
Experience with OpenType Font Production

Sivan Toledo
School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel
stoledo@tau.ac.il

http://www.tau.ac.il/~stoledo

Zvika Rosenberg
MasterFont Studio Rosenberg, 159 Yigal Alon Street, Tel-Aviv 67443, Israel
http://www.masterfont.co.il

Abstract

The article describes the production of about 200 Hebrew OpenType fonts with advanced typo-
graphic layout features. The production project was conducted forMasterFont, a large commercial
font foundry in Israel, which produces and sells over 1400 Hebrew fonts. The production project
had two main objectives: to convert Hebrew fonts with complex diacritic support from an older
format to OpenType, and to streamline the font production process at the foundry. The article
describes font technology background, the objectives and constraints of the project, the tools that
are available, and the final conversion and production process. The article also describes our con-
clusions from the project, and in particular our conclusions concerning font production processes
and tools, and the OpenType format.

Résumé

Cet article décrit la production d’environ 200 fontes OpenTypes hébraïques, munies de propriétés
typographiques avancées. Ce projet a été mené par MasterFont, une importante fonderie israë-
lienne, qui produit et commercialise plus de 1 400 fontes hébraïques. Le projet avec deux objec-
tifs principaux : la conversion de fontes hébraïques avec support de diacritiques complexes à partir
d’un format de fonte plus d’ancien en OpenType, et l’automatisation du processus de production
de fontes à la fonderie. L’article décrit les technologies de fontes impliquées, les objectifs et les
contraintes du projet, les outils disponibles, et le processus de conversion et de production final. Il
décrit également les conclusions que nous avons tirées du projet et en particulier nos conclusions
concernant les processus et les outils de production de fonte, ainsi que concernant le format Open-
Type.

Introduction

This article describes the production of a large number
of Hebrew OpenType fonts. More specifically, we de-
scribe the production of OpenType fonts with TrueType
glyph descriptions and with advanced typographic lay-
out features. The project was conducted by MasterFont
Studio Rosenberg, a large Hebrew digital font foundry
in Tel-Aviv, with assistance from Sivan Toledo from the
School of Computer Science in Tel-Aviv University.

Hebrew is a right-to-left script that is used in one of
twoways: with or without diacritics. Most Hebrew texts
are printed almost without any diacritics, but children’s
books, poetry, and bibles are printed with diacritics.
Even texts that are printed without diacritics use them
occasionally to disambiguate pronounciation and mean-
ing. The diacritics in children’s books and poetry are
vowels and consonant modifiers, which are called nikud

in Hebrew (meaning “to add points”). Bibles also use a
third kind, cantillation marks, which are not treated in
this article (see [4, 5] for a thorough discussion). He-
brew diacritics are quite hard to support in fonts, since
there are 15 of them and 27 letters, with up to 3 diacrit-
ics per letter. Even though not all the combinations are
grammatically possible, there are too many combinations
to support them conveniently using precomposed glyphs.
In addition, diacritics must be positioned relative to the
base letter visually, rather than mathematically. For ex-
ample, the below-baseline diacritics must be set below
the visual axis of the letter [15], not below its mathe-
matical center. This means that ligatures, pair kerning,
and simple mathematical centering alone are insufficient
for correct placement of diacritics.

In addition to diacritics, Hebrew fonts can also ben-
efit from pair kerning, although until recently, pair kern-
ing was not particularly common in Hebrew fonts. For

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 557

Sivan Toledo and Zvika Rosenberg

further information about the Hebrew script, see [1, 14,
15].

The initial objective of the project was to convert
older fonts into the new OpenType format. This was
motivated by the concurrent development of Adobe In-
Design 2.0 ME (Middle Eastern), the first high-end
page-layout program to support Hebrew OpenType fea-
tures. Microsoft’s Office XP also supports these features,
so InDesign was not the only motivator. But it quickly
became evident that the same tools that would be neces-
sary to convert the old fonts to the new format could also
be used to streamline the entire font production process
at MasterFont. Therefore, the project had two objec-
tives: to convert the old fonts to the new format, and to
streamline the production process.

The rest of the paper is organized as follows. The
next section provides background on font formats. Sec-
tion “Diacritic-Positioning” describes how diacritic po-
sitioning information is represented in MasterFont’s old
fonts. Section “Objectives” describes the objectives of
the project, and “Tools” describes the software tools that
we used to achieve these objectives. The overall produc-
tion process is described in “The Production Process”,
and our conclusions from this development and produc-
tion experience are described in “Conclusions”.

Font Formats

This section describes the OpenType font format and
other relevant font formats. Unfortunately, the term
OpenType is somewhat vague, so this section also estab-
lishes a more precise nomenclature.

Type 1, TrueType, andEarly Extensions The first widely-
accepted device-independent font format was the Post-
Script Type 1 format [10]. Adobe started selling re-
tail Type 1 fonts in 1986, and published the specifica-
tion in the late 1980’s, after Bitstream figured out how
to produce Type 1 fonts (prior to that the specification
was proprietary and only Adobe could produce Type 1
fonts). Type 1 fonts consist of two or three main parts:
scalable hinted glyph descriptions, metric information,
which includes glyph dimensions, advance widths, and
pair kerning, and possibly bitmaps for screen preview-
ing. Today most systems can rasterize the scalable glyph
descriptions adequately, so the bitmaps are rarely neces-
sary; Adobe distributes the Adobe Type Manager pro-
gram without cost; it is a Type 1 rasterizer for older
Windows and Macintosh computers without a built-in
rasterizer. Type 1 fonts are relatively easy to design and
produce, and today there are tens of thousands of com-
mercial Type 1 fonts.

The next widely-accepted device-independent font
format was the TrueType format [7, 2], which was in-

vented by Apple in the late 1980’s, as part of a collabora-
tion between Apple and Microsoft, and became the na-
tive scalable font format for both Apple Macintosh com-
puters and Windows computers. In a TrueType font,
all the data associated with the font, such as glyph de-
scriptions, metric information, administrative informa-
tion (font name, for example), and possibly bitmaps, are
placed in a single file, which is organized as a collection
of tables. For example, one table contains glyph descrip-
tions, another character-to-glyph mappings, yet another
table contains kerning pairs, and so on.

The kinds of data in a TrueType font are almost
identical to the kinds of data in a Type 1 font, but they
are organized differently and sometimes represented dif-
ferently. Most importantly, glyph descriptions and hints
for low-resolution rasterization are represented differ-
ently. In a Type 1 font, glyphs are represented using
cubic-spline outlines with declarative hints. In a True-
Type font, glyphs are represented using quadratic-spline
outlines and a low-level programmable hinting language.
Type 1 outlines are easier to design and hint, and most
designers use cubic splines when designing fonts. Well-
hinted TrueType fonts are hard to produce, but they
can achieve pixel-perfect rasterization at low resolutions,
something that Type 1 fonts cannot achieve. Virtually all
font editors can convert one type to the other. The con-
version of TrueType outlines to Type 1 outlines is loss-
less, but the other direction only produces an approxima-
tion. However, the approximation of a Type 1 outline by
a TrueType outline can be made arbitrarily accurate and
font editors produce approximations that are visually in-
distinguishable from the original. Hinting information is
usually also converted, but not as well.

Both Adobe and Apple introduced enhancements to
these font formats during the 1990s, but none became
widely used. Adobe introduced the Multiple Master
font technology [11, 12], which allows users to interpo-
late between fonts in a family. This enhancement trans-
forms the font family from a discrete set to a continuous
spectrum. For example, there aren’t just medium and
bold fonts, but a continuous weight axis. Apple intro-
duced GX fonts [7] (now called AAT fonts), which are
TrueType fonts with additional tables that allow contin-
uous interpolation, likeMultipleMaster fonts, and which
enable high-end typographic features. In particular, GX
fonts can support multiple glyphs for a single charac-
ter, such as swash, small caps, or old-style figures, they
can reorder glyphs, and so on. Neither format became
widely accepted by font vendors, probably because the
fonts were too hard to produce. No major font foundry
besides Adobe producedMultipleMaster fonts, and only
a few GX fonts were produced by Bitstream and Lino-
type.

558 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Experience with OpenType Font Production

OpenType OpenType is a new font format [3] that Mi-
crosoft and Adobe specified collaboratively. The format
was first used, under the name TrueType Open, in the
Arabic version of Windows 95, which was introduced in
1996. Apple later joined the specification effort and the
name was changed to OpenType.

OpenType adds three capabilities to the TrueType
format: advanced layout features, support for Type 1
glyph descriptions, and digital signatures. The advanced
layout features are supported by five new tables:

• GDEF, which defines glyph properties and glyph
sets;

• GSUB, which defines glyph substitution rules;

• GPOS, which specifies positioning information;

• JSTF, which provides justification information; and

• BASE, which provides baseline-adjustment informa-
tion.

These features were designed to support layout of
text in complex scripts such as Arabic, Hebrew, Indic,
and East Asian scripts (Hebrew is by no means the most
complex), and to support high-end typographic features
such as swash letters and decorative ligatures, old-syle
and proportional figures, and small capitals.

The support for Type 1 glyph descriptions is de-
signed to allow lossless conversion of Type 1 fonts to a
TrueType-like table-based file format. Such fonts use
two new tables, CFF and VORG, to store a losslessly-
compressed Type 1 font. Technically, the format of
the CFF table corresponds to that of PostScript Type 2
fonts [13], also known as the compact font format, but
the essence of the format is a lossless representation of
Type 1 glyph descriptions (outlines and hints). The
need to support two kinds of glyph descriptions and hints
constrained the design of the layout-related tables, in
the sense that positioning information in the GPOS ta-
ble could not be hinted using the normal TrueType or
hinting language; a different hinting mechanism is used,
which supports both Type 1 and TrueType glyphs.

The support for digitally signing fonts, which uses
the DSIG table, is meant to allow users and font-using
software to verify the authenticity of fonts. For example,
future operating systems might require that certain sys-
tem fonts are digitally signed by the operating-system’s
vendor, thereby preventing modified versions of these
fonts from being used instead. For independent font ven-
dors, there is currently little benefit in digitally signing
fonts, since users currently do not have means to verify
these signatures, and since fonts rarely pose security or
stability problems to systems.

OpenType fonts with TrueType outlines can be
used by any TrueType-capable software, since except for
extra tables (which are allowed by the TrueType spefica-
tion), the fonts are also valid TrueType fonts. Software

such as rasterizers, layout engines, and printer drivers
can simply ignore the extra tables. OpenType fonts with
Type 1 outlines require special support in rasterizers and
printer drivers, support beyond that required to support
Type 1 and TrueType fonts. In principle any TrueType-
capable layout engine can use any OpenType font, since
the metric and layout information are compatible (an ex-
ception is pair-kerning information, which can appear in
either the ‘kern’ table or theGPOS table or both in a font
with TrueType glyphs, but only in the GPOS table in a
font with Type 1 glyphs). To emphasize the fact that
OpenType fonts with TrueType glyphs can be used by
any TrueType-capable software, whereas special support
is required for fonts with Type 1 fonts, files containing
the first kind use the ttf or ttc extension, whereas files
containing the second kind use the otf extension.

So what is an OpenType font? According to the
Microsoft/Adobe specification, any font that conforms to
the specification, including both TrueType and Type 1
glyphs, with or without advanced layout tables and dig-
ital signatures. This is somewhat confusing, especially
since the file icons in Windows do not correspond to the
glyph descriptions (Windows 2000 and XP use the ‘O’
icon for otf files and for ttf or ttc files if the fonts
have a DSIG table, and the ‘TT’ icon for all other ttf
files). We will use the acronyms OTF for OpenType fonts
with Type 1 glyphs, TTF-OTL for fonts with TrueType
glyphs and with advanced layout tables, and TTF for
fonts with TrueType glyphs but no advanced layout ta-
bles.

Microsoft’s main interests in the OpenType format
lies in supporting complex scripts in Windows, with ini-
tial emphasis on Arabic and later on Indic scripts, and
in tighter operating system/font integration using digi-
tal signatures. Adobe’s main interests in the format lies
in exploiting TrueType’s advantages, mainly the support
for non-Latin character encodings and the convenient
single-file format, and in providing its fonts and applica-
tions easier access to so-called expert glyphs, such as old-
style figures and small capitals [9].

Windows andMacintosh Font Files Differences in the way
font files are stored on different platforms cause a few ad-
ditional difficulties during font production.

On Windows and Unix/Linux systems, a TrueType
or OpenType font is stored in a single file. A Type 1 font
is represented by up to four files: a pfb or pfa file that
stores the glyph descriptions and a character-to-glyph en-
coding, afm and/or pfm files that store metric informa-
tion, as well as the encoding, but no glyphs, and an inf
file that stores administrative infomation about the font.
OnWindows system, only the pfb and pfm files are used.

On Macintosh systems, there are multiple ways to
store fonts. The Macintosh operating system supports

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 559

Sivan Toledo and Zvika Rosenberg

two byte streams per file. One is called the data fork and
the other the resource fork, which was meant to store ap-
plication resources such as localized strings, icons, and so
on. The format of the resource fork allows multiple re-
sources to be stored in a single file. BeforeMacOSX (that
is, before version 10), fonts were always stored in the
resource fork of files whose data fork was empty. Fonts
and font families are represented by several kinds of re-
sources, such as the FOND resource that describes an en-
tire family (regular, bold, italic, etc.), SFNT for storing
TrueType fonts, FONT and NFNT for storing bitmap
fonts, and so on. The fonts of a family are usually stored
in a single file called a suitcase, whose resource fork con-
tains multiple resources. The Macintosh also associates a
file type (separate from the extension) and a creator code
with each file. Font files need to have a specific type to be
recognized as such by the Macintosh’s operating system.

Storing fonts in multiple resources within a sin-
gle file, and storing the font data in the resource fork
rather than the data fork, creates problems when fonts are
moved between platforms. To address this issue, Apple
introduced new ways to store fonts in MacOSX. First,
suitcases can now be placed in the data fork, using a for-
mat called a dfont file (after its extension). This for-
mat is essentially a traditional Mac font file, but in the
data rather than the resource fork. Second, MacOSX
also allows Windows-style packaging of TrueType and
OTF files in a single file in which the font data is stored
in the data fork with no header or trailer.

Diacritic-Positioning Information in Older Fonts

MasterFont’s existing fonts used three mechanisms for
positioning diacritics. These mechanisms were devel-
oped over a long period of time—each additional mech-
anism was designed to correct deficiencies in previous
ones.

The first mechanism uses a number of precomposed
glyphs. These are used for dagesh, a dot that appears in-
side letters, and which must be carefully positioned to
prevent overstriking the letter itself. Such combinations
are also used for shin/sin dots, for diacritics attached to
a final letter (only two combinations are used in mod-
ern Hebrew), and a few other cases. There are Unicode
code points for these glyphs, as well as code points in the
MacHebrew 8-bit encoding, and they are used by both
Macintosh and Windows systems.

On the Macintosh, precomposed glyphs are also
used to place diacritics on particularly difficult letter:
resh, dalet, and qof. The first two are wide letters that
have a single vertical stem at the right, under which
below-baseline diacritics should be placed. Incorrect
placement under these letters looks awful. The qof is the
only non-final letter with a descender, so special attention

is required to prevent the below-baseline diacritics from
colliding with the descender. These glyphs do not have
Unicode code points, but they are used in all the Mac’s
Hebrew fonts, including the fonts bundled by Apple with
the operating system. These glyphs appear to have been
added by Apple quite early on. They do fix the most se-
rious placement cases, but they do not fix all the place-
ment problems. Furthermore, this glyph set appears to
have been designed by somebody without much exper-
tise in Hebrew, since some of the precomposed glyphs
can never appear in a text (e.g., dalet with a hataf-patah).

Since the precomposed glyphs are insufficient for
correctly positioning all the combinations, MasterFont
developed a few years ago a positioning aid for the Mac-
intosh. This software, called Mapik-Ve-Day, is a Mac-
intosh system extension that selects a diacritic glyph ac-
cording to the base letter. Fonts designed to work with
this software have three sets of diacritics: one for nar-
row letters, one for wide letters, and one for medium-
width letters. The diacritics in all sets usually have the
same shapes, and all have zero advance widths, but each
set has different sidebearings. The three qamats glyphs,
for example, all have the same shape and zero width, and
all print to the right of the insertion point (so they appear
below the preceding letter in a right-to-left text run), but
the amount of right shifting is different. The software es-
sentially divides the letters into three categories, each of
which has its own set of diacritics.

These two mechanisms, the precomposed glyphs
and the three sets of diacritics of different widths, essen-
tially mimic hot-lead diacritics. They allow fairly good
control over positioning, provided the font is designed
with this system in mind. In particular, special attention
must be given to the left sidebearings of base letters, to
ensure that the diacritics from the appropriate category
are well placed under them.

To allow more precise control over diacritic posi-
tioning, MasterFont began to use explicit positioning in-
formation in the fonts. These are stored in the kerning
table of the font, even though they are not real kern pairs,
since the insertion point should not move after the po-
sitioning adjustment. For example, a kerning pair alef-
qamats with value 35 means that the qamats glyph must
be shifted relative to the alef glyph by 35 font units. The
insertion point remains exactly after (to the left of) the
alef, as if no adjustment took place. This information is
not used by the Macintosh operating system, but a some
Adobe applications can use it.

MasterFont currently has 86 fonts with this level of
diacritic positioing, which is essentially the set of fonts
designed for book work. In addition, there are many
more display fonts with pair kerning information but
without elaborate diacritic support, a few of which are
shown in Figure 6.

560 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Experience with OpenType Font Production

Objectives

Now that the setting has been described, we can enumer-
ate the objectives of this project in more detail.

First and foremost, we wanted to convert the di-
acritic positioning information in the existing fonts to
OpenType advanced-layout tables. We wanted to do this
without specifying any additional positioning informa-
tion. This restriction was motivated by several reasons:

• Efficiency; there was no point in doing extra de-
sign work on fonts that already produce perfectly
positioned texts. For example, there is no point
in specifying positioning information for a combi-
nation represented by a carefully designed-precom-
posed glyph.

• Correctness; by not specifying new positioning in-
formation, the chances of introducing new position-
ing bugs are minimized.

• Continued support for older applications; we want-
ed to be able to produce additional new fonts that
would be able to work not only in OpenType ap-
plications, but also in older applications. By build-
ing new fonts according to the old specification and
automatically converting them to OpenType, the
foundry would be able to offer customers either an
OpenType font or an old-syle font for legacy appli-
cations.

Second, we wanted to automatically produce fonts for
both the Windows and Macintosh platforms (Windows
fonts also work on Unix and Linux). More specifically,
we wanted to produce the fonts for the two platforms us-
ing the same source fonts, rather than generate a Win-
dows font and convert it, and then generate a Mac font
and convert it. This meant that the glyph sets for Win-
dows and Mac fonts had to be merged, since previously
the foundry used different glyph sets for each platform.
Furthermore, if possible, we wanted to have identical fin-
ished fonts, except for the suitcase wrappers. It turned
out to be possible.

Two remaining choices had to be made, concern-
ing the glyph-description format and the Mac-packaging
format. After some deliberation, we decided to pro-
duce TTF-OTL fonts rather than OTF fonts. Produc-
ing OTF fonts has one advantage, namely that the origi-
nal Type 1 outlines and hints remain intact, whereas au-
tomatic conversion is used when producing TTF fonts
from the same source files. We felt that given the ac-
curacy of the conversion, this had essentially no impact
on high resolution output from printers or imagesetters.
We also felt that modern on-screen rasterizers that use
antialiasing (font smoothing) produce acceptable output
from automatically-hinted and unhinted TrueType out-
lines. Therefore, we felt that OTF’s advantage over
TTF-OTL is not particularly significant. On the other

hand, on pre-2000Windows and pre-XMacs, OTF fonts
require the Adobe Type Manager utility, which is free
but nonetheless requires downloading and installing by
the end user. Also, some applications, most importantly
Microsoft’s PowerPoint, cannot use OTF fonts even on
systems that do support them (this is true for both Pow-
erPoint 2000 and PowerPoint 2002). Finally, one of the
tools we used in the production of the fonts, Microsoft’s
VOLT, provides much better support for TTF-OTL fonts
than for OTF fonts; this is described more fully in the
next section. Given the clear disadvantages and the only
slight advantage of OTF fonts, we decided to produce
TTF-OTL fonts.

Tools

The production of the fonts uses a number of software
tools, which we describe in this section. We also describe
alternatives to some of the tools and explain our choice of
tools.

Assembly of the Advanced Typographic Tables The tool
that we used to construct the advanced typographic ta-
bles in the fonts is Microsoft’s Visual OpenType Layout
Tool (VOLT). Given a font, we automatically construct
input files for VOLT, and use it to construct a derivative
font with appropriate GDEF, GPOS, and GSUB tables.

Adobe’s OpenType Font Development Kit (FDK)
can perform a similar function. However, when we
started the project, the FDK had incomplete support for
the GPOS table, which meant that we could not use it
to convert our Hebrew fonts. The FDK is also OTF-
oriented, in that it cannot accept TrueType glyphs as in-
put, where as we wanted a TTF-to-TTF-OTL conver-
sion, in order not to modify the glyphs or their hints.
These restrictions appear to still hold.

In addition to VOLT, Microsoft also distributes
command-line tools that can construct advanced typo-
graphic tables, but they are quite old and we did not ex-
periment with them.

Versions 4.0 and 4.5 of FontLab can also produce
OpenType fonts with advanced typographic tables. But
our understanding has been that the OpenType support
in FontLab is based on Adobe’s FDK and hence does not
support the required GPOS mechanisms, so we did not
explore this approach.

Since we used VOLT, we would like to comment on
its advantages and disadvantages. VOLT is a visual tool,
designed to allow a font designer to specify visually glyph
substitutions and positionings. Together with the sample
fonts, it is a superb tool for understanding howOpenType
layout features work and for prototyping and developing
OpenType layout support. In addition to visual design,
VOLT allows the user to export and import the structure
of the layout tables or parts of the tables into text files

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 561

Sivan Toledo and Zvika Rosenberg

with special syntax. Since we had to convert many fonts,
we opted for automatically generating these files, which
are called VOLT project files (vtp) rather than visually
constructing each font. On the other hand, VOLT does
not have command-line options that can be used to open a
font and a VOLT project file and ship an assembled TTF-
OTL font. This means that even if the project files are
constructed automatically en masse, they cannot be pro-
cessed in batch mode—each font must be opened using
a menu command, the corresponding project file must be
imported using another menu command, and the output
font must be shipped using yet another command.

Data Extraction and Project File Construction To produce
the input file for VOLT, we had to convert the data in
the initialTTF fonts into VOLT project files. The format
of the VOLT project files is complex and undocumented,
but quite simple to figure out by comparing the file to the
font structure in the graphical user interface.

We performed the conversion using two custom-
written programs. The first program, written in C, reads
a TTF font and outputs an afm-like text file, which maps
glyph indices to PostScript glyph names, and which doc-
uments all the kerning pairs (glyphs in TrueType fonts
are stored in an array and are refered to by VOLT using
their indices).

The second program, written in the AWK language,
transforms this information into a VOLT project file. The
transformation consists of:

• Mapping each glyph index to a glyph name andUni-
code code point(s).

• Defining glyph groups.
• Defining glyph substitution lookups, for example
to map normal diacritics to wide or narrow ones,
to map glyph sequences to precomposed glyphs,
and in one case to decompose a precomposed se-
quence depending on the preceding glyphs (this
supports two meanings and vocalizations of the Uni-
code vav+holam sequence, which can stand for a sin-
gle long vowel or a consonant followed by a short
vowel; there is a single Unicode sequence for both
cases, but they should be printed and vocalized dif-
ferently).

• Defining diacritic positioning information.
• Defining kerning pairs.

We wrote the AWK program by developing a prototype
font visually in VOLT, exporting the project file, and then
writing the program so that given the input file, it gen-
erates a similar project file. We then loaded the result-
ing project file into VOLT and inspected the resulting
OpenType structure. When we discovered problems, we
modified the AWK program to correct them and so on.
This methodology exploits the two strengths of VOLT:
the ability to design and inspect OpenType layout tables

visually, and the ability to accept automatically-generated
input.

Minor Modifications of Other TrueType Tables We grad-
ually discovered that other TrueType tables had to be
modified to ensure that the fonts perform properly. Here
are the main modifications that we perform on the fonts:

• We add code-page-support and Unicode-range in-
formation to the fonts. This information is used by
Windows and Windows applications to determine
which scripts a font supports.

• While we use VOLT to construct the Unicode char-
acter-to-glyph mapping table (a subtable of the
‘cmap’ table), we later add an 8-bit Hebrew encod-
ing table to support older Mac applications. This
encoding subtable must be added even if the origi-
nal TrueType font has one, since VOLT regenerates
the ‘cmap’ table, and to the best of our knowledge,
cannot emit this particular subtable.

• We remove the ‘kern’ table, which contains diacritic
positioning data that are not true kerning pairs, as
described above.

• We add a ‘gasp’ table to specify that the fonts should
to be antialiased at all sizes.

• We make minor modifications to the ‘name’ table,
which contains copyright, version, URL, and other
textual information for the end user.

Some of the modifications are done with a specially-
written C program. The other modifications are per-
formed by converting the appropriate table to XML
format using Apple’s ftxdumperfuser command-line
tool for MacOSX, modifying the XML file using AWK
and SED programs, and then fusing the resulting XML-
formatted table to the font file, again using ftxdumper-
fuser.

We perform some of the modifications using a C
program and some using the Apple tool because when we
started the project, the Apple Font Tools for MacOSX
had not yet been released. We therefore wrote a custom
C program to perform the modifications we found neces-
sary. As testing progressed and we discovered more re-
quired or desired modifications, we switched to using the
Apple tool, which was easier than extending the C pro-
gram. One problem with the XML format that Apple
uses to describe font tables is that simple text processing
tools like AWK and SED do not understand XML’s hierar-
chical structure. But for relatively simple modifications,
the combination of ftxdumperfuser and AWK or SED
scripts works.

There is another tool that can perform TrueType-
to-XML and XML-to-TrueType conversions, Just van
Rossum’s TTX.1 We experimented with this tool, which

1. http://www.letterror.com/code/ttx/

562 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Experience with OpenType Font Production

F. 1: One of the OpenType fonts in VOLT along with three types of OpenType lookups that we use to
position diacritics: anchor positioning, single contextual substitution, and ligature substitution. Our fonts also use
pair-kerning adjustments and more complex contextual substitutions.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 563

Sivan Toledo and Zvika Rosenberg

is written in the Python language, but we could not install
it successfully. The trouble was that TTX uses a num-
ber of other Python packages, for example, to perform
numerical calculations, which did not install properly on
our systems. But assuming that these issues in TTX are
easily solvable, it is certainly an alternative to the Apple
tools, and at least in principle, it is a multiplatform tool
that runs on Windows, MacOS, and Linux.

General-Purpose Font Editors Although no general-pur-
pose font editor was used for the actual conversion, we
did use two font editors to produce the input font files
and to inspect fonts that seemed to have problems. We
used Fontographer to produce the input files to the con-
version process, and we used PfaEdit to inspect fonts.

Macintosh Suitcase Generation We used the command-
line program ufond from George Williams’ FONDU2

package to packageTTF-OTL fonts into suitcases, and we
used command-line tools from the MacOSX developer
kit to tag the suitcases with the required file type and cre-
ator code.

We also used a script to automatically scan an en-
tire directory withTTF-OTL fonts and classify them into
families. The classification is done using the family name
field of the font. Once the classification is made, the
script invokes ufond to package the fonts of the family
into a suitcase.

The Production Process

The final production process consists of four stages. The
prevolt stage is performed by a script that processes all
the input TTF fonts in a given directory. For each in-
put file, the script generates a modified TTF file and a
VOLT project file. The modifications to the input files
that we perform at this stage involve fixing the ‘post’
table to overcome an apparent Fontographer bug, up-
grading the version of the ‘OS/2’ table and adding to
it Unicode-range and code-page information, and re-
moving the ‘kern’ table. The VOLT project file is pro-
duced by invoking the C program that generates an afm-
like text file with glyph information and kerning and
diacritic-positioning information, and converting that file
to a VOLT project file using a custom AWK program.

In the second stage, each modified TTF file is
opened in VOLT, the corresponding project file is im-
ported, and the resulting font is shipped out. This re-
quires only three menu commands in VOLT and clicking
‘okay’ a couple of times, but it is still the most time con-
suming stage of the production process.

The next stage, the postvolt stage, processes all the
files shipped from VOLT in a given directory. A script in-
vokes ftxdumperfuser a few times on each font, to add

2. http://fondu.sourceforge.net

A-Reg.TTF
A-Ita.TTF
. . .
B-Reg.TTF
. . .

A-Reg.FIXED.TTF + A-Reg.VTP
A-Ita.FIXED.TTF + A-Ita.VTP
. . .
B-Reg.FIXED.TTF + B-Reg.VTP
. . .

A-Reg.VOLT.TTF
A-Ita.VOLT.TTF
. . .
B-Reg.VOLT.TTF
. . .

prevolt script processes
an entire directory

Microsoft VOLT processes
each font separately

postvolt script processes
an entire directory

A.OT.SUIT
B.OT.SUIT
. . .

suitcases script processes
an entire directory

A-Reg.OT.TTF
A-Ita.OT.TTF
. . .
B-Reg.OT.TTF
. . .

F. 2: An overview of the production process.
The figures shows the input and output files for
each stage and how that stage operates. The postvolt
stage produces the final font files for Windows and
MacOSX, and the suitcases stage produces the final
font files for any Mac operating system, X or older.

a MacHebrew encoding subtable, to fix the ‘name’ table,
and to add a ‘gasp’ table. Although some of the process-
ing can be moved from the prevolt to the postvolt or vice
versa, some processing must be done before VOLT can
process the font and some processing must be done after
VOLT ships the font. Hence, both prevolt and postvolt
stages are necessary.

The final suitcases stage again uses a script to pro-
cess an entire directory. The script first extracts the
family name from each font file. Next, the script finds

564 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Experience with OpenType Font Production

Ligature substitution: ְָשֶׁלך
Anchor positioning: זמְָן
Contextual substitution: ָוְגם
מָצוֹת .vs מִצְותֹ
Insensitivity to mark orderings:

 gimel+dagesh+qamats ָגּל
 gimel+qamats+dagesh ָגּל

F. 3: Hebrew diacritic positioning using
OpenType features. The first three lines show how
OpenType features utilize the mechanisms of older
fonts. These examples correspond exactly to the
examples shown in Figure 1. The fourth line shows a
new application of contextual substitution that yields
correctly-positioned glyphs for two identical Unicode
sequences with different grammatical meanings and
different vocalizations. The last two lines show that
the OpenType features have been encoded in a way
that prints all valid diacritic sequences in the same
way, as mandated by Unicode. The sample was
prepared using Adobe InDesign 2.0 ME.

all the font files that belong to that family, and invokes
ufond on them to create a suitcase. The suitcase is cre-
ated by ufond in the data fork of a file. We then move
the font data to the resource fork of the font file, and
tag it with appropriate type and creator codes. The au-
tomatic recognition of the font files that belong to each
family minimizes the chances for errors that could occur
if a family-configuration file was written by hand.

Due to the use of ftxdumperfuser, the prevolt
and postvolt stages must be performed on aMacOSXma-
chine. The VOLT stage must be performed on a Win-
dows machine. The suitcases stage is also performed un-
der MacOSX, in order to move the font data to the re-
source fork and in order to assign type and creator tags;
non-Macintosh operating systems do not support these
file-system features.

Conclusions

This project led us to several conclusions concerning
OpenType and font production in general.

Reflections on Font Production Fonts are atypical objects
that present special challenges to their manufacturers.
The uniqueness of fonts is caused by a combination of fac-
tors that is not present in similar products.

First, fonts are highly complex data objects. While
Type 1 fonts are fairly simple, TrueType, OpenType,
and other advanced font formats are complex, with hun-
dreds of individual fields that client software uses.

בְּרֵאשִׁית, בָּרָא אֱלֹהִים, אֵת הַשָּׁמַיִם, וְאֵת
הָאָרֶץ. וְהָאָרֶץ, הָיְתָה תֹהוּ וָבֹהוּ, וְחֹשֶׁךְ, עַל פְּניֵ

תְהוֹם; וְרוּחַ אֱלֹהִים, מְרַחֶפֶת עַל פְּניֵ הַמָּיִם.
וַיֹּאמֶר אֱלֹהִים, יְהִי אוֹר; וַיְהִי אוֹר. וַיַּרְא אֱלֹהִים
אֶת הָאוֹר, כּיִ טוֹב; וַיַּבְדֵּל אֱלֹהִים, בֵּין הָאוֹר וּבֵין

הַחֹשֶׁךְ. וַיִּקְרָא אֱלֹהִים לאָוֹר יוֹם, וְלחַֹשֶׁךְ קָרָא
ליְָלהָ; וַיְהִי עֶרֶב וַיְהִי בֹקֶר, יוֹם אֶחָד.

F. 4: The first few phrases of Genesis, typeset in
Adobe InDesign 2.0 ME using an OpenType version
of Henri Fridlaender’s Hadassah typeface.

בּרְֵאשִׁית, בּרָָא אלֱֹהיִם, אתֵ השַָּׁמַיִם, וְאתֵ האָרֶָץ.
וְהאָרֶָץ, היְָתָה תֹהוּ וָבֹהוּ, וְחֹשֶׁךְ, עַל פּנְיֵ תְהוֹם;

וְרוּחַ אֱלֹהִים, מְרַחֶפתֶ עַל פּנְיֵ הַמָּיִם. וַיֹּאמֶר
אֱלֹהִים, יְהִי אוֹר; וַיְהִי אוֹר. וַיַּרְא אֱלֹהִים אֶת
הָאוֹר, כּיִ טוֹב; וַיַּבדְֵּל אֱלֹהִים, בּיֵן הָאוֹר וּביֵן

הַחֹשֶׁךְ. וַיִּקְרָא אֱלֹהִים לאָוֹר יוֹם, וְלחַֹשֶׁךְ קָרָא
ליְָלהָ; וַיְהִי עֶרֶב וַיְהִי בֹקֶר, יוֹם אֶחָד.

F. 5: The first few phrases of Genesis again,
typeset in Adobe InDesign 2.0 ME using an
OpenType version of Zvi Narkiss’s Narkiss Classic
typeface. The typeface is a new version of Narkiss
Linotype, which came out in 1968. The sample
shows four weights: light, regular, medium, and bold.

Second, fonts, especially those produced by inde-
pendent foundries, are supposed to work with a variety
of operating systems and software applications. Since dif-
ferent clients access different parts of font data, a font
that tests perfectly with a given set of clients might fail
on another client, as we have often discovered during the
production process. To compound the problem, font-file
specifications specify the format and intent of data fields,
but they specify only loosely the behavior of client data.
This is often done on purpose, to accommodate the be-
havior of older existing clients, but it makes it almost im-
possible to create working fonts without extensive testing.
Let us give an example: are the glyph names in a True-
Type or OpenType font significant, or are they present
only to allow printer drivers to download the font into
a printer in a consistent manner? Presumably, applica-
tions should use the encoding table in the ‘cmap’ table
to find glyphs, not the PostScript names of the glyphs.
But if some application uses glyph names instead, a font
with variant names would not work in that application
(we note that even Microsoft- and Apple-supplied fonts

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 565

Sivan Toledo and Zvika Rosenberg

use names for the Hebrew glyphs that are inconsistent
with the Adobe Glyph List).

Third, font data, such as glyph outlines, hints, and
metric information, has a very long life, but font files have
a shorter life span. The outlines and metrics of widely-
used fonts by foundries such as Linotype, Bitstream, or
Agfa-Monotype are sometimes more than 20 years old,
clearly an old age in the digital world. On the other
hand, font files need to be recreated from this data once
in a while. Font data that might have been used to create
pre-PostScript fonts, were used again in the mid 1980s
to create PostScript Type 3 fonts, then PostScript Type 1
fonts, then TrueType fonts. The TrueType font might
have been upgraded once with better hints, then again to
add the Euro symbol, then again to add non-Latin glyphs
for supporting additional scripts. In between, special ver-
sions might have been produced for bundling with op-
erating systems or software packages. In the non-Latin
font market, special versions might have been produced
to work with various layout programs. And today, the
same font data is used to produce TTF-OTL and/or OTF
fonts. Even a relatively young foundry like MasterFont
has font data going back about 15 years.

Fourth, font foundries are typically small businesses
or small business units [8]. This limits their ability to in-
vest in custom programming to automate font production.
This again is a particular problem in the non-Latin font
market, where fonts are more specialized.

The longevity of font data from which new font files
must be occasionally produced, together with the fact
that foundries easily accumulate hundreds or thousands
of fonts, implies that automation should be widely em-
ployed in font production. That is, producing a new font
by launching a font editor, loading an older version, mak-
ing the required changes, and generating a new font, is
inefficient when a large number of fonts must be pro-
duced. Manual production is also prone to errors and
hence requires more testing than an automatic conversion
that processes all the fonts in exactly the same way. How-
ever, the size of most independent foundries precludes
large investments in custom automation (that is, paying
programmers to automate font production).

This problem has been addressed recently in three
ways:

• Microsoft, Adobe, and Apple, who need to encour-
age font production, release free font-production
tools (Adobe’s interest in independent font produc-
tion stems from its role as a vendor of application,
not from its role as a font foundry). Microsoft has
released VOLT and a large number of other tools
for hinting, adding digital signatures, editing strings
in a font, and so on. Adobe has released the FDK,
and Apple has released a number of font tools. To a
large extent, the three companies release the tools

that they use themselves to produce fonts. Still,
the effort in publicly releasing and supporting these
tools is significant, and the wide availability of these
tools does help independent foundries. In some
cases the tools are not ideal for automated produc-
tion. For example, the inability of VOLT to process
a font without invoking the graphical user interface
slows down production.

• General-purpose font editors now include scripting
languages. Specifically, FontLab uses Python and
PfaEdit its own scripting language. These tools will
reduce the cost of automation and hence of font pro-
duction, especially if scripts can be applied to a font
from the command line (this is true for PfaEdit, and
perhaps also for FontLab). Obviously, this approach
requires programming, but at least the program-
ming environment is the familiar font editor. One
remaining problem in this approach is that these font
editors read the font data into their own in-memory
data structures and then generate a new font, which
can have side effects on tables that are not supposed
to be modified by a script. FontLab is careful not to
modify data it does not need to (for example, not to
modify TrueType glyphs unless glyphs are edited),
but PfaEdit regenerates TrueType glyphs whenever
it outputs a font file.

• Individuals produce powerful free tools that can as-
sist in automating font production. These include
TTX and PfaEdit. One problem with using these
tools in commercial font production is that they tend
to be less stable. One might expect that they would
not be as well supported as commercial tools, but
that is not always true: George Williams, for exam-
ple, the creator of PfaEdit, provides excellent and
prompt support.

Font production requires careful management over time
of source files, deliverables, and software. Source files
are used to produce fonts over many years, and they
need to be updated by adding glyphs, metric infoma-
tion, and so on. When the source files are updates or
when deliverables in new formats are needed, deliver-
ables are produced again. It is beneficial to automate new
production cycles as much as possible, especially when
many fonts are involved. Since foundries often cannot in-
vest significant funds in custom programming, standard
font-production tools must support automation and re-
production. The scripting support in FontLab is a step
in this direction, and essentially any command-line tool is
usable in script-driven batch processing. But other tools,
like VOLT, do not support automated production and re-
production. The importance of automation and the re-
quirements of multiple production cycles may be evident
to large font foundries, but are usually not evident to
smaller foundries.

566 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

Experience with OpenType Font Production

Reflections on OpenType Will the OpenType format, and
in particular the advanced typographic layout, succeed,
or will it fail like Multiple Master fonts and GX fonts?
This question is important for font vendors, application
developers, and font consumers, who all need to decide
whether or not to invest in OpenType. There are several
reasons to believe that OpenType layout will become suc-
cessful and widespead.

First, both Adobe and Microsoft are pushing this
technology. In particular, both companies provide font
producers with free production tools, Adobe has con-
verted almost its entire typeface library to OpenType
(which was not the case with Multiple Masters), and
Microsoft has provided application developers with both
tools to utilize OpenType layout features (through the
Uniscribe and OTLS libraries) and with assistance with
developing layout engines. Both companies already pro-
duce major applications that exploit OpenType’s layout
features, namely Office XP and InDesign. Other compa-
nies are also developing OpenType layout engines, such
as IBM’s ICU open-source engine.

Second, the technology is essential for presenting
text in some scripts, such as Indic scripts, and essential
for presenting Arabic and Hebrew text with diacritics
(Arabic and Hebrew without diacritics can be set with-
out OpenType layout features). In particular, Microsoft
has used OpenType layout in its Arabic fonts and operat-
ing systems for years now.

Third, the OpenType format has been designed to
make font design easy, which was not the case for Mul-
tiple Masters and GX. The structure of OpenType’s lay-
out support is declarative. For example, the font de-
signer can declare that a certain glyph substitution only
occurs in a certain glyph context (preceding and follow-
ing glyphs). The algorithmic question of how to recog-
nize the context is left to the layout engine. In contrast,
GX’s structure is procedural/programmable, and the font
designer must specify a finite-state machine that the lay-
out engine uses to detect the context. In general, declar-
ative font technologies like outline fonts and Type 1 hint-
ing have been more successful than programmable tech-
nologies like TrueType hinting, GX state machines, or
METAFONT. (TrueType hinting is unsuccessful in the
sense that the cost of hinting causes most fonts to remain
unhinted or automatically hinted.) The obvious reason is
that most font designers are graphic designers by training,
rather than programmers.

One must acknowledge, however, a few problems
related to OpenType layout. First, the main benefit that
OpenType brings to the Latin-script market are alternate
glyphs, especially small caps, old-style figures, propor-
tional figures, and swashes. But these glyphs have been
available for years, although in separate small-caps, old-
style-figures, and expert fonts. Using these separate fonts

is not much harder than using OpenType layout features:
instead of marking a run of text or a character style with
OpenType features, the document designer or graphic
designer marks the text or style with an alternate font.
This makes it a bit harder to switch font families, but the
difference is not that dramatic.

Second, a single OpenType font may behave in dif-
ferent ways in different applications, which may be con-
fusing or disappointing to users. This happens due to
two reasons: (1) The OpenType specification does not
specify formally and in detail how a layout engine should
behave, and (2) the desire to allow application develop-
ers to increase the level of OpenType support gradually.
Microsoft published some specifications regarding layout
engines, but these specifications basically specify only the
minimal actions that a layout engine must perform to sup-
port OpenType fonts in a particular script. Many other
aspects of layout-engine behavior are not spelled out ex-
plicitly. The desire to allow application developers to
add OpenType support gradually means that some appli-
cations can rasterize OpenType fonts but completely ig-
nore the advanced layout tables, other applications sup-
port the advanced layout tables but give users access to
only a few layout features, and so on. For example, Mi-
crosoft Office applications appear to ignore the layout
tables in fonts with CFF outlines, and both Adobe and
Microsoft application seem to ignore the association be-
tween layout features and specific scripts and languages.

OpenType and TEX The aim of the project described in
this article was to produce OpenType fonts for existing
OpenType-capable applications, such as Microsoft Word
and Adobe InDesign. Getting these fonts (or any other
OpenType fonts) to work with TEX or Omega was not
one of the project’s goals. Still, howwould one use Open-
Type fonts like these in TEX or Omega?

The familiarity with OpenType’s advanced layout
features that we gained from this project leads us to think
that TEX’s mechanisms are too weak to support many
useful OpenType layout features. Several factors restrict
TEX from exploiting OpenType. First, most OpenType
fonts represent more than 256 characters and have more
than 256 glyphs, so the 8-bit character/glyph restric-
tion in TEX is restrictive. Second, many OpenType lay-
out features, such as mark-to-mark diacritic positioning,
mark-to-base diacritic positioning, and contextual sub-
stitution simply cannot be represented by TEX’s ligature
and kerning mechanisms. Third, OpenType’s justifica-
tion mechanisms appear to be incompatible with TEX’s
assumptions about boxes and words. OpenType fonts can
suggest glyph substitutions and positioning adjustments to
be done when text needs to be expanded or condensed
to justify a line. The adjustments can include changing
the sidebearings of glyphs (tracking), replacing glyphs by

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 567

Sivan Toledo and Zvika Rosenberg

קרוב ל-22 מליון חיפושיות נמכרו במהלך 70 שנותיה. חברת פולקסווגן, יצרנית
קרוב ל-22 מליון חיפושיות נמכרו במהלך 70 שנותיה. חברת פולקסווגן, יצרנית

קרוב ל-22 מליון חיפושיות נמכרו במהלך 70 שנותיה. חברת פולקסווגן,
קרוב ל-22 מליון חיפושיות נמכרו במהלך 70 שנותיה. חברת פולקסווגן,
קרוב ל-22 מליון חיפושיות נמכרו במהלך 70 שנותיה.

קרוב ל-22 מליון חיפושיות נמכרו במהלך 70 שנותיה.
קרוב ל-22 מליון חיפושיות נמכרו במהלך 70 שנותיה. חברת פולקסווגן, יצרנית

קרוב ל-22 מליון חיפושיות נמכרו במהלך 70 שנותיה. חברת פולקסווגן,
קרוב ל-22 מליון חיפושיות נמכרו במהלך 70

F. 6: A few display OpenType fonts produced
by MasterFont using the method described in
the paper. Display fonts do not have extensive
diacritic-positioning support. The first four lines show
Rosenbert Naot, the next two Taxi, and the 7th line
shows Hafgana, all by Zvika Rosenberg. The 8th line
shows Daphna by Ada Yardeni, and the 9th shows
Avney-Gad Hakuk by Gad Ullman.

wider/narrower variants, forming or breaking ligatures,
and so on. TEX’s paragraph-breaking algorithm assumes
that words have a fixed width, but this is not necessarily
true in OpenType fonts: words can have several possible
widths that the layout engine can choose from.

At least the first two issues should be addressed in
order to use OpenType fonts in an effective way in a TEX
system, at least in complex non-latin scripts. Omega [6]
already addresses the first issue, so it seems to be the
ideal candidate for OpenType support. It appears that
the Omega team is already working on the second issue,
and we hope that it will get resolved. We believe that it
would be best to support OpenType in Omega directly,
with no intermediate metric files (i.e., without ofm files),
but that is something for the Omega team to decide. We
plan to explore these issues ourselves at Tel-Aviv Univer-
sity using NTS, the new implementation of TEX in Java.

Acknowledgements Thanks to an anonymous referee for
helpful suggestions and corrections. Thanks to Mi-
crosoft’s Paul Nelson for answering numerous OpenType-
related questions on the VOLT-community’s message
board, on the OpenType mailing list, and via private
email exchanges. Thanks to WinSoft’s Pascal Rubini
for answering questions regarding the behavior of In-
Design 2.0’s Hebrew layout engine, and regarding the
Hebrew-diacritic-handling mechanisms of older applica-
tions. Thanks to George Williams for making PfaEdit
(now named FontForge) available. Some of the historical
information concerning font formats was gathered from
replies to a question that Adam Twardoch posted on the
OpenType mailing list.

References

[1] The Unicode Consortium. The Unicode Standard
Version 3.0, 2000. Parts of the standard are
available online at http://www.unicode.org.

[2] Microsoft Corporation. TrueType 1.0 Font
Files, Technical Specification Revision 1.66, 1995.
http://www.microsoft.com/typography.

[3] Microsoft Corporation. OpenType Specifications
Version 1.4, 2002. http://www.microsoft.
com/typography.

[4] Yannis Haralambous. Typesetting the Holy
Bible in Hebrew, with TEX. TUGboat,
15(3):174–191, 1994. Also appeared in the
Proceedings of EuroTEX 1994, Gdańsk.

[5] Yannis Haralambous. Tiqwah: a typesetting
system for biblical Hebrew, based on TEX.
Bible et Informatique, 4:445–470, 1995.

[6] Yannis Haralambous and John Plaice. Omega, a
TEX extension including Unicode and featuring
lex-like filter processes. In Proceedings of the
1994 EuroTEX Conference, Gdańsk, 1994.

[7] Apple Computer Inc. TrueType Reference
Manual, 1999. http://fonts.apple.com.

[8] Emily King. New Faces: Type Design in the
First Decade of Device-Independent Digital
Typesetting. PhD thesis, Kingston University,
1999. http://www.typotheque.com under
‘Articles’.

[9] Thomas W. Phinney. TrueType, PostScript
Type 1, & OpenType: What’s the difference?
http://www.font.to/downloads/TT_PS_
OT.pdf, 2001.

[10] Adobe Systems. Adobe Type 1 Font Format,
1990. http://partners.adobe.com/asn/
developer/technotes/main.html.

[11] Adobe Systems. Type 1 Font Format Supplement,
1994. Technical Specification #5015,
http://partners.adobe.com/asn/
developer/technotes/main.html.

[12] Adobe Systems. Designing Multiple Master
Typefaces, 1997. Technical Specification
#5091, http://partners.adobe.com/asn/
developer/technotes/main.html.

[13] Adobe Systems. The Type 2 Charstring
Format, 2000. Technical Specification #5177,
http://partners.adobe.com/asn/
developer/technotes/main.html.

[14] Sivan Toledo. A simple technique for
typesetting Hebrew with vowel points.
TUGboat, 20(1):15–19, 1999.

[15] Ada Yardeni. The Book of the Hebrew Script:
History, Palaeography, Script Styles, Calligraphy
and Design. Carta, Jerusalem, 1997.

568 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003

