graphics, caption and label, and copy it (with
modifications) 10 times.

It is important to note that here a task (inclu-
sion of a graph in LATEX document) is repeated, and
so the power of Matlab programming itself can be
invoked as is evident from the following portion of a
Matlab script file:

%Plots of second order system response

%with varying damping ratio

for i=1:10, zeta=i/10;

s=num2str(zeta);

This is followed by code (not shown here) that gen-
erates the step response.

Next, the code for generating distinct file names
and storing the graphs as EPS files and then calling
the graphs in \includegraphics commands with
an appropriate caption including the corresponding
value of ζ is shown. This code uses the Matlab
function num2str to convert numbers to strings and
strcat to concatenate strings.

s=num2str(i);

filename = strcat(’sresp’,s);

print(’-deps’, filename);

fprintf(fid,’\\begin{figure}\n

\\begin{center}\n\\includegraphics

[width=3in,height=3in]{sresp%i’,i);

fprintf(fid,’.eps}\n

\normalfont\normalfont \\

\caption{Step response for $ \\

zeta=%3.1f’,zeta);

Execution of this file in Matlab generates a file which
consists of inclusion of all ten graphs of step re-
sponses of a second order system

G(s) =
25

s2 + 10ζs + 25

as ζ is varied from 0.1 to 1.

4 Conclusion

In this paper, software which generates a LATEX doc-
ument from Matlab is introduced. The software al-
leviates the need to typeset the problem and its so-
lution separately by generating the documentation
automatically in LATEX. The document generation
is nearly transparent to the user, i.e., the user need
not know LATEX in great detail.

It is hoped that such suite of m-files will be
immensely useful to teachers and students and au-
thors of books on control systems. In a modification
of these m-files, it is intended to make the documen-
tation entirely transparent to the user, eliminating
altogether the need to know LATEX.

References

Buerger, D. J. LATEX for Scientists and Engineers.
McGraw-Hill, New York, 1990.

Knuth, D. E. The TEXbook. Addison-Wesley, 1986.

Kwakernak, H. “Electronic Text Processing, AUTO-

MATICA and Elsevier”. Automatica 32(3), 303–
304, 1996.

Mathworks. Control Systems Toolbox User’s Guide.
The MathWorks, Inc., 1998.

⋄ S. E. Talole
Scientist, G.M. faculty
Institute of Armament Technology
Girinagar, PUNE-411 025
setalole@hotmail.com

⋄ S. B. Phadke
Scientist, G.M. faculty
Institute of Armament Technology
Girinagar, PUNE-411 025
sbphadke@hotmail.com

TUGboat, Volume 24 (2003), No. 2 249

MlBibTEX’s Version 1.3

Jean-Michel Hufflen

Abstract

We present the features of the new version of
MlBibTEX, a new multilingual implementation of
BibTEX, the bibliography program associated with
(LA)TEX. The main point of this new version is the
use of a new language for designing bibliography
styles. This language is close to XSLT and we give
its manual as an annex.
Keywords bibliographies, multilingual features,
BibTEX, bst, nbst, XML, XSLT, MlBibTEX.

1 Introduction

It is well known that a bibliography program should
be associated with a text processor. If such a pro-
gram is used for documents such as history articles,
technical documentation, or research work, where
many references may be cited, the role of a bibli-
ography program is to search a database containing
bibliographical entries for the citations through-
out the document, sort them and arrange the infor-
mation associated with each selected entry. In short,
it has to build the ‘References’ section of the docu-
ment, containing bibliographical references, which
can be processed by the text processor at next run.

A bibliography program may look for keys sur-
rounded by special markers within a source text, as
does Tib [1]. Or it may use information included in
auxiliary (.aux) files, as does BibTEX [16], most com-
monly used with (LA)TEX [14]. Here is an example
of a bibliographical entry using BibTEX’s syntax:

@BOOK{howard1967b,
AUTHOR = {Robert~Ervin Howard},
TITLE = {Conan the Conqueror},
PUBLISHER = {Ace Books},
ADDRESS = {New York, New York},
NOTE = {Edited by L. Sprague de Camp},
YEAR = 1967}

If the entry howard1967b is cited within a doc-
ument, this information is put into an auxiliary file
when LATEX runs, so BibTEX can generate a .bbl

file containing the corresponding reference. When
LATEX runs again, this reference will look like:

[1] Robert Ervin Howard. Conan the Con-
queror. Ace Books, New York, New York,
1967. Edited by L. Sprague de Camp.

according to the bibliography style chosen. Here
and in the ‘References’ section of this article, we use
a ‘plain’ style, that is, references are labelled with
numbers, authors’ last names are written using small
capitals, and first names are not abbreviated. Other

choices are possible: see [6, §13.2] for a survey of
available bibliography styles.

Due to its conception, BibTEX has some lim-
itations: its syntax is rough, bibliographic styles
are written using an old-fashioned language [15],
and multilingual bibliographies are supported only
through workarounds. We personally missed this
last point very much, thus we have put into action a
new implementation of BibTEX, named MlBibTEX
(for ‘MultiLingual BibTEX’), with many multilin-
gual features. The first version (1.1) was described
in [8]. But as we explained in [12], the new version
described here (1.3) takes advantage of XML

1 and
uses a new language, nbst, for ‘new bibliography
styles’, close to XSLT

2 [21].
This article aims to give a survey of all the

new features introduced by MlBibTEX’s present ver-
sion. It is not a complete reference manual, but
gives a good overview of the program. First, we
describe the new syntactical features provided by
MlBibTEX.3 Then, we give some words about the
implementation, showing the connection with XML

and discussing two approaches for multiligual bib-
liographies. Then we explain how the information
about languages is managed within our bibliography
styles and show that nbst allows creators of bibliog-
raphy styles to put them both into action. Last, a
manual of elements and functions of the nbst lan-
guage is given as an annex.

2 New syntactic features

Historically, we first added syntax for multilingual
features [8]. Then we realised that some fields’ val-
ues could be structured better with some new syn-
tax. Here are the results of our choices.

2.1 Syntax for names

When BibTEX processes the value of an AUTHOR or
EDITOR field, it divides a family name into four fields:
First (for a first name), von (for a particle), Last (for
a last name), and Junior and recognizes these com-
ponents according to the following possible syntaxes
[16, §4]:

(i) First von Last

(ii) von Last, First

(iii) von Last, Junior, First

As suggested by the cases used within this terminol-
ogy, the words belonging to the von field are sup-
posed to use only lowercase characters, whereas the

1 EXtensible Markup Language.
2 EXtensible Stylesheet Language Transformations.
3 Let us note that ‘old’ .bib files are parsed successfully by

MlBibTEX and give outputs comparable to BibTEX’s, unless
square brackets are used in field values.

250 TUGboat, Volume 24 (2003), No. 2

@BOOK{howard1969,
AUTHOR = {Robert Ervin Howard, abbr => R. with

first => Lyon Sprague, von => de, last => Camp, abbr => L. Sprague with
Lin Carter}

TITLE = {Conan of {Cimmeria}},
PUBLISHER = {Ace Books},
ADDRESS = {New York, New York},
NOTE = {[Titre de la traduction fran\c{c}aise : “Conan le Cimm\’{e}rien”] ! french

[Titel der deutschen \"{U}bersetzung: “Conan von Cimmerien”] ! german}
YEAR = 1969,
LANGUAGE = english}

Figure 1: A multilingual entry using MlBibTEX’s syntax.

words belonging to other fields are supposed to be
capitalised. These rules are too restrictive: some
particles may be capitalised, while some words be-
longing to a last name may be written using lower-
case characters. Using additional braces solves some
problems, but not all. In addition, BibTEX abbre-
viates a first name by retaining only the first letter
of each word belonging to the First field, such let-
ters being followed with a period character. That
is sometimes incorrect: ‘Jon L White’ should be
abbreviated to ‘J. L White’ or ‘J. White’, not to
‘J. L. White’. First and middle American names
are handled differently from one name to another.
‘Robert Ervin Howard’ is usually written down as
‘Robert E. Howard’, which becomes ‘R. Howard’
when the first name is abbreviated. In contrast,
‘Henry Rider Haggard’ is usually written down as
‘H. Rider Haggard’, and becomes ‘H. R. Haggard’
in styles where first names are abbreviated. In ad-
dition, several letters may be retained when abbre-
viating a non-English first name:

• in French, ‘Charles Duits’ is abbreviated to ‘Ch.
Duits’, because the ‘ch’ group stands for one
digraph ([▼]);

• likewise, ’Christian’ is abbreviated to ‘Chr.’ in
German.

Since Version 1.2 [10], MlBibTEX allows an explicit
syntax for these fields and the abbreviation of a first
name, if it is different from the ‘standard way’:

first => ..., von => ..., last => ...,

junior => ..., abbr => ...

The order of the keywords is irrelevant and some
may be absent, provided that the last name is spec-
ified. For example:

first => Henry Rider, last => Haggard

where the von field is empty, and the abbreviation
of the first name is standard, that is, ‘H. R.’ For a
more complex example, see the specification of ‘Lyon
Sprague de Camp’ in Figure 1. You can mix the ‘old’

and ‘new’ syntaxes, in which case a name is parsed
like (i) if no comma occurs, like (ii) (resp. (iii)) if
the number of commas not followed with a keyword
is one (resp. two) and the keywords give additional
information.4 This is useful when we have to give a
specific abbreviation for a first name: see the spec-
ification of ‘Robert Ervin Howard’ in Figure 1. In
fact, this syntax is close to that for passing values
inside a subprogram call in Ada [18, §6.4] and other
languages.

When a name is not for a person but for an
organisation, it is well known to BibTEX users that
such an expression should be surrounded by addi-
tional braces:

EDITOR = {{\TUGboard 2003}}

so BibTEX considers it as a one-component name,
this component being a Last part. However, this
syntax poses a problem when a TEX command is
used within such a name. In the given example,
‘\TUGboard’ is viewed as an accent command: when
the bibliography is sorted, the corresponding entry
is alphabeticised as ‘2003’. MlBibTEX’s new syn-
tax allows the specification of both an organisation
name and a key for sorting:

EDITOR = {org => \TUGboard 2003,

sortingkey => TUG Board 2003}

As in BibTEX, co-authors are connected by the
‘and’ keyword within .bib files. After one author or
several successive co-authors, MlBibTEX allows the
addition of collaborators, introduced by the ‘with’
keyword. Figure 1 gives an example in MlBibTEX.5

4 Nevertheless, defining any part of a name twice causes
an error.

5 Besides, the entry given in this figure allows us to
emphasise the difference between co-authors and collabora-
tors. In fact, L. Sprague de Camp and L. Carter sorted
and arranged R. Howard’s manuscripts after his death. So
they are more ‘collaborators’ than co-authors. The entry
howard1967b, given in the introduction, might be rewritten
using this syntax, instead of using a NOTE field.

TUGboat, Volume 24 (2003), No. 2 251

<book id="howard1969" language="english">
<author>

<name><personname><first abbr="R.">Robert Ervin</first><last>Howard</last></personname></name>
<with/>
<name>

<personname>
<first abbr="L. Sprague">Lyon Sprague</first><von>de</von><last>Camp</last>

</personname>
</name>
<with/>
<name><personname><first>Lin</first><last>Carter</last></personname></name>

<title>
Conan of <asitis>Cimmeria</asitis>
<!-- asitis is for a group of words that should not be case-converted. -->

</title>
<publisher>Ace Books</publisher>
<year>1969</year>
<address>New York, New York</address>
<note>

<group language="french">
Titre de la traduction française : <emph emf="yes" quotedbf="yes">Conan le Cimmérien</emph>

</group>
<group language="german">

Titel der deutschen Übersetzung: <emph emf="no" quotedbf="yes">Conan von Cimmerien</emph>
</group>

</note>
</inproceedings>

Figure 2: The entry given in Figure 1 viewed as an XML tree.

As in BibTEX, the ‘others’ keyword can be used
when additional names are left unspecified: ‘and
others’ and ‘with others’ are allowed. In the bib-
liography of this article, reference [7] shows how such
an entry using collaborators is formatted.

2.2 Syntax for multilingual features

In MlBibTEX’s terminology, a language identifier

is a non-ambiguous prefix of:

• an option of the babel package [2],

• or a multilingual package name such as french

[5], german [17] or polski [4].6

The language of an entry is given by the LANGUAGE

field, whose value is a language identifier (see Fig-
ure 1). This field defaults to ‘english’.

Here we only show the syntax we use for mul-
tilingual features included in .bib files; a more com-
plete description can be found in [8], and more ex-
amples in [12]. In the following, ‘s ’, ‘s1’, . . . , ‘sn’

6 This choice of a non-ambiguous prefix allows a language
identifier to get access to several ways to process a language.
For example, a language identifier set to french works with
the frenchb option of the babel package as well as the french

package.

are strings; n is a positive natural number; and ‘l ’,
‘l1’, . . . , ‘ln’ are language identifiers.

A language change is denoted by ‘[s] : l ’.
It is used for foreign words and in particular, it al-
lows a text processor to hyphenate them correctly.

A language switch without default lan-

guage is expressed by the following syntax:

[s1] ! l1 ... [sn] ! ln (1)

If there exists i (0 ≤ i ≤ n) such that the refer-
ence’s language is equal to li, then Expression (1)
yields si; otherwise, this expression is replaced by
an empty string. In other words, this syntax is used
for additional information that must be typeset in a
particular language. For example, if we process the
entry howard1969 in French (resp. German), we can
add the title of the French (resp. German) transla-
tion, as shown in the NOTE field in Figure 1.

A language switch with default language

is expressed by the following syntax:

[s1] * l1 ... [sn] * ln (2)

This syntax is used for information that must be in-
cluded, possibly in another language. If there exists
i (0 ≤ i ≤ n) such that the reference’s language is
equal to l i, then Expression (2) yields s i; otherwise,
this expression is replaced by the string associated

252 TUGboat, Volume 24 (2003), No. 2

with the language’s entry if such a string exists, or
by the string associated with the English language
if not. For example, we could allow the publisher’s
address of the howard1969 entry to use a Russian
transliteration for a reference to this entry in Rus-
sian. Of course, this address is to be put in English
otherwise. To do that, the ADDRESS field should be
given such a value:

ADDRESS =

{[New-York]

[〈Russian transliteration〉] * russian}

Notice that ‘[...]’, not followed with ‘*’, ‘!’ or ‘:’
means ‘[...] * l ’, where ‘l ’ is the language’s en-
try.

2.3 Syntax for page numbers

In a PAGES field, MlBibTEX recognizes:

• a single page (one token): {2003};

• the first and last pages (three tokens):

{2000--2003} or {2000-2003}

• the first page and an unspecified number of fol-
lowing ones (two tokens): {2003+};7

• some enumerated pages (five tokens in the ex-
ample below): {2000,2003,2005}.

The tokens may or may not be separated by white-
space8 characters. In all the other cases, the value
associated with this field is kept verbatim and ap-
pears as-is for any predefined bibliography style.

3 Implementation issues

MlBibTEX’s first version [8] was written using C,
for the sake of efficiency and portability. When we
started implementation of the present version, we
realised that we needed calls to external functions
within our bibliography styles.9 So we realised that
it was preferable for our program to be written in a
higher-level programming language. This way, the
interface between bibliography styles and external
functions would be designed better, so developers
of new styles could write extensions in the source
language more easily. We decided to develop a pro-
totype in Scheme, with the features related to XML

put into action by SXML
10 [13], an implementation

of XML trees by means of Scheme expressions. Our
nbst language, for bibliography styles, includes a

7 Such a specification is typeset as ‘pp. 2003 ff.’ in English-
speaking bibliographies [3, §15.191].

8 The whitespace characters are space, tab, newline, car-
riage return, and form feed.

9 These external calls are used to manage information not
included in .aux files. So it has to be directly extracted from
.tex files.

10 Scheme implementation of XML.

<nbst:bst version="1.3" id="plain"
xmlns:nbst=

"http://lifc.univ-fcomte.fr/~hufflen/mlbibtex">

<!-- Reference-dependent approach: -->
<nbst:param name="language" select="’*self*’"/>

<!-- Root element grouping entries: -->
<nbst:template match="mlbiblio">

...
</nbst:template>

...
</nbst:bst>

Figure 3: Layout of a bibliography style file using
nbst.

call function (see Appendix B), that gives access
to Scheme functions of MlBibTEX’s library.

Parsing an MlBibTEX entry results in a repre-
sentation of an XML tree in SXML; for example, the
entry of Figure 1 is equivalent to the XML tree given
in Figure 2, that is, if the SSAX

11 parser of SXML

is applied to this XML tree, it yields the same re-
sult. Our XML trees modelling entries are confor-
mant with a revised version of the DTD

12 sketched
in [9]. They are rooted by the mlbiblio element, as
suggested by the first template given in Figure 3.

In addition, SXML relies on functions extend-
ing the basic encoding of characters used in Scheme.
These functions should allow Scheme programs to
handle Unicode, but they are platform-dependent:
some interpreters provide them, possibly partially,
some do not. In practice, MlBibTEX can handle 8-
bit latin1 encoding;13 further development will be
needed to adapt MlBibTEX to the whole of Uni-
code,14 but the framework to do that is already
present.

4 Multilingual approaches

As mentioned in [8], multilingual bibliographies can
be organised with respect to two approaches, both
of which can be put into action by MlBibTEX:

reference-dependent each reference of the docu-
ment’s bibliography is expressed using its own
language: for example, the month name of a
reference to a book written in English (resp.
French, German, . . .) is given in English (resp.
French, German, . . .);

11 Scheme implementation of SAX (‘Simple API for XML’).
12 Document Type Definition (document markup model).
13 [7, Table C.4] has more details about encodings.
14 If you would like to use characters from non-Latin alpha-

bets (e.g., Cyrillic characters), now put the LATEX commands
to produce them, rather than these characters themselves. A
temporary situation, we hope.

TUGboat, Volume 24 (2003), No. 2 253

<nbst:template match="author">
<nbst:apply-templates/>
<nbst:text>: </nbst:text>

</nbst:template>

<nbst:template match="name">
<nbst:apply-templates/>

</nbst:template>

Figure 4: Formatting names in nbst.

document-dependent all references are expressed
using the document’s language, as far as possi-
ble.

5 The nbst Language

Most elements of nbst behave like their namesakes
in XSLT. Figure 3 gives the general layout of a bibli-
ography style and a representative example is given
in Figures 4 & 5. The path expressions used in these
figures are related to the tree given in Figure 2. Let
us notice that some elements and attributes of are
recognised by the nbst processor, but do not have
any effect presently— they have been planned for
future use of MlBibTEX, especially for generating
XML documents15 —this information is given in Ap-
pendix A. We assume that readers are quite familiar
with XPath [20] and XSLT [21] — there exist some
good introductory books about them, for example,
[19] — so in this section we only explain how the lan-
guage information is managed by the nbst processor.

Given a fragment of an entry viewed as a node
(an XML subtree), its current language is the
value of the language attribute if it exists, the value
of the current language of its parent otherwise. The
current language for an entry is the entry’s language
(see Section 2.2).

When templates are to be instantiated, the rule
added to those inherited from XSLT is that a tem-
plate with the language attribute has higher prior-
ity than the same template without it.16 This rule
overrides all the others. In particular, it applies if a
template is invoked by name,17 as well being applied
if the current node matches the pattern of its match
attribute.

15 In particular, we plan to investigate the generation of
‘References’ sections for DocBook documents [22].

16 In fact, there are two levels of priority: the first is ruled
by the language attribute, the second defined by XSLT, in-
cluding the priority attribute.

17 As a consequence, there can be several templates with
the same name— which is an error in XSLT [21, §6]—pro-
vided that the values possibly associated with the different
language attributes are pairwise-different.

When we begin to apply a bibliography style,
the language attribute is associated with the doc-
ument’s language18 (resp. the ‘*self*’ value) ac-
cording to the document-dependent (resp. reference-
dependent) approach. When a template is to be in-
voked by name by means of such a statement:

<nbst:call-template name="..."/>

then we look for the current language. If this value
is different from ‘*self*’, we look for the named
template with the language attribute set to this
value if it exists. If not, the default named template,
that is, without the language attribute, is invoked.
The use-language attribute allows the redefinition
of the current language; for example:

<nbst:call-template

name="..." use-language="portuguese"/>

invokes a named template with the language at-
tribute set to ‘portuguese’ if such a template ex-
ists, its namesake without this attribute if not. The
same rules applies for the nbst:apply-templates

element:

<nbst:apply-templates

select="S" use-language="finnish"/>

tries to find, for each node selected by the expression
S, a template with the language attribute set to the
right value (here, finnish) before instantiating the
template without the language attribute. The same
rule holds for templates with a mode attribute: given
a set of templates with the same value associated
with the mode attribute, we apply first the template
with the right value for the language attribute, sec-
ond the template without this attribute. As in XSLT

[21, § 5.7], an nbst:apply-templates element with
a mode attribute can only apply templates with the
same value for this mode.

Using the ‘*self*’ value is of little interest with
an nbst:call-template element since the current
node does not change when a template is invoked by
its name. So the statement:

<nbst:call-template name="..."

use-language="*self*"/>

is equivalent to:

<nbst:call-template name="..."/>

unless the language of the template instantiated is
not the current node’s language. The statement:

<nbst:apply-templates

select="S" use-language="*self*"/>

dispatches all the selected nodes w.r.t. their associ-
ated languages. It is equivalent to:

18 MlBibTEX tries to determine it as far as possible. Most
often, it is the last option given to the babel package.

254 TUGboat, Volume 24 (2003), No. 2

<nbst:template match="personname">
<nbst:if test="first"><nbst:value-of select="first"/><nbst:text> </nbst:text></nbst:if>
<nbst:if test="von"><nbst:value-of select="von"/><nbst:text> </nbst:text></nbst:if>
<nbst:text>\textsc{</nbst:text><nbst:value-of select="last"/><nbst:text>}</nbst:text>
<nbst:if test="junior">, Junior</nbst:if>

</nbst:template>

<nbst:template match="and">
<nbst:choose>

<nbst:when test="following-sibling::and or following-sibling::and-others">
<nbst:text>, </nbst:text>

</nbst:when>
<nbst:otherwise>

<nbst:text> </nbst:text><nbst:value-of select="$bbl.and"/><nbst:text> </nbst:text>
</nbst:otherwise>

</nbst:choose>
</nbst:template>

<nbst:template match="and-others">
<nbst:text> </nbst:text><nbst:value-of select="$bbl.etal"/>

</nbst:template>

Figure 5: Formatting names with the nbst language (continued).

<nbst:for-each select="S">

<nbst:apply-templates select="."

use-language="L"/>

</nbst:for-each>

where L is the current language of the current node.
This expression is used for the mlbiblio element
to build references in the reference-dependent ap-
proach.

As an example, the template given in Figure 6
is instantiated for this name:

AUTHOR = {[Zoltán Kodály] : hungarian}

6 Conclusion

Roughly speaking, we can consider that getting a
bibliographical reference from an entry is a particu-
lar case of transformation — the same information,
arranged differently. Thus, an XSLT-like language
should be suitable for the task. In addition, our
management of the information related to particular
languages should ease the making of mutilingual bib-
liographies. At the time of writing, our program is
in beta test and we have successfully rewritten a rep-
resentative range of bibliography styles of BibTEX.
So we think we are ready for public use and larger
experiment.

7 Acknowledgements

Special thanks to Hans Hagen and Volker R. W.
Schaa, who agreed to give the show associated with
a preliminary version of this paper at the TUG 2003

conference. Thanks to Karl Berry and Barbara Bee-
ton who proofread this revised and updated version.

References

[1] James C. Alexander: Tib: A TEX Biblio-
graphic Preprocessor. Version 2.2, see CTAN:

biblios/tib/tibdoc.tex. 1989.

[2] Johannes Braams: Babel, a Multilingual Pack-
age for Use with LATEX’s Standard Document
Classes. Version 3.7. May 2002. CTAN:macros/
latex/required/babel/babel.dvi.

[3] The Chicago Manual of Style. The University
of Chicago Press. The 14th edition of a manual
of style revised and expanded. 1993.

[4] Antoni Diller: LATEX wiersz po wierszu.
Wydawnictwo Helio, Gliwice. Polish translation
of LATEX Line by Line with an additional annex
by Jan Jelowicki. 2001.

[5] Bernard Gaulle : Notice d’utilisation du style
french multilingue pour LATEX. Version pro
V5.01. Janvier 2001. CTAN:loria/language/

french/pro/french/ALIRE.pdf.

[6] Michel Goossens, Frank Mittelbach and
Alexander Samarin: The LATEX Companion.
Addison-Wesley Publishing Company, Read-
ing, Massachusetts. 1994.

[7] Michel Goossens and Sebastian Rahtz,
with Eitan M. Gurari, Ross Moore and
Robert S. Sutor: The LATEX Web Compan-
ion. Addison-Wesley Longman, Inc., Reading,
Massachusetts. May 1999.

TUGboat, Volume 24 (2003), No. 2 255

<nbst:template match="personname" language="hungarian"> <!-- Here, the family name comes first. -->
<nbst:text>\textsc{</nbst:text>
<nbst:if test="von"><nbst:value-of select="von"/><nbst:text> </nbst:text></nbst:if>
<nbst:value-of select="last"/><nbst:text>}</nbst:text>
<nbst:if test="first"><nbst:text> </nbst:text><nbst:value-of select="first"></nbst:if>
<nbst:if test="junior">, Junior</nbst:if>

</nbst:template>

Figure 6: Formatting Hungarian names with the nbst language.

[8] Jean-Michel Hufflen: “MlBibTEX: a New
Implementation of BibTEX”. In: EuroTEX
2001 (pp. 74–94). Kerkrade, The Netherlands.
September 2001.

[9] Jean-Michel Hufflen: “Multilingual Features
for Bibliography Programs: from XML to Ml-
BibTEX”. In: EuroTEX 2002 (pp. 46–59). Ba-
chotek, Poland. April 2002.

[10] Jean-Michel Hufflen: “Towards MlBibTEX’s
Versions 1.2 & 1.3”. MaTEX Conference. Bu-
dapest, Hungary. November 2002.

[11] Jean-Michel Hufflen: “Mixing Two Bibliogra-
phy Style Languages”. In: LDTA 2003, Vol. 82.3
of ENTCS. Elsevier, Warsaw, Poland. April
2003.

[12] Jean-Michel Hufflen: “European Bibliogra-
phy Styles and MlBibTEX”. TUGboat, Vol. 24,
no. 3 (in process). EuroTEX 2003, Brest,
France. June 2003.

[13] Oleg Kiselyov: “A Better XML Parser through
Functional Programming”. In: 4th Inter-
national Symposium on Practical Aspects of
Declarative Languages, Vol. 2257 of LNCS.
Springer-Verlag. 2002.

[14] Leslie Lamport: LATEX: A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[15] Oren Patashnik: “Designing BibTEX styles”.
February 1988. Part of BibTEX distributions.

[16] Oren Patashnik: “BibTEXing”. February
1988. Part of BibTEX distributions.

[17] Bernd Raichle: Die Makropakete „german“
und „ngerman“ für LATEX2ε, LATEX 2.09, Plain-
TEX and andere darauf Basierende Formate.
Version 2.5. Juli 1998. Im Software LATEX.

[18] S. Tucker Taft and Robert A. Duff, eds.: Ada
95 Reference Manual. Language and Standard
Libraries. No. 1246 in LNCS. Springer-Verlag.
International Standard ISO/IEC 8652:1995(E).
1995.

[19] Doug Tidwell: XSLT. O’Reilly & Associates,
Inc. August 2001.

[20] W3C: XML Path Language (XPath). Ver-
sion 1.0. W3C Recommendation. Edited
by James Clark and Steve DeRose. Novem-
ber 1999. http://www.w3.org/TR/1999/

REC-xpath-19991116.

[21] W3C: XSL Transformations (XSLT). Ver-
sion 1.0. W3C Recommendation. Writ-
ten by Sharon Adler, Anders Berglund, Jeff
Caruso, Stephen Deach, Tony Graham, Paul
Grosso, Eduardo Gutentag, Alex Milowski,
Scott Parnell, Jeremy Richman and Steve
Zilles. November 1999. http://www.w3.org/

TR/1999/REC-xslt-19991116.

[22] Norman Walsh and Leonard Muellner: Doc-
Book: The Definitive Guide. O’Reilly & Asso-
ciates, Inc. October 1999.

Appendix A Elements of nbst

Hereafter, we describe each element of nbst. For
each of them, we give its syntax : the attributes as-
sociated with it, and its content. For each attribute,
we underline its name if it is required, and give the
type of its possible values. When these values are
enumerated, the default value is underlined.

The syntax is defined using regular expressions:
the ‘|’ sign means an alternative, ‘?’ is used for an
optional element, ‘*’ (resp. ‘+’) means zero (resp.
one) or more occurrences of an element.

Here are the type identifiers used throughout
this section:

CDATA for ‘Character DATA’, that is, literal data
characters without ‘<, ‘>’, ‘&’;19

char literal character;

expr analogous to an XPath expression;

id unique identifier for a resource;

lg-expr expression that results in either a non-
ambiguous prefix of available languages or the
‘*self*’ keyword;

name simple identifier;20

19 As in XML, use the entities ‘<’, ‘>’, ‘&’ for
these characters.

20 ‘name ’ is used instead of ‘qualified name’ within XSLT

since Version 1.3 does not allow namespaces, except for nbst.

256 TUGboat, Volume 24 (2003), No. 2

nmtoken whitespace-free sequence of characters;

number constant number;

pattern expression allowed within the match at-
tribute of the nbst:template element;

template any (possibly empty) sequence of nbst el-
ements, except for top-level ones;

top-level-elt element allowed at the top level;

uri-ref now a simple identifier.21

Plurals denote non-empty sequences whose elements
are separated by whitespace characters: for exam-
ple, ‘names’ is for a non-empty sequence of objects
each of type ‘name ’.

<nbst:accumulate>

Synt.: <nbst:accumulate>

template

</nbst:accumulate>

Pushes the result of template onto the stack
used when we process a bst function (see [11]
for more details). Several nbst:accumulate el-
ements can be given sequentially, but they can-
not be nested.

<nbst:apply-templates>

Synt.: <nbst:apply-templates

select=expr mode=name

use-language=lg-expr >

(nbst:with-param |

nbst:sort)*

</nbst:apply-templates>

Processes the node set selected by the value of
the select attribute, or all the children of the
current node by default. The selected node set
is processed in document order, unless a sorting
specification is present. About the attributes
mode and use-language, see Section 5.

<nbst:attribute>

Synt.: <nbst:attribute name=name >

template

</nbst:attribute>

Recognised, but does not have any effect, like
nbst:attribute-set and nbst:element. See
Section 5.

<nbst:attribute-set>

Synt.: <nbst:attribute-set

name=name

use-attribute-sets=names >

nbst:attribute *

</nbst:attribute-set>

See nbst:attribute.

21 True Uniform Resource Identifiers, in the sense of
XML, will be allowed in a future version.

<nbst:bst>

Synt.: <nbst:bst id=id version=number >

top-level-elt *

</nbst:bst>

Root element of a bibliography style. The only
version number presently recognised is 1.3.

<nbst:call-template>

Synt.: <nbst:call-template

name=name

use-language=lg-expr >

nbst:with-param *

</nbst:call-template>

Invokes a template by name by means of the
required name attribute. See Section 5 about
the use-language attribute.

<nbst:choose>

Synt.: <nbst:choose>

nbst:when + nbst:otherwise ?

</nbst:choose>

Each of the nbst:when elements is tested in
turn, until reaching an element whose test is
true, in which case the content is instantiated.
If no such element exists, then the content of
the nbst:otherwise element is instantiated if
it exists, otherwise nothing is created.

<nbst:comment>

Synt.: <nbst:comment>

template

</nbst:comment>

Puts the result of template as a comment. In
practice, now used to write lines beginning with
‘%’ in LATEX mode.

<nbst:copy>

Synt.: <nbst:copy

use-attribute-sets=names >

template

</nbst:copy>

Copies the current node at the first level onto
the result. The use-attribut-sets attribute
does not have any effect presently.

<nbst:copy-of>

Synt.: <nbst:copy-of select=expr />

Copies the whole of the node set selected by the
required select attribute.

<nbst:decimal-format>

Synt.: <nbst:decimal-format

name=name

decimal-separator=char

grouping-separator=char

infinity=cdata

minus-sign=char NaN=cdata

TUGboat, Volume 24 (2003), No. 2 257

percent=char per-mille=char

zero-digit=char digit=char

pattern-separator=char />

Declares a decimal format, which rules the in-
terpretation of a format pattern used by the
format-number function. If there is a name at-
tribute, then this element declares a named dec-
imal format; otherwise, it declares the default
decimal format. Here are the other attributes:

• decimal-separator specifies the charac-
ter used for the decimal sign, defaults to
the period character (‘.’);

• grouping-separator: the character used
as a grouping (e.g., thousands) separator,
defaults to ‘,’;

• infinity: the identifier used to represent
infinity, defaults to ‘Infinity’;

• minus-sign: the character used as the de-
fault minus sign, defaults to ‘-’;

• NaN: the identifier used to represent a value
that should be a number but is not, de-
faults to ‘NaN’ (‘Not a Number’);

• percent and per-mille: the two charac-
ters used as percent and per-mille signs
(‘%’ and ‘%�’); in LATEX mode, default to
the command producing them (‘\%’ and
‘\textperthousand’22);

• zero-digit: a character always replaced
by a digit, defaults to ‘0’;

• digit: a character used for a digit, left
blank for a missing digit, defaults to ‘#’;

• pattern-separator: the character used
to separate sub-patterns for positive and
negative patterns, defaults to ‘;’.

<nbst:element>

Synt.: <nbst:element

name=name

use-attribute-sets=names >

template

</nbst:element>

See nbst:attribute.

<nbst:for-each>

Synt.: <nbst:for-each select=expr >

nbst:sort * template

</nbst:for-each>

template is instantiated for each node selected
by the required select expression, which must
evaluate to a node set. The selected nodes are
processed in document order, unless a sorting
specification is present.

22 Notice that this command can be used with the Cork
encoding, that is, the T1 option of the fontenc package.

<nbst:if>

Synt.: <nbst:if test=expr >

template

</nbst:if>

If the evaluation of the test attribute results in
true, then template is instantiated; otherwise,
nothing is created.

<nbst:include>

Synt.: <nbst:include href=uri-ref />

Includes elements belonging to another nbst or
bst file, identified by the href attribute. Al-
lowed as a top-level element only.

<nbst:key>

Synt.: <nbst:key name=name

match=pattern

use=expr />

Recognised but does not have any effect.

<nbst:message>

Synt.: <nbst:message

terminate=("yes" | "no")>

template

</nbst:template>

Displays the result of template as a message.
If the terminate attribute has the value ‘yes’,
then the program terminates after displaying
the message.

<nbst:number>

Synt.: <nbst:number

level=("single" |

"multiple" | "any")

count=pattern from=pattern

value=expr format=cdata

language=lg-expr

letter-value=

("alphabetic" |

"traditional")

grouping-separator=char

grouping-size=number />

Puts a formatted number. The number may
be specified by means of the value attribute,
in which case the expression is evaluated and
the number and round functions are applied to
the resulting object. If no value attribute is
specified, then the inserted number is based on
the position of the current node, controlled by
the following attributes:

• level specifies which levels of the source
tree should be considered;

• count attribute is a pattern that specifies
what nodes should be counted at those lev-
els: if it is unspecified, it defaults to the

258 TUGboat, Volume 24 (2003), No. 2

pattern matching any node with the same
node type as the current node;

• from: a pattern that specifies where count-
ing starts.

The format attribute is split into alphanumeric
and non-alphanumeric characters. The former
are formats for numbers:

• ‘1’ for 1, 2, . . .

• ‘i’ (resp. ‘I’) for i, ii, . . . (resp. I, II, . . .)

• ‘a’ (resp. ‘A’) for a, b, . . . (resp. A, B, . . .),
the language attribute being used to de-
termine the alphabetical order.

The latter are copied verbatim onto the for-
matted string. Consult nbst:decimal-format

about the grouping-separator attribute. The
grouping-size attribute specifies the size of
the grouping, defaulting to 3. If only one of
these two attributes is specified, then it is ig-
nored. The letter-value attribute does not
have any effect.

<nbst:otherwise>

Synt.: <nbst:otherwise>

template

</nbst:otherwise>

See nbst:choose.

<nbst:output>

Synt.: <nbst:output

method=("LaTeX" | "xml" |

"html" | "text")

version=nmtoken

encoding=cdata

omit-xml-declaration=

("yes" | "no")

standalone=("yes" | "no")

doctype-public=cdata

doctype-system=uri-ref

cdata-section-elements=

names

indent=("yes" | "no")

media-type=cdata />

Only allowed as a top-level element. Allows bib-
liography style writers to specify how they wish
the result to be output. Presently, the values
allowed for the method attribute are:

• ‘LaTeX’, for LATEX output;

• ‘xml’ (resp. ‘html’), for XML (resp. HTML)
output; however, do not forget that, as
with XSLT, the output for an HTML file
must be written according to XHTML

23

conventions;

23 EXtensible HyperText Markup Language.

• ‘text’, for verbatim text output.

Other attributes:

• version specifies the version of the output
method,

• encoding: the character encoding to be
used;

• omit-xml-declaration: whether or not
the XML declaration should be output;

• the other attributes do not have any effect.

<nbst:param>

Synt.: <nbst:param name=name

select=expr >

template

</nbst:param>

Used at the top level to define an external pa-
rameter or within a template rule to specify a
local parameter. The select attribute gives
a default value. When this attribute is ab-
sent, the default value is given by instantiating
template if it is not empty. If this parame-
ter is not given a default value, nbst pops the
stack used when we process a bst function; if
this stack is empty, the value given to the pa-
rameter is the empty string.

<nbst:sort>

Synt.: <nbst:sort

select=expr

language=lg-expr

data-type=

("text" | "number")

order=("ascending" |

"descending")

case-order=("upper-first" |

"lower-first")/>

Used as a child of an nbst:apply-templates or
nbst:for-each element. The first occurrence
specifies the primary sort key, the second occur-
rence the secondary sort key used for elements
left unsorted, and so on. The key is given by
the select attribute, which defaults to ‘.’. This
expression is applied to each node of the current
set, and the result is converted into a string or
a number, w.r.t. the value of the data-type at-
tribute. In addition:

• order can be ascending or descending;

• language: the sort keys’ language;

• data-type: the sort keys’ data type:

– ‘text’ means that they should be lex-
icographically sorted in the culturally
correct way for the current language,

– ‘number’ specifies a numerical sort, in
which case language is ignored;

TUGboat, Volume 24 (2003), No. 2 259

• the possible values for case-order apply
when data-type is ‘text’, and specifies
that upper-case letters should sort before
lower-case letters or vice-versa. The de-
fault value is language-dependent.

<nbst:template>

Synt.: <nbst:template

match=pattern name=name

language=lg-expr

priority=number mode=name >

nbst:param * template

</nbst:template>

Defines a template rule. The match attribute
is a pattern that identifies the source node to
which the rules apply. The match attribute is
required unless a name attribute is given, but
both attributes can be specified. It is an error
for the value of the match attribute to contain
a reference to a variable. When such a rule is
applied, template is instantiated.

Templates can be invoked by name, in which
case the match attribute has no effect; likewise
with the name attribute if the template is in-
voked by an nbst:apply-templates element.
The role of the attributes language, mode and
priority is explained in Section 5.

<nbst:text>

Synt.: <nbst:text

disable-output-escaping=

("yes" | "no")>

cdata

</nbst:text>

Copies its content verbatim onto the output.
The disable-output-escaping attribute does
not have any effect.

<nbst:variable>

Synt.: <nbst:variable name=name

select=expr >

template

</nbst:variable>

Analogous to nbst:param, but the value asso-
ciated with a variable cannot be redefined by
an element such as nbst:with-param.

<nbst:value-of>

Synt.: <nbst:value-of

select=expr

disable-output-escaping=

("yes" | "no")/>

The value of the required select attribute is
evaluated and the resulting object is converted
to a string. The disable-output-escaping at-
tribute does not have any effect.

<nbst:warning>

Synt.: <nbst:warning>

template

</nbst:warning>

Equivalent to nbst:message with terminate

set to ‘no’.

<nbst:when>

Synt.: <nbst:when test=expr >

template

</nbst:when>

See nbst:choose.

<nbst:with-param>

Synt.: <nbst:with-param

name=name select=expr >

template

</nbst:with-param>

Passes values to parameters before instantiating
templates. The required name attribute speci-
fies the name of the parameter, its value is spec-
ified in the same way as for nbst:param. The
current node and node list used for computing
the value are the same as for the element within
which it can occur (nbst:apply-templates or
nbst:call-template).

Appendix B Functions associated with our

paths

We begin this section by describing the types used
within the functions associated with our paths. As
in XPath, we allow some type conversions. So, for
each type, we mention which other types can be con-
verted into it.

boolean is for the truth values: true and false. A
node set is viewed as false if it is empty, as
true otherwise. Likewise a string. A number is
viewed as false if it is equal to zero, true other-
wise.

node-set A node set belonging to the tree of bib-
liographical entries. A string can be converted
into a one-element node set if it is a well-formed
XML text, otherwise the result is an empty node
set. A boolean or numerical value can be con-
verted into a text node.

number When applied to integers, functions using
numbers return integer results as far as possible,
real numbers otherwise. A string can be con-
verted into a number, provided the characters
it contains form a number, possibly surrounded
by whitespace characters:

"␣-273.15" is a number,
"-␣273.15" is not.

260 TUGboat, Volume 24 (2003), No. 2

If such a conversion fails, the result is NaN. If
NaN is used instead of a number as an argument
of a numeric function, the result is NaN.

string Boolean and numbers can be converted into
strings. So can the values for numeric errors,
Infinity and NaN. Node sets too, in which case
an attribute node is converted into its associ-
ated value, whereas an element node is con-
verted into the concatenated values of all the
text nodes inside it.

Throughout this section, ‘n ’, ‘ns ’, ‘s ’ denote
variables of type number, node-set, string respec-
tively, whereas ‘x ’ is for an expression of any type. If
several variables of the same type are needed, we use
indices. Some functions can be applied to any num-
ber of arguments, in which case the additional op-
tional arguments are denoted by ‘...’. As in XPath,
some arguments can be omitted, in which case the
current node set is passed: we denote this behaviour
by a question mark (‘?’). For each function, we give
the type of its result, a template of its use and a
short description of its behaviour.

!=

Use: boolean x1 != x2

Returns true if x1 and x2 are distinct objects,
false otherwise.24

*, +, -

Use: number n1 * n2 (resp. n1 + n2, n1 - n2)

Returns n 1 ∗ n 2 (resp. n 1 + n 2, n 1 − n 2).

<, <=

Use: boolean n1 < n2 (resp. n1 <= n2)

Returns true if n 1 < n 2 (resp. n 1 ≤ n 2), false
otherwise.24

=

Use: boolean x1 = x2

Returns true if:

• x1 and x2 are the same object,

• or have a common element if x1 or x2 is a
node set;

returns false otherwise.24

>, >=

Use: boolean n1 > n2 (resp. n1 >= n2)

Returns true if n 1 > n 2 (resp. n 1 ≥ n 2), false
otherwise.24

abbreviate

Use: string abbreviate(s)

Assuming that s is a first name, returns its ab-
breviation. If an ad hoc abbreviation has been
specified by means of the abbr keyword, returns

24 Notice that NaN != NaN yields true, whereas NaN op NaN

yields false if op ∈ {<, <=, =, >, >=}.

it. Otherwise, s is abbreviated in a standard
way, that is, the initials and the hyphen char-
acter are retained:
abbreviate("John Fitzgerald)"

yields "J. F."

abbreviate("Paul-Loup") "P.-L."

abs

Use: number abs(n)

Returns the absolute value of n .

and

Use: boolean b1 and b2

Returns true if b1 and b2 are both true, false
otherwise.

boolean

Use: boolean boolean(x)

Converts x to a boolean true or false value.

call

Use: string call(s1,s2,...)

Calls s1, a function included in MlBibTEX’s li-
brary, with the arguments s2, . . . The s1 func-
tion must return a string which is the result of
the call function. In practice, this function is
used by the multilingual interface.

ceiling

Use: number ceiling(n)

Returns the smallest integer that is greater than
or equal to n .

concat

Use: string concat(s1,s2,...)

Returns the concatenation of the values of the
passed arguments.

contains

Use: string contains(s1,s2)

Returns true if s1 contains s2, false otherwise.

count

Use: number count(ns)

Returns the number of nodes in ns .

current

Use: node-set current()

Returns the current node as a node set.

div

Use: number n1 div n2

Divides n 1 by n 2. If n2 is equal to zero, this op-
eration results in Infinity—this value is not
a string.

false

Use: boolean false()

Returns the false value.

firstcapitalize

Use: string firstcapitalize(s)

Converts s to all lowercase except for the first
word, which is capitalised.

TUGboat, Volume 24 (2003), No. 2 261

floor

Use: number floor(n)

Returns the largest integer that is less than or
equal to n .

format-number

Use: number format-number(n,s1,s2?)

Formats n according to the specifications of s1

(see nbst:decimal-format) and the name s2.

generate-newly

Use: string generate-newly(s1,s2,ns?)

Returns a unique string associated with the first
node of ns . If s1 is not empty, it is used as
result’s prefix. If s2 is not empty, it must be
a format used for numbers (see the description
of the format attribute of nbst:number) and is
used to generate result’s suffixes.

id

Use: node-set id(x)

Returns the element node with an ID-type equal
to the value of x . This function is useful when
we are looking for an entry.

is-boolean

Use: boolean is-boolean(x)

Returns true if x is a boolean value, false oth-
erwise.

is-defined

Use: boolean is-defined(s)

Returns true if s is the name of a parameter or
variable bound to a value, false otherwise.

is-node-set

Use: boolean is-node-set(x)

Returns true if x is a (possibly empty) node
set, false otherwise.

is-number

Use: boolean is-number(x)

Returns true if x is a number, false otherwise.

is-string

Use: boolean is-string(x)

Returns true if x is a string, false otherwise.

key

Use: node-set key(s,x)

Not implemented presently, so always returns
an empty node set.

last

Use: integer last()

Returns the number of nodes in the current
node set.

local-name

Use: string local-name(ns?)

Returns the name of the first node of ns? .

lowercase

Use: string lowercase(s)

Converts s completely to lowercase.

mod

Use: number n1 mod n2

Returns the remainder after dividing n1 by n2.
The result always has the sign of n 1. If n 2 is
equal to zero, the result is NaN.

name

Use: string name(ns?)

Returns the name of the first node of ns .25

node-set

Use: node-set node-set(x)

Converts x to a node set.

normalize-space

Use: string normalize-space(s)

Returns the whitespace-normalised value of s ,
that is, s is stripped of leading and trailing
whitespace characters, and multiple consecu-
tive occurrences of whitespace characters are
replaced by a single space.

not

Use: boolean not(b)

Returns true (resp. false) if b is false (resp.
true).

number

Use: number number(x)

Converts x to a numerical value.

or

Use: boolean b1 or b2

Returns true if b1 or b2 is true, false otherwise.

position

Use: integer position()

Returns the ordinal position of the context node
within the context node set. These positions are
counted starting from one, as in XPath.

round

Use: number round(n)

Returns the integer nearest in value to n . If n
has a decimal portion of exactly .5, rounds up.

starts-with

Use: boolean starts-with(s1,s2)

Returns true if s1 begins with s2, false other-
wise.

string

Use: string string(x)

Converts x to a string.

25 Presently, the name and local-name functions return the
same result since Version 1.3 does not allow namespaces.

262 TUGboat, Volume 24 (2003), No. 2

string-length

Use: number string-length(s)

Returns the number of characters in s .

substring

Use: string substring(s,n1,n2)

Returns the portion of s starting at character
n1, for a length of n2 characters.

substring-after

Use: string substring-after(s1,s2)

Returns the portion of s1 following s2.

substring-before

Use: string substring-before(s1,s2)

Returns the portion of s1 preceding s2.

sum

Use: number sum(ns)

Returns the sum of all nodes in ns after con-
verting each to a number.

translate

Use: string translate(s1,s2,s3)

Replaces any individual characters appearing in
both s1 and s2 with corresponding characters
in s3.

true

Use: boolean true()

Returns the true value.

uppercase

Use: string uppercase(s)

Converts s completely to uppercase.

Appendix C Comparison with XPath and

XSLT

Here we sum up the differences between XPath and
XSLT on the one hand, and nbst on the other. These
languages are close to each other, so learning nbst is
easy if you know XPath and XSLT.

C.1 nbst vs XSLT

The corresponding element of the xsl:stylesheet

element in XSLT is nbst:bst in nbst. For the sake
of compatibility with the bst language of BibTEX,
we added the nbst:warning element, but it can be
viewed as a particular case of nbst:message, close
to xsl:message.

• XSLT elements without equivalent in nbst:

xsl:apply-imports xsl:namespace-alias

xsl:fallback xsl:preserve-space

xsl:import

xsl:processing-instruction

xsl:strip-space

• nbst element without equivalent in XSLT:

nbst:accumulate

C.2 XPath vs nbst paths

• XPath functions not included in nbst:

document namespace-uri

element-available system-property

function-available unparsed-entity-uri

lang

• Additional functions in nbst:

abbreviate is-defined lowercase

call is-node-set node-set26

firstcapitalize is-number uppercase

is-boolean is-string

• Close, but not identical functions:

(XSLT) generate-id ∼ generate-newly (nbst)

⋄ Jean-Michel Hufflen
LIFC (FRE CNRS 2661)

University of Franche-Comté
16, route de Gray
25030 Besançon Cedex
France
hufflen@lifc.univ-fcomte.fr

http://lifc.univ-fcomte.fr/~hufflen

26 This function is provided by some XSLT processors, but
has not been included in the ‘official’ specification of XSLT

[21]. It belongs to the additional functions of the EXSLT

(‘Extensions to XSLT’) project (for more details, see the Web
page http://www.exslt.org).

TUGboat, olume (2003), No.

Hints & Tricks

Glisterings

Peter Wilson

Not all that tempts your wand’ring eyes

And heedless hearts, is lawful prize;

Nor all, that glisters, gold.

Ode to a Favourite Cat

Thomas Gray

The aim of this column is to provide odd hints
or small pieces of code that might help in solving a
problem or two. I have learnt to my cost that the
quickest way to get a correct answer to a question
on the comp.text.tex (ctt) newsgroup is to give
an incorrect answer. I hope that the ideas below

TUGboat, Volume 24 (2003), No. 2 263

always work but as the column title implies, there
might be some dross among the nuggets.

Corrections, suggestions, and contributions will
always be welcome.

One of the less frequently asked questions on
ctt is whether there is a package for typesetting
forms, and the answer is ‘no’. Nevertheless forms
are still typeset via LATEX.

Little boxes on the hillside, little boxes
made of ticky tacky.
Little boxes, little boxes, little boxes all
the same.

Little boxes

Malvina Reynolds, 1961
(Popularised by Pete Seeger)

1 Tick boxes

One common component of a form is the tick box.
Can you produce a tick box? Yes No
Can I produce a tick box? Yes × No

The empty boxes above were produced by the
\tickbox macro defined below, and the \xbox com-
mand produced the checked box.

\newcommand*{\tickbox}{{\fboxsep 0pt%

\framebox[\height]{\vphantom{M}}}}

\newcommand*{\xbox}{{\fboxsep 0pt%

\framebox[\height]{\vphantom{M}\times}}}

If you want a bit bigger box, like , you could
use this larger \Tickbox instead of \tickbox.

\newcommand*{\Tickbox}{\framebox{}}

The length \fboxsep is the space between the frame
of a \framebox and its contents, so you can adjust
the size of this kind of box by changing \fboxsep

or by using a different phantom character.

Or you might prefer , from

\newcommand*{\TickBox}{{\fboxsep 0pt%

\fbox{\rule{0em}{1em}\rule{1em}{0em}}}}

This definition uses invisible rules (a \rule with zero
height or width cannot be seen) to control the size
of the tightly fitting \fbox. In this case, as the rules
are the same length as the box is square.

2 Blanks, dashes and rules

Along the lines of checkboxes, another regular com-
ponent of a form is .

The last sentence ended with \hrulefill{}.

to give a rule that stretched to margin. You can use
\hrulefill more than once in a line, such as in the
next line where it is used twice.
Last name: First:

Or, you may want to have a rule of a particular
length. The rule in the following line is just long

enough for the word ‘something’ to be typeset:
Put here.
Put something here.

The previous two lines were input as:

Put \underline{} here. \\

Put something here.

Here is a variety of rules and blanks. In each
case I’ve shown the code of the interesting part of
the sentence above the typeset result.

1. ... in \rule{10mm}{0.4pt} the ...

Fill in the blank.

2. ... in \hrulefill{} the ...

Fill in the blank.

3. ... in \xfill[0.5ex] the ...

Fill in the blank.

4. ... in \srule{something} the ...

Fill in the blank.

5. ... in \srule[0.5ex]{something} the ...

Fill in the blank.

6. ... in the ...

Fill in the blank.

The macros used above are part of LATEX with
the exceptions of \xfill and \srule which are de-
fined below.

The \xfill[〈len〉] macro is like \hrulefill in
that it draws a rule in the available space but you
can use the optional 〈len〉 length argument to raise
or lower the rule with respect to the baseline.

\newcommand*{\xfill}[1][0pt]{%

\cleaders

\hbox to 1pt{\hss

\raisebox{#1}{\rule{1.2pt}{0.4pt}}%

\hss}\hfill}

\srule[〈len〉]{〈text〉} draws a rule the same
length as the 〈text〉, but does not typeset the 〈text〉.
You can use the optional 〈len〉 argument to alter the
height of the rule with respect to the baseline.

\newcommand*{\srule}[2][0pt]{%

\setbox0\hbox{#2}%

\rule[#1]{\wd0}{0.4pt}}

The \rule command has an optional argument,
which is the amount to raise (lower) the rule from
its normal position at the baseline. LATEX provides
two dashes, the en-dash (–), input as -- and the em-
dash (—), input as ---. En-dashes are used as the
separator in a number range, like 2–4. Depending
on your country’s typesetting tradition an en-dash
or an em-dash may be used instead of a comma as a
phrase separator in normal text. Longer dashes may
be used to indicate that something is missing; a 2em
dash () for missing letters in a word and a 3em
dash () to indicate a missing word. You can
use \rule as a basis for longer dashes; for instance

264 TUGboat, Volume 24 (2003), No. 2

PS Form 1234, March 2004

Date and sender’s signature

I, the undersigned, whose name and address are given on the item,
certify that the particulars given in this declaration are correct and that
this item does not contain any dangerous article or articles prohibited
by legislation or by postal or customs regulations.

For commercial items only
If known, HS tariff number and country
of origin of goods

Total Weight Total Value

Toy
Scarf

Quantity and detailed description of
contents

Weight
lb. oz.

Value

15
12

Documents

× Gift

Other

Commercial sample

Customs Declaration CD 44

May be opened officially

\newcommand*{\iiemdash}{% 2em dash

\rule[0.5ex]{2em}{0.4pt}}

\newcommand*{\iiiemdash}{% 3em dash

\rule[0.5ex]{3em}{0.4pt}}

3 Forms

I have found that often the easiest way for me to de-
fine a form is to use the picture environment as this
lets me place things just where I want them. Here is
a possibly boring example for a customs declaration
form; the real form is about 10% smaller than the
example.

\newcommand{\form}{%

\setlength{\unitlength}{1mm}

\begin{picture}(79,80)

\sffamily \scriptsize \thicklines

\put(0,0){\line(1,0){80}}

\put(0,5){\line(1,0){80}}

\put(2,4){\makebox(0,0)[tl]{\normalsize PS Form

\textbf{1234}, March 2004}}

\put(0,14){\line(1,0){80}}

\put(2,13){\makebox(0,0)[tl]{Date and sender’s

signature}}

\put(0,26){\line(1,0){80}}

\put(2,25){\makebox(0,0)[tl]{%

\begin{minipage}{76mm}

I, the undersigned, ... regulations

\end{minipage}}}

\put(0,30){\line(1,0){48}}

\put(0,39){\line(1,0){80}}

\put(2,38){\makebox(0,0)[tl]{%

\begin{minipage}{44mm}

\textbf{For commercial items only} \\

\textsl{If known,} ... \end{minipage}}}

\put(56,38){\makebox(0,0)[t]{Total Weight}}

\put(72,38){\makebox(0,0)[t]{Total Value}}

\put(0,53){\line(1,0){80}}

\put(2,52){\makebox(0,0)[tl]{%

\begin{minipage}{40mm}

\CONT \end{minipage}}}

\put(0,60){\line(1,0){80}}

\put(2,59){\makebox(0,0)[tl]{%

\begin{minipage}{40mm}

Quantity ... \end{minipage}}}

\put(49,59){\makebox(0,0)[tl]{%

\begin{minipage}{14mm}

\hfill Weight \hfill \mbox{}\\

lb. \hfill oz. \end{minipage}}}

\put(72,58){\makebox(0,0)[t]{Value}}

\put(65,52){\makebox(0,0)[tl]{%

\begin{minipage}{14mm}

\CVAL \end{minipage}}}

\put(0,68){\line(1,0){80}}

\put(14,61){\makebox(0,0)[bl]{\DBX\ Documents}}

\put(14,66){\makebox(0,0)[tl]{\GBX\ Gift}}

\put(34,61){\makebox(0,0)[bl]{\OBX\ Other}}

\put(34,66){\makebox(0,0)[tl]{\CBX\ Commercial

sample}}

\put(0,80){\line(1,0){80}}

\put(2,79){\makebox(0,0)[tl]{%

\begin{minipage}{76mm}\normalsize

\textbf{Customs Declaration} ...

officially \end{minipage}}}

%% vertical lines

\put(48,26){\line(0,1){34}}

\put(64,26){\line(0,1){34}}

\thinlines

\put(56,26){\line(0,1){9}}

\put(56,39){\line(0,1){14}}

\end{picture}

\setlength{\unitlength}{1pt}

}% end of \form

The variable parts of the form (i.e., the non-
commercial answers) are represented by the upper-
case commands, which have to be defined for any
specific instance of the \form. For the example
shown the code to complete and display it is:

\let\GBX\xbox \let\DBX\tickbox

\let\OBX\tickbox \let\CBX\tickbox

\newcommand{\CONT}{\normalsize\rmfamily

Toy \\ Scarf}

\newcommand{\CVAL}{\normalsize\rmfamily

\centering 15 \\ 12}

\begin{figure}

\centering

\form

\end{figure}

TUGboat, Volume 24 (2003), No. 2 265

4 Letters

I received the following1 from Michael Barr regard-
ing string comparisons. Perhaps someone can help?

Following your column in the recent issue of
TUGboat [1] I have a problem in string comparisons
that I don’t think is solvable. At least I couldn’t.
Suppose you want to decide if an argument ulti-
mately expands to nothing. Or if two arguments
have the same ultimate expansion. What I was fi-
nally led to was similar to your \strcfstr on page
340, [Ed. reproduced here]

\newif\ifsame

\newcommand{\strcfstr}[2]{%

\samefalse

\begingroup

\def\1{#1}\def\2{#2}%

\ifx\1\2\endgroup \sametrue

\else \endgroup

\fi}

except with \def replaced by \edef. This worked
until the day that the argument (I was actually test-
ing for being empty, but the difficulty is the same)
happened to be a matrix. At this point, I got a cu-
rious error message about misplaced &. It turns out
that while you can put a matrix (or any alignment)
into a \def, you cannot put one into an \edef. This
is a built-in ‘feature’ (pronounced ‘bug’) of TEX, one
that will not be repaired and one that it is appar-
ently impossible to overcome.

Michael Barr

References

[1] Peter Wilson. Glisterings. TUGboat, 22(4):339–
341, December 2001.

⋄ Peter Wilson

18912 8th Ave. SW

Normandy Park, WA 98166

USA

herries.press@earthlink.net

1 I have exercised editorial privilege on the original.

T Gb t, lume (), .

The Treasure Chest

This is a list of packages posted to CTAN from July
2002 through December 2003, with descriptive text
pulled from the announcement or researched and
edited for brevity. Please inform us of any errors.

With this installment, we have switched to list-
ing entries alphabetically within CTAN directories,
rather than by date. This seemed more useful to us,
since it groups related entries together. Comments
are welcome, as always.

Hopefully this column and those which follow
will help to make CTAN a more accessible resource
to the TEX community.

biblio

apacite in biblio/bibtex/contrib

Attempts to implement the citation rules of the
American Psychological Association.

babelbib in biblio/bibtex/contrib

Generates multilingual bibliographies in coopera-
tion with babel.

bib-fr in biblio/bibtex/contrib

French translation of classical BibTEX styles.

bibtool in biblio/bibtex/utils

Manipulation of BibTEX files including: sorting and
merging, pretty-printing, syntax checks with error
recovery, semantic checks, generation of uniform
reference keys, controlled rewriting with regular ex-
pressions, collection of statistics, and more. In-
cludes documentation. C source only (no binary).

cj.bst in biblio/bibtex/contrib

A BibTEX file for The Computer Journal published
by the British Computer Society.

development in biblio/bibtex/contrib

BibTEX style for the journal Development (http:
//dev.biologists.org/).

directory in biblio/bibtex/contrib

Facilitates the construction, the maintenance and
the exploitation of an address book database. Ver-
sion 1.18 introduces two new BibTEX styles that
permit export of address books in vCard and LDIF

formats (accepted by Apple’s Address Book, Mi-
crosoft Outlook, Mozilla, etc.) without requiring
any external programs.

germbib in biblio/bibtex/contrib

Macros for German BibTEXing.

gost in biblio/bibtex/contrib

BibTEX styles to format a bibliography in English,
Russian, and Ukrainian according to GOST 7.1-84
and GOST 7.80-00.

numalg in biblio/bibtex/contrib

BibTEX style for the journal Numerical Algorithms.

biblio/bibtex/contrib/numalg

266 TUGboat, Volume 24 (2003), No. 2

urlbst in biblio/bibtex/contrib

Adds support for ‘url’, ‘lastchecked’ and ‘eprint’
fields to BibTEX style files.

xbibfile in biblio/bibtex/utils

A graphical tool for creating and searching BibTEX
databases. Written in C under Linux using the X
Window System and GTK graphics libraries.

dviware

BSR2dvi in dviware

Convert Textures files to standard .dvi.

dvi2bitmap in dviware

Convert .dvi directly to bitmaps.

dvipng in dviware

Convert .dvi to .png images.

fonts

ae in fonts

A set of virtual fonts that emulate T1 encoded fonts
with CM fonts.

allrunes in fonts

This collection of fonts claims to give access to al-
most all runes ever used in Europe.

antiqua in fonts/urw

URW Antiqua Condensed.

astro in fonts

ASTROSYM is a font containing astronomical sym-
bols, including those used for the planets, four plan-
etoids, the phases of the moon, the signs of the zo-
diac, and some additional symbols.

base35 in fonts/urw

These are URW’s PostScript base fonts, which are
provided under the GPL and usually distributed in
conjunction with Ghostscript. As far as TEX is con-
cerned, pdfTEX, Dvips, and other applications need
them as drop-in replacements for Adobe’s non-free
original base fonts.

bookhands in fonts

METAFONT fonts and packages covering manuscript
scripts from the 1st century until Gutenberg and
Caxton. Includes Square Capitals, Insular Minus-
cule, Carolingian Minuscule, Early Gothic, Gothic
Textura Quadrata, Gothic Textura Prescius, Ro-
tunda, Humanist Minuscule, Roman Rustic, Un-
cial, Half Uncial, Artificial Uncial, and Insular Ma-
juscule. The file bsamples.ps shows examples of
each of the fonts.

brokent1 in fonts

Provides virtual fonts for T1-like variants of the
broken yfrak, yswab, and ygoth typefaces published
in 1990 by Yannis Haralambous. The structure of
this package allows for broken typefaces from other
sources to be made usable for LATEX.

cb in fonts/greek

Claudio Beccari’s massive Greek font collection.

cm-lgc in fonts/ps-type1

Type 1 fonts converted from METAFONT sources of
the Computer Modern font families.

cmtiup in fonts/cm

Unslanted punctuation in Computer Modern italic.

corelfonts in fonts/utilities

Perl script to install all Bitstream fonts on a Corel
Ventura CD for use with LATEX.

covfonts in fonts

Makes Apostrophic Laboratorie’s Covington fonts
available to TEX and LATEX.

DayRoman in fonts

A digitally redrawn version of what has come to be
historically known as the “Two Line Double Pica
Roman.”

doublestroke in fonts

Font for typesetting the mathematical symbols for
natural numbers, real numbers, etc.

eulervm in fonts

This is a set of virtual math fonts, based on Euler
and CM. Included is a LATEX package, which makes
them easy to use, particularly in conjunction with
Type 1 PostScript text fonts.

euroitc in fonts

Provides a LATEX interface to the PostScript euro
font symbols which are available free of charge from
the International Typeface Corporation.

fontinst in fonts/utilities

A program that helps with installing fonts. Since it
is written entirely in TEX macros, it is completely
portable.

fourier-GUT in fonts

Fourier-GUTenberg is a math complement for Adobe
Utopia.

frcursive in fonts

This is the French Cursive font, a cursive handwrit-
ing font family in the style of the French academic
running-hand, written with METAFONT.

glonti in fonts/cyrillic

Virtual fonts that combine CM and CMCYR.

grotesq in fonts/urw

URW Grotesk Bold.

hfbright in fonts/ps-type1

Contains the cmbright fonts in Type 1 format.

hieroglf in fonts/archaic

Provides a METAFONT version of about 75 Egyp-
tian hieroglyphs from Serge Rosmorduc’s compre-
hensive hieroglyph package. Sufficient glyphs are
provided for writing a few names like Cleopatra
or Ptolomeny (together with cartouches) and some
numbers. There is a command for transliterating
into a modern alphabet. The package is not for
serious Egyptologists.

hieroglyph in fonts

HieroTEX is a package for typesetting ancient Egyp-
tian hieroglyphs. It contains a hieroglyphic font, a

biblio/bibtex/contrib/urlbst

TUGboat, Volume 24 (2003), No. 2 267

number of style files, and a helper program in C
called sesh which allows one to type hieroglyphic
texts using the so-called “manuel de codage”, the
current standard for encoding ancient Egyptian.

i-ching in fonts/psfonts

The I-Ching-Regular font, in Type 1 format, with
macros and graphics for typesetting divinations.

igo in fonts

Fonts and macros to typeset Go diagrams.

initials in fonts

Several fonts for dropped initials.

kerkis in fonts/greek

Kerkis font family, based on URW Bookman, with
complete Greek support.

kixfont in fonts

The postal services of a few countries use KIX to
encode zip code + home number. This version is
compatible with (at least) the Dutch system.

leawood in fonts/psfonts

Provides all the files needed to make the ITC Lea-
wood font available to TEX and LATEX. The font
itself is not freely available, so the package assumes
you have already purchased ITC Leawood.

lm in fonts/ps-type1

The massive Latin Modern font collection, in Type 1
format.

lucida in fonts/metrics/bh

Updated font metrics and virtual fonts for Y&Y’s
commercial Lucida Bright fonts.

LuxiMono in fonts

From the designers of Lucida, a family of general-
purpose monospaced (typewriter) fonts. May be
freely copied but not modified.

mbboard in fonts

Blackboard bold fonts.

mtype13 in systems/unix

METAPOST libraries, bash, and Perl scripts which
help in programming and creation of Type 1 and
Type 3 fonts under Linux.

musixps in fonts/musixtex/ps-type1

This package provides PostScript (Type 1) fonts
(PFB format), and dvips and dvipdfm map files for
MusiXTEX.

psgreek in fonts/greek

LATEX support for popular Type 1 Greek fonts in
the WinGreek encoding.

punk in fonts/punk/latex

Updated style file and test LATEX file for Knuth’s
punk fonts.

skak in fonts

For typesetting chess games using the PGN stan-
dard.

webomints in fonts

A border and ornament font from Galapagos Design
Group.

viking in fonts/archaic

The two 16-letter runic alphabets as used by the
Vikings in Scandinavia.

yfonts in fonts/ps-type1

Yannis Haralambous’ yfrak, yswab, and ygoth in
Type 1 format.

yhmath in fonts

Provides big delimiters and very wide accents (in-
cluding two new ones: parenthesis and triangle).

graphics

3DLDF in graphics

Three-dimensional (batch) drawing program with
METAPOST output.

bardiag in graphics

Draw bar diagrams using PSTricks.

bbcard in graphics/metapost/contrib/macros

METAPOST examples for a “Bullshit Bingo” play-
ing card, a macro which breaks text into paragraphs,
a calendar, and a baseball score card.

circuit macros in graphics

Macros for drawing high-quality electric circuit dia-
grams containing fundamental elements, amplifiers,
transistors, and basic logic gates to include in TEX,
LATEX, or similar documents. Tools and examples
for other types of diagrams are also included.

degrade in graphics

Degrades JPEG images on the fly to decrease the
size of the resulting PostScript or PDF file.

epix in graphics

Utility for mathematically accurate, camera quality
plots and line figures.

featpost in graphics/metapost/macros

Three-dimensional drawing with METAPOST.

finomaton in graphics

Draw and typeset finite state machines (automata).

gchords in graphics

Typeset guitar chord diagrams, including options
for chord names, finger numbers, and typesetting
above lyrics.

hatching in graphics/metapost/macros

A set of METAPOST macros for hatching the inte-
rior of closed paths.

jPicEdt in graphics

A vector-based graphic editor for LATEX.

latexmp in graphics/metapost/contrib/macros

Interface for LATEX-based typesetting in METAPOST.

makecirc in graphics/metapost/contrib/macros

METAPOST library for electrical circuit diagrams.

mfpic in graphics

Macros which generate METAFONT or METAPOST

for drawing pictures.

mp3d in graphics/metapost/macros/3d

Three-dimensional drawing with METAPOST.

graphics/metapost/macros/3d/mp3d

268 TUGboat, Volume 24 (2003), No. 2

mpsproof in graphics/metapost/contrib/misc

Produce proofs of METAPOST figures.
pgf in graphics

Updates to the TEX Portable Graphic Format.
pst-3dplot in graphics/pstricks/contrib

Plot 3D math functions.
pst-circ in graphics/pstricks/contrib

Draw electric circuits.
pst-optic in graphics/pstricks/contrib

Draw lenses and mirrors for optical systems.
pst-uml in graphics/pstricks/contrib

Draw UML diagrams.
pst-vue3d in graphics/pstricks/contrib

Draw 3D scenes.
sam2p in graphics

A UNIX command line utility that converts many
raster (bitmap) image formats into Adobe Post-
Script or PDF files and other formats.

shapepatch in graphics/transfig-shapepatch

ShapePatch is a patch against transfig that adds
a new output driver for the TEX macro shapepar by
Donald Arsenau. Using this driver one can sketch
the shape in XFig and then convert it to shapepar.

texcad32 in graphics

TEXCad32 is a clone of the DOS program Texcad
running under Windows.

transfig in graphics

A set of tools for creating TEX documents with
graphics which are portable, in the sense that they
can be printed in a wide variety of environments.

xfig in graphics

A menu-driven tool for drawing and manipulating
objects interactively in an X window. The resulting
pictures can be saved, printed on PostScript print-
ers or converted to a variety of other formats (e.g.,
to allow inclusion in LATEX documents).

help

es-tex-faq in help

The CervanTEX FAQ from the Spanish TEX Users
Group.

uk-tex-faq in help

Major English-language FAQ, with much informa-
tion on virtually all TEX-related topics. Current
version always available via the Web at http://

www.tex.ac.uk/faq.

indexing

authorindex in indexing

Create an index of authors cited in a document.

info

beginlatex in info

Formatting Information: A Beginner’s Guide to

LATEX.

comprehensive in info/symbols

The Comprehensive LATEX Symbols List is an orga-
nized list of over 2500 symbols commonly available
to LATEX users. Some of these symbols are guar-
anteed to be available in every TEX distribution.
Others require font files that come with some, but
not all, TEX distributions. The rest require font
files that must be downloaded explicitly from CTAN

and installed.

fontinstallationguide.pdf in info/Type1fonts

A guide to installing Type 1 PostScript fonts.

fontsampler in info

Samples of free typefaces available with LATEX.

impatient in info

TEX for the Impatient was originally published in
1990 by Addison-Wesley. It has tutorial and ref-
erence information on primitive and plain TEX; it
does not discuss LATEX. It is now freely available.

l2tabu in info

Mark Trettin’s guide to LATEX, Das LATEX2ε-Sünd-
enregister. Originally in German with translations
available in English and Italian.

LaTeX2PDF.pdf in info/german

Erstellung von PDF-Dokumenten mit LATEX is a
German guide to creating a PDF document with
LATEX and hyperref/thumbpdf.

latex4wp in info

A guide for word processor users designed to help
convert knowledge and techniques of word process-
ing into the LATEX environment.

lshort in info

“The Not Short Introduction to LATEX2ε”. Origi-
nally in English, with translations in Dutch, Finnish,
German, Portuguese, Russian, and Ukrainian.

makingtexwork in info

The O’Reilly book Making TEX Work, now freely
available.

MiKTeX-WinEdt-TrueType-Anleitung in info/german

German information about MikTEX, WinEdt, and
TrueType.

ttf-tetex in info/TrueType

The tutorial “Using TrueType fonts with teTEX
and dvips” that describes how to use TrueType fonts
with teTEX, by converting them to Type 1 Post-
Script fonts. It does not describe how to use True-
Type fonts directly.

language

bgreek in language/greek

Typeset classical Greek.

CJHebrew in language/hebrew

Hebrew typesetting package including fonts.

CJK in language/chinese

(V.4.5.2) LATEX support for Asian scripts: Chinese
(both traditional and simplified), Japanese, Korean
and Thai, in many encodings (including Unicode).

graphics/metapost/contrib/misc/mpsproof

TUGboat, Volume 24 (2003), No. 2 269

epiolmec in language

Typeset Epi-Olmec, a script used in Southern Mid-
dle America until about 500 AD.

eshyph in language/hyphenation

Spanish hyphenation patterns.

frenchle in language/french

Installation changes for Unix and Mac OSX.

hebclass in language/hebrew

Hebrew LATEX classes.

ibycus-babel in language/greek/package-babel

Allows usage of the Ibycus 4 font for ancient Greek
with Babel.

makor in language/hebrew

Makor 2 typesets Hebrew with vowels or liturgical
accents, Yiddish, and more.

oinuit in language/inuktitut

Typesetting tools for Inuktitut documents..

omega in language/devanagari

Typeset Devanagari texts with Omega.

ruhyphen in language/hyphenation

Updates to this package for Russian hyphenation.

serto in language/aramaic

Fonts, style files, and a preprocessor to typeset Syr-
iac (Aramaic).

srhyphc in language/hyphenation

Serbian hyphenation patterns.

velthuis in language/devanagari

Velthuis Devanagari for TEX.

macros/context

t-amsl in macros/context/contrib/maths

Provides some environments and commands that
AMS-LATEX users expect.

t-nath in macros/context/contrib/maths

Provides for ConTEXt the same functionality as the
nath package for LATEX.

macros/generic

dcpic in macros/generic/diagrams

Macros for drawing commutative diagrams in a TEX
(including LATEX and ConTEXt) document.

longdiv in macros/generic/misc

Work out and print integer long division problems.

petri-nets in macros/generic

Draws Petri nets and related models.

scripttex in macros

Format screenplays and other scripts.

macros/latex

TeXPower in macros/latex/exptl/texpower

A bundle of LATEX packages and classes for making
dynamic online presentations.

macros/latex/contrib

acronym in macros/latex/contrib

Ensures that all acronyms used in the text are spelled
out in full at least once. Also provides an environ-
ment to keep a list of used acronyms.

algorithm2e in macros/latex/contrib

An environment for writing algorithms.

algorithmicx in macros/latex/contrib

Include pseudocode or source code in papers.

alnumsec in macros/latex/contrib

Alphanumeric sectioning numbering with standard
sectioning commands.

apa in macros/latex/contrib

Typeset documents according to the APA manual
(5th ed).

appendix in macros/latex/contrib

Provides various ways for formatting the titles of
appendices.

beamer in macros/latex/contrib

Create slides and presentations with a projector.

begriff in macros/latex/contrib

Typeset Frege’s Begriffsschrift.

betababel in macros/latex/contrib

Insert ancient Greek text coded in Beta Code into
your document.

bgteubner in macros/latex/contrib

Class for books published by Teubner Verlag.

bibcheck in macros/latex/contrib/misc

Checks that every entry in a thebibliography en-
vironment has been cited.

bibtopic in macros/latex/contrib

Include several bibliographies covering different ‘top-
ics’ into a document.

bitfield in macros/latex/contrib

Draws bitfield diagrams.

blindtext in macros/latex/contrib

Create ‘greeking’ text for testing documents.

booklet in macros/latex/contrib

Provides some aids for printing simple booklets or
signatures for longer books.

booktabs in macros/latex/contrib

Enhance the quality of tables in LATEX.

bpchem in macros/latex/contrib

Package for chemical typesetting.

bytefield in macros/latex/contrib

Create illustrations for network protocol specifica-
tions.

caption in macros/latex/contrib

Provides an easy-to-use interface to customise the
layout of figure and table captions.

carlisle in macros/latex/contrib

A collection of packages by David Carlisle, includ-
ing: colortbl (add colour to tables), fix2col (keep
\firstmark and float order in twocolumn), nopageno

macros/latex/contrib/carlisle

270 TUGboat, Volume 24 (2003), No. 2

(turn off page numbers), scalefnt (scale fonts rel-
ative to current size), tabulary (different column
width allocation algorithm).

ccaption in macros/latex/contrib

Provides continuation captions, unnumbered cap-
tions and legends.

chngpage in macros/latex/contrib/misc

Provides commands to change the page layout in
the middle of a document and to robustly check for
typesetting on odd or even pages.

cite in macros/latex/contrib

Compressed, sorted lists of numerical citations.

clrscode in macros/latex/contrib

Typeset pseudocode in the style of Introduction to

Algorithms.

cmap in macros/latex/contrib

Create searchable PDF files.

colorinfo in macros/latex/contrib

Retrieve color model and color values for already
defined colors.

combine in macros/latex/contrib

Bundle individual documents into a single docu-
ment, e.g., a conference proceedings.

comicsans in macros/latex/contrib

Use Microsoft’s Comic Sans font with LATEX.

contour in macros/latex/contrib

Generates a colored contour around a given text
in order to enable printing text over a background
without the need for a color box around the text.

crop in macros/latex/contrib

Provides different forms of cropmarks for trimming
paper stacks, for camera alignment and for visual-
izing the page dimensions.

csquotes in macros/latex/contrib

Markup for inline quotations in terms of control
sequences or active quote characters.

ctable in macros/latex/contrib

Typeset centered table and figure floats with foot-
notes.

curve in macros/latex/contrib

A class for making curriculum vitæ .

custom-bib in macros/latex/contrib

Customize BibTEX style files.

datetime in macros/latex/contrib

Commands to print the current time (12 or 24 hour
forms), ordinal number forms (e.g., 3rd), and as a
string (e.g., \numberstring{3} would print three).

dblfloatfix in macros/latex/contrib

Fixes for twocolumn floats.

decimal in macros/latex/contrib

Use the traditional English decimal point instead
of the American-style period.

dnaseq in macros/latex/contrib

Typeset simple single stranded DNA sequences (or
any other letter sequence) in fixed-length blocks.
The number of blocks per line is computed auto-
matically, and the lines are prefixed with the cur-
rent sequence number.

dramatist in macros/latex/contrib

Typeset dramatic works (plays).

ebezier in macros/latex/contrib

Plot Bézier curves in the picture environment.

eCards in macros/latex/contrib

Create electronic flash cards.

ednotes in macros/latex/contrib

Critical edition typesetting with LATEX.

eemeir in macros/latex/contrib

Facilitates writing documents that must be pro-
duced in both male and female forms by provid-
ing natural commands to type in place of gender
specific words.

ellipsis in macros/latex/contrib

Fixes the uneven spacing around ellipses in text
mode.

empheq in macros/latex/contrib

A visual markup extension to amsmath for empha-
sizing equations.

engpron in macros/latex/contrib

Typeset English pronunciation.

epigraph in macros/latex/contrib

Typeset epigraphs, the pithy quotations often found
at the start (or end) of a chapter.

eqlist in macros/latex/contrib

Allows description-like lists to have equal indenta-
tion. Requires eqparbox.

eso-pic in macros/latex/contrib

Makes it easy to add some picture commands to
every page.

evautofl in macros/latex/contrib/calendar/contrib

An extension of the autofilo.cls of the LATEX Cal-
endar Bundle. The code has been hacked to sepa-
rate the two columns making the page in autofilo,
so now it’s possible to use ps2ps to put more than a
single page on a sheet when printing your calendar,
thus saving a lot of paper.

evweek in macros/latex/contrib/calendar/contrib

An extension of the weekly.cls of the LATEX Cal-
endar Bundle.

excludeonly in macros/latex/contrib/misc

Define \excludeonly, the opposite of \includeonly.

facsimile in macros/latex/contrib

Create faxes.

fbithesis in macros/latex/contrib

At the University of Dortmund there are cardboard
cover pages for research or internal reports. The
main function of this document class is to typeset
a title page that is adjusted to these cover pages.

fnbreak in macros/latex/contrib

Writes a warning to the log file when footnotes are
split over several pages.

fncylab in macros/latex/contrib/misc

Changes the way labels are defined.

footbib in macros/latex/contrib

Make bibliographic references appear as footnotes.

macros/latex/contrib/ccaption

TUGboat, Volume 24 (2003), No. 2 271

footmisc in macros/latex/contrib

Customize footnotes.

framed in macros/latex/contrib/misc

Creates framed or shaded regions that can break
across pages.

g-brief in macros/latex/contrib

Format formless letters in German or English.

gatech-thesis in macros/latex/contrib

Georgia Institute of Technology theses.

gauss in macros/latex/contrib

Package for typesetting matrix operations,

gensymb in macros/latex/contrib/was

Provides generic commands \degree, \micro, \ohm,
\celsius and \perthousand, which work both in
text and math mode. Various means are provided
to fake the symbols or take them from particular
symbol fonts, if they are not available in the default
fonts used in the document.

gloss in macros/latex/contrib

Allows creation of glossaries via BibTEX.

guit in macros/latex/contrib

Provides commands to correctly write the logo of
“Gruppo Utilizzatori Italiani di TEX” (Italian TEX
User Group).

hhtensor in macros/latex/contrib

Commands for vectors, matrices and tensors.

hvfloat in macros/latex/contrib

Rotating float objects and captions.

iagproc in macros/latex/contrib/misc

LATEX2ε class file for two column IAG Proceedings

articles.

interactiveworkbook in macros/latex/contrib

Create interactive question-and-answer PDF tuto-
rials meant to be used by Internet students.

invoice in macros/latex/contrib

For writing invoices. Supports English, German,
Dutch and French.

iso in macros/latex/contrib

Typeset ISO International Standard documents.

isodate in macros/latex/contrib

Print dates in a variety of formats.

jurabib in macros/latex/contrib

Enables automated citation with BibTEX for legal
studies and the humanities.

keystroke in macros/latex/contrib

For typesetting the graphical representation of the
keys on a computer keyboard.

koma-script in macros/latex/contrib

A large and notable replacement for the standard
LATEX2ε classes.

ktv-texdata in macros/latex/contrib

Manage libraries of mathematics exercises. Useful
for teachers.

labbook in macros/latex/contrib

Typeset laboratory journals that contain chrono-
logically ordered records about experiments.

labels in macros/latex/contrib

Make sticky labels.

layouts in macros/latex/contrib

Enables the visual display of various elements of a
document’s layout.

ledmac in macros/latex/contrib

Typeset critical editions; a LATEX equivalent of the
plain edmac macros.

leftidx in macros/latex/contrib

Enables left subscripts and superscripts in math
mode.

lettre in macros/latex/contrib

Write letters and faxes in French, English, and Ger-
man.

lettrine in macros/latex/contrib

Package designed to typeset various sorts of dropped
capitals.

lineno in macros/latex/contrib

Provides line numbers on paragraphs.

linsys in macros/latex/contrib/misc

Inserts a circled number to the left of each equation
in a linear system.

ltabptch in macros/latex/contrib

Fixes bugs in longtable.sty.

manuscript in macros/latex/contrib

Emulates the look of a document typed on a type-
writer.

mceinleger in macros/latex/contrib

Typeset cassette covers.

memoir in macros/latex/contrib

Peter Wilson’s flexible LATEX documentclass for
typesetting of books such as novels, biographies,
histories, etc., with options for trim marks, draft
appearance, various sizes and much more.

menu in macros/latex/contrib

Typeset GUI menu selections for software documen-
tation.

miller in macros/latex/contrib

Typesets Miller indices as used in material science,
where negative numbers are written with a bar over
them.

minitoc in macros/latex/contrib

Create mini-tables of contents by chapter, by sec-
tion, or by parts.

mla-paper in macros/latex/contrib

Typeset papers in the MLA style.

modroman in macros/latex/contrib/misc

Write lower case roman numerals.

mparhack in macros/latex/contrib

Ensure that marginpars appear on the correct mar-
gin.

mtpro in macros/latex/contrib

Support for the commercial MathTimeProfessional
fonts with LATEX.

multibib in macros/latex/contrib

Create references to multiple bibliographies within
one document.

macros/latex/contrib/multibib

272 TUGboat, Volume 24 (2003), No. 2

mwcls in macros/latex/contrib

A set of document classes for LATEX2ε designed
with the Polish typographical tradition in mind.

namespc in macros/latex/contrib

Rudimentary C++-like namespaces in LATEX.

nath in macros/latex/contrib

Natural math notation, a style to separate presenta-
tion and content in mathematical typography. De-
livers a particular context-dependent presentation
on the basis of a rather coarse context-independent
notation — aims for producing traditional math ty-
pography output.

ncctools in macros/latex/contrib

LATEX2ε packages written and supported by Alexan-
der I. Rozhenko.

needspace in macros/latex/contrib/misc

Provides commands to reserve space at the bottom
of a page.

newlfm in macros/latex/contrib

For creating letters, faxes and memos; integrates
the letter class with fancyhdr and geometry and
includes support for an address database, lan-
guages, Avery labels and has full documentation.

nolbreaks in macros/latex/contrib/misc

Attempts to prevent line-breaks in portions of text
while still allowing flexible glue.

notes in macros/latex/contrib

A style for highlighting notable sections of text in a
document by putting the text in a boxed frame and
placing a small graphic in the margin. Specifically
designed to work with double sided pages, placing
the ‘icon’ in the correct margin.

numprint in macros/latex/contrib

Pretty printing numbers.

octavo in macros/latex/contrib

Typeset books following classical layout and design
principles.

opcit in macros/latex/contrib

Footnote-style bibliographical references.

outline in macros/latex/contrib

A six-level list environment for making outlines.

parallel in macros/latex/contrib

Typeset in two columns or two pages in parallel,
e.g. typeset two languages side-by-side.

parrun in macros/latex/contrib

Typeset two streams of text running parallel.

pbox in macros/latex/contrib

A variable-width \parbox.

pdfpages in macros/latex/contrib

Insert pages of external PDF documents.

perpage in macros/latex/contrib/misc

Adds the ability to reset counters per page.

perltex in macros/latex/contrib

Combines LATEX’s typesetting power with Perl’s pro-
grammability.

platex in macros/latex/contrib

Provides tools to typeset documents in Polish using
LATEX2ε.

poemscol in macros/latex/contrib

Typeset critical editions of poetry.

polytable in macros/latex/contrib

tabular-like environments with named columns.

ppr-prv in macros/latex/contrib

Produce a printable version of slides written with
Prosper, with two slides per page.

proba in macros/latex/contrib

Shortcut commands for symbols used in probability
texts.

progress in macros/latex/contrib

Creates an overview of a document’s state.

prosper in macros/latex/contrib

Slides using LATEX.

ps4pdf in macros/latex/contrib

Use PostScript code in pdfLATEX documents.

psfragx in macros/latex/contrib

Embed \psfrag commands provided by the psfrag
package into the EPS file itself.

ragged2e in macros/latex/contrib/ms

Defines new commands which set ragged text and
are easily configurable to allow hyphenation.

refstyle in macros/latex/contrib

Advanced formatting of cross-references.

register in macros/latex/contrib

Typesets the programmable elements in digital hard-
ware, i.e., registers.

relsize in macros/latex/contrib/misc

Set the font size relative to the current size.

rotpages in macros/latex/contrib

Typeset multiple pages upside-down with page or-
der rearrangement.

sansmath in macros/latex/contrib/misc

Define a new math version ‘sans’ and a command
‘\sansmath’, much like ‘\boldmath’.

savesym in macros/latex/contrib

Saves and restores symbols.

scalebar in macros/latex/contrib

Creates scalebars for maps, diagrams, or photos.

SciWordConv in macros/latex/contrib

Use Scientific Word and Scientific WorkPlace source
files with another TEX compiler.

semantic in macros/latex/contrib

Help for writing programming language semantics,
including software ligatures.

sffms in macros/latex/contrib

Typeset fiction manuscripts.

shadow in macros/latex/contrib/misc

Draw a box with a drop shadow.

shapepar in macros/latex/contrib/misc

Typeset paragraphs of a specified shape, where the
total size is adjusted automatically so that the en-
tire shape is filled with text, and the shape may
include separate pieces and holes.

macros/latex/contrib/mwcls

TUGboat, Volume 24 (2003), No. 2 273

sidecap in macros/latex/contrib

Typeset captions sideways.

SIunits in macros/latex/contrib

Typeset physical units following the rules of the
International System of Units (SI).

slantsc in macros/latex/contrib

Enables small capitals in different font shapes.

smalltableof in macros/latex/contrib

Moves List of Figures or List of Tables to the sec-
tions of a chapter.

soul in macros/latex/contrib

Provides flexible, hyphenatable letterspacing, un-
derlining, overstriking, and highlighting.

SplitIndex in macros/latex/contrib

Use an unlimited number of indices.

sseq in macros/latex/contrib

Draw spectral sequence charts.

statex in macros/latex/contrib

A statistics style for LATEX.

statistik in macros/latex/contrib

Writes the page numbers of each chapter (plus chap-
ter number and title) into an external file. Several
LATEX, CSV and XML formats can be produced.

subfloat in macros/latex/contrib

Enables subnumbering of different floats.

svn in macros/latex/contrib

Typeset Subversion keywords.

svninfo in macros/latex/contrib

Extracts the revision and file information provided
by the Subversion revision control system.

tabvar in macros/latex/contrib

Eases the typesetting of tables showing variations
of functions as they are used in France. The docu-
mentation is in French.

tclldoc in macros/latex/contrib

Simplify literate programming with Tcl.

teubner in macros/latex/contrib

A complement to the greek option of the babel

package supporting “Lipsian” fonts, similar to those
used by the Teubner Printing Company of Lipsia.

texlogos in macros/latex/contrib

Defines a number of ready-to-use LATEX logos.

textpos in macros/latex/contrib

Fixes spacing misfeatures.

threeparttable in macros/latex/contrib

Tables with titles (captions) and notes. The titles
and notes are given a width equal to the body of
the table.

thrmappendix in macros/latex/contrib/misc

Facilitates moving long proofs to an appendix.

tocbibind in macros/latex/contrib

Add the Table of Contents, Bibliography, or Index
to the Table of Contents listing.

tocloft in macros/latex/contrib

Provides control over the typography of the Table
of Contents, List of Figures and List of Tables.

todo in macros/latex/contrib

Append a “to-do” list to a document.

tokenizer in macros/latex/contrib

Tokenizes comma-separated lists of strings.

toolbox in macros/latex/contrib

Provides some macros which are convenient for writ-
ing indices, glossaries, or other macros.

tugboat in macros/latex/contrib

LATEX classes for writing TUGboat articles.

typogrid in macros/latex/contrib

Produces a typographic grid on every page of the
document.

upgreek in macros/latex/contrib/was

Makes the Euler or Symbol typeface available as an
upright Greek math alphabet.

upquote in macros/latex/contrib

Switches the typewriter font to Computer Modern
Typewriter for its upright single quotes.

url in macros/latex/contrib/misc

Typeset and allow line breaking in URLs.

uwmslide in macros/latex/contrib

University of Wisconsin-Madison slides. Produces
slides with a simple PowerPoint like appearance.
Several different slide environments are included.

varwidth in macros/latex/contrib/misc

Variable width minipages.

verse in macros/latex/contrib

Aids in typesetting simple verse (poems).

versions in macros/latex/contrib

Optionally omit pieces of input.

wasysym in macros/latex/contrib

Defines commands to make some additional char-
acters available from the wasy fonts.

webeq in macros/latex/contrib

The AcroTEX eDucational Bundle is a series of pack-
ages designed primarily for online education. De-
sign your online page layout; create online exer-
cises and quizzes; add Acrobat eForm elements; add
Acrobat JavaScript to make your document inter-
active; submit your online quizzes to a server-side
script (some basic scripts included).

withesis in macros/latex/contrib

University of Wisonsin-Madison theses.

wrapfig in macros/latex/contrib

Places a figure or table at the side of the page and
wrap text around it. Includes a recipe for multiple
column inserts.

xcolor in macros/latex/contrib

Driver-independent color extensions.

xdoc in macros/latex/contrib

Enhanced rewrite of the doc package.

yfonts in macros/latex/contrib

Support for the blackletter (old-German) typefaces
provided by Y. Haralambous.

macros/latex/contrib/yfonts

274 TUGboat, Volume 24 (2003), No. 2

macros/plain

figflow in macros/plain/contrib

Plain TEX macro to flow text around a figure.

metatex in macros/plain/contrib

Provides two way communication between TEX and
METAFONT to allow both the text and the figures
in a single source file.

tugboat in macros/plain/contrib

Plain TEX macros for writing TUGboat articles.

nonfree

FoilTeX in nonfree/macros/latex/contrib/supported

A system for generating transparencies and slides.

initials in nonfree/fonts

A collection of fonts for decorative initials.

oriya in nonfree/language

Typesetting in Oriya, an Indian script.

rst in nonfree/macros/latex/contrib/supported

Draw rhetorical structure analysis diagrams.

support

bibtex-gen in support

A simple interactive script to generate BibTEX files.

bmeps in support

A program to convert from PNG, TIFF, JPEG, and
NetPBM to EPS.

chktex in support

Finds typographic errors in LATEX.

eps2pdf in support

A GUI interface for conversion of EPS files into PDF

easier via Ghostscript.

eukleides in support

A Euclidean geometry drawing language.

fi2t1 in support/miktex-contrib

Tools for installing Type 1 fonts in MikTEX.

highlight in support

Command line tool to convert source code to syntax-
highlighted (LA)TEX.

isi2bib-vim in support

Vim script to convert a bibliographic database from
ISI to BibTEX format.

ite in support

An interactive tool for authoring LATEX and TEX
documents within Emacs.

JS-TeX in support/javascript TeXed

Small MikTEX editor for Win32 Intel platform. Re-
quires IE 5.0+.

latexcount in support/misc

Generates word count of LATEX documents.

latexdb in support

Brings together LATEX and a MySQL database. You
can use SQL queries in your LATEX document and
loop over the result sets creating tables, serial let-
ters, and so on.

latexjed in support

A LATEX mode for the Jed editor.

lilypond in support

The GNU Project music typesetter, LilyPond, pro-
duces beautiful sheet music.

mimetex in support

Parses well-formed LATEX math expressions, emit-
ting either GIF images or MIME xbitmaps.

mk in support/latex maker

A Perl script that, in close collaboration with vpp, is
helpful in the cyclic process of editing, viewing, and
printing a LATEX document. mk uses the make utility
for the management of file dependencies, texi2pdf
for compilation, gv (or any other viewer you like)
for viewing, and ConTEXt’s texexec for printing in
various formats.

mps2eps in support

Convert a METAPOST output file (.mps) to a self-
contained EPS file.

pdfcrop in support

Takes a PDF as input, calculates the BoundingBox
for each page with the help of Ghostscript and gen-
erates an output PDF without margins.

png2pdf in support

Convert PNG images to PDF.

preview-latex in support

A system for displaying inline images of selected
parts of a file in Emacs source buffers. The style
file is independently useful for extraction of selected
text elements as images.

proof in support

A Bash (Bourne Again Shell) based complement to
an ordinary word processing program, able to co-
ordinate the processing and viewing of TEX, LATEX,
METAFONT and METAPOST-sources..

ps2eps in support

Convert PostScript to EPS.

psfragger in support

A free tool used to replace labels in EPS files by
using psfrag and LATEX. The result is a modified
EPS file that can be further converted to PDF for
use with PDFLATEX (EPS to PDF conversion is in-
cluded in this tool).

references in support

Bibliographic software for authors of scientific man-
uscripts and for management of bibliographic data
of journal articles, books, book chapters, etc.

shlatex in support

LATEX compilation Bash script for Linux.

tex4ht in support

A complete system for translating (LA)TEX sources
into hypertext.

texpack in support

A bundle of scripts to create documented LATEX
styles, class files, and documentation.

texpert in support

A German language TEX editor for Windows.

macros/plain/contrib/figflow

TUGboat, Volume 24 (2003), No. 2 275

tif2eps in support/pstools

Convert TIFF images to EPS.

ttf2tex in support

Bash script to create all files necessary to use True-
Type fonts with teTEX.

txt2tex in support

Convert plain text into LATEX.

vpp in support/view print ps pdf

A command line utility to view and print PostScript
and PDF documents.

wp2latex in support

Convert WordPerfect to LATEX.

systems

bakoma in systems/win32

Upgrade of BaKoMa TEX system to V.6.15.

clasen in systems/tex-extensions

Proposals for extensions to TEX by Matthias Clasen.

enctex in systems

A TEX extension supporting flexible input/output
reencoding, with full UTF-8 (Unicode) processing.

eomega in systems

A TEX extension with both Omega’s and e-TEX’s
enhanced features. The package will be renamed
Aleph at the point of the first stable release.

epmtfe in systems/os2

The “EPM TEX Front End”, a module for the OS/2

“Enhanced Editor” EPM. It turns the EPM into an
integrated TEX environment, providing (LA)TEXing,
previewing and executing of auxiliary programs from
the editor menu.

latexpix in systems/win32

A drawing program for Windows which generates
LATEX pictures.

pdftex in systems

An extension of TEX that can create PDF directly
from TEX source files. It also supports new micro-
typographic features.

WinShell in systems/win32

A graphical user interface for easily working with
TEX. It is not a TEX system itself, so requires a
system such as MikTEX or TEX Live.

wintex2000 in systems/win32

A shareware Windows TEX editor with Microsoft
Office look and feel.

⋄ Mark LaPlante
109 Turnbrook Drive
Huntsville, AL 35824
laplante@mac.com

systems/win32/wintex2000

TUGboat, olume (2003), No.

Book Reviews

Book review: The LATEX Companion, Second

Edition

Claudio Beccari

Frank Mittelbach, Michel Goossens, with Johannes
Braams, David Carlisle, and Chris Rowley, with
the contributions of Christine Detig and Joachim
Schrod, The LATEX Companion, Second Edition.
Addison-Wesley 2004, pp. xxviii+1092, ISBN 0-201-
36299-6, USD 59.99, CND 86.99, ≈EUR 50.00.

The second edition of the indispensable LATEX Com-

panion upgrades the first edition published approx-
imately ten years ago. But “upgrades” is an under-
statement: the second edition is about two times as
large as the first one, and two times as many pages
implies that the material in this new edition con-
tains much more than just a few references to new
packages or a couple of extra examples.

Although the topics covered are essentially the
same as those of the first edition, the fourteen chap-
ters, three appendices, and indices are completely
rewritten and rich with displayed and numbered ex-
amples that, with a clever programming decision,
are set up in such a way as to be completely faithful
to the material being shown. The CD-ROM attached
to the book contains a slightly reduced version of the
TEX Live distribution with the full running collec-
tion of the displayed examples, so that every reader
can check directly also the details that are omitted
from the typed page.

The chapters, after a good introduction, cover
in order:

• the structure of a LATEX document,

• the basic formatting tools,

• how to specify the layout of the page,

• how to typeset tabular material in a profes-
sional way,

• how to master floats,

• a clear discussion on fonts and encodings,

• how to typeset higher mathematics,

• how to use LATEX in a multilingual environment,

• how to produce and handle graphical material,

• the organization and the tools for the difficult
task of generating one or more indices,

• how to manage citations and produce use-
ful bibliographies with the powerful tools that
come with any distribution of (LA)TEX,

276 TUGboat, Volume 24 (2003), No. 2

• and lastly, the tools for documenting class and
package files.

The appendices start with a large overview on
the commands usable in the document preamble and
the more elaborate setups for package and class files.
They continue with a very good analysis of the TEX,
LATEX, and class or package messages that show up
when some error or other problems take place; this
appendix is precious and most of its material has
never been published before. The last appendix
refers itself to the CTAN archives, where most ex-
tension packages reside, and to the various unusual
sites from which to fetch the other files.

I do not want to go into the details of every
chapter or appendix; it would be too lengthy. At the
same time, whoever has used the first edition of the
LATEX Companion knows very well that this kind of
book must be used as a descriptive manual; for this
purpose the authors have written every chapter or
appendix to be as “standalone” as possible, with an
abundance of cross references allowing the readers
to more deeply explore particular topics.

I would like to comment on a couple of points
that I found a little weak or not sufficiently treated.
This is not meant to criticize such an excellent and
indispensable book as this one, but for contributing
a line of thought that may help the readers (as well
as the authors if they write a third edition in another
ten years . . .).

One point is the presence of “typos”, that is
spelling errors; actually the book is virtually de-
void of any real typo, but there are some “cut and
paste” errors, an average of two or three per chap-
ter. This shows the amount of attention and ac-
curacy the authors dedicated to correct and revise
their source files; I have never succeeded in writing
my own books with such a small number of spelling
and/or “cut and paste” errors, so I admire them and
praise their skill. But this raises another point: how
is it possible to match such a beautiful typesetting
engine as LATEX with a suitable editor that is aware
of “cut and paste” errors? I know (or imagine) the
authors used emacs, the most powerful ASCII ed-
itor available to anyone willing to climb its steep
learning curve, but even this powerful tool is not
capable of giving even a modest warning in such in-
stances. I know that spell checking is one thing and
grammatical checking is another, totally different.
But at the end one would like to produce beauti-
ful books, as TEX was designed for, and one cannot
avoid the painful task of reading over and over the
galley proofs, and at the end it becomes such a tir-
ing activity that errors sneak in anyway or remain
undetected.

The few errors that bothered me a little bit are
those that appear in Appendix B, where the treat-
ment of errors should be absolutely error free, oth-
erwise a reader can’t understand where is the error.

In Appendix B a slight confusion arises concern-
ing \long macro definitions; for example in the un-
numbered example starting at the end of page 932
there is an apparent inconsistency where \lvec is
defined with \newcommand, that generates “long”
macros, in contrast with the \show\lvec command
that displays a “short” macro. The explanation of
this unusual behavior follows immediately after the
\show\lvec command output, but when the reader
reaches that point it remains a puzzle from the out-
put of the preceding unnumbered example on the
same page, where the macro \xvec (defined with-
out optional arguments) appears to be “long”.

A naive error dealing with the Greek fonts ap-
pears in table 9.10: capital Greek letters are never
accented, except for the diaeresis on Iota and Up-
silon; a capital initial of a lowercase word is preceded
by its spirit and accent, so that >Ã, for example, is
nonsense in Greek; it should be \Α as a capital initial,
or simply A within an all caps word.1 A similar sit-
uation holds true for the diaeresis: iota and upsilon
receive the diaeresis only when they follow another
vowel with which they are not supposed to form a
diphthong so that ΅Υ is nonsense, because the capi-
tal upsilon preceded by its diacritical signs plays the
role of an initial capital and therefore it cannot be
part of a would-be diphthong; in the middle of a
word it should simply be ß.

In chapter 9 it would have been useful to cite
the book on LATEX written by Apolostolos Syropou-
los [2]; since the author is Greek he devoted a large
part of his book to typesetting in languages differ-
ent from English, and with non-Latin alphabets; he
even illustrated the Mongolian script. . .

Another point I think is not sufficiently empha-
sized is the fulfillment of international standards,
especially the ISO ones. I believe that international
standards exist explicitly for helping people from all
over the world to understand each other, at least on
technical matters. I saw in the book the ISO stan-
dards mentioned in connection to the font encod-
ings, and that’s good. But I did not see a word about
the ISO standard where, for example, table 9.5 illus-
trates the alternative mathematical operators names
for eastern European languages. Those names are
specified by the ISO standards and any alternative

1 Actually the authors do not specify which Greek font

they used, but with the default cbgreek fonts it is quite diffi-

cult to produce the errors shown in table 9.10; in this text I

had to cheat a little bit in order to reproduce those errors!

TUGboat, Volume 24 (2003), No. 2 277

name is to be considered “illegal”; I understand the
necessity of producing documents containing some
text typeset in accordance with obsolete typesetting
traditions, or books containing translations of the
ISO (Latin abbreviations of the) mathematical op-
erators, as Apostolos Syropoulos did for math docu-
ments devoted to young high school Greek students.
But in such an eminent reference as the LATEX Com-

panion I’d have put a discouraging sentence for com-
mon everyday use of nonstandard names. I know the
LATEX special symbols, now replaced by the Ameri-
can Mathematical Society or Text companion fonts,
contained the ℧ symbol; maybe when LATEX was
first introduced in 1985 in some countries that sym-
bol was in common use, but the ISO standards dep-
recate it explicitly and now I rarely see it in new
books; even in this case a discouraging sentence re-
calling the international rules would have been ap-
preciated.

This topic could be extended also to the bibli-
ographies, for example, where emphasis is given to
the many tools for typesetting bibliographic refer-
ences, with the aid of BibTEX, and with the purpose
of producing the fanciest citation schemes, without
mentioning any of the ISO standards on the matter.

There is a third point I would like to comment
on, namely the excessively discouraging sentences
connected with the use of primitive TEX commands.
I agree that when one writes a new class or a new
package the use of the powerful LATEX commands
should be preferred over the often obscure circum-
locutions needed when using primitive TEX com-
mands, but there are some things that even the most
powerful LATEX commands cannot do; examples are
the definition of macros with delimited arguments,
and the conditional statements dealing with charac-
ter and category codes, as well as those dealing with
comparisons of control sequences.

For the former it is necessary to use the \def

or the \gdef primitives, and for the latter it is nec-
essary to use the \if, \ifcat, and \ifx primitive
conditional commands. The whole LATEX kernel con-
tains such commands, some of them relics of the old
LATEX 209 kernel, but most of them are there simply
because they are necessary and cannot be substi-
tuted with newer LATEX commands (which, in any
case, are eventually defined by means of those TEX
primitives). Of course it is dangerous to make def-
initions by means of the primitive commands, be-

cause there is the real danger of redefining essential
internal commands, even if they are “protected” by
the presence of the @ character; when classes and
packages are written that protection is not effective.
Nevertheless it might have been a good idea to illus-
trate the right technique for checking the existence
of the command to be (re)defined so as to avoid
messing up the whole system; the ifthen package al-
lows to check if a control sequence is undefined, but
at the class or package level even the kernel macro
\@ifundefined can be used.

There are other primitive TEX structures that
can be very useful in producing reliable code also for
LATEX, but I won’t insist on this point since it would
carry me too far.

Let me reach the conclusion. The second edi-
tion of The LATEX Companion is a must for every
serious LATEX user. It complements Lamport’s hand-
book, but it adds such a great amount of useful in-
formation and wealth of working examples that any
user will find it invaluable. Moreover, these exam-
ples carry with them the authors’ great experience,
and let’s recall that most of them are members of the
LATEX 3 team—who could know LATEX better than
they? The few errors or omissions are not really so
essential, provided the user keeps a little warning
light blinking in the background of his/her mind.

When ten more years have elapsed, perhaps
we’ll see a third edition that will be even more use-
ful, for the future LATEX of the year 2014. I hope
so, because ten years from now I’ll still be using
LATEX, for which I thank not only Leslie Lamport,
who started the whole game, and the contributors of
the many extension packages that enhance so much
the basic typesetting interpreter and engine created
by Donald Knuth, but also all the authors of this
excellent book.

References

[1] Mittelbach, Frank, Errata list for The

LATEX Companion, Second Edition, http:
//www.latex-project.org/guides/tlc2.err.

[2] Syropoulos A., Digital typography using LATEX,
Springer Verlag, New York, 2002.

⋄ Claudio Beccari

Politecnico di Torino

Turin, Italy

beccari@polito.it

278 TUGboat, Volume 24 (2003), No. 2

Book review: Guide to LATEX, 4th Edition

Douglas Waud

Helmut Kopka and Patrick W. Daly, Guide to

LATEX, 4th Edition. Addison-Wesley 2004, pp. 624,
ISBN 0-321-17385-6, USD 49.99.

I believe I should point out at the beginning
that my wife has a t-shirt which reads “My next
husband will be normal”. However the problem is
deeper than that. I seem to be attracted to groups
where the whole membership is not normal, for ex-
ample, the local Linux users group. Reading the
Kopka and Daly book I have come to the conclusion
that one should not consider TEX users to be normal
either. And I think it is important to keep this in
mind.

This whole issue arose when I started by looking
at the cover and introductory material to see what
the authors’ objective was. I found “how to begin
using LATEX” right on the back cover. Against this
backdrop I began to read. By chapter 2 I began to
get the sense of being completely overwhelmed if I
tried to put myself in the mind set of a neophyte. I
can’t imagine a normal person not completely bog-
gling soon after diving into this book. As a specific
example, when I reached chapter 1, section 1, sub-
section 1 (i.e., the very beginning) I encountered the
word “markup” in the first line of the first bullet. As
a test, I gave that paragraph to my wife to read and
she confirmed my suspicion that normal people do
not know what that word means.1 I then took her
forward two pages to where the authors give an clear
example of markup in both HTML and plain TEX
and she now saw right away what the term meant.
But I would still argue that something was basically
wrong. That first bullet could have been worded
without the jargon. More importantly, I suspect
such stumbling blocks for the beginner would not
have survived if the authors had bounced the book
off test readers who were completely naive when it
come to TEX/LATEX.

I was reinforced in this view that TEXers are
not normal when I joined the TEXhax list. While
there will always be those who simply do not RTFM

there is still a large group who seem simply bewil-
dered by the jargon (RTFM, for example). While
this soon wears off, it is still very real initially. The
strategy of teaching people to swim by pushing them

1 In fairness, I should add that she, an anesthesiologist
(our kids used to say “Mommy is the real doctor”), was won-
dering why I had suddenly taken an interest in the prob-
lems associated with rubber gloves— allergies and the like —
so much so as to buy a book on latex!

off the dock does not work well here. It is better to
recognize that total immersion can create an aver-
sion— the reverse of what is intended. I find a par-
allel situation with those new to Linux. Again there
seems to be a steep learning curve. Here the neo-
phytes forget that they have gone through a similar
process coming to grips with Windows or Microsoft
Office. However, reading a periodical like PC Mag-

azine, where page after page is devoted to clarify-
ing yet another dark corner of the Microsoft world,
demonstrates that neither Linux or LATEX is really
that difficult once you put it into that perspective.
However, one must not ignore this barrier; although
it may be misperceived as being high, that percep-
tion is still very real and must be kept in mind if
one is going to proselytize successfully.

Now, as will become clear below, I still found
this book a very useful reference. So, on the as-
sumption that a “newbie” or two may still try to
use it as a primer, I shall give some advice2 and list
a few general tricks that the neophyte should know.
My authority for doing this is that, over the years,
I have made just about every mistake imaginable,
so I am quite familiar with the pitfalls, if not the
solutions.

• Crawl before you walk. Do not try to create
a fancy/complex document first time around.
Start with a “Hello World” example as the first
step (this is a standard computer ritual to show
you have something working; you write just suf-
ficient code to have the program capable of say-
ing “Hello World” back to you). In fact, Kopka
and Daly show you how to do just this on page
13. Now, emboldened by this success, add one
new frill; for example, put your name on a line
below the “Hello” line but at the right hand
end thereof. Next you might try to put “Dear
sir” at the left end of a line above the “Hello”.
As you can see, we are on our way to creating
a letter. When you finish your creation, go to
Kopka and Daly and see how they do it; at this
point you will be in a much better position to
appreciate more of the fine points.

• At each stage in the preceding process, run the
file through LATEX, and look at the output file
with a viewer. Since you are making just one
change at each stage, it is reasonably easy to
locate any typos and the like. Also, in no time,
this repetition will become second nature and
you’ll be hooked.

• Don’t be afraid to make mistakes. That is really
the way you learn, not by reading and somehow

2 At my age you tend to do this a lot.

TUGboat, Volume 24 (2003), No. 2 279

(osmosis?) having it all sink in without any ef-
fort on your part.

• Use Kopka and Daly, or a clone, as a reference
book. Don’t try to read it like a novel. One can
skim to get the lay-of-the-land but, in the end,
the stuff sinks in only when you actually use it.

• Look in books for specific examples of code (you
will find Kopka and Daly are great here). This
way, you are less likely to leave out a key space
or the like when you are still new to the game
and do not yet appreciate all the nuances. With
time, you will begin to see patterns and what
initially may seem arbitrary will suddenly make
perfectly good sense. It is rather like learning
to play bridge. Initially you are amazed at how
people can figure out where cards must be and
then one day you suddenly realize “the Queen
has to be in that hand” and, indeed, that it
where it turns out to be!

• Sometimes you find that simple trial-and-error
is quicker than pausing to look something up.
Current computers are fast enough that, es-
pecially for short documents, one can rapidly
type, LATEX, and view to get fast feedback. And
it is hard to go the trial-and-error route without
learning something. (Some may disagree with
me here but you should realize their problem —
they’re normal.)

• Don’t be overwhelmed by the huge number of
commands and variants thereof that are avail-
able. As an academic pharmacologist, I have
had to face this same problem with medical stu-
dents trying to come to grips with “all those
drugs”. I point out that this is an advantage,
not a disadvantage; the more you know, the
finer the control you can exert. Their patients
will appreciate being able to tailor drug choice
individually. Similarly, the breadth of LATEX
means you can do all sorts of wonderful things.
With LATEX however, you are better off than
the medical students. They don’t know what
the next patient will need. You, on the other
hand, can choose when to go down a new path.

• At each stage do not be afraid to look a little
farther than you feel is friendly territory. Ini-
tially such forays will be into terra incognito

but each time you will find the critters you en-
counter are a tad less frightening and eventually
you will find yourself looking at the code of a
package file and actually beginning to be able
to make sense of it. The trick is not to try to
do it in one swell foop.

• In the words of Boston’s Tom Lehrer [6], plagia-
rize. With computer programming, you never

want to reinvent the wheel. What you want
to do is find someone’s code that comes close
to what you want and then make a relatively
minor modification (in this case, you can crawl
without ever having to learn to walk). To this
end, a book like Kopka and Daly comes into its
own. Now all that detail is no longer just detail;
it is code you can build on. This is why it is
so useful to have a book with lots of examples.
You can also see why there is such enthusiasm
for “open source” code (software like Linux and
LATEX which give you not only the program, but
also the underlying instructions which make it
work; thus everyone can “look under the hood”
both for clarification and as a base for further
development). You become part of a large com-
munity; sooner than you may realize, you will
create something someone else will find useful
and you will have become part of the system.

• Take a look at Peter Flynn’s [1] recent mini-
guide to LATEX. It is directed specifically at the
newbie.

• Try to set aside a little time to play, to dig a lit-
tle deeper now and then— all work and no play
. . . and all that. I get no kicks from computer
games but I can derive a lot of entertainment
out of deciphering how a snippet of code works
and/or how to get it to work for me. Try it;
you may get in touch with your abnormal self.

• How do you pick which books you will keep
nearby? First you do need something at hand.
One way to customize the selection is to wait
until you have a specific problem, preferably
similar to most that you stumble over, and go
to the book store to see how the various candi-
dates fare when faced with a specific problem.

(I cannot get anything right; here, instead of a
book review, I go off on a tangent writing a guide
to getting started with TEX.)

I am now going to proceed by abandoning that
initial goal of using the book as a “Gentle Intro-
duction” (to coin a phrase) and refer a reader who
is really new to LATEX to a less detailed first round
such as Flynn’s opus mentioned above, or the origi-
nal “bible” by Lamport [5].

So I shall start all over again. I found Kopka
and Daly’s book very useful and I suspect that the
rest of you readers, who I still suspect are not nor-
mal, will also find it valuable.

This book is in fact part of a series of four books
and is written to take advantage of this linkage.
Thus, the authors can refer to other members of the
series when it is impractical to cover all the details

280 TUGboat, Volume 24 (2003), No. 2

without getting off track. For example, they can
refer to the LATEX Graphics Companion [3] to take
over where the present text leaves off when dealing
with graphics. Similarly, the HTML aspect can be
found in expanded form in the LATEX Web Compan-

ion [2]. And all three are scions of the original LATEX
book by Lamport[5] and of another general book in
the series [7]. They all fit together in a reasonably
integrated whole. This collection, in turn, stands on
the foundation of TEX as originally set forth by its
god [4].

So what specifically does Kopka and Daly offer?
First, lots of examples. As noted above, this makes
life much easier, even for experts. Especially when
you are trying to get a specific job done, you want
something you can plug right in and get on with the
main task.

A simple perusal of the table of contents gives
a rough view of the lay of the land. In particular,
of the current view. LATEX is continually being im-
proved. While this can be a nuisance — you just get
the hang of it and they change it— it is good in the
long run. The tool becomes more powerful. Again
the price you pay for this power is having to come
to grips periodically with new toys.

As a notable example, the last few years have
seen the rise of PDF files3 as the de facto standard
for final presentation of documents, especially in an
electronic form. Thus the (LA)TEX gurus have given
us pdfLATEX, a version of LATEX which can generate
PDF files directly. This opens the door to use of
hyperlinks, and we are served the hyperref package
to take care of the details. The reader who may have
noticed allusions to such developments but has not
yet had time to look more closely will find Kopka
and Daly very useful. This edition arrives just at the
right time (the PDF world seems to have stabilized
enough to be ready for prime time and the rest of
us) to bring us up to date in this area.

The beginner will like the section TEX and its

offspring as a tidy map of who’s who. If you are
starting cold, little things like why there is a LATEX,
a LATEX 2.09, and a LATEX2ε, can be confusing. (The
situation is similar in Boston where visitors find the
main streets are not labeled “Because everybody will
know where they are!”).

3 A file with the extension .pdf signals “PDF format”,
that is, it follows the rules for Adobe’s “Portable Document
Format” which has been designed to make portable files with
the ability to present pictures, sounds, hyper-references (links
to targets outside the current document) and the like. The
Adobe people did such a good job (as they did with the pre-
decessor “Postscript”) that PDF has been widely accepted.
One program for reading such files, Adobe Acrobat, has been
made available by Adobe at no charge.

I have not methodically listed chapter topics.
They are about what you would expect in a sys-
tematic text. I found the details consistently clear
for anyone who has some background in (LA)TEX
and who will therefore not stumble on terms like
“source” or “bounding box”. I noticed no obvious
big gap but, and I am probably dating myself here, I
did miss PICTEX (although it did get into the Graph-

ics Companion, if not its index.) I did not find a note
on how to pronounce LATEX; I don’t know whether
this is good or bad.

I would say the book’s main strength is the
gathering together in one place of an up-to-date
summary of what one can do with LATEX and its
clones. In this spirit, about one third of the book
is devoted to appendices. For example, Appendix G
contains an alphabetical list of commands with both
brief descriptions of their behavior as well as refer-
ences to both section and page where the fuller treat-
ment appears. A second section of G gives tables
showing a wide range of symbols you might want
and how to generate them. The first appendix puts
the New Font Selection Scheme into perspective —
another topic where a reader who has not been keep-
ing up-to-date will welcome a primer. Appendix C
gives a systematic approach to error messages in-
cluding lists of the various possibilities. Appendix
D delves into “LATEX Programming”. Most users
probably will not think of themselves going down
this path but they may still find this survey useful
if they want to make a minor tweak to a package.
Take a peek.

As you may gather, I think readers will find this
book useful. Are there any flaws? A glossary would
have been handy, for example when Chapter 2 starts
with a reference to a “source file”. (Yes, if you know
what that means, you have passed a simple test to
demonstrate that you, too, are not normal!) When
the reader first hits “bounding box” not only is a
glossary missing, the term did not make the index.
I can nit-pick and wonder why a section starts with
the title “Chemical formulas and boldface in math
formulas” and then discusses them in the reverse
order. Overall, such issues are well offset by conve-
niences like a list of “Mathematical typesetting con-
ventions” which, while not LATEX per se, puts the
latter into good perspective.

The book includes a compact disc with selec-
tions from the TEX Live collection —enough to en-
able installation of a working system on Windows,
Linux, or a Mac OS X system (Linux users will gener-
ally find their installation already provides (LA)TEX
albeit of uncertain vintage).

TUGboat, Volume 24 (2003), No. 2 281

References

[1] Peter Flynn. Formatting information.
TUGboat, 23(2):115–237, 2002.

[2] Michel Goossens, Sebastian Rahtz, Eitan
Gurari, Ross Moore, and Robert Sutor. The

LATEX Web Companion. Addison-Wesley,
Reading, MA, 1999.

[3] Michel Goossens, Sebastian Rahtz, and Frank
Mittelbach. The LATEX Graphics Companion.
Addison-Wesley, Reading, MA, 1997.

[4] Donald E. Knuth. The TEXbook, Computers

and Typesetting, Vol. A. Addison-Wesley,
Reading, MA, 1986.

[5] Leslie Lamport. LATEX: A Document

Preparation System. Addison-Wesley, Reading,
MA, 2nd edition, 1994.

[6] Tom Lehrer. Lobachevsky. In Songs by Tom

Lehrer, track 6. Tom Lehrer, Cambridge, MA,
1952. 33 rpm 12 inch record, US$3.95, “plus 30
cents shipping”.

[7] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley. The

LATEX Companion. Addison-Wesley, Reading,
MA, 2nd edition, 2004.

⋄ Douglas Waud
Department of Pharmacology
University of Massachusetts

Medical School (retired)
17 Lantern Lane, Shrewsbury, MA,

USA.
douglas.waud@umassmed.edu

http://users.umassmed.edu/

douglas.waud/

Book review: Guide to LATEX, 4th Edition

Mimi Burbank

In an attempt to represent the “new user” end of
the spectrum —I’ve used Guide to LATEX since it
first appeared on the market. However, I begin at
the back of the book— having done so since I was
first introduced to TEX way back in 1985. I could
spell the word “computer” at that time, and was
hired simply because I was too naive to understand
just how complex TEX was going to be. I had never
even seen a computer before. I think I spent three
months reading the index (slept with it under my
pillow at night) and then going back to the front of
the book and reading chapter by chapter.

For someone who has been introduced to LATEX
but has not had the time to spend learning its in-
tricacies, this is an excellent reference book in that
you can look in the index for the word (since most
commands are a backslash and some semblance of
the actual “word” itself) and then choose whether
you wish to do the “quick and dirty” (just need to
know how many options and which ones they are),
or whether you need a deeper understanding of the
definition. Finally, while the book is not intended
to represent the “full” instructions for “every” pack-
age, the authors have provided pointers to the best
information available for various packages and util-
ities on the web and on paper.

For typists who have to either type or edit man-
uscripts, it presents a comprehensive reference util-
ity. It is updated often enough to be “current” and
is written in lay language.

I confess I consider it required for all of the
people that I work with, who need to know how to
do anything with LATEX.

⋄ Mimi Burbank
CSIT/FSU
Tallahassee, FL 32306-4120
mimi@csit.fsu.edu

282 TUGboat, Volume 24 (2003), No. 2

Abstracts

Editor’s note: This issue of TUGboat contains
translated abstracts and summaries from recent
publications by several other TEX user groups. For
a complete list of all user group publications, see
http://tug.org/pubs.html.

Les Cahiers GUTenberg is the publication of the
French language TEX user group, GUTenberg. Their
web site is http://www.gutenberg.eu.org.

Les Cahiers GUTenberg

Contents of Issue 42
(July 2003)

Jacques André, Éditorial [Editorial]; p. 3

The editor opens with a description of factors which
have contributed to the long gap between this issue and
the previous one, no. 41, which appeared in November
of 2001: other large issues not yet finished, conference
proceedings which have taken a long time to produce, the
very utility of even having a hardcopy publication in the
face of the Internet, a lack of time, a lack of articles . . .
Nevertheless, there will be a return to a regular schedule.

To get back on track, this is a small issue of 64
pages, which actually used to be the norm. There are
two TEX articles (a technical one by Jonathan Fine and
an historical piece by Jean-Michel Hufflen), and one
rather more typographic in nature (by Markus Kohm).
The Fine and Kohm articles had appeared elsewhere, in
English and German, respectively.

The editor concludes by thanking the various mem-
bers of the Cahiers GUTenberg production team (Daniel
Flipo, Bernard Gaulle and Gilles Perez-Lambert), as
well as the translators (Jean-Marie Hufflen of Fine, and
Julie Le Boulanger of Kohm).

Markus Kohm, Étude comparative de différents
modèles d’empagement [Comparative study of
different page make-ups]; pp. 4–25

How to organize text onto a page is an art
refined by professionals since the middle ages.
Through time, numerous techniques have been con-
structed, challenged, forgotten, but also developed
and enriched. Some of these methods contain ex-
pressions which have become legendary. And even
though they say that myths include some kernel
of truth, their origin can also present some perils.

It’s therefore important to know how to distinguish
between myth and truth.1

[Translation of author’s abstract]

Jonathan Fine, Appeler TEX comme une
fonction [TEX as a Callable Function]; pp. 26–37

Traditionally, TEX is run as a batch program.
However, TEX can also be run as a daemon, with
a callable function interface. This talk describes
the opportunities and problems that follow from this
new use of TEX.2

[Author’s abstract]

Jean-Michel Hufflen, Mes diverses périodes
avec LATEX [My various bouts with LATEX];
pp. 38–60

This article outlines the different stages of an
experience with LATEX. Some details are largely
autobiographical; however, evoking successive work
places allows the author to show how LATEX was used
and what problems existed.

[Author’s abstract (edited)]

Bernard Gaulle, Rectificatif : précisions sur
la francisation [Correction: Clarification on
‘francisation’]; p. 61

In February of 2003, a French translation of
A Short Introduction to LATEX2ε was produced,
to commemorate 25 years of TEX. This brief one-
page item clarifies the development and naming of
Gaulle’s various style files for French texts.

[Summary of note]

−− ∗ −−

Articles from Cahiers issues can be found in PDF

format at the following site:

http://www.gutenberg.eu.org/publications

[Compiled by Christina Thiele]

1 This text originally appeared in German, in Die

TEXnische Komödie, Dec. 2002, no. 4 (pp. 28–48). The
French translation was done by Julie Le Boulanger.

2 This text originally appeared in English, in the 2002
EuroTEX proceedings (pp. 26–30). The French translation
was done by Jean-Michel Hufflen.

TUGboat, Volume 24 (2003), No. 2 283

Editor’s note: MAPS is the publication of NTG,
the Dutch language TEX user group. Their web site
is http://www.ntg.nl.

MAPS 27, Spring 2002

Johannes Braams, Redactioneel [From the
editor]; p. 1

Overview of the issue’s contents and an introduction of

the new editorial team.

Erik Frambach, TEX Gebruikersgroepen [TEX
user groups]; pp. 2–5

An overview of all TEX user groups known to
us, including corresponding contact information.

[Translation of author’s abstract]

Jules van Weerden, Agenda [Calendar of
events]; p. 6

Piet van Oostrum, Niews van CTAN [News
from CTAN]; pp. 7–9

This article describes a number of recent contri-
butions to the CTAN archive. The selection is based
on what I find interesting and what I think others
will find interesting. It is thus a personal choice.
There is no intention of giving a complete overview.
Consider this a kind of menu to whet the appetite
of the curious.

[Translation of author’s abstract]

Siep Kroonenberg, Patenten, copyright en
‘intellectual property’ [Patents, copyright and
‘intellectual property’]; pp. 10–12

This piece calls attention to software patents
and other attacks on our electronic freedom.

[Translation of author’s abstract]

Donald E. Knuth, Brief van Knuth [Letter from
Knuth]; p. 13

A facsimile of a letter from Knuth to Kroonenberg on

the publication of the EuroTEX 2001 proceedings.

Patrick Grundlach, meta-euro; pp. 14–19
This article shows how to draw the euro symbol

using the MetaFun package for METAPOST.
[Author’s abstract]

Hans Hagen, The euro symbol; pp. 20–22
When Patrick Gundlach posted a nice META-

POST version of the euro symbol to the ConTEXt
discussion list, he added the comment “The official
construction is ambiguous: how thick are the hor-
izontal bars? How much do they stick out to the
left? Is this thing a circle or what? Are the angles
on the left side of the bars the same as the one on

the right side? . . . ” The alternative below is prob-
ably not as official as his, but permits a fine-tuning.
You are warned: whatever you try, the euro is and
will remain an ugly symbol. [Author’s abstract]

Jean-luc Doumont, Doing it my way: a lone
TEXer in the real world; pp. 23–28

While a world-renowned standard in many aca-
demic fields, Don Knuth’s much acclaimed typeset-
ting system is almost unknown in most parts of the
real world, where many a document designer has
achieved professional success without ever hearing
(let alone pronouncing) the word “TEX”. Outside
academia, the lone TEXer faces not only compati-
bility headaches, but also outright incomprehension
from his customers, colleagues, or competitors: why
would anyone want to use TEX to produce memos,
two-color newsletters, full-color brochures, overhead
transparencies, and other items — in short, anything
but books that contain a lot of mathematics?

As a consultant in professional communication,
I have been using TEX for all documents I have pro-
duced for my clients and for myself during the last
ten years or so. Though it has turned out to be
most successful, this approach is seen by most as a
mere idiosyncrasy. And yet, the systematic use of
my own TEX and PostScript programming gives me
three unequalled advantages over using off-the-shelf
software: I travel light, I can go anywhere I please,
and I guarantee I’ll get there.

[Author’s abstract]

Jean-luc Doumont, Drawing effective (and
beautiful) graphs with TEX; pp. 29–35

A standard approach to producing documents
that include illustrations consists in typesetting text
with specialized typesetting software (such as TEX)
and inserting illustrations created with different,
equally specialized software. To better integrate the
illustrations into the typeset page, it would be nice
to be able to produce or modify them directly with
the typesetting software. Drawing graphs with TEX,
for example, would allow one to set them \hsize

wide and 0.75\hsize high, position labels exactly
\baselineskip below the horizontal axis, and, es-
pecially, typeset all annotations with the same fonts,
sizes, and mathematical beauty as the rest of the
document.

The hybrid TEX and PostScript macros pre-
sented in this paper take advantage of TEX’s power
to graph and annotate data sets in a variety of ways
in order to produce effective, beautiful, well-inte-
grated graphs. They use TEX to draw all horizon-
tal and vertical lines (axes, tick marks, grid lines)
and set all annotations, and PostScript to draw the

284 TUGboat, Volume 24 (2003), No. 2

data, as markers, lines, and areas. While fairly sim-
ple, they have been successfully harnessed to appear
in a wide range of real-life applications, up to log-
arithmic graphs and (with some patience) complex
multipanel displays. Of course, the macros are a
tool for drawing final graphs rather than exploring
or transforming data sets. [Author’s abstract]

Hans Hagen and Ton Otten, Figures;
pp. 36–40

Within the TEX community there is a widely
used database for bibliographic references, BibTEX,
but not for figures. To manage figures ConTEXt now
supports a figures database. The database is set up
in XML and converted to an interactive PDF fig-
ure library featuring ordered displays and a search
mechanism. From the library, figures can be in-
cluded easily in ConTEXt documents as long as both
the PDF and the XML files remain present.

[Authors’ abstract]

Ernst van der Storm, DTP’en met LATEX
[Desktop publishing with LATEX]; pp. 41–44

Report on the use of LATEX for desktop publish-
ers showing some simple macros and how to incor-
porate images: a practical description.

[Translation of author’s abstract]

Karel H. Wesseling, Gertrude L. van der
Sar and Jos J. Settels, From PC-Write to
ConTEXt; pp. 45–50

A tale of more than 10 years of joy and struggle
with TEX followed by a period of bliss, of easy to
use tools, quickly obtained results, and incredible
possibilities from the coming of 4TEX and ConTEXt,
narrated by non-gurus. [Authors’ abstract]

Karel H. Wesseling, A do-it-yourself
thebibliography in ConTEXt; pp. 51–55

Moving from LATEX to ConTEXt is not really
simple, but to return from ConTEXt to LATEX would
have been equally hard were it not for a publication
by Berend de Boer in MAPS 24 explaining how to
do LATEX things in ConTEXt. Only one thing was
missing, a do-it-yourself thebibliography. Hans
Hagen had a solution which is described below.

[Author’s abstract]

Siep Kroonenberg, TEX voor thuis [TEX at
home]; pp. 56–59

A beginner’s column, which in this issue dis-
cusses installing a TEX distribution on various pop-
ular platforms.

Siep Kroonenberg, Mac OS X als TEX platform
[Mac OS X as a TEX platform]; pp. 60–61

Now that the Macintosh platform has been con-
verted to UNIX and has built-in support for PDF, it
has good credentials as a platform for TEX. The
TEXShop program is proof of this.

[Translation of author’s abstract]

Siep Kroonenberg, Juggling texmf trees;
pp. 62–65

texmf trees can make a TEX installation more
maintainable. With creative use of environment
variables, it is possible to run different versions and
different configurations in different xterm or console
windows. [Author’s abstract]

Hans Hagen, MathML; pp. 66–119
It is a well known fact that TEX can do a pretty

good job on typesetting math. This is one reason
why many scientific articles, papers and books are
typeset using TEX. However, in these days of tri-
umphing angle brackets, coding in TEX looks more
and more out of place.

From the point of view of an author, coding
in TEX is quite natural, given that some time is
spent on reading the manuals. There are however
circumstances where one wants to share formulas (or
formula-like specifications) between several applica-
tions, one of which is a typesetting engine. In that
case, a bit more work now saves you some headaches
later due to keeping the different source documents
in sync.

In the following we will discuss the mathemat-
ical language MathML with respect to typography.
As a typesetting vehicle, we have used ConTEXt.
However, the principles introduced here and the ex-
amples that we provide are independent of ConTEXt.
For a more formal exploration we recommend the
MathML specification.

[Author’s introduction (edited)]

MAPS 28, Fall 2002

Johannes Braams, Redactioneel [From the
editor]; p. 1

Overview of the issue’s contents, including an apology

for unexpected results in the last issue. Corrections are

included in this issue.

TUGboat, Volume 24 (2003), No. 2 285

Siep Kroonenberg, De NTG flyer [The NTG

flyer]; pp. 2–4
A description of the production and a showing

of the new publicity flyer for NTG.

Piet van Oostrum, Niews van CTAN [News
from CTAN]; pp. 5–7

See above under MAPS 27.

Michael A. Guravage, TUG 2002,
Thiruvananthapuram; pp. 10–13

Report and overview of the annual TUG meet-
ing in Trivandrum, India.

MAPS Editors (Patrick Gundlach),
meta-euro erratum; pp. 14–24

See above under MAPS 27.

MAPS Editors (Hans Hagen), MathML

erratum; pp. 20–24
See above under MAPS 27.

Siep Kroonenberg, Fonts for the MAPS;
pp. 25–26

Ever since the redesign of the MAPS (actually, it
wouldn’t hurt to have another one by now), we have
used Times, with read small-caps and old-style fig-
ures, for body text, Frutiger for headings and special
items, and narrowed Courier as monospaced font.
Under the hood, however, font support has been re-
done twice.

[Author’s introduction]

Taco Hoekwater, ConTEXt System
Documentation; p. 27

A new website exists that contains documenta-
tion for the lower-level ConTEXt macros. The URL

for this website is http://tex.aanhet.net/context.
This website also contains a full mirror of the
pragma-ade website. [Author’s abstract]

Maarten Wisse, Hacking TEX4ht for XML

Output; pp. 28–35
This article explains how the author employs

the TEX4ht converter to manage multiple format
(XML and PDF) output from a single LATEX source
by writing a TEX4ht configuration file and a LATEX
class file. Furthermore, it is explained how TEX4ht
and the new OpenOffice package can be used to cre-
ate a new LATEX to MS Word converter.

[Author’s abstract]

Hans Hagen and Karel H. Wesseling,
texexec User’s Guide; pp. 36–52

This guide describes the uses and options of the
texexec program that is available in the ConTEXt
distribution. The options are invoked by calls on
a command line, which are words preceded by two

hyphens, as in --make. There are options for run-
ning ConTEXt on your TEX file to produce printable
output, options to specify languages, an option to
make listings of (software program) files word for
word, options for conditional execution, for select-
ing pages to print, for printing on differently sized
paper, for directing your output to a particular file,
for conversion of SGML and XML to TEX. If it is
no problem for you to use a command line and to
occasionally look things up in the help file or in this
user’s guide, you will find texexec to be a useful,
even indispensable tool for ConTEXt.

[Authors’ abstract]

Wybo Dekker, The ctable package for use with
LATEX2ε; pp. 65–68

This article serves as the package documenta-
tion by describing the purpose and usage of the
ctable package to typeset centered, captioned tables
and figure floats with optional footnotes. The arti-
cle concludes with several examples and implemen-
tation details.

Frans Goddijn and Karel H. Wesseling,
Shifted bullets in graphs with METAPOST;
pp. 5–72

With METAPOST fully integrated in ConTEXt
using this graphic language has become convenient.
When we tried to use John Hobby’s graph.mp pack-
age, however, it turned out to require extra initial-
izations and to produce unacceptable, shifted data
graphs. Solutions to both problems are given.

[Authors’ abstract]

Karel H. Wesseling, A letterhead in ConTEXt;
pp. 73–79

For years I have used a home-made logo in Pic-
TEX within LATEX, together with name and address
as letterhead. Separate versions for myself and my
wife were pre-printed on an HP 300 DPI Laserjet.
With METAPOST fully integrated in ConTEXt, we
decided to convert to METAPOST and print the let-
terhead with each letter automatically. I used the
versatile ConTEXt layer mechanism and the mode
option. [Author’s abstract]

Fabrice Popineau, Practical METAPOST;
pp. 80–85

In this article, I will explain how to practically
use METAPOST. This program is very different from
usual drawing programs, but it fits very well in a
TEX based typesetting system.

[Author’s abstract]

[Compiled by Steve Peter]

286 TUGboat, Volume 24 (2003), No. 2

Editor’s note: TEXemplares is the publication of
CervanTEX, the Spanish TEX user group. Their web
site is http://www.cervantex.org.

TEXemplares #4, 2003

José Mart́ınez de Sousa (typographer,
orthographer, lexicographer, and bibliologue),
Algunos problemas de ortotipograf́ıa [Some
problems of orthotypography]; pp. 7–14

For typographers, orthography presents two
fairly differentiated sides: on the one hand, what we
call usual orthography, which we all claim to know
for the unfolding of our daily life regarding written
comunication, and technical orthography (graphic
rules for scientific and technical elements), that com-
prises the scientific orthography (rules of scientific
writing) and typographic orthograpy, or orthotypog-

raphy (rules for the writing of graphic elements).
Here we are especially concerned with orthotypogra-
phy, whose current situation reaches worrisome lev-
els, thanks undoubtedly to the application by Tiri-
ans and Trojans of rules or pseudo-rules that are
neither generally known nor approved by experts,
who on the other hand fail to apply those rules that
we have known and acknowledged for centuries. To
this, as could be expected, has been added the intro-
duction of self-editing, especially since 1985, due to
the facilities that it offers to the user of a computer,
and of software that gives him in his inexpert, but
not less enthusiastic and indefatigable hands, all the
possibilities of graphic expression. . . , but, unfortu-
nately, not the knowledge necessary for the applica-
tion of those potentials with maximum accuracy.

If we analyze the Academia’s1 intrusions into
the field of orthotypography, especially as seen in
its Ortograf́ıa de la lengua española of 1999, we see
that they bear no little incoherence and disagree-
ment with the uses and customs of a world that
the Academia has never wanted to pervade and into
which now, because of lack of specific knowledge, is
introducing confusion. Let us see some cases.

[The “cases” are the use of quotation marks, the pe-
riod in conjunction with closing signs, orthotypographi-
cal Anglicisms imported by the Academia, italics in con-
junction with roman, and the placement of footnotes.]

[Translation of author’s introduction]

1
Translator’s note: The Real Academia de la Lengua

Española is the central regulator of the norms and uses of

the Spanish language.

Enrique Meléndez Asensio, Uso de fuentes
TrueType de Microsoft con TEX [Using Microsoft
TrueType fonts with TEX]; pp. 15–23

This contribution describes the use of TrueType
fonts with TEX and LATEX. It is based on the docu-
ment “Using TrueType fonts with teTEX and dvips”,
written by Harald Harders, available at
ftp://ftp.dante.de/tex-archive/info/

TrueType/ttf-tetex.pdf

[Translation of author’s introduction]

Roberto Herrero, Una breve reseña de
MetaPost [A brief review of MetaPost]; pp. 30–33

Figures created with any graphic application
can be easily included into LATEX documents using
any tool that converts the result to the PostScript
format and with the graphicx package.

Among those applications there are some that,
because of their characteristics, are especially suited
for use with LATEX. Among them it is good to men-
tion:

• The picture environment provided by LATEX
macros themselves.

• The program xfig, which allows (LA)TEX text
within the figures, which is especially useful to
introduce mathematical formulae.

• The program gnuplot.

To the mentioned tools should be added the
program that concerns us now, MetaPost, which,
because of its peculiar origin and capabilities, is pos-
sibly the most highly recommended tool to incorpo-
rate mathematical graphics into LATEX.

[Translation of author’s introduction]

[The article has the following sections: 2. Origin of Meta-
Post; 3. Basic characteristics of MetaPost; 4. MetaPost
packages; 5. Metagraf.]

TEXemplares #5, 2003

José Luis D́ıaz de Arriba, Presentaciones
LATEX: un enfoque simple usando FoilTEX
[Presentations in LATEX: a simple approach
through FoilTEX]; pp. 4–22

The use of devices to project the video output
of a computer onto a screen become more and more
common every day, making obsolete the old method
of vinyl slides and projector. In LATEX it is possible
to generate PDF, which can be viewed in full-screen
mode with Acrobat Reader and other PDF read-
ers, and this gives us the chance to do presentations
without leaving our favorite software. Actually, no
special package is required to do a presentation with
LATEX. The only requisite is to set the paper size

http://www.cervantex.org
ftp://ftp.dante.de/tex-archive/info/TrueType/ttf-tetex.pdf
ftp://ftp.dante.de/tex-archive/info/TrueType/ttf-tetex.pdf

TUGboat, Volume 24 (2003), No. 2 287

to the screen’s proportions, and to use a large and
readable type font. However, if “special effects” are
desired, such as background graphics, slide-to-slide
transitions, gradual definition of text or graphics,
etc., using a package can be helpful. In this arti-
cle I share my personal experience, and some of the
solutions I have come up with.

[Translation of author’s abstract]

átopos, Reseña de LATEX para las Humanidades
[Review: LATEX for the Humanities]; pp. 23–36

This is an out-of-the-ordinary review. To be-
gin with, it is written by the author himself (the
enigmatic átopos). And it is fiction. It is in the
form of a dialog— characters are Don Quixote, Tux,
Socrates, and K-Nut. They talk about a mysterious
document, LATEX for the Humanities (“LATEX para
las Humanidades”), which by the way is available
at:
http://rt0016xp.eresmas.net/lplh/

latex-humanidades.pdf.
The book itself is, as the author describes it, a “his-
torical-mythological-computer divertimento”, whose
protagonist is Tux, and is intended to give a “prac-
tical, elemental, and entertaining introduction to
LATEX to authors in any field of the humanities”.
The review goes beyond the description of the book,
and addresses “not only the what, but the why of
the book”. Sections include “Socrates and wisdom”,
“K-Nut and beauty”, “Tux and freedom”. Both re-
view and book are worth reading.

[Summary of note]

TEXemplares #6, 2004

José M. Mira, Bibliograf́ıa flexible: el sistema
flexbib [Flexible bibliography: the flexbib

system]; pp. 8–26
Automated processing of bibliographies with

BibTEX offers an important level of comfort for the
user, provided that the bibliographic model used is
one of the standard styles, and, furthermore, that
the user writes in English. But the adjective ‘stan-
dard’ is actually a euphemism, because the list of
styles to be found at CTAN is endless. . . and it is
fairly easy to be lost in that forest before finding the
sought-for solution. Surprisingly, and at odds with
the level of standardization and flexibility developed
in other aspects of LATEX, bibliography processing
has not reached the status of being accessible to new

users, and basic issues, such as language handling,
have yet to be automated.

This text advances a proposal to improve this
situation, and contributes some tools to carry it out.
A system is used that allows for standardized and
flexible processing, including language and a wide
variety of parameters that simplify bibliography cus-
tomization.

[Translation of author’s abstract]

Francisco J. Alcaraz Ariza, LATEX, Linux y
la Botánica: una excelente combinación [LATEX,
Linux, and botany: an excellent combination];
pp. 27–40

. . . A review of Spanish-language writings on
botany reveals the fundamental reality that the use
of operating systems different from those that have
their headquarters in the rainy city of Seattle [i.e.,
Microsoft Windows], and the use of text processors
other than MS Word, not to mention non-WYSIWYG

applications, is an act of fantasy. . .
This is certainly a discouraging state of affairs,

but we hope it will start changing in the near future;
we believe there are signs in the environment that
will give free software a greater role in the world of
botany. . .

The sections of this article present our experi-
ence with using Linux and LATEX for teaching and
scientific research in botany, as a proof that it is
possible to use alternative ways, and that the latter,
against-the-tide at first, render much better perfor-
mance. . .

[Translation of author’s introduction (edited)]

Salvador Sánchez-Pedreño Guillén, Edición
de partituras [Score editing]; pp. 41–71

This text constitutes a brief introduction to mu-
sical score editing in TEX and its environment. It
focuses on MusiXTEX, although brief references are
made to packages, pre-compilers, and graphic envi-
ronments more or less connected to MusiXTEX.

[Translation of author’s abstract]

[Compiled by Federico Garcia]

http://rt0016xp.eresmas.net/lplh/latex-humanidades.pdf
http://rt0016xp.eresmas.net/lplh/latex-humanidades.pdf

288 TUGboat, Volume 24 (2003), No. 2

Reports

Report on the Pune workshop on LATEX and
free mathematical software (July 2003)

S.A. Katre, Manjusha Joshi (coordinators)

A workshop on LATEX and free mathematical soft-
ware was organised by Bhaskaracharya Pratishthana
(BP), Pune, India, during 9–14 July, 2003. It was
mainly sponsored by the international TEX Users
Group (TUG) with a generous grant of USD 2100
(Rs. 99, 036), as a joint activity with the Depart-
ment of Mathematics, University of Pune, and was
partially supported by the DSA programme of UGC

in the department.
The focus of the workshop was on the LATEX

software for mathematical typesetting. In addition,
a number of other free mathematical software pack-
ages were introduced to the participants. The work-
shop was organised for participants from the educa-
tional field (mainly from universities and colleges)
with some knowledge of TEX and a background in
mathematics.

This is the first workshop of this kind organ-
ised in India which dealt with TEX topics as well as
free mathematical software running on Linux. The
participants were very enthusiastic and many of the
participants worked on into late nights to practise
and assimilate various topics on LATEX and mathe-
matical software.

Organising committee

Chairman: C. S. Inamdar, BP.
Co-ordinator: S.A. Katre, Dept. of Mathematics,

University of Pune.
Co-ordinator: Manjusha Joshi, BP.
Member: Amitabh Trehan, M.G.A.H.V., Delhi.

Speakers and topics

1. Mr. Amitabh Trehan (IIT, Delhi): Linux, Pdf-
screen, Devnag, LATEX: indexing, table of con-
tents.

2. Dr. S. C. Phatak (IoPB, Bhubaneswar): Gnu-
plot, Xfig.

3. Dr. Surendran (Pune): TEXmacs, WIMS.

4. Dr. S.A. Katre (Univ. of Pune): TEX utilities.

5. Ms. Manjusha S. Joshi (BP, Pune): PStricks,
POV-Ray, references in LATEX.

6. Dr. Ajit Kumar (St. Xavier’s College, Mumbai):
PSfrag, DCPic, MuPAD.

7. Dr. A. V. Jayathan (TIFR, Mumbai): Macau-
lay 2.

8. Dr. M. S. Bakre (Univ. of Mumbai, Mumbai):
Scilab, Euler, Octave, software installation.

9. Mr. Sumit Bharadwaj (IIT, Delhi): MathML,
Prosper, BibTEX.

10. Mr. Niyam Bhushan (Delhi): Linux, publishing
workflows, typography, image enhancement &
conversion, Plone.

In addition, on 8th July, before the workshop
proper, for some participants having a limited back-
ground in TEX, a lecture by Amitabh Trehan to
introduce the basic concepts in TEX was arranged.
There were also practice sessions based on exercises
in LATEX prepared by S. A. Katre and Manjusha
Joshi.

Software provided

Registered participants were given two CDs, notes
on various topics discussed in the workshop, a file
with register of 100 pages, a pen, a few blank papers,
badge and LATEX Tutorials: A primer to LATEX2ε,
prepared by the Indian TEX Users Group (Editor:
E. Krishnan), 2002.

The CDs contained the following software:

1. TEX Live version 7 (containing Devnag,
PStricks, Pdfscreen, PSfrag, PSplot, etc.).

2. POV-Ray, MuPAD (light version), Gnuplot
(for Windows), Macaulay 2, CoCoA, Maxima,
TEXmacs, WIM Server, Scilab, Euler, LATEX
suite, MathML, TeXnicCenter.

Some software discussed in the workshop was
already available in Red Hat Linux, such as Xfig,
GCC, Gnuplot, Octave.

The notes given to participants included instal-
lation of the software on the CDs, assignments on
TEX, introductory material on LATEX, etc.

Most of the mathematical software on the CD

was discussed during the workshop. While MuPAD

is general purpose mathematical software, Macau-
lay 2 and CoCoA are specialized software for alge-
bra. Gnuplot and Xfig are useful for drawing fig-
ures. The insertion of the figures drawn using this
software in LATEX documents was discussed during
the workshop. TEXmacs is a front end which gives
LATEX output for some of the mathematical software,
such as Maxima, POV-Ray, Gnuplot, SciLab, etc.
Browsing by subject and education level is possi-
ble through the WIM Server for MuPAD, Maxima,
Macaulay 2, PARI/GP, GAP, Yacas, Octave, etc., in
which output of the software is TEX-formatted text.
A mathematical document prepared using LATEX can
be put on the net using utilities such as Itex2mml,
by conversion to MathML.

TUGboat, Volume 24 (2003), No. 2 289

Information on participants

Participants were from 18 institutes and universities
located throughout India. There were in all 41 par-
ticipants, out of whom 26 were outstation and 15
were local. There were in all 9 female participants.
The participants outside Maharashtra State came
from Goa, Delhi, Chennai, Chandigarh, Meerat,
Ahmedabad, Daman, Dharawad, Patan, Jhansi,
Darjeeling, Agra, Patiala. Participants within Ma-
harashtra came from Pune, Mumbai, Aurangabad,
Sangamner, Verdha, Shegaon. Outstation partic-
ipants and Speakers were accommodated at SET

Guest House, Univ. of Pune and BP Guest House.
The local participants comprised of past students
(now teachers in various colleges in Pune) and cur-
rent students of the Department of Mathematics at
the University of Pune. The full roster of partici-
pants is included at the end of this report.

The participants were given a certificate of par-
ticipation with a logo of the TEX Lion.

Technical arrangements

A total of 20 computers were arranged for practi-
cals, with an LCD projector for lectures and demon-
strations etc. One classroom was temporarily con-
verted to an additional computer lab, in which 14
computers were arranged. Six computers were ar-
ranged for practical work in the main computer lab.
Other than these, three computers were available
for speakers for their work regarding the workshop,
Internet and mail. Nine computers were on a LAN

and were also connected to a laser printer. Printing
facilities were provided to the speakers.

Parallel activities

PLUG Linux Stall : In the city of Pune, a local group
called the Pune Linux User Group helped us
with installation of Linux and other software on the
temporary machines. They also put their stall at
the institute, where they made Linux CDs available
at a nominal charge. About 20 participants took
advantage of this arrangement.

Springer Book Exhibition: Springer, one of the
leading publishers of scientific books, took advan-
tage of the opportunity of the workshop. They ex-
hibited books on LATEX, typography, MuPAD and
several other topics.

Acknowledgements

The organising committee is grateful to the interna-
tional TEX Users Group for the timely and generous
grant of USD 2100 without which it would not have
been possible to hold the workshop at the national
level.

Some information regarding possible topics and
books for the workshop, especially related to LATEX,
came from the mailing lists tugindia@tug.org and
indic-dev@tug.org.

We are thankful to the eminent scholars Mr.
C. V. Radhakrishnan (Trivandrum), former secre-
tary, TUGIndia, and Dr. E. Krishnan (Trivandrum),
Chairman, Free Software Foundation, India, who
encouraged the organisation of the workshop and
helped in the initial stages. Dr. Kaveh Bazargan
(Trivandrum & U.K.), member, TUGIndia board,
also helped in various aspects of the workshop.

We are thankful to Prof. A. S. Kolaskar, Vice-
Chancellor, Univ. of Pune, and Prof. N. S. Bhave,
Head, Dept. of Mathematics, Univ. of Pune, to con-
sider the workshop as a joint activity with the de-
partment.

The support from PLUG, Pune, regarding
Linux installation requires a special mention. We
thank Mr. Bhamburkar who made available seven
diskless machines for the workshop in the nick of
the time, without any fee. We also thank Mr. Sud-
hanwa Joglekar, Dr. Surendran, and Dr. Gangawane
who helped in the computer related matters, and
Prof. Kalidoss for providing copies of the book LATEX

Primer, prepared by TUGIndia.
We thank the office staff of BP: Ms. Veena

Kulkarni, Mr. S. R. Gosavi, Mr. Sunil Sawant and
also the Trustees of Bhaskaracharya Pratishthana
for all the help they extended for the organisation
of the workshop.

⋄ S. A. Katre, Manjusha Joshi
(coordinators)

Bhaskaracharya Pratishthana,
Pune, India
bhaskara_p@vsnl.com

http://www.bprim.org

http://education.vsnl.com/bp/

texwork.html

Appendix A Participants

Outstation participants:

1. Sartaj Ul Hasan, I.I.T. Bombay, Powai,
Mumbai.

2. Mr. Malay Kumar Ghosh, North Bengal
University, Darjeeling.

3. Mr. Partha Sarathi Debnath, North Bengal
University, Darjeeling.

4. Dr. Sanjeev Kumar, Institute of Basic Science,
Agra.

5. Mr. Bhatoa Jogindar Singh, Govt. College,
Daman.

290 TUGboat, Volume 24 (2003), No. 2

6. Mr. C. S. Salimath, Karnatak University,
Dharwad.

7. Sanjay Choudhary, Institute of Basic Science,
Khandari-Agra.

8. Dr. Manjusha Gandhi, Shri Sant Gajanan
Maharaj College of Engineering, Shegaon.

9. Mr. Narahari A. Patil, Shri Sant Gajanan
Maharaj College of Engineering, Shegaon.

10. Mr. Rupen Pratap Singh, Ch. Charan Singh
University, Meerut.

11. Dr. A.K. Desai, Gujarat University, Ahmed-
abad.

12. Mr. Udayan Prajapati, St. Xaviers College,
Ahmedabad.

13. Mr. Habeeb Basha Syed, I.I.T. Bombay, Powai,
Mumbai.

14. Mr. Arunkumar Patil, I.I.T. Bombay Powai,
Mumbai.

15. Mr. Subhendu Bhanti, North Gujarat
University, Patan.

16. Ms. Anju Rani Gupta, Bundelkhand University,
Jhansi.

17. Dr. Avanish Kumar, Bundelkhand University,
Jhansi.

18. Mr. Israr Ahmad, Jamiya Millia Islamiya,
New Delhi.

19. Dr. Y. S. Valaulikar, Goa University, Goa.
20. Dr. Sushil Kumar Tomar, Panjab University,

Chandigarh.
21. Mr. Rajesh Agarkar, Mahatma Gandhi

Antarrashtriya Hindi Vishwavidyalaya,
Wardha.

22. Ms. Hema Godbole, Mahatma Gandhi
Antarrashtriya Hindi Vishwavidyalaya,
Wardha.

23. Dr. H. S. Kasana, Thapar Institute of
Engineering and Technology, Patiala.

24. Dr. S. K. Panchal, S.N. Arts D.J.M. Commerce
and B.N.S. Science College, Sangamner, Dist.
A. Nagar 422 605.

25. Shibsankar Karmakar, North Bengal Univer-
sity, Darjeeling, 734430.

26. Malay Kumar Ghosh, North Bengal University,
Darjeeling, 734430.

27. Dr. S. K. Nimbhorkar, Dr. B.A. Marathwada
University, Aurangabad-431 004.

Local participants:

1. Mr. Madhusudan Tandale, V.I.T., Pune.
2. Ms. Rupali Deshpande, V.I.T., Pune.
3. Mr. Pratul Gadagkar, University of Pune,

Pune.
4. Dr. Radha Bhate, University of Pune, Pune.
5. Mr. A. S. Nanajkar, Fergusson College, Pune.

6. Mr. D. N. Sheth, Sir Parashurambhau College,
Pune.

7. Ms. Fathia Mohammed Al Samman, University
of Pune, Pune.

8. Mr. Rajanish Malekar, National Defence
Academy, Pune.

9. Ms. Anuradha Gadre, University of Pune,
Pune.

10. Mr. C. S. Nimkar, N. Wadia College, Pune.

11. Mr. Pramod Shinde, N. Wadia College, Pune.

12. Ms. Sunita Patil, University of Pune, Pune.

13. Ms. Nita Kankane, M.I.T., Pune.

14. Mr. Ashok Bhavale, Sinhgad College of Science,
Pune.

15. Mr. Hemant R. Pawar, National Defence
Academy, Pune.

All participants.

Speakers: Prof. S.A. Katre, Sumit Bharadwaj,
Dr. Jayanthan, Niyam Bhushan, Dr. Ajit Kumar,
Amitabh Trehan, Manjusha Joshi.

TUGboat, Volume 24 (2003), No. 2 291

TUG at Bay

Nelson Beebe, Wendy McKay and Ross Moore

Over the extended weekend 16–18 January 2004,
some TEX and TUG-related events took place in the
San Francisco Bay area. These were:

• visit to Adobe Systems Inc., based in San Jose,
to discuss aspects of how Adobe’s software in-
teracts with TEX-related workflows, and ‘bugs’
affecting the onscreen viewing of TEX-typeset
PDF documents;

• lunch with the Grand Wizard, at a restaurant
in Palo Alto, with a presentation of a draw-
ing by Duane Bibby and shown at TUG2003 in
Hawai‘i;

• discussions concerning workflows for the pro-
duction and archiving of scientific journals, and
the preparation/presentation of related biblio-
graphic data on websites of scientific societies
and academic institutions.

The first of these included a repeat of a sim-
ilar meeting 2 years ago, when the “TEXFonts–
AdobeApps” (TFAA) working group1 met with font
engineers at Adobe to discuss problems related to
fonts, and font rendering, with PDF documents pro-
duced using (LA)TEX and pdfTEX. A result of this
earlier meeting was the improved rendering, as now
implemented in Adobe’s Acrobat 6.0 Professional
and Adobe Reader 6.0 applications, of PostScript
Type 3 (bitmap) fonts. This is extremely impor-
tant for TEX users, as until only recently this has
been primarily the kind of font description produced
by dvips, at least by default, for TEX and LATEX-
typeset documents. Indeed many people continue
to use TEX installations where this kind of output
is produced.

At that previous meeting in 2002, there were
6 delegates from TUG; this time there were just 3
representatives: Nelson Beebe, Wendy McKay and
Ross Moore. But Hans Hagen was there, in spirit, as
well. Two days earlier, via a long telephone conver-
sation, Hans had supplied Ross and Wendy with a
collection of bugs that he had encountered with the
latest Acrobat software. Mostly these were fresh
bugs in Acrobat 6, which could be clearly demon-
strated by comparison with the output produced by
Acrobat 5 displaying the same PDF document.

More than an hour was spent with senior mem-
bers of Adobe’s font development group, discussing
general issues as well as presenting the bugs found
by Hans. Perhaps the most important result of this

1 See http://www.tug.org/mailman/listinfo/tfaa and

http://www.tug.org/twg/tfaa.

meeting is a definite realisation of the need for sup-
port of OpenType fonts within TEX software and
related applications, such as dvips and other driver
software. The PostScript Type 1 font technology is
no longer the state-of-the-art for fonts. Adobe has
not produced any new fonts in Type 1 format for ≈ 6
years; all new development is for OpenType. Thus
it is imperative for TEX, pdfTEX and friends to be
modified in ways that enable this font format to be
used easily.

We discussed the problem of the lack of suitable
fonts for mathematics in Adobe’s font repertoire, in
particular, mathematics fonts that are designed as
companions of text font families, such as is the case
for Computer Modern, Computer Concrete, Lucida,
and MathTime. Regrettably, Adobe sees little or no
chance of such support being developed for current
font offerings, although in a small number of future
fonts, they may provide glyphs for the mathematical
characters standardized in Unicode.

A whole working day was spent at Adobe, start-
ing at 9.00 am being signed-in by senior Illustrator
developer Tom Ruark, also including lunch in the
on-site cafeteria, and finishing with the end-of-week
beer and nibbles after 5.00pm. Apart from the font
issues, most of the day was spent with Tom. The
discussions concerned the status of the ‘Marked Ob-
jects’ plug-in [6] for Illustrator, and the bug reports
which were specific to Illustrator itself, such as the
lack of a consistent set of specifications for the role
of the MediaBox, ArtBox, BleedBox, etc., and how
these boxes should interact when parts of images
are combined. Hans Hagen contributed directly via
telephone, as did Gary Gray (U. Pennsylvania). Un-
fortunately a planned demonstration by Gary could
not go ahead, as the ‘firewall’ would not allow a
‘remote-access’ connection to be established. Nev-
ertheless, much useful discussion took place, and we
departed the Adobe building with the feeling that
some understandings had been established and that
the reported bugs were likely to be fixed.

Figure 1: Donald Knuth displays the screen-saver
drawing, by Duane Bibby.

http://www.tug.org/mailman/listinfo/tfaa
http://www.tug.org/twg/tfaa

292 TUGboat, Volume 24 (2003), No. 2

Figure 2: Mac OSX TEX screen-saver, by Duane
Bibby.

Later that evening we met with Kaveh Baz-
argan (Focal Image Inc.) who had flown in from
London for a holography conference in San Jose the
following week. The main event for the next day,
Saturday, was to be lunch with the Grand Wizard
of TEX, Donald Knuth. This was at Ming’s restau-
rant in Palo Alto. (Unfortunately Jill Knuth could
not attend, due to a family matter.) The menu was
Chinese ‘Dim Sum’, with many varied dishes be-
ing sampled by all: Donald, Wendy, Nelson, Ross,
Kaveh, and Patricia Monohon who had driven up
from Ventura, with a car full of memorabilia from
the TUG 2003 meeting in Hawai‘i, especially for this
occasion.

A presentation was made of the original of the
Bibby drawing2 (Figures 1,2) first shown publicly
at TUG2003. Following lunch, photographs were
taken on the steps of the restaurant, around a cere-
monial lion. (see Figure 3). Some books, purchased
just that morning, were autographed. Much of the
afternoon was spent driving and exploring the cam-
pus at Stanford University, and browsing the Uni-
versity Bookstore.

Sunday saw yet no rest for the wicked. We were
joined in Cupertino, where Wendy, Nelson and Ross
were staying at a hotel, by Jim Pitman (Depart-
ment of Mathematics and Department of Statistics,
UC Berkeley) who is Chair of the ‘Committee on
Electronic Issues’ of the Institute of Mathematical
Statistics (IMS). Kaveh also joined us for a discus-
sion on matters relating to the publication of mathe-
matical journals and archives, both for online access

2 This drawing is available in several sizes, to match dif-

ferent computer screens, for general use as a screen-saver

or background image, at the TUG2003 web site: http:

//www.tug.org/tug2003/mactex/.

Figure 3: On the steps of Ming’s restaurant;
from left: Patricia Monohon, Ross Moore, Kaveh
Bazargan, Wendy McKay, Donald Knuth, Nelson
Beebe.

and for paper printing. Central to this discussion
was the crisis looming in academia, due to the in-
creasing prices of subscriptions to journals published
by the small number of powerful commercial enter-
prises (see e.g. [7]). That same weekend saw the an-
nouncement of the decision by the Triangle Research
Libraries Network to cancel their subscriptions to
many journals published by Elsevier [4]. Similar cut-
backs are being made at other universities [2, 8, 3],
as evidenced by a report in the Wall St. Journal [5].

Accordingly, there needs to be greater use and
acceptance of online journals, which in turn means
that techniques need to be developed that allow
for easier management of such resources. One so-
lution is to use a workflow (LA)TEX → XML (for
easy storage and archival fidelity) and the reverse
XML → LATEX preparatory to typesetting, accompa-
nied by good copy-editing to establish ‘clean, stan-
dardised LATEX source’. This is the basis of the work-
flow already used by Focal Image for scientific jour-
nals.

These discussions from Sunday continued into
the next week, but with a changed venue as Wendy,
Nelson and Ross drove up north, to stay on-campus
at UC Berkeley. Here it was easier to study vari-
ous software components developed for creation and
management of websites, in particular for biblio-
graphic data. Nelson did a complete installation of
his bibliographic software tools [1], for use at the
UCB, Department of Statistics site.

References

[1] Nelson Beebe. TEX User Group bibliography
archive. University of Utah, updated daily.

http://www.tug.org/tug2003/mactex/
http://www.tug.org/tug2003/mactex/

TUGboat, Volume 24 (2003), No. 2 293

http://www.math.utah.edu/pub/tex/bib/.

[2] Carl T. Bergstrom and Theodore C.
Bergstrom. The costs and benefits of library
site licenses to academic journals. Proceedings

of the National Academy of Sciences of the

United States of America, January 2004.

[3] Cornell University Library. Links on
Scholarly Communication. Issues in

Scholarly Communication, December 2003.
http://www.library.cornell.edu/

scholarlycomm/links.html.

[4] From the Hill. UNC Cuts Back on Journals,
Cites Burdensome Licensing Agreement. GAA

Online, January 2004. http://alumni.unc.

edu/car/weekly/story.asp?sid=461.

[5] Charles Goldsmith. Reed Elsevier Feels
Resistance To Web Pricing. The Wall Street

Journal, January 2004. http://www.lei.lt/

lith3/ivairus/elsevier feeling.htm.

[6] Wendy McKay, Ross Moore, and Tom Ruark.
Adobe plugin for WARMreader. TUGboat,
22(3):188–196, September 2001. Talk given at
TUG 2001, Delaware.

http://tug.org/TUGboat/Articles/tb22-3/

tb72moore-warm.pdf

[7] Jim Pitman. The future of IMS journals. IMS

Bulletin, 32(1), 2003. http://stat-www.

berkeley.edu/users/pitman/imsbull.html.

[8] Sidney Verba. A Letter from Sidney Verba.
Harvard University Library, January 2004.
http://www.econ.ucsb.edu/∼tedb/

Journals/harvardletter040101.htm.

⋄ Nelson Beebe

Department of Mathematics,

University of Utah

beebe@math.utah.edu

⋄ Wendy McKay

Control and Dynamical Systems,

California Institute of

Technology

wgm@cds.caltech.edu

⋄ Ross Moore

Mathematics Department,

Macquarie University

ross@maths.mq.edu.au

Institutional

Members

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia,
Roma, Italy

Center for Computing Science,
Bowie, Maryland

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Duke University, Vesic Library,
Durham, North Carolina

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

KTH Royal Institute of
Technology, Stockholm, Sweden

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

Max Planck Institut
für Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Siemens Corporate Research,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Uppsala University,
Uppsala, Sweden

Vanderbilt University,
Nashville, Tennessee

http://www.math.utah.edu/pub/tex/bib/
http://www.library.cornell.edu/scholarlycomm/links.html
http://www.library.cornell.edu/scholarlycomm/links.html
http://alumni.unc.edu/car/weekly/story.asp?sid=461
http://alumni.unc.edu/car/weekly/story.asp?sid=461
http://www.lei.lt/lith3/ivairus/elsevier_feeling.htm
http://www.lei.lt/lith3/ivairus/elsevier_feeling.htm
http://tug.org/TUGboat/Articles/tb22-3/tb72moore-warm.pdf
http://tug.org/TUGboat/Articles/tb22-3/tb72moore-warm.pdf
http://stat-www.berkeley.edu/users/pitman/imsbull.html
http://stat-www.berkeley.edu/users/pitman/imsbull.html
http://www.econ.ucsb.edu/~tedb/Journals/harvardletter040101.htm
http://www.econ.ucsb.edu/~tedb/Journals/harvardletter040101.htm

2004

Oct 9 First meeting of GuIT (Gruppo
utilizzatori Italiani di TEX),
Pisa, Italy. For information, visit
http://www.guit.sssup.it/

GuITmeeting/2004/2004.en.html.

Oct 18 – 19 Third Annual St. Bride Conference,
“Bad Type”, London, England.
For information, visit http://

www.stbride.org/conference.html.

Oct 23 LATEX session at Linux party, Roskilde,
Denmark. For information, visit
http://www.tug.dk/kalender.html.

Oct 28 – 30 DANTE, 31st meeting, Universität
Hannover, Germany. For information,
visit http://www.dante.de/events/.

Oct 28 – 30 ACM Symposium on Document
Engineering, Milwaukee,
Wisconsin. For information, visit
http://www.sdml.info/doceng2004/.

Nov 11 –
Dec 31

In Flight: A traveling juried exhibition of
books by members of the Guild of
Book Workers. Boston Public Library,
Boston, Massachusetts. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Nov 20 UKTUG Annual general meeting,
London. For information, visit
http://uk.tug.org/.

2005

Jan 3 – 7 Rare Book School, University
of Virginia, January Sessions
in New York City. Two one-week
courses: The printed book in the West
since 1800, and Book illustration
processes to 1890. For information, visit
http://www.virginia.edu/oldbooks.

294 TUGboat, Volume 24 (2003), No. 2

Calendar

Jan 18 –
Feb 25

In Flight: A traveling juried exhibition
of books by members of the Guild
of Book Workers. Scripps College,
Claremont, California. Sites and
dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Feb 23 – 25 Seybold Seminars, New
York. For information, visit
http://www.seybold365.com/2005/.

EuroTEX 2005
Abbaye des Prémontrés (Pont-à-Mousson,
France).

Mar 7 – 11 The 15th Annual Meeting of the

European TEX Users, and the 22
2
2
2
−∞

anniversary of both DANTE and
GUTenberg, “Let’s TEX Together”.
For information, visit http://www.

gutenberg.eu.org/eurotex2005/.

Mar 10 –
Apr 22

In Flight: A traveling juried exhibition of
books by members of the Guild of
Book Workers. Rochester Institute of
Technology, Rochester, New York.
Sites and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Apr 6 – 8 27th Internationalization and Unicode
Conference, “Unicode, Cultural Diversity,
and Multilingual Computing”. Berlin,
Germany. For information, visit
http://www.unicode.org/iuc/iuc27/

iuc27cfp.html.

Apr 14 – 16 TYPO.GRAPHIC.BEIRUT

2005 Conference, Lebanese
American University, Beirut,
Lebanon. For information visit
http://www.atypi.org/ and look for the
entry under “News from members”.

Status as of 1 October 2004

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.

May 22 – 27 Book History at A&M: The Fourth
Annual Texas A&M Workshop on the
History of Books and Printing. Texas
A&M University, College Station,
Texas. For information, visit
http://lib-oldweb.tamu.edu/cushing/

bookhistory/2005.html.

Jun 15 – 18 ALLC/ACH-2004, Joint International
Conference of the Association for
Computers and the Humanities, and
Association for Literary and Linguistic
Computing, “The International
Conference on Humanities Computing
and Digital Scholarship”, University
of Victoria, British Columbia.
For information, visit
http://web.uvic.ca/hrd/achallc2005/

or the organization web site at
http://www.ach.org.

Jun 20 – 23 Seybold Seminars Amsterdam 2005,
Netherlands. For information, visit
http://www.seybold365.com/2005/.

Jul 14 – 17 SHARP Conference (Society for the
History of Authorship, Reading and
Publishing), “Navigating Texts and
Contexts”. Dalhousie University,
Halifax, Canada For information,
visit http://sharpweb.org/ or
http://www.dal.ca/~sharp05/.

Jun 6 –
Jul 29

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on topics
concerning typography, bookbinding,
calligraphy, printing, electronic texts,
and more. For information, visit
http://www.virginia.edu/oldbooks.

Jul 20 – 24 TypeCon2005, Type Directors Club,
New York City. http://www.tdc.org

/news/2004typecon2005.html

Jul 31 –
Aug 4

SIGGRAPH 2005, Los Angeles,
California. For information, visit
http://www.siggraph.org/calendar/.

TUG 2005
Wuhan, China.

Aug 23 – 25 The 26th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2005/.

Aug 29 – 31 Seybold Seminars, San
Francisco. For information, visit
http://www.seybold365.com/2005/.

Sep 15 – 18 Association Typographique Internationale
(ATypI) annual conference, Helsinki,
Finland. For information, visit
http://www.atypi.org/.

TUGboat, Volume 24 (2003), No. 2 295

TUG 2005

International Typesetting Conference

Announcement and Call for Papers

TUG 2005 will be held in Wuhan, China from
August 23–25, 2005. CTUG (Chinese TEX
User Group) has committed to undertake the
conference affairs.

Wuhan is close to the birthplace of Taoism
and the Three Gorges Reservoir. China is also
the birthplace of typography in ancient times,
and is simply a very interesting place to go.

For more information, see the conference web
page at http://tug.org/tug2005, or email
tug2005@tug.org.

Call for papers

Please submit a title and abstract for papers
or presentations by April 1, 2005, via email to
tug2005@tug.org. Any TEX-related topic will
be considered.

Conference fees

The conference fees and deadlines for members
of any TEX user group (in US dollars):

Early registration May 20, 2005 $100
Normal registration July 1, 2005 $220
Late registration August 1, 2005 $380

In all cases, non-user group members add $20.

Conference bursary

Some financial assistance is available. The
application deadline is March 25, 2005. Please
see http://tug.org/bursary for details.

Hope to see you there!

296 TUGboat, Volume 24 (2003), No. 2

Late-Breaking News

Production Notes

Mimi Burbank

It has been quite a while since I’ve written one of
these columns. Our production team (whose names
may be found on the back of the title page) has
grown to include some new members. Most notable
of these has been Karl Berry, who has provided tech-
nical input, editorial input, as well as having gone
out and “beat the bushes” to obtain new and in-
teresting articles. The major problem over the past
several years has been lack of material.

We now electronically transfer PDF files to our
printer— all created with pdf(LA)TEX and ConTEXt.
The overwhelming majority of production files are
in LATEX these days, while the covers and calendar
are still produced in plain TEX. Which brings us to
the discussion of plain TEX versus LATEX —much of
what is done with plain TEX in TUGboat dates back
to a time when TUGboat was produced using plain
TEX and followed by more than a few years with only
a few LATEX articles. There are things that one can
do with plain TEX that cannot be done with LATEX,
not because it can’t be done, but because it is just
so much simpler to do it with plain TEX . . . and vice
versa!

Since this situation isn’t likely to change soon,
these production notes may be omitted from future
issues unless there is something special.

Future Issues

The next issue will contain the proceedings of the
EuroTEX 2003 meeting held in Brest, France. Yan-
nis Haralambous provided the files to the TUGboat

production team, and we are in the process of fin-
ishing up the final editing cycle.

⋄ Mimi Burbank

School of Computational Science

Florida State University,

Tallahassee, FL 32306 – 4052

mimi@csit.fsu.edu

TUGboat, olume (2003), No.

TUG financial statements for 2003

Robin Laakso

This financial report for 2003 also includes financial
statements from 2002, for purposes of comparison.
As usual, the accounts have been reviewed by TUG’s
accountant but have not been audited.

TUG is funded primarily by annual dues from
members. TUG membership declined slightly from
2002 to 2003, by about 2%. Most notable was the
decline in joint membership categories. NTG (the
Dutch TEX user group) and UK-TUG (United King-
dom) joint memberships combined dropped about
20% from 2002 to 2003. Total membership dues rev-
enue was greater in 2002, however, because an extra
$10,000 (2000 and 2001 UK-TUG joint membership
dues) was collected in that year.

The TUG Store was launched in April, 2003
(http://tug.org/store). Thirty-five copies of the
TEX Live software and 24 copies of TUGboat, as well
as TEX pins, conference mugs and t-shirts were pur-
chased via the store, boosting the “Product Sales”
category by $2040.

Notable contributions and allocations made by
TUG in 2003:

• TUG 2003: $10000, of which about half was
recouped. Also, we thank both numerous in-
dividuals and the other user groups, especially
DANTE e.V., GUST, NTG, and GUTenberg, for
very generous contributions to the conference.

• TEX development fund: $5000
• TEX workshop in Pune, India: $2100
• EuroTEX 2003: $2000
• Bursary fund: $2000

As usual, TUG’s largest annual expense items
were payroll, TUGboat production and mailing, and
software production and mailing, all of which de-
creased slightly in 2003.

The $269 loss in 2003 compared to a positive
$7180 net income in 2002 can be explained almost
entirely by extra joint member dues received in 2002
in combination with greater contributions made by
TUG in 2003. Overall, TUG’s financial picture re-
mained quite steady in 2003.

This verbal portion of the report is intended to
highlight major features contained in the financial
statements, but cannot explain detailed activities
within each account. If you would like to learn more
about TUG’s finances or have a particular comment
or question, please contact the TUG office.

⋄ Robin Laakso

TUG Executive Director

office@tug.org

TUGboat, Volume 24 (2003), No. 2 297

 TeX Users Group

 Balance Sheet Prev Year Comparison
 As of December 31, 2003

Dec 31, 03 Dec 31, 02

ASSETS

Current Assets

Checking/Savings

OregonTelco PrimeShare 133,750 128,258

BOA Maximizer 28,902 51,780

BOA Checking -7,527 5,730

BOA Money Mkt Bursry 1,711 1,330

Petty Cash 10 10

Total Checking/Savings 156,846 187,108

Accounts Receivable

Accounts Receivable 300 7,270

Total Accounts Receivable 300 7,270

Other Current Assets

Deposits 10

Total Other Current Assets 10

Total Current Assets 157,156 194,378

Fixed Assets

Fixed Assets

Equipment 44,625 44,025

Accumulated Depreciation -40,300 -36,966

Total Fixed Assets 4,325 7,059

Total Fixed Assets 4,325 7,059

TOTAL ASSETS 161,481 201,437

LIABILITIES & EQUITY

Liabilities

Current Liabilities

Accounts Payable

Accounts Payable 31,104 40,124

Total Accounts Payable 31,104 40,124

Other Current Liabilities

Deferred conference donations 100 610

Deferred conference income 7,360

Deferred contributions 1,500

Deferred member income 21,175

AMS Prepaid Memberships 1,800 1,800

Payroll Liabilities

Federal P/R Taxes Payable 885 994

State P/R Taxes Payable 195 218

Total Payroll Liabilities 1,080 1,212

Total Other Current Liabilities 2,980 33,657

Total Current Liabilities 34,084 73,781

Total Liabilities 34,084 73,781

Equity

Restricted DevFund as of 12/31 3,433

Restricted Bursary as of 12/31 1,711 1,330

Restricted LaTeX3 as of 12/31 -76 168

Unrestricted as of 1/1 122,588 118,979

Net Income -259 7,180

Total Equity 127,397 127,657

TOTAL LIABILITIES & EQUITY 161,481 201,438

 TeX Users Group

 Profit & Loss Prev Year Comparison
 January through December 2003

Jan - Dec 03 Jan - Dec 02

Ordinary Income/Expense

Income

Membership Dues 113,597 125,215

Product Sales 4,955 3,050

Contributions Income 5,743 5,065

Annual Conference 4,915 -393

Annual Regional Conference -363

Conference Classes -314

Interest Income 6,064 5,130

Advertising Income 400 1,345

Bursary 381 301

TeX Development Fund 3,433

LaTeX 3 -234 -520

Miscellaneous Income 0

Total Income 139,254 138,516

Cost of Goods Sold

TUGboat Prod/Mailing 22,500 24,189

Software Production/Mailing 10,207 13,659

Postage/Delivery - Members 3,684 4,184

TUG Store - shipping 299

Conf Expense, office + overhead 3,698

Member Renewal 469 420

Copy/Printing for members 67 60

Total COGS 40,924 42,512

Gross Profit 98,330 96,004

Expense

Contributions made by TUG 21,100 5,942

Office Overhead 9,318 8,021

Payroll Exp 60,091 60,460

Contract Labor 735 375

Professional Fees 1,651 14,905

Credit card/Bank charges 3,769 3,137

Depreciation Expense 3,334 2,786

Interest Expense 3

Total Expense 99,998 95,629

Net Ordinary Income -1,668 375

Other Income/Expense

Other Income

Prior year adjust (02-03) -3,592 6,806

Other Income 5,000

Total Other Income 1,408 6,806

Net Other Income 1,408 6,806

Net Income -260 7,181

298 TUGboat, Volume 24 (2003), No. 2

2005 TEX Users Group Election

Barbara Beeton
for the Elections Committee

The positions of TUG President and of eight mem-
bers of the Board of Directors will be open as of the
2005 Annual Meeting, which will be held in August
2005 in Wuhan, China.

The current President, Karl Berry, has stated his
intention to stand for re-election. The names of the di-
rectors whose terms will expire in 2005 are: Steve Grath-
wohl, Jim Hefferon, Arthur Ogawa, Gerree Pecht, Steve
Peter, and Mike Sofka. Two additional director positions
are currently unoccupied. Continuing directors, with
terms ending in 2007, are: Barbara Beeton, Kaja Chris-
tiansen, Susan DeMeritt, Ross Moore, Cheryl Ponchin,
Samuel Rhoads, and Philip Taylor.

The election to choose the new President and
Board members will be held in Spring of 2005. Nom-
inations for these openings are now invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG Presi-
dent/to the Board by submitting a nomination pe-
tition in accordance with the TUG Election Proce-
dures. Election . . . shall be by written mail ballot
of the entire membership, carried out in accordance
with those same Procedures.” The term of President
is two years.

The name of any member may be placed in
nomination for election to one of the open offices by
submission of a petition, signed by two other mem-
bers in good standing, to the TUG office at least
two weeks (14 days) prior to the mailing of ballots.
(A candidate’s membership dues for 2005 will be ex-
pected to be paid by the nomination deadline.) The
term of a member of the TUG Board is four years.

A nomination form follows this announcement;
forms may also be obtained from the TUG office, or
via the TUG Web pages at http://www.tug.org.

Along with a nomination form, each candidate must
supply a passport-size photograph, a short biography,
and a statement of intent to be included with the bal-
lot; the biography and statement of intent together may
not exceed 400 words. The deadline for receipt at the
TUG office of nomination forms and ballot information
is 1 February 2005.

Ballots will be mailed to all members within 30 days
after the close of nominations. Marked ballots must be
returned no more than six (6) weeks following the mail-
ing; the exact dates will be noted on the ballots.

Ballots will be counted by a disinterested party not
part of the TUG organization. The results of the election
should be available by early June, and will be announced
in a future issue of TUGboat as well as through various
TEX-related electronic lists.

2005 TUG Election —Nomination Form

Only TUG members whose dues have been paid for 2005
will be eligible to participate in the election. The sig-
natures of two (2) members in good standing at the
time they sign the nomination form are required in ad-
dition to that of the nominee. Type or print names
clearly, using the name by which you are known to TUG.
Names that cannot be identified from the TUG member-
ship records will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

✷ TUG President

✷ Member of the TUG Board of Directors

for a term beginning with the 2005 Annual Meeting,
August 2005.

Members supporting this nomination:

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office (FAXed
forms will be accepted). Nomination forms and all re-
quired supplementary material (photograph, biography
and personal statement for inclusion on the ballot) must
be received in the TUG office no later than 1 February

2005.1 It is the responsibility of the candidate to ensure
that this deadline is met. Under no circumstances will
incomplete applications be accepted.

✷ nomination form

✷ photograph

✷ biography/personal statement

TEX Users Group FAX: +1 503 223-3960
Nominations for 2005 Election

1466 NW Naito Parkway, Suite 3141
Portland, OR 97209-2820
U.S.A.

1 Supplementary material may be sent separately from

the form, and supporting signatures need not all appear on

one form.

TEX Consultants

Ogawa, Arthur

40453 Cherokee Oaks Drive
Three Rivers, CA 93271-9743
(209) 561-4585
Email: arthur ogawa@teleport.com

Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX

macros and LATEX2ε document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in LATEX, TEX, SGML,
PostScript, Java, and C++. Database and corporate
publishing. Extensive references.

Veytsman, Boris

2239 Double Eagle Ct.

Reston, VA 20191

(703) 860-0013
Email: boris@lk.net

I provide training, consulting, software design and
implementation for Unix, Perl, SQL, TEX, and LATEX. I
have authored several popular packages for LATEX and
latelx2html. I have contributed to several web-based

projects for generating and typesetting reports.
For more information please visit my web page:

http://users.lk.net/ borisv.

The information here comes from the consultants
themselves. We do not include information we know to be
false, but we cannot check out any of the information; we
are transmitting it to you as it was given to us and do not
promise it is correct. Also, this is not an endorsement of

the people listed here. We provide this list to enable you to
contact service providers and decide for yourself whether to
hire one.

The TUG office mentions the consultants listed here to

people seeking TEX workers. If you’d like to be included, or
place a larger ad in TUGboat, please contact the office or
see our web pages:

TEX Users Group

1466 NW Naito Parkway, Suite 3141
Portland, OR 97208-2311, U.S.A.

Phone: +1 503 223-9994
Fax: +1 503 223-3960
Email: office@tug.org

Web: http://tug.org/consultants.html

http://tug.org/TUGboat/advertising.html

TUGboat, Volume 24 (2003), No. 2 299

The LATEX Companion has long been

the essential resource for anyone using

LATEX to create high-quality printed

documents. This completely updated

edition brings you all the latest informa-

tion about LATEX and the vast range of

add-on packages now available—over

200 are covered. Like its predecessor,

The LATEX Companion, Second Edition

is an indispensable reference for anyone

wishing to use LATEX productively.

For more information, visit:

www.awprofessional.com/

titles/0201362996

Frank Mittelbach and Michel Goossens

with Johannes Braams,

David Carlisle, and Chris Rowley

ISBN: 0-201-36299-6

Available at fine bookstores everywhere.

The LATEX
Companion

Second Edition

The LATEX
Companion

Second Edition

I Inquire about EASY TABLE at:

 www.authorkhanhha.com/EZ
 301-523-4242

 EASY

 TABLE KHANH HA

 A TEX Table Macro Package

◊ ◊ ◊

• Dynamic table setting by template control

• Multiple mixed column spanners, subspanners, and row spanners

• Easy routines to split table footnotes and break extremely long tables

• Partical hrules, floating hrules anywhere, any length on exact baselineskip

• Automatic decimal alignment, or any special character, in irregular tables

• End columns with \et command anywhere and all vrules are automatically drawn

• Old article: http://tug.org/TUGboat/Articles/tb11-2/tb28ha.pdf

• Version10.04, far superior to the original 1989 version, is now available.

This TEX table

macro package

rivals the best

of the

commercial

typesetting

systems.

Cost? $49.95

	2003 TUG organizational matters
	Icelandic TeX user group
	Board resignation and appointments
	Notable TeXnical events
	Adieu, Daniel Taupin
	Don Knuth to Michael Downes
	Another honorary degree for DEK
	Help save the French Imprimerie nationale
	Avoid obsolescence: Guidelines for LaTeX users
	Hidden TeX use in Germany
	Introduction
	LifeLines: A brief introduction
	Installing LifeLines
	Using LifeLines

	LifeLines's LaTeX output
	Running the book-latex.ll program

	Conclusion
	Thanks

