
Second Version of encTEX: UTF-8 Support

Petr Olšák

Czech Technical University in Prague
petr@olsak.net

Abstract

The UTF-8 encoding keeps the standard ASCII characters unchanged and encodes the accented
letters of our alphabets in two bytes. The standard 8-bit TEX is not ready for the UTF-8 input
because it has to manage the single character as two tokens. It means you cannot set the \catcode,
\uccode, etc., of these single characters and you cannot do \futurelet of the next character in
the normal way. The second version of my encTEX solves these problems.

The encTEX program is fully backward compatible with the original TEX. It adds ten new
primitives by which you can set or read the conversion tables used by the input processor of TEX
or used during output to the terminal, log and \write files.

The second version creates the possibility of converting the multi-byte sequences to one byte
or to a control sequence. You can implement up to 256 UTF-8 codes as one byte and an unlimited
number of other UTF-8 codes as a control sequence. All internals in 8-bit TEX work as usual if
the normal “one byte encoding” of input files is used.

I think that the UTF-8 encoding will be used more commonly in the future. In such a situ-
ation, there is no other way than to modify the input processor of TEX; otherwise, the 8-bit TEX
will be dead in a short time.

Résumé

Le codage UTF-8 garde les caractères ASCII inchangés et encode les lettres accentuées de nos
alphabets en deux octets. Le TEX à 8 bits standard n’est pas prêt pour une entrée UTF-8 car il doit
gérer les caractères comme deux octets. Cela signifie que vous ne pouvez pas changer \catcode,
\uccode, etc. de ces caractères et vous ne pouvez pas faire un \futurelet du caractère qui suit,
dans la sens habituel. La deuxième version de mon encTEX résoud ces problèmes.

encTEX est totalement compatible avec le TEX original. Il ajoute dix nouvelle primitives par
lesquelles vous pouvez établir ou lire les tables de conversion utilisées par le processeur d’entrée de
TEX ou utilisées pendant la sortie au terminal, et aux fichiers log et \write.

La seconde version donne la possibilité de convertir des séquences multi-octets vers un octet
ou une commande. Vous pouvez implémenter jusqu’à 256 codes UTF-8 comme un octet and un
nombre illimité de codes UTF-8 comme commandes. Toute la machinerie interne de TEX fonc-
tionne comme si les fichiers d’entrée sont dans un «codage normal à un octet».

L’auteur pense que le codage UTF-8 va être de plus en plus courant dans l’avenir. Dans cette
situation il n’y a pas d’autre moyen que de modifier le processeur d’entrée de TEX, sinon la version
originale de TEX à 8 bits va disparaître sous peu.

What is encTEX?

EncTEX is a TEX extension which allows re-encoding of
input stream in the input processor of TEX (before to-
kenization) and backward re-encoding of output stream
during \write and output to the terminal and log. It
is implemented as a patch to the change file tex.ch.
The patches are ready forWeb2C distribution on [1] and
(maybe) encTEX will become a standard Web2C exten-
sion, as it is for MiKTEX. Try to use the -enc option on
command line to test if your TEX is equipped with this
extension. If not, you can get and apply the patches and
rebuild TEX binaries. The patches affect TEX, eTEX,
pdfTEX and pdfeTEX programs. All of these programs
can make use of this extension.

The first version of encTEX was released in 1997.

This version only implemented byte to byte conver-
sion, by modifying TEX’s internal xord and xchr vectors.
EncTEX introduced three primitives in its first version:
\xordcode (reads or sets the values of xord vector for
input re-encoding), \xchrcode (reads or sets the values
of xchr vector for output re-encoding) and \xprncode
(reads or sets the values of newly introduced xprn vector
which controls the “print-ability” of characters—it con-
trols the possibility of the character conversion to ^^ab
form on output side). See my article [2] for more details.

The first version of encTEX was not widely used
because TCX tables were re-introduced in the Web2C
distribution immediately after encTEX was released.
Roughly speaking, the TCX tables do the same job as the
first version of encTEX, although less flexibly. There was

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 499

Petr Olšák

no reason to combine the TCX tables with encTEX.
The second version of encTEX was designed and

prepared by me in December 2002 and released in
January 2003. This version introduces seven more
primitives so users can control the multi-byte input re-
encoding and reverse output re-encoding. Groups of
bytes on input stream can be converted to one byte or to
a control sequence. The conversion is done before tok-
enization, but a control sequence generated by this con-
version is not re-tokenized again and the token processor
does not go to the “ignoring spaces” state after such a con-
trol sequence. The backward conversion during \write
allows you to convert one byte or a control sequence to
the original group of bytes.

The second version of encTEX is backward compat-
ible with the first one, of course. Detailed documenta-
tion is available [1]. Very nice on-line html documenta-
tion written by David Nečas (Yeti) is also available [5].

Motivation

I am the maintainer of a csplain format—the basic
part of the CSTEX package (for Czech and Slovak users).
csplain is similar to the very well-known plain TEX for-
mat (by Don Knuth, [4]). Moreover, csplain solves the
processing of all letters from Czech and Slovak alphabets.
It means thatCS-fonts (encoded by ISO-8859-2) are used
by default instead of the Computer Modern fonts, the
hyphenation tables for Czech and Slovak languages are in-
put in the same encoding and all Czech and Slovak letters
are treated as single non-composite symbols. These sym-
bols have their \catcodes set to 11 (letter), thus they
can be used in control sequences too.

Czech and Slovak alphabets are encoded by many
mutually incompatible standards and pseudo-standards in
various operating systems and environments. All these
encodings have to be converted internally to ISO-8859-2
in csplain at the input processor level and converted
back to the input encoding during \write, terminal and
log output. Only this rule preserves the independence of
the TEX processing from the operating system.

If the source text of the Czech or Slovak docu-
ment is transported from one environment to another, re-
encoding to the standard of the target environment must
be done, either automatically or manually by the user.
The main principle is that the Czech and Slovak charac-
ters in source text have to be displayed correctly by the
operating environment before the document is processed
by csplain.

I created the cstrip test in 1998 [3]. You can ver-
ify if you are really using the csplain format with this
test. It verifies if TEX’s input processor is set correctly
depending on your operating environment: all Czech and
Slovak characters have to be mapped into ISO-8859-2
and they have to be written back to the input encoding

on terminal, log and \write files. The ^^ab form is not
permitted for Czech and Slovak letters.

We were able to set the input processor properly for
csplain in old TEX distributions. For example, emTEX
used TCP tables. On the other hand, the Web2C distri-
bution disabled its similarTCX tables in 1997, thus users
were not able to implement the csplain format cor-
rectly in operating environments where different encod-
ing of our alphabets from ISO-8859-2 were used. This
was the main motivation of encTEX extension of TEX.

Now, the new encoding standard UTF-8, derived
from Unicode, is used very often. The non-ASCII char-
acters are encoded in two or more bytes. If this encoding
standard is used in our operating environment then we
need to be able to set multi-byte conversion in the input
processor of TEX. There is no other way to carry out
the cstrip test. This was my motivation for the second
version of encTEX.

Multi-byte re-encoding

The detailed documentation is included in the encTEX
package. Thus, only a short overview of the principles is
presented here.

The second version of encTEX introduces seven new
TEX primitives to define and control re-encoding be-
tween multi-byte input/output and TEX’s internal repre-
sentation. These are:
• \mubyte and \endmubyte primitives defining the
conversions,

• \mubytein, an integer register controlling input
conversion,

• \mubyteout, an integer register controlling output
conversion,

• \mubytelog, an integer register controlling output
to terminal and log file,

• \specialout, an integer register controlling
\special argument treatment, and

• \noconvert, a primitive suppressing output con-
version.
The default values of all the new registers are such

that encTEX behaves compatibly with unmodified TEX
(incidentally, it means zeroes).

You can set the conversion table via the pair of prim-
itives \mubyte and \endmubyte. Examples:
\mubyte ^^c1 ^^c3^^81\endmubyte % Á
\mubyte ^^c4 ^^c3^^84\endmubyte % Ä

It means that, for example, the group of two
bytes ^^c3^^81 will be converted to one byte ^^c1
(if \mubytein is positive) and this byte is converted
back to byte sequence ^^c3^^81 during \write (if
\mubyteout is positive) and to log and terminal (if
\mubytelog is positive).

500 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Second Version of encTEX: UTF-8 Support

If your operating environment uses UTF-8 encod-
ing then the two bytes ^^c3^^81 are displayed as Á. You
can do the “normal things” with this character in your
text editor:
\catcode ‘Á=11 \def\myÁsequence{...}
...
\def\run{\futurelet \next \dotest}
\def\dotest{\ifx \next Á...}
\run Áha
...
\uccode‘Á=‘Á \lccode‘Á=‘á \sfcode‘Á=999
...

This behavior is very desirable for the csplain for-
mat and cstrip test. You can convert your old csplain
documents to the new UTF-8 encoding and you can pro-
cess them with csplain in operating environments sup-
porting UTF-8. You get absolutely the same result as in
the old days. This backward compatibility is most im-
portant for me.

Next example:
\mubyte \Alpha ^^ce^^91\endmubyte
\mubyte \Beta ^^ce^^92\endmubyte
...
\mubyte \leftarrow ^^e2^^86^^90\endmubyte
\mubyte \uparrow ^^e2^^86^^91\endmubyte
...

For instance, the group of three bytes ^^e2^^86
^^90 is now converted to the \leftarrow control se-
quence and this control sequence is converted back to
^^e2^^86^^90 during \write if \mubyteout ≥ 3.
TheUTF-8 encoding of math characters is implemented
in this way; see the utf8raw.tex file in the encTEX
distribution, and math-example.tex for more complex
examples.

The UTF-8 encoding tables for encTEX were pre-
pared by David Nečas [6]. He has made his own Python
script which converts the NamesList.txt [7] with
Unicode declarations of characters to the \mubyte . . .
\endmubyte tables. This script is included in the
encTEX distribution.

There is another way to declare math symbols:
\mubyte \utfAlpha ^^ce^^91\endmubyte
...
\def\utfAlpha{\ensuremathmode \Alpha}
...
\def\ensuremathmode #1{\ifmmode #1\else

$#1$\fi}

This second solution is more robust because you
can write math symbols in the UTF-8 encoding without
needing to start math mode explicitly. Note that these
symbols are displayed as natural math symbols in your
text editor. I did not use this solution in my macros dis-
tributed with encTEX because this concept is not com-

patible with common TEX documents where all math
mode switches are explicitly written.

More funny examples

You can use encTEX capabilities for purposes other than
character encodings. Consider this next simple example:
\mubyte \TeX TeX\endmubyte
\mubyte \copyright (C)\endmubyte
\mubyte \dots ...\endmubyte

If you write “TeX and friends” (without a back-
slash) then input processor of encTEX converts this
stream to \TeX, 〈space〉, a, n, d, 〈space〉, f, etc. This is
the desired behavior. Moreover, if \mubyteout ≥ 3

then the \TeX control sequence is not expanded dur-
ing \write, but rather is converted back to its input
byte sequence “TeX”. On the other hand, if you write
\LaTeX, then the input is converted to two control se-
quences \La\TeX, which is not desired. You can solve
this problem by defining the “\La” macro or declaring:
\mubyte \LaTeX LaTeX\endmubyte
\mubyte \LaTeXe LaTeX2e\endmubyte

Note that both byte sequences in this example be-
gin by the same text “LaTeX”. If the two characters “2e”
follow immediately then a \LaTeXe control sequence is
generated (by the second line of this example) else the
\LaTeX control sequence is generated. (The order of the
lines in this example is unimportant.)

What happens, if this setting is active and you write
\LaTeX (including the backslash)? Nothing bad. The
empty control sequence before the generated control se-
quence \LaTeX is suppressed by encTEX, thus only the
\LaTeX control sequence is output.

I implemented a program vlna for adding tildes af-
ter the Czech one-letter prepositions (v, k, s, u, o, z)
entirely in encTEX using \mubyte. It correctly handles
math mode (no tildes are added there). It’s available in
the encTEX distribution as an example of crazy applica-
tions of encTEX in the file vlna.tex.

References

[1] http://www.olsak.net/enctex.html, the
main page of the encTEX project.

[2] Petr Olšák: EncTEX—A little extension of TEX,
in: TUGboat 19(4), (1998), pp. 336–371.

[3] ftp://math.feld.cvut.cz/pub/cstex/
base/cstrip.tar.gz.

[4] Donald Knuth: The TEXbook.
[5] http://trific.ath.cx/tex-mf/enctex/

[6] http://trific.ath.cx/, David Nečas’s home
page.

[7] http://www.unicode.org/Public/UNIDATA/
NamesList.txt

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 501

