
TUGboat, Volume 24 (2003), No. 2 169

On musical typesetting:
Sonata for TEX and METAFONT, Op. 2

Federico Garcia

This article appears in the same TUGboat
issue as an obituary of Daniel Taupin, author
of MusiXTEX, who unexpectedly passed away

in 2003. I’d like to take the opportunity to
offer it as an homage to his memory.—FG

Modern software industry has provided tools for the
typesetting of music for some time already. Two
programs in particular —Finale and the more recent
Sibelius — virtually exhaust the music community:
almost all musicians use either one or the other.
Both are WYSIWYG (what you see is what you get)
applications, and both have reached that stage of
development in which new versions consist of little
more than new shortcuts, ‘cookies’ of questionable
relevance, and so on. Competition for ever wider
markets, on the other hand, has made these pro-
grams horribly ‘intelligent’: intended for standard
situations and the less-than-careful user, they make
customization beyond a certain point painstakingly
bothersome.

The problem is that non-standard situations
are the order of the day in music. On the one
hand, there is the so-called ‘new music’, the con-
temporary form of the ‘art music’ tradition, whose
notational requirements have proven to be hard to
standardize at all;1 traditional notational practices
are quite sufficient for popular and commercial mu-
sic (increasingly the target of commercial software),
but ‘new music’ overwhelms them in infinite ways.
On the other hand, there is musicology, in which
not the composition of new but the analysis of old
music might potentially require not-yet-conceived-
of typographical upheavals — to circle or otherwise
highlight certain notes, to tie them in unusual ways,
to superimpose staves, . . . Thus, any serious system
of professional musical typesetting has to give up
the hope of foreseeing all needs and possibilities. In
a word, it has to be programmable.

This is what some years ago got me started
thinking of TEX as a suitable environment for such a
system. Recently, after having had some experience
with MusiXTEX —the ‘officially approved’ (i.e., ac-
knowledged by Donald Knuth in his web page) ap-
plication of TEX to music —as well as a taste of what

1 Perhaps I should remind the reader that today’s mu-
sic, like other arts, is far removed from the conventions and
traditions of the ‘common-practice period’ (17th–19th cen-
turies)— for which, incidentally, the ‘standard’ notation was
developed. Everything has changed, from the nature of the
musical sound itself to its graphic representation.

Lilypond has to offer, I have put hands to work on
creating (yet another) system, with portability, flex-
ibility and adaptability as priorities.2 What follows
is a report of what I have done so far. If I’m sub-
mitting it to the public, it’s because I think I might
be onto something.

I wrote this article in two stages. First (Op. 1)
when I had just devised the main general model,
and anticipated the main algorithms needed to im-
plement it. That was toward the end of 2002. And
then now, mid-2004, when publishing it in TUGboat
became really plausible. Particularly the first part
(a history of the main idea of the system) features
a narrative approach, so I have avoided anachro-
nism: what I know now but didn’t know then should
not interfere too much. Along the way of telling
this story, there is a detailed review and ‘refutation’
of MusiXTEX. It’s admittedly sharp, but sincerely
well-minded and grateful.

Then, in the second part, I allowed myself to
‘upgrade’ the article a little more deeply, taking ad-
vantage of these two years of actual work of pro-
gramming. It’s interesting to see how getting con-
crete changes ideas in unexpected ways.

I think this article can be read without knowl-
edge of either music, TEX programming, or META-
FONT. Experience would surely make it easier to
understand some lines here and there, but I’ve tried
to make it all clear to any reader, above all to non-
musicians. I myself wasn’t very experienced with
TEX, METAFONT, or musical typesetting —and the
bulk of this article is re-telling the steps I’ve followed
and what I’ve learned from scratch.

PART I:
Qualitative design

1 The nature of musical typesetting (I)

It’s no coincidence that music typesetting programs
are, by far, closer to being graphic utilities than text
processors. Musical text is multi-dimensional. As

2 MusiXTEX is Daniel Taupin’s development of what was
originally a joint effort with Andreas Egler, MusicTEX.

Lilypond is the TEX-related but independent system devel-
oped by Jan Nieuwenhuizen and Han-Wen Nienhuys. I am by
no means familiar with Lilypond— in part because in 2002,
when I wrote a first version of this article, I had to give up
trying to install it under Windows. One might think that
I should have become familiar with it before embarking on
the creation of TEXmuse; but my intuition is that there is no
real overlap between the two. For one thing, Lilypond is not
a TEX package; for another, it boasts (rightly) of beautiful
fonts. TEXmuse, on the contrary, boasts of not having fonts
at all, and this shows how different their nature and approach
are. I have grown convinced that, as explained later on, not
having fonts is actually the best way to the flexibility I am
aiming at, as a musician and as a programmer.

170 TUGboat, Volume 24 (2003), No. 2

we all know from school, the horizontal dimension
is time, and the vertical dimension is pitch. But
that’s only part of the matter, since different voices
come in different staves (different vertical position).
The horizontal position of a note in a given staff
depends not only on what notes in the same voice
come before or after, but also, and typographically
most importantly, on what notes are played at the
same time by other voices. There is in effect a third
dimension involved. (A look at Figure 1 might be
in place to visualize all this. This piece being for
piano, each staff corresponds to one hand.)

CHO P I N 0 1
Figure 1: A fragment of a typical score (m. 9 of

Chopin’s piano prelude in c minor, Op. 28 No. 20).

Music is thus not a line of text (in which only
the horizontal dimension matters), but also not a
mathematical formula (in which the vertical dimen-
sion plays a role): it is an array of several two-
dimensional ‘strings’ that are mutually lined up. Ty-
pographically, what this resembles most is, of course,
a table. And yet there is an important difference:
a musical score usually goes on and on, for many
pages — the table has to be broken. Not broken as
longtable breaks tables, because in this case the ta-
ble is not too tall, it is too long. It has hundreds and
hundreds of columns, and there is no way to know
beforehand how many of them fit in each page.

2 The problem of horizontal spacing and
line breaking

An idea that suggests itself naturally when one med-
itates about this kind of page-breaking is an anal-
ogy with TEX’s output routine. Instead of collecting
lines and deciding when to break the page ‘verti-
cally’, here the task consists of collecting columns
and deciding on horizontal breaks. This would in-
deed be the case when the table is input in the
form of columns. Page-breaking when the table is
thus pre-set is actually a rather simple matter, and
we can see a solution in action in the workings of
MusiXTEX. In fact, that’s the latter’s main break-
through: “to address the above aim, a three pass
system was developed” [8, p. 9].

The ‘three-pass system’ works through an ex-
ternal program (MusixFlex), that reads a file (.mx1)
created by TEX, decides on page- (and, which is

analogous, system-) breaking, and writes another
file (.mx2) for TEX to read during a second TEX
pass.

I always wondered whether invoking an exter-
nal program was really necessary. TEX’s handling
of horizontal spacing, a substantial part of the line-
breaking algorithm for which Knuth takes and de-
serves much credit— “this, in fact, is probably the
most interesting aspect of the whole TEX system” [3,
p. 94] — seems so powerful, so flexible, and intu-
itively so fit to musical spacing, that MusiXTEX ap-
peared to be missing out. I had the impression that
music offers an opportunity to really take advan-
tage of this superb algorithm, whose capabilities go
far beyond assigning a little extra space to periods
and question marks in horizontal mode. . .

The authors of MusiXTEX lay aside this algo-
rithm on the grounds that it

implicitly assumes that a normal line of text will
contain many words, so that inter-word glue need
not stretch or shrink too much to justify the line.
This strategy does not work very well for music.
If each bar of music is treated as a word, in the
sense that inter-bar glue is placed at the end of
each bar, then the usual result is the appearance
of unsightly gaps before each bar rule. This fol-
lows naturally from the fact that the number of
bars per line is normally many fewer than the
number of words in a line of text. [8, p. 9, my
emphasis]

This is, in the main, correct. What is flawed is
the implicit analogy: it is not “each bar of music”
which has to be “treated as a word”, because its in-
ner components are also subject to spacing. Since
the defining characteristic of a ‘word’, as far as the
line-breaking algorithm is concerned, is that its com-
ponents remain packed together with rigid space in
between, measures (bars) do not qualify as words.

Therefore there is still a possibility of using
TEX’s line-breaking algorithm. My whole endeavor
has been ultimately moved by the intuition that
there must be some way to apply it. As we shall see,
this idée fixe led me — round-about and through a
faulty assumption— to the discovery of a promis-
ing possibility. But first, now that I have touched
MusiXTEX, let me complete my review of it.

3 A word on MusiXTEX

I said above that the problem of horizontally break-
ing a table is a simple one when the table’s columns
are input as such: as columns. And that that was
the case with MusiXTEX. In fact,

the fundamental macro [of MusiXTEX is] \notes
... & ... & ... \enotes where the character

TUGboat, Volume 24 (2003), No. 2 171

& is used to separate the notes . . . to be typeset
on the respective staff [sic] of the various instru-
ments, starting from the bottom. [7, p. 213]

So you input the first note of the bottom-most staff,
then use the magical &, then the first note of the
second-to-bottom staff, another &, the note in the
third-to-bottom staff, etc. After getting to the top
staff, you start again by going back to the bottom
staff, and inputting its second note. The process is
exactly analogous to LATEX’s tabular, only rotated
90◦.

A way to picture what is involved here is imag-
ining that to type a paragraph of text you have to
type a) all the first words, line by line, b) all the
second words, c) all the third words, d) . . . It is
terribly unnatural, and, as a result, the input is as
unreadable as it can get; both creating and reading
it is an excellent, but unwelcome, exercise in ab-
stract thought. Because music, after all, is thought
of much as text is: as horizontal lines. Many, inter-
connected lines, but lines still.3

Writing a MusiXTEX file is then most uncom-
fortable, and editing it can be really challenging.
But consider the task of ‘extracting parts’ (select-
ing, for separate printing, a subset of the staves in-
volved). This is a very common necessity, for players
of an ensemble need only their staff (not the whole
score), and the ability to do it automatically is prob-
ably the most important advantage of using a com-
puter for music typesetting. With MusiXTEX’s kind
of input, this is simply unthinkable (it is analogous
to, but more complicated than, extracting a single
column from a tabular environment, even a sim-
ple one; there is no way to copy-paste, not even to
automatically find the relevant pieces of the input).

David Salomon says that “the most important
feature of TEX is its line-breaking capabilities. . . .
The second most important feature of TEX is its pro-
grammability” [6, p. x]. As I have noted, MusiXTEX
ignores the first feature; but the way it neglects the

3 Taupin devotes section 1.1.1 of MusiXTEX’s manual to
argue that “the humanly logical way of coding music” is the
procedure described. This claim is as wrong as it is apode-
ictic. He draws from his perception of what reading key-
board music is like. Even here his point is questionable, be-
cause the musician reads horizontal chunks from every staff
(the whole tradition of sight-reading training is based on this
assumption). But, in any case, the composer and the typ-
ist (who really matter) certainly do not conceive of music
vertically. I have never seen anybody setting a score by
columns, but, again, by chunks of horizontal material. In-
complete drafts by composers throughout history, including
Bach’s Die Kunst der Fugue (one of the first MusiXTEX
projects), prove this. In my view, Taupin is here proving
what he believes, rather than believing what he proves: un-
derstandably, his system was “the humanly logical way” of
programming TEX for the task.

second one is actually more exasperating. I started
this article by complaining about how customization
is disregarded in commercial music software. For ex-
ample, three steps are needed to change a note-head
from its standard shape (the elliptical spot T), say
into a � or a × (both fairly usual nowadays). Of
course, if you happen to need many such changes,
you are doomed to follow the same three steps over
and over. . .

What is this like in MusiXTEX? Well, by it-
self, MusiXTEX cannot do it. You have to go to
musixtex.tex (naturally a very intricate file), find
the relevant definitions, and create your new macros.
Foremost, you have to know what you are doing—
after all, you are programming TEX at a fairly low
level. No hope of doing it if you are no TEXnician.4

Let alone trying to change temporarily the num-
ber of lines in a staff, or creating non-standard key
signatures, or connecting two notes from different
staves — all of which is excruciating, but at least
possible, in Finale and Sibelius. Requiring the user
to verticalize what is naturally thought of horizon-
tally is awkward; but prohibiting an efficient and
logical programming is — it seems to me —not far
short of deserting the very spirit of TEX.

In addition, little care was put in the choice of
command names —some bear ‘d’ and ‘u’ for English
down and up, others ‘b’ and ‘h’ for French basse and
haute; musical names are applied wrongly (‘accent’
for articulation, ‘sforzando’ for accent, ‘pizzicato’ for
staccato, etc.)— trying to memorize this could mean
forgetting what’s what. MusiXTEX is not flexible
(the limitations of slurring, for example, are severe);
it’s not even efficient: only nine (or twelve with an
‘extension library’) staves can be included, because
TEX registers are used for almost everything, and
they are exhausted quickly. And, this review al-
ready becoming far more odious than my intention,
I have to say that, with MusiXTEX, quality— O pre-
cious treasure and pride of TEX lovers — is poor: the
output is ugly.5

To sum up, MusiXTEX does not in my view take
advantage of TEX’s unique possibilities. Its typeset-
ting of non-standard music is as demanding as that
of WYSIWYG commercial programs, adding the in-
tricacy of an unreadable input. Sadly, I have had
to recommend musicians (even those few well ac-
quainted with TEX) to use Finale or Sibelius rather

4 The authors do provide an ‘extension library’ with �, ×,
and other symbols implemented as note-heads; but this kind
of ad hoc procedure is not a solution, for the possibilities are
still limited.

5 And this is why Lilypond puts so much emphasis on the
beauty of its fonts (see note 2).

172 TUGboat, Volume 24 (2003), No. 2

than MusiXTEX: the result is better and the effort
is less if the situation is standard, and about the
same otherwise.

I’m not being just politically correct, however,
when I also have to say that, all in all, it is a wonder
that MusiXTEX was programmed at all. I regard its
creators with deep respect and admiration.

4 Premises for an alternative

The discussion above sets the grounds for what an
ideal system would be like. These are my basic
premises:

Programmability and flexibility. This is ‘simply’
a matter of constantly bewaring of rigid designs
in programming.

TEX’s glue has to be used. Somehow. It seems so
fit for musical spacing. . .

Horizontal input is necessary if we want a natural
and logical system, one that can compete, on
ease of use, with Finale and Sibelius.

TEX’s sufficiency No PostScript. Come on, no
cheating, please.

About the first two points, I think it can be said that
MusiXTEX simply slipped down the wrong way —
far greater difficulties were being tackled by its au-
thors, so we can forgive them.

But the third premise is a Pandora’s box. ‘Hor-
izontal input’ means that the user will input the
different lines (staves), one by one. But there is
nothing in a given particular line that indicates the
relationship of its notes to the notes in other lines
(and, remember, the horizontal position of a note
depends foremost on the notes in other staves). For
example, there is no way to know, by only reading
line 3, whether its fifth note will be played before,
at the same time, or after (graphically, to the left,
directly above, or to the right of) the tenth note of
line 6.

MusiXTEX solves the problem, as mentioned,
by asking the user to input columns: it is the user
who figures the vertical relationships out. But this
is precisely what we want to spare the user. Could
TEX possibly do it? Well, since these relationships
depend on (and only on) the rhythmic characteris-
tics of the notes involved, to figure them out TEX
would need to ‘understand’ those rhythmic charac-
teristics: nothing less than being taught music.

I still tried something else before committing
to TEX’s musical instruction: if the problem is to
horizontalize a vertical input, why not simply rotate
the score? The user will type staff by staff, as is
natural to him, but for TEX this will mean column
by column, which is natural for it. In addition, the

problem of page-breaking a horizontally long table
becomes the more manageable (and already solved)
one of page-breaking a vertically long one. Even
TEX’s glue would be automatically recovered, only it
would apply now to staves (rather than measures),
which do behave as words in the sense that inner
space is not stretched.

I was thrilled by this idea. I still think it is
worth exploring for a table-like approach like Mus-
iXTEX. But I soon realized this does not solve the
big problem. The input is simplified, but the user
still has to figure out the (now horizontal) rhythmic
correspondences. And, again, TEX’s spacing algo-
rithm would be under-used, being applied to the rel-
atively unimportant problem of inter-staff spacing.
The output routine, on the other hand, has noth-
ing resembling space factors with which to work on
inter-note spacing (which was my main motivation
to think about that algorithm).

So, no way out: for the third premise, TEX had
to take music lessons, and I would be the appointed
teacher. I was scared, and maybe that, along with
my taste for TEX’s line-breaking algorithm, is why
I focused first on the second premise: bringing back
TEX’s glue. It will be seen that this actually in-
volved a logical slip—but a fortunate one, because
by tackling the wrong problem I found a solution to
the real one.

What about the fourth premise? Why did I set
this ‘only-TEX’ requirement to my system? I don’t
really know — it must have been sheer love of TEX.6

5 Bringing glue back

The intuition that TEX’s spacing is useful for music
can be stated basically thus: different (rhythmic)
kinds of musical notes receive different amounts of
space to their right, similar to the way periods, com-
mas, and other characters, do in text.7 A succes-
sion of notes can thus be imagined as a succession
of words, separated by blank spaces; these spaces
will be stretched by TEX (in the same way TEX

6 And total ignorance of PostScript! (although I am will-
ing to learn if it proves necessary; Van Zandt’s miraculous
PSTricks is a compelling taste of what can be achieved by
‘cheating’).

7 A quick summary of the algorithm: TEX calculates how
much the line has to be stretched to reach the right margin
(to be justified). Then this total extra space is distributed
between all the blank spaces —elastic spaces, TEX’s ‘glue’ —
in the line, proportionately to the ‘space factor’ of the char-
acters before the spaces. Periods, for example, have a larger
space factor than letters, and therefore spaces after periods
will be given a bigger share of the total stretching.

Throughout this article I consider the algorithm only in
its ‘stretching’ aspect, and without interference from infinite
glue or ‘badness’ parameters.

TUGboat, Volume 24 (2003), No. 2 173

stretches spaces in a normal line of text), so that if
the space factors assigned to each note ‘map’ their
rhythmical nature, the final stretching will agree to
the rules of musical spacing.

So, the fruitful analogy is words = notes (as op-
posed to words = measures, which is ‘semiotically’
more natural, but typographically misleading— see
section 2).8 Another important aspect of this anal-
ogy will be treated in the following section.

However, it will be noted that the intuition
paraphrased above is not perfectly rigorous. In all
truth, as has been already said, the space at the right
of the musical notes depends not only on their own
rhythmic characteristics, but above all on the notes
(which, and how many) present in other staves. The
assumption that this spacing behaves similarly to
the spacing for justification of texts holds true only
in two cases: a) when there is only one staff; and
b) when the note in question is the smallest (rhyth-
mically) of all notes played by the different staves.9

OK, I can state b) now, with an a posteriori
conceptualization. At the time I was struggling with
‘bringing back TEX’s glue’, I could not possibly have
thought of this as rigorously. Had I considered spac-
ing for many voices, I myself would have probably
abandoned the analogy with glue-spacing. But any
thinking about many voices was then for me related
to ‘teaching music to TEX’, which was a task I had
decided to postpone. Thus I had automatically re-
duced the scope to one-voice situations — case a) —
inadvertently making the intuition (and the anal-
ogy) true and useful.

An incomplete intuition generated an incom-
plete consequence: the analogy words =notes (which
is right but not sufficient). But only through a fur-
ther development of this consequence could I start
imagining a complete strategy that would solve the
actual problem of music typesetting, namely the
problem of how to deal with polyphony.

6 The nature of musical typesetting (II)

A page of music type consists of a great many
small pieces joined together to represent continu-
ous lines and characters. For instance, this group

8 I’m using the term ‘word’ in a TEXnical way: it means
any succession of characters (‘letters’) bounded by spaces (or
\par’s). So ‘No!.’ is a four-letter word (‘!’ and ‘.’ being two
of the ‘letters’).

9 In other words: when the note in question is the smallest
in the whole polyphony, it follows that the next note will be
present in the same staff. Then, the only consideration for
its spacing is its own rhythmical nature—there will be no
need to make room for intervening notes in other staves. For
a ‘special case’ of the rule, pointed out by the authors of
MusiXTEX, see note 20.

T: T e: e X: X
Table 1: Three musical ‘letters’.

of notes a is composed of twenty-four

pieces, thus: b .

This is how F. H. Gilson [2, p. 11] illustrated, back
in 1885, the ‘microstructure’ of a musical text. In
it we can see how much sense it makes to say that
a note, in all its atomic character, is analogous to a
word (rather than, for example, to a letter). Gilson
analyzes his three notes into a series of smaller ele-
ments: these elements would be well thought of as
letters. Indeed, Finale and Sibelius build up notes
from several elements: note-heads, flags (c) for short
values, etc. So does MusiXTEX, whose fonts do not
include complete notes at all.10

Notes, then, do seem to behave as words: ag-
gregates of letters. For example, imagine a font in-
cluding the three characters in Table 1. The word
TeX would produce TeX.11

Now, there are some important things to note:

• Many letters of this musical ‘alphabet’ would
have no width (such as the ‘letters’ T and e in
the example), since musical ‘words’ would tend
to be vertical rather than horizontal arrange-
ments. In fact, probably the most appealing
effect of ‘rotating the score’ (page 173) is that,
when rotated, musical ‘words’ such as TeX (now2) really resemble text. But with an unro-
tated score and zero-width characters, any dis-
turbances of ‘normal’ vertical alignment (that
occur frequently enough in music) would re-
quire the manual insertion of rigid space.

• In ordinary text, the space after a word depends
on the space factor of one of its characters (gen-
erally the last one). In music, the space depends
on the word— the note — in its entirety. The
musical letter ‘ T ’, for example, will presumably
be part of many notes, each of them requir-
ing different spacing. But this is different from,
say, what happens with character ‘.’ in ordinary
text: the spacing of the whole word is deter-
mined by that single character, on its own and
always in the same way. In our musical font,

10 With the annoying result that it is not possible easily to
insert a note in ordinary text. Even the authors must have
regretted it when they had to do heavy code for this relatively
simple need when writing the program’s manual.

11 The vertical line missing here —called ‘stem’ —would
be directly drawn by today’s programs; Gilson included it as
part of the types.

174 TUGboat, Volume 24 (2003), No. 2

characters would have to be assigned different
space factors each time they are used, which is
kind of missing the point.

• The only difference between T and e (T and e)
is the vertical position of the little ellipse. This
is of course not the best solution— an infinite
alphabet would be needed to put note-heads
anywhere in the score. The musical alphabet
should have only one letter for the note-head,
and move it up and down as necessary.
Taking all this into account, our word would

no longer be ‘TeX’, but something along the lines of
(in LATEX) ‘T\raisebox{-1ex}{T}\sfactor‘\X X’.
Much less attractive!

7 The advent of METAFONT

There are other reasons why this approach wouldn’t
work, but at the time I was unable to see them. I
think it’s the ‘aesthetic’ disappointment that left me
unsatisfied. I rejected the approach, ‘arbitrarily’ if
you will, by the feeling that an originally elegant
use of TEX’s properties had become a ugly series of
ad hoc procedures.

I haven’t spoken of METAFONT yet. But the
truth is that, all along, I had been training in META-
FONT — after all, I would soon be forced to create
the fonts for my system. So every time I got tired
of thinking of TEX, I would go for a METAFONT

promenade. I was creating a musical font, imitat-
ing Finale’s ‘maestro’. Many of the symbols used
here for musical examples actually come from those
early, unexperienced trials. (That’s partly why they
are not very refined.) The point is that I was in-
creasingly getting to know and love METAFONT,
and many times I found myself, after having learned
to take good advantage of a new resource, think-
ing ‘Oh, if only TEX could do this. . . ’ This was
mainly in connection to arithmetic and the use of
variables, but in general a feeling was growing that
METAFONT was curiously well fitted to the kind of
graphic handling required by musical text.

What would have made one think that META-
FONT would be fitter for music than graphic utili-
ties? It was indeed curious. But then one day— it
was the summer of 2002— I made a slightly different
comparison, and the whole business became defin-
ing and foundational. I would actually say that’s
the moment TEXmuse was born. The point is not
that METAFONT is fitter than PostScript, or than
PSTricks, or than PICTEX. Truly relevant is the fact
that

METAFONT is fitter than TEX

I’m not claiming priority for this. Back in 1992, it

occurred to Tom [Thomas E. Leathrum] that it
might be possible to take advantage of the fact
that METAFONT is designed for drawing things.
[5, p. 1]

From this occurrence, Leathrum eventually devel-
oped the program mfpic.12 It took me a relatively
long time (probably because of my idée fixe of ap-
plying TEX’s glue), but I finally realized the rather
obvious fact that building notes up from elements
was much more of a ‘drawing-things’ than of a ‘com-
piling-words’ business. Then, Leathrum’s solution
came to my mind automatically: building the notes
is a graphic activity, and it should be done by META-
FONT, not by TEX. The latter only gives directions.

8 TEXmuse

So, that’s it: TEX collects the information for the
notes (how many note-heads, what kind, where to
put them, the direction of their stems, additional
signs, etc.), and writes a METAFONT program; run-
ning it, METAFONT creates a character for each
note. After that, everything is trivial: each note
will be like a single-letter word, with its own space
factor. TEX applies its stretching algorithm and,
almost without knowing it, spaces the music auto-
matically:

bach.tex �
�

�
�TEX

bach1.mf

bach2.mf

. . .
- -

��

'
&

$
%METAFONT�

bach1.tfm

bach2.tfm

. . .

�
�

�
�TEX

bach.dvi

&- -

Figure 2: TEXmuse at work.

12 Ramón Casares too had a similar idea in 1994. His
METATEX is a more direct application of it, different from
mfpic (and TEXmuse) in that it requires the user to know how
to use METAFONT —it “only builds the necessary bridges to
use TEX and METAFONT in a cooperative way” [1, p. 317].

TUGboat, Volume 24 (2003), No. 2 175

With this idea, I finally had the outline of a
system that seemed to work and fulfill the needs of
musical typesetting. This outline subsequently suc-
ceeded at all the tests that had beaten all other sys-
tems and ideas (the many-voice problem, the four
premises, and some other needs of music I haven’t
mentioned yet). I never performed these tests in
any ‘rigorous’ way, but I qualitatively (and more
or less intuitively) felt that the system would hold
fair. That’s when I went ahead and thought of a
name, designed a logo, and wrote an article about
it, toward the end of 2002. That article has formed
the basis of the present account, and I’ve so far re-
spected most of its contents and its structure, only
struggling to make it more clear.

Let’s have a look at how TEXmuse deals with
the mentioned challenges.

8.1 The many-voice problem

It has already been decided that TEX will be taught
the secrets of musical rhythm. This means that,
reading the horizontal input for each voice, it will
know what notes start sounding at any given time —
which, typographically, means knowing what notes,
and in what staves, are present in any given vertical
axis. So, in programming METAFONT, TEX is not
limited to building up single notes in each character:
instead, it is able to write a program that includes
all the notes of a vertical axis in a single, rather
tall character. Since TEX also knows what the next
note is (anywhere in the score), it can figure out the
shortest rhythmic value of the current character—
which, typographically, determines the spacing and
the character’s space factor. A correct application of
TEX’s glue — case b) on page 174 — is then possible.

With this the journey is complete: from the
wrong analogy ‘words=measures’, through the in-
complete halfway-station ‘words=notes’, we have ar-
rived at the solution ‘words=moments of music’;
from the score as a table exasperatingly input by
columns, through the score as a table impossibly in-
put by lines, to the score as a single line of text with
words automatically designed.

This raises only a minor (but potentially devas-
tating) concern: imagine a score with 24 staves, nor-
mal for a regular-size orchestra. A character includ-
ing notes for 24 staves can be several inches tall, and
will usually fill a page up. Is METAFONT really able
to handle such tall characters? Luckily, METAFONT

allows a maximum height of 2048pt# [4, p. 316]:
about 28.5 inches — enough for most needs.13

13 The largest score produced by regular, home-computing,
is usually set in pages of the ‘Folio’ size: 11 × 17. I have
certainly seen larger scores (some, but only a few, taller than

8.2 Premises and promises

The two middle premises (no Aristotelian pun in-
tended) of section 4, namely TEX’s glue and hori-
zontal input, were the driving impulses behind the
devising of the system in the first place —we can
assume they are met. About ‘only-TEX’, OK, now
METAFONT is involved, but we will all agree that
there is no cheating there. Look at the root di-
rectory of the TDS (TEX Directory Structure): it’s
called texmf. METAFONT is ‘part of the family’, and
in any case it was always intended to be the source
of any associated fonts.

Flexibility, on the other hand, is much favored
by a system that has no fixed alphabet of graphic
elements but constantly creates its own. Thanks to
this, the ‘core’ of TEXmuse— what it will have built
in— can reach a level of flexibility that ensures that
only the industrious user will have to resort to lower-
level programming. And then, good documentation
and an intelligent use of literate programming for
the METAFONT part of TEXmuse (as well as for the
TEX part, needless to say) will enable the industri-
ous to further customize the system.14

8.3 Other needs

The main idea of TEXmuse was found by realizing
that verticality is, typographically, the main sub-
stance of music. But, musically, horizontal construc-
tions are also of the utmost importance. The beams
that connect eighth-notes, or the slurs and ties that
group notes to indicate ‘phrasing’, for example, fall
in this category. How is TEXmuse, that builds char-
acters vertically, going to deal with this?

The common feature of these ‘horizontal ele-
ments’ is that they are entirely defined by the last
note involved. By ‘remembering’ which notes in
which staves have to be included in the group (the
beaming, the slur, etc.), TEX can postpone its type-
setting to the last note. The METAFONT program
for this last character can include the horizontal el-
ement, sticking out to the left. (This has in fact al-
ready been implemented for beams; slurs and other

28 inches). But to be noted is that all of them are set in
handwriting.

The other restriction on character height is that it can be
up to 16 times the design size. This could lead to fonts of
design size as large as 72pt (for a 16-inch-tall score). I can’t
foresee any problem with that.

14 Is this not, after all, what happens with TEX itself?
Most needs are already met, but in addition anybody could
program his own, learning from existing examples, noto-
riously those of LATEX and its packages, and, of course,
Plain TEX and The TEXbook. Look at me: I am a total
amateur, I have never taken even a lesson in programming.
But here I am, planning to teach music and METAFONT-
programming to TEX.

176 TUGboat, Volume 24 (2003), No. 2

elements are analogous. The ‘remembering’ takes
place in METAFONT, which is much better at han-
dling information.) Horizontal elements remain as
such: they are not ‘broken’ into different pieces for
different vertical agglomerates.

There are other elements that could imply a
disturbance of the basic model of TEXmuse. Notes
are often ‘adorned’ with all kinds of symbols: the
] and [signs to begin with, but also many differ-
ent ‘accents’ (dots, lines, hats, . . .), fingering indica-
tions, dynamic markings, etc. Many of them are ac-
tually vertically aligned with the notes, so that they
can be included in the characters just as note-heads
are —no special treatment is needed. But others go
to the left or the right of the notes. The impor-
tant implication of this is that these elements make
spacing more complicated: in general, spacing is af-
fected by them only if they generate collisions. In
other words: if there is enough room for the element
to attach to a note without colliding with the pre-
vious (or the next) one, it is simply appended; but
if it doesn’t fit in the available space, the note has
to be moved (and, with it, all the notes in the same
vertical axis).

TEXmuse has to keep track of the width of the
characters and the space between them. This pro-
vided, the task is trivial: the extra space needed
can always be added to the right-most character
of the potential collision. It will never be neces-
sary to modify a previously built character (which
was the potential threat to the whole system). This
bears some relation to the matter of horizontal con-
structions treated above: there is actually no prob-
lem, because additions and adjustments can always
be made in the ‘current’ character, without second
thoughts about shipped-out notes.

9 Conclusion of the first part

The implementation of these two things — horizon-
tal and offset elements — has involved a deep change
in the nature of the whole system. But this was re-
served for me to discover only when I started pro-
gramming. We will see that many interesting things
would happen in the process: I found unexpected
and risible redundancies in my ideas (section 12.3), a
particular problem that seemed relatively easy but is
giving me trouble to this very day (section 14), and,
most strikingly, a slip on the part of the Grand Wiz-
ard: a minor but unjustifiable omission in META-
FONT, hard to believe coming from him. I shall
have occasion to complain later (note 23).

What matters is that the phase of qualitative
design was over: I had found a promising general
idea and I had tested it with all that was available

to me — all the challenges that had beaten other sys-
tem and other ideas. TEXmuse had survived, and it
was now due to come into existence.

PART II

Toward and into implementation

In the original version of this article (written before
any code whatsoever), this second part was devoted
to a more detailed description of the planned work-
ings of TEXmuse, all in future tense. Discussed were
the actual way TEX’s glue would be applied, the
handling of horizontal elements (beams, slurs, and
the like), and the basic idea behind ‘teaching music
to TEX’. After that came an example, in which I
played a computer running TEXmuse on a hypothet-
ical input, so as to illustrate the whole process.

Today, however, the actual activity of coding it
all has revealed many ‘flaws’, to name them gener-
ically. They are all amusing. For example, influ-
enced by Figure 2 above — and I don’t know by what
else — I was thinking that the TEXing of a TEXmuse
file would require three passes. I was even thinking
about ways to let the user know that more passes
were needed, and ways to ‘fake’ the final TEX box
just as the draft option does for the graphicx LATEX
package! Soon I was to realize that there was no
need for all this. . .

The point is that in the process of coding I
found these flaws, and the changes this has meant for
the system are of far greater importance than many
of the detailed descriptions of the original prospec-
tive account. This present second part will therefore
omit many of those descriptions in favor of the lat-
est developments. An original section on ‘teaching
music to TEX’ stays pretty much the same; the sec-
tion on spacing is still there, but essentially changed,
since here the most important revision took place.
Finally, I’m happy now to present a ‘sample’ instead
of the old ‘example’ —now I have a computer run-
ning (part of) TEXmuse on a real input. After all
that, I present a totally new set of open questions,
questions that were always present but have started
to come to focus as their eventual implementation
approaches.

10 Teaching music to TEX

The main consequence of the premise of horizontal
output, as discussed in section 10, is that TEX has
to understand the rhythmic characteristics of the
user’s input music. Thanks to that, it will be able
to extract, from the input for each staff, the notes
that need to be typeset in any given vertical axis
(representing a ‘moment’ in the music).

TUGboat, Volume 24 (2003), No. 2 177

Notes played at the same time have the same x
coordinate (the different instruments in which they
are played are represented by different y’s).15 All
that TEX needs is to assign a value —the value of
its x— to each note of each staff; then, it will sweep
all these values, and build vertical characters with
notes that have the same x. We are not yet deal-
ing with ‘material’ dimensions, measurable, say, in
millimeters. The actual horizontal placement of the
notes in the staff is not a direct function of their
x. So far the procedure gives TEX only the vertical
correspondences between horizontal input.

A ‘unit’ has to be defined for this virtual axis.
Since the rhythmically smallest note in usual prac-
tice is the 128th-note (a note with 5 flags, 32 of which
equal a ‘crotchet’ or quarter-note), a fourth of this
value would be safe as a unit.16 The quantum q is
then defined as the duration of a 512th-note. All
other notes can be interpreted in terms of q. For ex-
ample, the quarter note will be 64q, the whole note
will be 512q.

Armed with these ‘map of musical time’, TEX
reads the input a first time.17 All the first notes
in each staff occur at 0q. From then on, according
to the duration of the previous note, TEX finds the
value at which all the notes occur. An example is the
fragment in Figure 3. The first note (at 0q) in the
bottom staff is known to be a quarter-note (the user
specifies this), and therefore the second note will be
at 64q. This second note is an eighth-note, so that
the third one will come at 92q. The count goes on,
and then the procedure is done for the top staff, for
which the values 0, 16, 32, 64, 72, 80, and 112 are
found.

From this, TEX knows: there are notes in both
staves for position 0q; at 16q and 32q, on the other
hand, only the right hand has a note; and so on.
The vertical correspondences are thus understood.

15 Here I am ignoring the dimension of ‘pitch’, and talking
about the ‘third dimension’ of musical notation, as introduced
on page 171.

16 I have never seen a note of this kind in print, but it’s
good to provide for it. Besides, the smaller the unit, the
easier and more precise will be irregular subdivisions (triplets,
quintuplets, etc.), of frequent appearance in music.

17 Here it is that a ‘several-pass’ system is implied: TEX
reads the input a first time to deduce the correspondences,
and a second time to actually build the characters according
to those correspondences. In fact, the main programming
mechanism for this is to define the same commands differently
for each of the stages. Usual implementations of TEX today
run METAFONT automatically when tfm or pk files are not
present, so that the procedure does not require TEX to run
twice on the file, as I first thought.

0 16 32 64 72 80 96 112

B A R 7 8 K S 9
Figure 3: A fragment (m. 10 of Bartók’s
Sonatina) with its rhythmic ‘quantization’.

11 Horizontal elements

Figure 3 features also instances of the most impor-
tant kind of ‘horizontal element’: notes 2 and 3 in
the bottom staff, or notes 1–3 and 4–7 in the top
staff, are connected by ‘beams’. How are beams cre-
ated by TEXmuse? A boxed insertion of the second-
to-last character of Figure 3 disturbs the layout of
the present paragraph, but it gives the key to the

answer: S . This character is fairly tall — it makes

room for the top staff, although there is nothing
there (moment 96q). But the important point is
that it contains, sticking to the left, the complete
beam that connects that note to the previous one
(as well as the stems for both notes).

Since the stems of all the notes included in the
beam are typeset when the beam itself is typeset,
every note in a beam except the last one features
only the note-head. For example, the character for
80q illustrates this (and also the procedure for mu-
sical ‘ties’, which is basically the same but simpler):

K . This beam is completed only at 112q: 9 .18

This is how METAFONT creates the horizontal
elements. The other part of the problem is getting
TEX to instruct METAFONT to do so. When TEX

18 You might be wondering about the different number of
beams for different notes in the last illustration. This is an-
other thing that depends on the rhythm of the notes involved,
and this dependence is actually much more interesting and
challenging to express algorithmically than the ‘simple’ mat-
ter of compiling the map of section 10. I have found an al-
gorithm for this—a very nice one, I think, that uses META-
FONT’s weights and undraw technique—which I would like
to present. Unfortunately, the mere explaining of the require-
ments would take so much space that it’s hardly feasible.

On the other hand, a problem that I haven’t solved is how
to decide the angle of inclination of the beam. (In part, it’s
unsolved because I’ve been unable to find, explicitly stated,
the very complex rules concerning this angle.) For the present
examples I cheated, deciding the inclination on my own.

178 TUGboat, Volume 24 (2003), No. 2

lut o s w
Figure 4: Different spacing after different
note-values. (Excerpt from the violin part of

Lustos lawski’s Partita for Violin and Piano.)

finds an opening ‘|’ character in the user’s input,
the convention is that the following notes are to be
part of a beam. So it suppresses the generation of
stems, and starts building a list of the notes for the
beam. When it finds the matching ‘|’ (that closes
the beam), the list is complete, and TEX passes it to
METAFONT. Having kept track of exactly where all
notes were placed, METAFONT is able to draw their
stems and the connecting beam.

A paired ‘(’ and ‘)’ analogously indicates slurs
(TEX starts a list of notes when it finds the first, and
gives it to METAFONT when it finds the second);
while ‘=’ (as in Finale) indicates ties.

This is, in the main, how TEXmuse generates
horizontal elements from straightforward user in-
structions.

12 The spacing

Here we come to the heart of the matter. As noted
before, the main motivation for this whole project
was how to get spacing automatically without in-
volving the user at all (unless he wants to be in-
volved). It is finally time to put forward my solu-
tion.

Figure 4 will clarify — for the case of a single
voice — what the goal is when talking about ‘spac-
ing’. The five notes involved are different from each
other only in their rhythmic value, which increases
from note to note: eighth-note, dotted-eighth-note,
quarter-note, dotted-quarter-note, half-note. The
spacing has to increase accordingly.19

12.1 How to space the notes

The first thing to do is to generalize the goal, rig-
orously, for the many-voices situation. How is a
many-staff character to be treated, since it usually
contains notes of different rhythmic values? For ex-
ample, back in Figure 3, the first note contains a

19 There are several models as to how the space is a func-
tion of the rhythmic value. One is called ‘Fibonacci’, and
works by assigning to each note a space equal to 0.618 the
space of the immediately longer note. I tend to go for this
model; but Figure 4 is actually set with a binary model,
whereby each note receives twice the space of the immedi-
ately shorter one. This seems to work better when, as in the
example, there are dotted notes. Obviously, this parameter
will be user-modifiable in TEXmuse.

quarter-note and a 16th-note. Which one defines
the spacing? (The answer might seem obvious, but
we need to express it algorithmically).

Imagine the whole ‘map’ of musical time (as de-
fined in section 10) collapsing into y = 0— that is,
the projection of the whole thing into the horizon-
tal axis. (This projection, a series of dots scattered
along a line, is a representation of what is known
as the ‘compound rhythm’ of the entire ensemble.)
Spacing is inferred from this projection. For every
‘musical moment’, TEX knows how long it will take
for the next note to sound anywhere. Since between
the first two notes of Figure 3 there are 16q from
note 1 to note 2, TEX will treat the character as
precisely that: as a 16q (a 16th-note).

But don’t leap to conclusions too fast. Take
what happens at 80q: the next note comes in the
bottom staff at 96, i.e., 16q afterwards. Therefore, in
spite of being an eighth-note, this character will also
be treated as a 16th-note (16q long). It’s not simply
the shortest note present that determines spacing;
it’s the shortest note in the compound rhythm.20

12.2 Spacing them

Now that we know how to treat the notes, spacing-
wise, according to their rhythmical nature, let’s have
a closer look at how TEX actually does it in Fig-
ure 4. The notes are utosw, and TEX knows
what space factors to apply to them: the respective
values are 1000, 2000, 4000, 8000, and 16000. Thus,
the spacing required to fill out the line — i.e., the
amount of stretching of the inter-note spaces — will
be proportionally distributed in 1 : 2 ratios.

This alone doesn’t work. TEX’s algorithm is
designed to minimize stretching for text, so the dif-
ference between spaces will be hardly noticeable. In
fact, this is what you would get from regular TEX
spacing: utosw . The difference is there, but
it’s by far insufficient for a musician’s needs. So you
need to ‘fool’ TEX, telling it the box is much wider

20 Under the heading “The spacing of notes”, the authors
of MusiXTEX write that “it can lead to interesting algo-
rithms.” For them, however, “it is not an important point
in practice.” Why? Because, owing to the fact that some-
times the spacing is not that of the shortest note present—as
happens at 80q in Figure 3—“the typesetter has to take care
of good readable spacings on his own.” [8, pp. 6–7] OK, to me
this is plain upside-down reasoning: ‘since we’re leaving this
task to the user, the algorithm has no practical relevance.’
My preference would be something like ‘since it is totally im-
practical for the user to figure the spacing out, we should go
and look for the algorithm.’

Devising the algorithm is not even the real difficulty. As
we saw, it’s immediately solved by inserting ‘in the compound
rhythm’. The hard part is how to implement the rule in TEX.
The quantized map of musical time offers a solution.

TUGboat, Volume 24 (2003), No. 2 179

than it actually is, so that it will stretch more dra-
matically. For example, telling TEX the box is twice
as wide gives ut o s w .21 In Figure 4
TEX was told the box was 2.5 times wider. The
correct setting of this parameter, or more likely the
dependence of this parameter on the music involved,
is yet to be discovered.

Anyway, the same procedure took place in Fig-
ure 3 (this time the box was doubled in width),
only applying space factors according to the com-
pound rhythm.

12.3 But. . .

This looks great. It is as satisfactory an application
of TEX’s stretching algorithm as it can get. My main
point is made.

And yet. . . it’s redundant. For one thing, you’ll
have noticed that the in-text illustrations above lack
a staff (the array of five lines). In the figures, the
staff has been printed on top of METAFONT’s char-
acters with TEX’s \rule commands. Since the be-
ginning this was known to be a temporary solution.
A professional system needs to provide for modi-
fiable ‘staff-ing’, both vertically (more or less than
5 lines), and horizontally (a portion with 5 lines, fol-
lowed by a portion without lines, followed by . . .).
The most reasonable solution is to attach the num-
ber of lines to each note: METAFONT will draw the
necessary lines when drawing the note. But if the
spacing is simply the stretching of blank spaces, who
will draw the lines there?

More important, however, is that the drawing of
horizontal elements involving many notes assumes,
as explained in section 11, that METAFONT knows
“exactly where those notes were placed”. Otherwise
it will be unable to draw slurs or beams that actu-
ally ‘hit’ the notes involved. I had concluded this
already in 2002: “METAFONT needs a way to calcu-
late beforehand the stretching that the construction
of the line will perform. This amounts to imple-
menting the relevant equations of the algorithm in
a METAFONT function”.

So I went ahead and did just that: I derived
the equations (see appendix B), implemented them
in METAFONT, and thus made it able to ‘foresee’
where TEX would finally place the notes. In this
way, it knew how long to draw the staff lines, and
where to find the notes under a beam.

OK, until one day something strange happens:
I see that METAFONT’s beams don’t quite hit their
notes. It took a lot of burdensome debugging for me

21 This example was achieved, in the present LATEX article,
with \makebox[2\width][s]. . .

to realize that, owing to a small mistake in the for-
mulas, TEX and METAFONT were applying slightly
different ‘versions’ of the algorithm. I even corrected
my formulas diligently. . . Only a couple days later,
I laughed when I noticed the real nonsense: the al-
gorithm was being applied twice!

So today this has changed. It is METAFONT,
not TEX, who applies stretching, according to for-
mulas derived from TEX’s stretching algorithm. The
spacing is thus included in the font, and TEX limits
itself to printing the characters out, one after an-
other, without any space.22

12.4 Offset elements

The last aspect of spacing concerns elements that
stick out to the left or to the right of their notes.
Many musical elements do: an example is the treble
clef l in the middle of the bottom staff in Figure 3.
It sticks out to the left of the next note, being sep-
arated from it ‘rigidly’. If the note moves, the clef
moves with it.

And, conversely, if the clef had to be moved, the
note would move with it. That is how offset elements
could affect spacing. In this case it does not, because
the clef doesn’t have to be moved— there’s plenty
of room for it. But sometimes an offset element will
collide with something else, and then it has to be
moved. Its note will also move, and, with it, all
other notes on the same vertical axis.

This is implemented as follows: when META-
FONT completes a note, it finds its right extreme r
(with respect to the note’s axis), and saves this value
in memory. Then, when it is drawing the next note,
it will calculate the left extreme l (of the current
note, with respect to its axis).23 As seen in the pre-
vious subsection, METAFONT will know the space s

22 This change actually raises a basic, qualitative ques-
tion: in addition to the spacing of the notes, there are many
other things whose handling can be done either by TEX or
by METAFONT (for example, line breaking and justifica-
tion). Deciding where to handle them amounts to deciding
on the nature of TEXmuse: is it a TEX package with a META-
FONT underpinning, or a METAFONT package with TEX in-
terface? Needless to say, the criteria for the decision are too
subtle— it most likely will be an ‘arbitrary’ decision.

23 Now, just how is METAFONT to find the right and left
extremes of a character? When I faced this question, I went
confidently to the index of The METAFONTbook: there had
to be a function for this. Or at least one that would give me
the width of a character. I was amazed to learn that META-
FONT offers no ‘widthof 〈picture〉’ function of any kind. The
Grand Wizard introduces, in his ‘Dirty tricks’ appendix, an
algorithm for METAFONT to find the extremes of a pen (this
is necessary for some pen functions). The trick is truly dirty,
and Knuth is justified if he takes pride on it. But does this
not really hide an omission? I’m not the one to tell, but
given the way pictures are internally represented in META-
FONT, I would imagine that finding the extremes would be

180 TUGboat, Volume 24 (2003), No. 2

���������	
�������������������� !"#$%&'()*+,-./
Figure 5: Mm. 2–4 of Bach’s Invention in C, typeset by an incomplete TEXmuse on Aug. 25th, 2004.

between these notes (more precisely between their
axes) would be in the normal case, when no offset
elements are involved and spacing is simply a result
of rhythmic circumstances. It can then calculate
whether this regular space will be enough to accom-
modate the notes (separated at least by a minimum
‘framing space’ f): is s ≥ r + l + f? If it is, there’s
no problem; if it is not, the current note is moved to
the right so that the collision will be avoided. Ev-
erything solved, the right extreme is calculated for
the current note, and METAFONT is ready to go to
the next.

‘Moving the note to the right’ means increas-
ing its axis, which is shared by all other notes in
the character. Since space can thus only increase,
the adjustment can be done incrementally as offset
elements in other notes are discovered to create ad-
ditional collisions. The character is actually shipped
out when all the notes have been added, all the col-
lision tests have been made, and the axis has been
moved as necessary.

13 A working sample

Figure 5 is a sample of what TEXmuse is capable
of (as of today, mid-2004). I’ve been actually de-
veloping the system with this sample — it’s like a
snapshot of TEXmuse’s growth. The present article
actually loads the current TEXmuse version, and the
input cited below is a verbatim copy of the com-
mands used to generate Figure 5. I am willing to
distribute the code to anyone interested.

Measures 2–4 of Bach’s Invention in C were
chosen for several reasons: rhythmic simplicity, one-
voice-per-measure, no slurs or ties, no key- or time-
signatures, no clefs. These things are not yet imple-
mented; but none of them pose challenges, I simply
haven’t implemented these parts of the code (which
are rather boring). Challenging things missing from
the system will be mentioned in section 14.

an easy thing to program at the low level — just as META-
FONT routinely calculates the ‘total weight’ of a picture, why
should it not compute its extremes?

Knuth’s roundabout method of finding the extremes of a
pen can’t be always applied, since a pen is a continuous and
convex picture. Most pictures, and in particular musical char-
acters, seldom fulfill those conditions. I had to develop a
function from scratch (see note 25), but it turns out it’s not
right. A solution is yet to be found.

What I do want to show with this sample is
that the system seems to be in fact possible. I would
point mainly at the simplicity and naturality of the
input that TEXmuse demands from the user. Com-
parison is odious, and I shall refrain from citing the
code that would be necessary in MusiXTEX to pro-
duce the three measures of Figure 5. But the point is
important enough to ask MusiXTEX users to imag-
ine it.

In TEXmuse, all starts with the definition of the
instruments involved. The system, as it stands to-
day, rigidly assumes the top staff to be in treble-clef
and the bottom one in bass-clef; of course, it will
eventually provide for changes.

\newinstrument{righthand}

\newinstrument{lefthand}

Then, in the texmuse environment, actual mu-
sic is input for each instrument. The initial string
DGAB, for example, corresponds to the first four notes
of the right-hand staff (whose standard names are,
precisely, d, g, a, and b). Conventions are stated
more fully in appendix A.

\begin{texmuse}

\meter44

\righthand{\rangefrom{G4}

3|DGAB||CABG|\rangefrom{C5}|4DGFG|

|3EAGF||EGFA||GFED||CEDF|

\rangefrom{F4}|EDCB||ACBD||CBAG||\#FAGB|}

\lefthand{\rangefrom{G3}4|GG-|5R3R|GAB|

|CABG||4CBCD||EG||AB|

|CE-||\#F-G||AB|5C}

\end{texmuse}

Up to this point nothing has been typeset. The
command \musicbox now tells TEXmuse which in-
struments, and in what order, to build the fragment
from. The user can thus use instruments flexibly,
extract parts, re-order them, etc. There will also
be additional musical-box commands, for example
a \musicparbox, maybe a \musicpage, etc. That
way, the layout is — for good— dissociated from the
notes themselves.

In this case, we want a figure, so:

\begin{figure*}

\centering \musicbox{lefthand,righthand}

\caption{Mm.~2--4 of Bach’s ..., 2004.}

\label{sample}

\end{figure*}

TUGboat, Volume 24 (2003), No. 2 181

The result is in Figure 5. I’m satisfied with
the way TEX is able to find all that it cares about,
without making the user care about it too.

14 ‘The unanswered question’

In addition to obvious incompleteness, the sample
shows signs of two particular problems that haven’t
been totally solved: the barlines, to begin with. Not
only should they be drawn across the two staves
(not just on them), but, if you look carefully, you’ll
notice that they have enlarged the spacing of the
second note next to them. Barlines have proven a
hard thing to implement, even qualitatively.24

The second problem can be seen in the last
sharp-sign (]): it features a spurious horizontal line.
This is a result of METAFONT not having a direct
way to find the extremes of its pictures (see note 23).
To do that, the picture has to be made continuous,
and therefore all ‘additions’ to the notes, such as
offset elements like the sharp-sign, have to be joined
to the note-head. The first] also has this spurious
line, only it’s covered by the staff line. The horizon-
tal line would of course be deleted after the extremes
have been found— I haven’t just coded that. The
procedure strikes me as ad hoc, and I am definitely
on the watch for better options.25

It was mentioned that TEXmuse is not yet able to
decide the angle of inclination for beams. There are
other problems of this very interesting kind, that
involve looking for (or deducing) the explicit list of
requirements for good music typesetting: the most
important ones are an algorithm to decide the order
and placement of accidentals in a chord; a function
for the ideal, context-dependent, ratio of space fac-
tor from rhythmic values to each other; a procedure

24 There are in principle three ways of interpreting barlines
in TEXmuse terms: they could be treated as an extra note,
0q-long; they could be thought of as ‘offset elements’ to the
left of the next note; or as ‘offset elements’ to the right of the
previous one. Each of these approaches generates a series of
side effects, surprising enough to make me unable to recall
them all. The sample uses the second approach, and the
repeated move of the note’s axis confounds TEXmuse about
its real extremes.

This whole issue has led me to a recent rethinking of the
whole process of drawing the characters. It’s been decided
that TEX (or METAFONT?—see note 22) ‘orders’ the ele-
ments of the notes, rather than following a first-come-first-
drawn attitude: note-heads are drawn first, stems second,
offset elements third, horizontal elements fourth, barlines fifth
(or something like that). This ordering frightens me, though,
because it might cut down on flexibility: what if the user
wants something that cannot be easily classified and ordered?

25 In fact, this solution is incomplete: there is no easy way
of deleting precisely and only the line. I had imagined it
would be done by culling appropriately (the line has a dif-
ferent weight from the signs), but it’s much more complicated
than that.

to shift note-heads in chords with seconds; and the
rigorous definition of the aspect of slurs and ties.

Another problem has to do with rhythms that
are not binary: triplets, quintuplets, etc. There is
an embryonic model for this, but it is as yet only
qualitative: ‘tuplets’ can be treated as horizontal el-
ements. Long pieces, on the other hand, will raise
problems not yet dealt with, ranging from defining
a concept of system-breaking (like a mixture of line-
breaking and page-breaking procedures) to the good
handling of space and justification of lines.

The most important issue is, however, keeping
the design flexible. Up to this moment, only stan-
dard notation has been implemented— and there’s
still a long way to go with it. ‘Programmability’ is
the only premise in which the sample shows no real,
positive progress.

15 Conclusion

I hope this article has been interesting, or at least
provocative. This report has to end here, but the
project is only started. I look forward to any reac-
tion from the TEX community, particularly of course
from those interested in typesetting music with TEX.
Just as happened with the first version of this arti-
cle, the task of writing this has clarified many things
to me. With the picture a little more clear now, I’m
ready for a new session of actual coding. I’ll keep in
touch if anything interesting comes along.

References

[1] Ramón Casares. METATEX. TUGboat,
23(3/4):313–318, 2002.

[2] F. H. Gilson. Music typography: Specimens of
music types. F. H. Gilson, Boston, 1885.

[3] Donald E. Knuth. The TEXbook. Addison
Wesley, Reading, Mass., 1986.

[4] Donald E. Knuth. The METAFONTbook.
Addison Wesley, Reading, Mass., 1986.

[5] Thomas E. Leathrum, Geoffrey Tobin,
and Daniel H. Luecking. Pictures in TEX
with Metafont and MetaPost. 2002. File
mfpicdoc.tex, documentation to mfpic 0.6.

[6] David Salomon. The Advanced TEXbook.
Springer Verlag, New York, 1995.

[7] Daniel Taupin. MusicTEX: Using TEX to write
polyphonic or instrumental music. TUGboat,
14(3):212–220, 1993.

[8] Daniel Taupin, Ross Mitchell, and Andreas
Egler. MusiXTEX: Using TEX to write
polyphonic or instrumental music. 2001. File
musixdoc.tex, documentation to MusiXTEX
version T.98.

182 TUGboat, Volume 24 (2003), No. 2

Appendices

A The user’s input

The conventions for the input of the notes are designed
to minimize the burden on the user’s memory:

Rhythm is indicated through a convention standard-
ized by Finale (and taken on by Sibelius): 5 means
‘quarter-note’ (crotchet); higher numbers are longer
notes (6=half-note, 7=whole note, etc.); and lower
numbers are shorter notes (4=eighth-note, 3=16th-
note, etc.). So, when TEX finds a 3, it takes all
following notes to be 16th-notes, until a new num-
ber changes the value.

Pitch is given by upper-case letters following the usual
note names: A through G (and optionally H for Ger-
man users). Since there are many A’s, many B’s,
etc., TEX needs a way to know which one the user
means, which is achieved by \rangefrom. For ex-
ample, \rangefrom{C3} means that the following
notes are in the octave of the middle-c (which is in
fact c3). If a note needs to be an octave higher or
lower than set by \rangefrom, the modifiers + and
- can be used (there’s a G- in the left hand in the
sample). \rangefrom can be used multiple times to
set new ranges for different passages.

Rests are indicated by an ‘R’. (In the sample, there’s a
quarter-rest, and there should be a 16th-rest, but I
haven’t yet created the METAFONT picture for it.)

Beams are set, as mentioned, by enclosing the involved
notes between two ‘|’s. TEXmuse inserts beams ap-
propriately according to rhythmic nature. Even-
tually, an optional argument to | will be available
that allows the user to beam individual notes to
each other, across measures, staves, etc.

Slurs are not yet implemented, but will be produced
by enclosing the notes between ‘(’ and ‘)’. As in
Finale, a ‘=’ will create a tie.

Accidentals and accents, being of frequent use, are
taken care of by one-character, visually-suggestive
commands (such as \# for the]s in the sample).

License is given to the user about things like extra,
meaningless and unintended blank spaces (that are dis-
astrous for MusiXTEX), or where to type the rhythmic-
value numbers (in the sample there are both ‘3|’ and
‘|3’, but both work the same way).

B Formula for the horizontal position
of a character

This appendix explains how the formula for the final hor-
izontal position of a character has been found (because
METAFONT needs to know it, see section 12.3).

The musical line consists of single-character words,
separated by stretchable spaces. The position before the
nth character in the line is then the sum of the widths
of all the previous characters and the spaces after each
of them. These spaces are stretched according to TEX’s
glue rules given in [3, pp. 75ff.].

The particular use TEXmuse makes of this algo-
rithm implies the following assumptions:

• The line is always stretched.

• There is no infinite glue (\hfil, . . .) in the line.

• The normal interword space and the extra space
of the font are 0 (this to allow dealing with space
factors less and greater than 2000 with no change
in behavior).

Let li be the width (‘length’) of the ith character of
the line, and gi the space (glue) added after it. It is then
clear that the horizontal position for the nth character
is given by

n−1∑
i=1

(li + gi).

Now, gi (the space after the ith character) is a nor-
mal interword space plus the additional space due to
stretching. But the normal interword space is 0, so gi is
limited to the stretching. If the line has a natural width
of X, and a desired width of W , W − X is the total
amount of space added to it by stretching, this is, the
total sum of gi’s in the line. Of this total stretchability,
each character receives a portion according to its space
factor fi, thus:

gi

fi
=

∑
gi∑
fi

=
W −X∑

fi

But X, the natural width of the line, is actually
the natural width of all the characters, since the normal
(non-stretched) space between them is 0. So, X =

∑
li,

and therefore

gi = fi
W −

∑
li∑

fi
.

‘Expanding’ this gives the sought-for position for the
nth character (with z being the last character):

n−1∑
i=1

[
li + fi

W −
∑z

j=1
lj∑z

j=1
fj

]
.

Note that the result does not depend on the stretch-
ability of the font, and that because of the assumptions
there is no need to invoke either the concept or the rig-
orous definition of glue set ratio r.

� Federico Garcia
Music Department
University of Pittsburgh
Pittsburgh, PA
feg8@pitt.edu

