
XLATEX, a DTD/Schema Which is Very Close to LATEX

Yannis Haralambous
Département Informatique
École Nationale Supérieure des Télécommunications de Bretagne
CS 83 818, 29238 Brest Cédex, France
Yannis.Haralambous@enst-bretagne.fr

http://omega.enstb.org/yannis

John Plaice
School of Computer Science and Engineering
The University of New South Wales
UNSW Sydney NSW 2052, Australia
plaice@cse.unsw.edu.au

http://www.cse.unsw.edu.au/~plaice

Abstract

Our main idea is to change the LATEX document preparation process by migrating to XML input
(with eventual LATEX code insertions viaXML processing instructions). To do this, we need aDTD

or an XML Schema which is very close to LATEX syntax, so that users do not need to learn keywords
anew. The keywords which used to be LATEX commands and environments now become elements,
attributes, namespaces (and eventually entities, as long as we still deal with DTDs). The advantage
of this method is that one can use XML tools to validate and process documents before typesetting.

Résumé

L’idée centrale de XLATEX est de changer le processus de préparation de document à la LATEX, en
migrant vers XML (avec toujours la possibilité d’inclure du code LATEX dans le code XML en pas-
sant par des instructions de traitement). Pour ce faire, nous allons utiliser une DTD ou un schéma
XML, très proches de la syntaxe de LATEX, de manière à ce que les utilisateurs de XLATEX n’aient
pas à apprendre de nouveau les mots-clés. Ainsi, les mots-clés utilisés, jusqu’à maintenant, dans les
commandes et environnements LATEX seront dorénavant des éléments, attributs et espaces de nom-
mage XML (ainsi qu’éventuellement des entités, tant que l’on utilise encore des DTD). L’avantage
de cette méthode est que l’on puisse utiliser toute la panoplie d’outils XML pour valider et traiter
de documents avant leur composition.

SGML and XML

The author (YH) first heard about SGML at the 1991
DANTEmeeting in Vienna when a group of SGML evan-
gelists presented it to the TEX community. Klaus Thull,
sitting next to him, reacted by saying “what do we need
another markup system for? we already have LATEX...”

LATEX is indeed a markup system, and one can even
say it is easy to parse: when writing \begin{center}
. . . \end{center} it is quite clear where the “centered”
block of text starts and where it ends— also it is quite
easy to extract the “tag name:” center, since this name
is made out of letters, delimited by braces.

But LATEX has a major drawback: it is based upon
TEX, and the latter is one of the hardest programming
languages to parse, especially when one is playing with
weird macro definitions, or with changing catcodes.

As with most “drawbacks”, there are always people
for whom they are advantages rather than drawbacks. In
some cases it is a quite interesting feature of LATEX to be
able to go back to TEX for obtaining special effects, or for
doing things that occur only once “manually”. One can
hardly prevent people from using TEX code in a LATEX
document. In fact there is no way to tell if a LATEX doc-
ument is a “good one” (in SGML jargon, a “valid one”),
other than compiling it and seeing if it produces errors
or warnings.

SGML has such a mechanism: there are programs
called “validators” which can assert weither a given doc-
ument is “valid” or not, for a given set of rules, called a
“document type definition” (DTD).

But SGML has other drawbacks: it uses escape
characters which can be different in each document (a
phenomenon similar to changing catcodes in TEX), and,

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 369

Yannis Haralambous and John Plaice

worse, it uses “optional” tags: the DTD can declare that
the existence of a given tag can be deduced from its con-
text, and hence it does need to be explicitly written.
Both of these features make the presence of a DTD ab-
solutely necessary to be able to parse SGML documents
correctly (and not only for validating purposes). These
features make SGML documents hard to parse and hard
to process.

A solution to these problems came with XML (see
[7, 1]). It is easy to underestimate the difference be-
tween the two systems. Indeed, when comparing SGML
and XML documents, they seem quite alike. In fact the
philosophy is entirely different: in XML, no part of the
markup is ever hidden or ambiguous. Escape characters
are uniquely defined and no tags can ever be optional.
DTDs (and their successors: XML schemas) are not nec-
essary to parse an XML document, they are only needed
to validate it.

The principles of XLATEX

When using LATEX for more than 15 years, like the au-
thors, command and environment names, as well as the
general syntax, become as automatic as driving a car,
putting clothes on, eating and drinking, etc. Braces and
backslashes are part of everyday life, and we can hardly
imagine it without them.

For the first author, living in France and using a
Macintosh, it is quite funny to note that none of these
symbols is available on his keyboard (or any of the Mac-
intosh keyboards he used in the last 20 years). The braces
are obtained by 2-keys combinations (alt + parentheses),
and the backslash by a 3-key combination (alt + shift +

slash).
The backslash is quite a strange symbol: in most lan-

guages it doesn’t even have a real name (in French it is
usually called “barre oblique inverse”, lately a name has
been invented for it: “contre-oblique”). Legend [3, p.
29] says it was introduced into ASCII only as a graphic
complement of “/” in order to obtain symbols ∧ (= “/”
+ “\”) and ∨ (= “\” + “/”). As all legends, se non è vero,
è ben trovato, since the author could not find any rational
use of the backslash symbol before the arrival of program-
ming language syntax (besides its use in set theory, which
is quite limited).

Is the TEX community a community of backslash
worshippers? Not necessarily, although a document full
of backslashes certainly feels “like home” for many of us.

Nevertheless TEXists are aware of the disadvantages
of TEX syntax. While it is a general rule that commands
start with a backslash, some commands (like ~) do not
have a backslash, and sometimes (as in \\) a backslash
is not used as an escape character. Command arguments
are generally delimited by braces, but sometimes also by
brackets— and sometimes commands have no arguments

at all and must be included into groups (as in the case of
\small). Some commands (like \verb) can even use any
character as argument delimiter (and when we say any,
we mean any; even in the case of paired delimiters, like
parentheses or braces, one must use the left one on the
left and the left one again on the right: \verb=bla= is
right, \verb{bla} is wrong, \verb{bla{ is right).

This is the only the tip of the iceberg of TEX syntax
problems. On a more philosophical level, a big disadvan-
tage of LATEX (considered as a markup language), is the
fact that there is no clear distinction between data and
markup. When writing \begin{center} is is clear that
center is part of the markup (the “tag name”), while in
\emph{hello}, hello is data. But what about:
\textcolor{red}{green}

Will this produce the word “green” in the color red,
or the word “red” in the color green? The author of
the color package has decided that the first argument
is markup and the second data, but there is no way for
parsing software to guess it. Not to mention the fact that
there are commands producing data (like \today) and
others changing the status of data (like the % character,
or the comment environment, or— in a more TEX-like
fashion— the \bdef and \edef commands which con-
vert a string into a command, or the \token command
which converts a command into a string.. .).

Using software like latex2html one realizes that
parsing TEX code is a perilous daredevil project. In fact
only TEX can parse TEX code well. This is quite fair in a
world where TEX files are written for the sole purpose of
being compiled, but in the current era of electronic doc-
uments this can hardly be the case anymore. Nowadays
documents are used in many different ways: they can be
parsed, transformed, translated, re-assembled, etc.

For this to happen, a stable and simple markup sys-
tem like XML is much more suitable than LATEX.

But shall LATEXists learn an entirely new syntax?
Of course not. Only the basic syntactic rules should
change: “less than” and “greater than” instead of back-
slash and braces, “elements” and “attributes” instead of
“commands” and “environments”.

The XLATEX proposal is the following: a set ofXML
elements and attributes (= aDTD or anXML schema), with
tag names as close as possible to LATEX command and environ-
ment names, easily convertible to LATEX syntax.

Tag names like document, maketitle, center,
quotation, itemize, enumerate, emph, footnote,
chapter, section, are used on a daily basis by all LATEX
users. They remain unchanged for XLATEX. For exam-
ple, the LATEX code:
\begin{quotation}

Life shall go on\footnote{Said

370 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

XLATEX, a DTD/Schema Which is Very Close to LATEX

\emph{he}.}.

\end{quotation}

becomes in XLATEX:
<quotation>

Life shall go on<footnote>Said

<emph>he</emph>.</footnote>.

</quotation>

Elements or attributes? An attribute has a tag name and
contents. It belongs to an element (and is actually writ-
ten inside the opening tag of the element). The order
of attributes is not relevant, but there cannot be two at-
tributes with the same name in the same element. The
contents of an attribute cannot include the character <,
and hence cannot include element tags.

Attributes are used for metadata, that is data which
can be considered as being either markup or contents.
For example, if <section> is the opening tag of a sec-
tion title which will be automatically numbered, then one
could imagine <section number="3"> as the opening
tag of a section numbered “3”. Is this number “3” part of
the contents of the document? The answer is not clear.

Attributes are very useful when we have variable
markup. The typical example is the format of a tabular
environment. This format is different for each table,
but it is nevertheless pure markup (nobody would like
|c|c|p{2cm}| to appear in her document). Here is
what an XLATEX tabular environment/element looks:
<tabular format="|c|c|p{2cm}|">

A<tab/>B<tab/>C

D<tab/>E<tab/>F

</tabular>

We notice two things: first of all, attributes have
names, so every LATEX command argument becoming an
attribute needs a name. “Format” seems to be the natural
name for the format of a tabular environment. Secondly,
the special character & and the command \\ have been
replaced by elements: <tab/> and
.

Sometimes the choice between element and at-
tribute is not clear. Let us take for example the optional
argument of the \section command (the version of a
title used in the table of contents). It seems natural to
write:
<section toc="Short version">Long version

</section>

But what happens when we need further markup in-
side such a title? If the long title contained, for example,
an <emph> element, then this element could not be used
in the short one, since an attribute may not contain tags.
There are two solutions, neither entirely satisfactory:
1. use an element instead of an attribute, for example:

<section>

<toc>Short <emph>version</emph></toc>

Long <emph>version</emph>

</section>

2. use LATEX commands instead of XMLmarkup in the
attribute:
<section toc="Short \emph{version}">

Long <emph>version</emph>

</section>

How about TEX code? One may argue that by “writing
LATEX in XML”, one can only use pre-defined elements,
and hence one loses all the flexibility of TEX code. XML
provides a very simple and natural mechanism to switch
between syntaxes: processing instructions. In XLATEX one
can switch to TEX code at any moment, via the tex pro-
cessing instruction:
<footnote>This symbol was

very <emph>scary</emph>

and looked like an

<?tex {\xx\char’124}?>.

</footnote>

Elegant XLATEX code would, of course, rather try
to avoid such processing instructions. As always in LATEX,
TEX code should be used only when unavoidable. But in
XLATEX such code is clearly marked and will be avoided
by XML parsers. There is only one hitch: the string “?>”
should never appear inside the TEX code, since it is the
processing instruction escape sequence.

Other processing instructions used are math (for
math formulas), displaymath (for display mathemat-
ics), verb (for short verbatim, similar to the \verb com-
mand), verbatim (for long verbatim code), special
(similar to \special command).

Using processing instructions has the advantage that
one doesn’t need to care about protecting the characters
<, >, & (only the sequence ?> must be avoided). But it
also has a serious disadvantage: the data included in the
processing instruction is not considered as contents of the
document. In some cases this seems the right approach:
in LATEX one would hardly put textual contents into a
\special command, although this is theoretically possi-
ble— thus, using processing instructions for specials will
most probably not “hide” any contents of the document.

This is less clear with, for example, verbatim code
or math formulas (although in the latter case one could as
well also useMathML as the proper way of writing math-
ematics with XML). For that reason XLATEX also pro-
vides XML elements for math formulas, verbatim code
and specials. When using these elements, one must al-
ways protect characters <, >, &, by using the appropriate
entities (<, >, &). As an example, to obtain
the output:
<textbf>this is cute</textbf>

one can write either:

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 371

Yannis Haralambous and John Plaice

<?verbatim

<textbf>this is cute</textbf>

?>

or:
<verbatim>

<textbf>this is cute<textbf>

</verbatim>

The latter solution is “cleaner”, but the former is
more readable.

Other similar projects and history of XLATEX In Novem-
ber 1998, Doug Lovell from IBM AlphaWorks released
a package called texml to translate XML into TEX [5].
This package is described as a three-part solution that pro-
vides a path from XML into the TEX formatting language.
This project is described in a TUGboat article [6]. It
has been retired from IBM and appeared on Sourceforge
in 2004 [8] (developer: Oleg Paraschenko). In 1999,
Stefan Krauß, from Stuttgart University, starts a similar
project called SESAMDoc [4].

Both TEXML and SESAMDoc use an approach quite
different from ours. Instead of defining elements with
names similar to those of LATEX commands and environ-
ments, they define elements from commands and envi-
ronments, where the names appear in an attribute. For
instance, instead of writing
<emph>bingo!</emph>

as we are, SESAMDoc would write:
<cmd name="emph">

<param>bingo!</param>

</cmd>

(the TEXML code would be similar except for the spell-
ing parm instead of param).

TEXML and SESAMDoc are less suitable for manual
keyboarding and editing than XLATEX. By systematically
using param/parm elements, one loses the distinction be-
tween data and markup/metadata. In XLATEX it is possi-
ble to write arbitrary commands and environments that
way, but one can also use attributes for LATEX arguments,
and mix the two approaches so that data gets into element
contents and metadata/markup into attributes.

Compare the XLATEX approach:
<com name="textcolor" arg1="red">

<arg2>This text is typeset in red.</arg2>

</com>

where argument 1 (whose value is metadata) is an at-
tribute while argument 2 (whose value is textual content)
is a sub-element, to the TEXML approach:
<cmd name="textcolor">

<arg1>red</arg1>

<arg2>This text is typeset in red.</arg2>

</cmd>

where there is no qualitative distinction between “red”
and “This text is typeset in red”.

The XLATEX project began in late 2002 as a Dipl-
oma Project for Paweł Grams, at that time student of
ENST Bretagne. He presented his work at the 2003
GUST meeting in Bachotek [2].

In the following section we describe the XLATEX
(version 1) syntax.

XLATEX v. 0.9 syntax

Namespace The namespace of XLATEX v. 0.9 is:
http://omega.enstb.org/2003/XLaTeX

Conventions Ages before the arrival of Unicode, Knuth
introduced some easy ways to obtain characters not in
ASCII: “ and ” for the double quotes, ‘ and ’ for single
quotes, -- and --- for en-dash and em-dash, ‘? and ‘!

for Spanish inverted punctuation. The most frequently
used of these is ’ which produces an “apostrophe” (a
raised comma) although the character used in the doc-
ument is an “ASCII apostrophe” (a small straight line).

Packages like babel and Omega Translation Pro-
cesses have introduced new conventions: for example, in
French one leaves a blank space in front of double punc-
tuation, this space is converted into a non-breakable space
(in the case of colon) or into a thin space (in all other
cases).

Such conventions were invented almost a century
ago, when the typewriter began to be used. Going from
a full blank space to a thin space is the same as going from
the typewriter’s world (“dactylography”) to the printer’s
(“typography”).

Onemay argue whether these conventions should be
left in XLATEX or not. They are part of TEX and our fin-
gers are used to them, especially if we consider ourselves
as being dactylographers and TEX as the typographer-in-
the-box. On the other hand, XML and hence XLATEX is
based on Unicode, and this encoding contains all of these
characters. The problem is not anymore to get the char-
acters in the document, but to configure our keyboard to
produce them easily. And the final argument is that even
in TEX these conventions were deactivated in some con-
texts, for example in verbatim environment or when us-
ing a typewriter font.

To give the future (that is: Unicode) a chance we
have chosen not to activate these conventions by de-
fault. They can be activated, though, using attribute
tex-conventions which can take values on and off.
The value of this attribute is inherited by children of a
node, like XSL-FO properties.

Encodings The default encoding of XML (and hence
of XLATEX) is Unicode UTF-8. This encoding can be

372 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

XLATEX, a DTD/Schema Which is Very Close to LATEX

changed through the encoding pseudo-attribute of the
XML declaration, but we do not advise the user to do so.

Global document structure XML documents have a tree
structure: they need a single top node. LATEX docu-
ments have two parts: the preamble (which has no top
node) and the document body (which has the top node
document). To obtain a structure similar to LATEX, we
have to introduce an additional node above document.
It is only natural for us to call this node xlatex.

On the other hand, every LATEX document has one
and only one \documentclass command. There are
two ways to translate this into XML: either as an element
under xlatex, or as an attribute of document (in the lat-
ter case, the value of this attribute is the name of the doc-
ument class, and a second attribute options includes the
eventual class options).

In a LATEX preamble one finds a lot of code but
mostly \usepackage commands. These can be included
in an XLATEX document as usepackage elements (with
self-explanatory name and options attributes). These
elements can be used either under xlatex and before
document or directly under document.

Hence a typical LATEX document like:
\documentclass[11pt]{article}

\usepackage[francais]{babel}

\usepackage[dvips]{graphics}

\begin{document}

...

\end{document}

can become (for LATEX purists):
<?xml version="1.0"?>

<xlatex version="0.9">

<documentclass name="article" options="11pt"/>

<usepackage name="babel" options="francais"/>

<usepackage name="graphics" options="dvips"/>

<document>

...

</document>

or (more in XML style):
<?xml version="1.0"?>

<xlatex version="0.9">

<document class="article" options="11pt">

<usepackage name="babel" options="francais"/>

<usepackage name="graphics" options="dvips"/>

...

</document>

In the latter case, the \usepackage instructions will be
placed at the beginning of the preamble before any code
included under xlatex and before document.

It becomes obvious from the example above that
XLATEX to LATEX translation is not trivial and requires
more than one parsing run. In the next subsection this
will be even more clear.

Languages Using the babel package, languages are first
declared (as options of the \usepackage command)
and then activated through the \selectlanguage com-
mand. This approach is made possible in XLATEX:
<?xml version="1.0"?>

<xlatex version="0.9">

<usepackage name="babel"

options="francais,english"/>

<document class="article"

options="11pt">

Are we writing in Shakespeare’s

language?

<selectlanguage name="french">

<emph>Ou est-ce dans la langue

de Molière ?</emph>

</selectlanguage>

</document>

But there is also a different approach, more XML-
oriented. In XML, there is a standard way to specify the
language used in an element: the xml:lang attribute.
Values of this attribute are combinations of standard 2-
letter language names (ISO-639) and 2-letter country
names (ISO-3166), separated by a dash.

One can consider— although this is not stated in
the XML specifications— that the value of this attribute
is inherited by nodes underneath the element carrying it.

Every XLATEX element can carry the xml:lang at-
tribute and there is no need to declare the babel package
with the appropriate language. The XLATEX to LATEX
parser will find all occurences of the attribute and load
the corresponding languages in the document preamble.
Hence the example above could also be written as:
<?xml version="1.0"?>

<xlatex version="0.9">

<document class="article"

options="11pt" xml:lang="en">

Are we writing in Shakespeare’s

language?

<emph xml:lang="fr">Ou est-ce dans

la langue de Molière ?</emph>

</document>

Correspondence between values of the xml:lang

attribute and babel language names is included in the
XLATEX configuration file xlatex.conf.

Sections, text styles, footnotes, lists, tables The LATEX com-
mands \section and the like become XLATEX elements,
containing section titles. Attribute short can contain a
shorter version of the title for table of contents and/or
headers (depending on the style file).

The LATEX commands changing text style (\emph,
\textbf, and the like) become XLATEX elements. There
is also a neutral element, used to carry attributes such as
xml:lang; it is called span (as in HTML).

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 373

Yannis Haralambous and John Plaice

Footnotes are obtained with the footnote ele-
ment. As in LATEX there are also footnotenumber

and footnotetext elements, but they should not be
needed, as the XLATEX to LATEX translator should be
able to replace a <footnote> element in an inappro-
priate LATEX environment (such as a table) by paired
<footnotenumber> and <footnotetext> elements.
In other words, the XLATEX to LATEX translator should
be able to rectify some of LATEX’s deficiencies (or at least
to act as if these deficiencies were not there).

Lists are obtained through itemize, enumerate
and description elements. Each list item is contained
in an item element. This element can carry a mark at-
tribute, containing the list item mark. If this mark con-
tains a closing bracket, then it will be automatically con-
verted into a \char"5D command (this is a well-known
LATEX problem coming from the fact that the mark is an
optional argument of the \item command and hence is
delimited by brackets instead of braces).

Tables are obtained through the tabular element,
which takes two attributes: format and pos. When the
format attribute contains values such as m or b then the
array package is automatically loaded. When it contains
the value X then the tabularX environment is automat-
ically loaded. Cells are separated by the tab element,
and ends of line are given by the br element. Horizontal
lines are included by the hline element.

Multicolumn cells are obtained by the element
multicolumn, which takes two attributes: num (the
number of columns) and format (the format of the cell).
The contents of the multicolumn element is the con-
tents of the cell. Partial horizontal lines are included by
the cline element which carries a num attribute.

Here is an example of a table with all the features
described:

One Two Three
Four Five
Six Seven Eight

\begin{tabular}{|c|c|c|}\hline

One&Two&Three\\\hline

Four&\multicolumn{2}{c|}{Five}\\\cline{2-3}

Six&Seven&Eight\\\hline

\end{tabular}

<tabular format="|c|c|c|"><hline/>

One<tab/>Two<tab/>Three
<hline/>

Four<tab/><multicolumn num="2"

format="c|">Five</multicolumn>

<cline num="2-3"/>

Six<tab/>Seven<tab/>Eight
<hline/>

</tabular>

Cross references There are two approaches to cross refer-
ences: the LATEX way and the XML way. The former is

to use label, ref and pageref elements, carrying id

attributes. The latter is to use id attributes instead of
label elements. These attributes can be carried by any
XLATEX element.

Here is an example of these two approaches: a ref-
erence to a section title.
<section>Lyubov Bruk & Mark Taimanov

<label id="bruk-taimanov"/></section>

is the “LATEX way”, and:
<section id="bruk-taimanov">Lyubov Bruk

& Mark Taimanov</section>

the “XML way”.

Mathematics, verbatim As already mentioned, mathe-
matics and verbatim code can be included in two ways:
either by XML processing instructions or by XLATEX el-
ements math, displaymath, verb and verbatim:
To calculate $\sqrt{2}$

use function <verb>sqrt(2)</verb>.

or:
To calculate <?math \sqrt{2}?>

use function <?verb sqrt(2)?>.

to obtain:
To calculate

√
2 use function sqrt(2).

In the case of XML elements, the characters <, > and
& must be entered as <, >, &. In the case
of processing instructions the only constraint is that the
string ?> must not be included in the contents.

Let us emphasize that the XLATEX to LATEX trans-
lator does not produce \verb commands and verbatim

environments from verb and verbatim elements or PIs.
Instead it simply changes the font into a typewriter one
and translates characters, in other words: we obtain the
verbatim effect in a “manual way”. This has the enor-
mous advantage that verbatim code can be used every-
where, including in footnotes, tables, section titles and
other places where it is prohibited in normal LATEX.

Arbitrary commands and environments It may happen
that a user wants to use a given LATEX command which
is not included in the XLATEX DTD (or schema). In
that case one can either use the tex processing instruc-
tion (which switches immediately into TEX mode) or el-
ements com, env, arg1, . . .arg9 and optarg.

Here is an example: suppose that a user has defined
a LATEX command called toto with one optional argu-
ment and two mandatory ones. She wants to use it as fol-
lows:
\toto[red]{2}{Some text.}

There are three ways to obtain this code. By a processing
instruction:
<?tex \toto[red]{2}{Some text.}?>

374 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

XLATEX, a DTD/Schema Which is Very Close to LATEX

in which case an XML parser would not be able to parse
the data properly, or by the com element and arg* at-
tributes:
<com name="toto"

arg1="2"

arg2="Some text."

optarg="red"/>

or by com and arg* elements:
<com name="toto"><arg1>2</arg1>

<arg2>Some text.</arg2>

<optarg>red</optarg>

</com>

The two approaches can be mixed so that the author
of the document has full control of what is to be consid-
ered as markup/metadata, and what as data (textual con-
tent). In the case of our example, 2 and red are probably
metadata while Some text. is obviously text. Hence, it
would be more elegant to write:
<com name="toto" optarg="red"

arg1="2"><arg2>Some text.</arg2>

</com>

To obtain an environment instead of a command,
one uses the env element. The contents of the element
is the contents of the environment.

The advantage of using elements instead of merely
switching to TEX mode via a PI is that XML parsers or
processors (like SAX/DOM or XSLT) can transform these
elements into other XML elements, as desired—while
this is hardly possible (or at least much more difficult) in-
side a processing instruction.

Graphics, figures, multiple columns, files The following
elements produce graphics package commands:
<includegraphics src="toto.eps"

bbox="50 70 327 655"/>

<scalebox amount="0.1"/>

<rotatebox amount="30"/>

<resizebox x="0.5" y="!"/>

Instead of using elements for scaling, rotating and resiz-
ing, one can also use attributes of the includegraphics
element:
<includegraphics src="toto.eps"

bbox="50 70 327 655"

scale="0.1"

rotate="30"

resizex="0.5" resizey="!"/>

In that case, operations are done in the following order:
first rotating, then resizing, and finally scaling.

Using either one of these elements automatically
loads the graphics package.

Floating figures and tables are obtained by elements
figure and table having a single argument pos. If an

H is included in the value of pos, the float package is au-
tomatically loaded.

Captions are obtained by the caption element.
Multiple columns are obtained by the multicols

element, which takes one attribute: pos. The multi-
col package is automatically loaded. One can also use
elements twocolumns and onecolumn as in standard
LATEX.

To include files one can use input, include and
includeonly elements (with src attribute, containing
the file name).

Miscellanea The TEX, LATEX, XLATEX, METAFONT,
etc. logos are obtained through the elements <TeX/>,
<LaTeX/>, <XLaTeX/>, <MF/>, and so on. The \today
command is obtained by the today element.

Bibliography, index Index entries are obtained by the
index element, which can be used in three different
ways:
1. empty, and with an id attribute:

<index id="horse"/>horses is equivalent to:
\index{horse}horses

2. non-empty without attribute:
<index>horse</index> is equivalent to:
\index{horse}horse

3. non-empty with an id attribute:
<index id="horse">horses</index>

is equivalent to:
\index{horse}horses

The printindex command produces the index.
The makeidx package is automatically loaded, and the
\makeindex command automatically inserted. The
index and printindex elements can also carry another
attribute: name. In that case several indexes are built,
identified by their “names”. The multind package is au-
tomatically loaded.

Bibliographical references are obtained through the
cite element which takes two attributes: key and opt.
There is also a nocite element with key attribute. To
obtain the list of bibliographical references one can use
elements bibliographystyle (with attribute src) and
bibliography (with attribute src). Instead of the
bibliographystyle element, one can also use the at-
tribute style carried by the element bibliography:
<bibliography

style="plain"

width="666"

src="mybibliography"/>

The bibliography element can contain bibitem sub-
elements. In that case it is converted into a thebiblio-
graphy environment. bibitem elements contain key

and label attributes.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 375

Yannis Haralambous and John Plaice

Availability, further developments

XLATEX is not yet stable, since we would like the TEX
community to provide us with feedback and thorough
testing before version 1.0 is released. Open questions re-
main, such as the additional packages that should be pro-
vided and automatically loaded as well as the exact fea-
tures of the XLATEX to LATEX translator.

The first real-world document written in XLATEX
was the first author’s book Fontes et codages, published by
O’Reilly France in April 2004.

The up-to-date Web page of XLATEX is http://
omega.enstb.org/xlatex. A prototype XLATEX to
LATEX translator (written in Perl) can be found on this
page. All XLATEX development is publically available
(GNU copyleft license).

Once XLATEX is stable we are planning to write an
Omega input model (so that XLATEX files can be read di-
rectly by Omega) as well as an XLATEX mode for Emacs,
XSLT code for converting XLATEX into XHTML or XSL-
FO, etc.

References

[1] Anelyse Boukhors, Alexandre Kaszycki, Jérôme
Laplace, Sandrine Munerot, and Laurent Poublan.
XML, la synthèse. Eyrolles, 2003.

[2] Paweł Grams. XML jako wejście Omegi. In
XI Ogólnopolska Konferencja Polskiej Grupy
Użytkowników Systemu TEX, 2003.

[3] Yannis Haralambous. Fontes & codages. O’Reilly
France, 2004.

[4] Stefan Krauß. SESAMDoc, LATEX-DTD für
die Druckausgabe. http://www.iste.

uni-stuttgart.de/se/people/krauss/

sesamdoc, 1999.
[5] Douglas Lovell. IBM AlphaWorks TEXML.

http://www.alphaworks.ibm.com/aw.nsf/

techreqs/texml, 1998.
[6] Douglas Lovell. TEXML: Typesetting XML with

TEX. TUGboat, 20(3):176–183, September
1999.

[7] W. Scott Means and Elliotte Rusty Harold.
XML in a Nutshell, manuel de référence.
O’Reilly France, 2e edition, December 2002.
http://www.oreilly.fr/catalogue/xml_

nutshell_2.html.
[8] Oleg Paraschenko. TEXML: an XML vocabulary

for TEX. http://sourceforge.net/

projects/getfo/, 2004.

376 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

