
The METATYPE Project: Creating TrueType Fonts Based on METAFONT

Serge Vakulenko
Cronyx Engineering, Moscow, Russia
vak@cronyx.ru

http://www.vak.ru/proj/metatype

Abstract

The purpose of the METATYPE project is the development of freeware TrueType fonts for the
general user community. The METAFONT language was chosen for creating character glyphs.
Currently, glyph images are converted to cubic outlines using a bitmap tracing algorithm, and then
to conic outlines.

Two font families are currently under development as part of the METATYPE project: the
TeX font family, based on Computer Modern fonts by Donald E. Knuth, retaining their look and
feel. A rich set of typefaces is available, including Roman, Sans Serif, Monowidth and Math faces
with Normal, Bold, Italic, Bold Italic, Narrow and Wide variations; and second, the Maestro font
family, which is designed as a Times look-alike. It also uses Computer Modern sources, but with
numerous modifications.

Résumé

Le but du projet METATYPE est le développement de fontes TrueType libres pour la commu-
nauté générale d’utilisateurs. Le langage de programmation METAFONT est utilisé pour créer les
glyphes. Actuellement, les glyphes sont convertis d’abord en contours cubiques, en utilisant un al-
gorithme d’auto-traçage de bitmap, et ensuite en contours coniques.

Deux familles de fontes sont actuellement en développement, dans le cadre du projet META-
TYPE : la famille «TeX font», basée sur les fontes Computer Modern de Donald E. Knuth, et
proposant du romain, du sans empattements, du mono-chasse, et les fontes mathématiques, dans
les styles : régulier, gras, italique, gras italique, étroitisé et élargi ; la famille «Maestro», qui est
un clone du Times. Cette dernière utilise également le code de Computer Modern avec un grand
nombre de modifications.

Why TrueType?

The world is getting smaller. We can see how the In-
ternet and globalization cause people of different cultures
and races to come into contact with each other more and
more. The world is thus becoming more multilingual,
something the computer world has known for some time:
the first draft of the Unicode standard is dated 1989 [1].

At the same time, free software is gaining in popu-
larity. Linux is more and more widespread, and it needs
fonts; lots of fonts; a variety of good fonts with Unicode
support. We already have a standard format in True-
Type. (In a super-format, combined with Type 1, it is
called OpenType [2].)

The TrueType format has several advantages:

• It is an open standard; the specification is available
online free-of-charge.

• High-quality (commercial) fonts are abundant.

• There exists a free implementation named Free-
Type [3], of very high quality.

• The XFree86 graphic environment fully supports
TrueType fonts, including antialiasing.

The author is bold enough to assert that Unicode
and TrueType are the future. “Young” programming
languages, such as Java and C#, use Unicode for the basic
representation of text strings. Visionary operating sys-
tems, such as Windows NT, support Unicode at the ker-
nel level. Word processors use Unicode for storage of
documents (XML, RTF and other formats). The num-
ber of web sites with Unicode encoding grows every
day. Cellular telephones use Unicode for web browsing
(WAP). The world is slowly moving toward Unicode.
And TrueType seems to be a natural result of font tech-
nology development.

The problem is that currently available systems for
font development do not support Unicode and/or True-
Type, or are not free. The METATYPE project is in-
tended to fill this gap.

METAFONT as a glyph source language

METAFONT was chosen as the method for glyph devel-
opment for the following reasons:

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 569



Serge Vakulenko

• It is a powerful, advanced language for glyph repre-
sentation, and importantly, it is well documented.

• Glyph parametrization provides a straightforward
means of creating entire families of fonts: normal-
bold, normal-slanted, narrow-wide, serif-sans serif,
etc.

• There are a number of very high-quality fonts
(Computer Modern, AMS, etc.), whose sources can
be studied.

It is also important that METAFONT is imple-
mented on the majority of modern platforms and is avail-
able free of charge.

For the METATYPE project, an existing META-
FONT/Web2C implementation with no additional mod-
ifications was used.

What are the problems?

So, we have METAFONT, and an implementation of
METAFONT in Web2C [4]. What prevents us from tak-
ing, say, the source for Computer Modern [5] and trans-
forming it easily to TrueType format? We see several
problems here.

Problem 1: 16-bit encoding. METAFONT supports only
an 8-bit encoding of symbols. But we need 16-bit
Unicode encoding. The situation is aggravated because
Computer Modern, as well as the majority of other
METAFONT fonts, is optimized for use with TEX. Thus,
they have non-standard encodings, which, moreover, is
different for different fonts of the family.

For the transition to Unicode, the decision was
made to store every glyph source in a separate file.
Glyphs are grouped by 16 symbols into subblocks, and
subblocks are grouped into blocks. Each block NN con-
tains up to 256 symbols in the range NN00-NNFF.

Definitions common to all glyphs of a font are col-
lected in a separate file, base.mf. For certain subsets
of symbols there may be separate definition files, for ex-
ample, cyrbase.mf for Cyrillic and greekbase.mf for
Greek characters. Parameters for various styles are lo-
cated in separate param.mf files.

The existing Computer Modern source was man-
ually processed and split into two fonts, which the au-
thor has named “TeX” [6] (381 symbols) and “TeX
Math” [7] (104 symbols).

Problem 2: splines. For TrueType, glyphs must be rep-
resented as contours consisting of splines. The best so-
lution would be to derive splines directly from META-
FONT. Another possibility is to use METAPOST —
the implementation of METAFONT with PostScript out-
put— since it is possible to extract the required splines
from PostScript output. There are several utilities that
use this method to generate PostScript Type 3 fonts, for
example mf2pt3 [8].

The first difficulty here is that the contour gener-
ated by METAPOST must be converted to “canonical
form”, i.e., without self-crossings. This is a separate in-
teresting and difficult mathematical task, the solution for
which must be a task for later. For now we use a sim-
pler method—generating a contour by tracing the glyph
raster image.

Autotrace [9] is used to transform the raster image
of a glyph into a contour. Autotrace has been extended
to allow direct input of files in GF format.

The second difficulty lies in the transformation of
splines. Autotrace generates cubic splines (third-order
Bézier curves), while TrueType requires conic splines
(second-order Bézier curves). The solution to this math-
ematical problem is to cut a cubic spline into two “close
enough” conic splines. Thus, another new feature was
added to Autotrace to convert traced contours to conic
splines and to output a special UGS (Unicode Glyph
Source) format.

Problem 3: hints. For use on low resolution devices such
as monitors, TrueType fonts are equipped with so-called
hints. Hints are programs written in the pseudo-code of
a special interpreter, which for every symbol define some
changes of the shape of a symbol to enhance glyph raster-
ization. Creating good hints is a very hard manual task.

Hints are not currently implemented in META-
TYPE. Support for hints will likely be added in the fu-
ture.

Some modern rasterizers, such as FreeType 2 [10],
do not use hints (because of patent problems [11]). In-
stead, they use an “auto-hinting” technology. In this case
real hints are not necessary.

Problem 4: low resolution bitmap glyphs. You can also use
raster glyphs for low-resolution environments like moni-
tors, embedding the raster glyphs into the TrueType font
in addition to the contour. Such rasters can be created
by means of METAFONT, commonly in 13, 14, 15, 16,
17, 18, 20 and 23 pixels. Thus the most frequently used
point sizes are covered (see table 1).

METAFONT generates rasters in GF format. To
convert them toUGS format, a special utility gf2ugswas
developed.

Problem 5: building TTF files. ATrueType file has a very
complex structure. Fortunately, there is a Python library
(Fonttools [12]) that makes it possible to work with TTF
files. All complexities of the organization of a font file
are hidden. To build a font, it is enough to make a dozen
XML data files, and then to call an appropriate library
procedure.

570 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003



The METATYPE Project: Creating TrueType Fonts Based on METAFONT

Font METATYPE 96 dpi — 100 dpi — 120 dpi —
height font size X Windows MS Windows, MS Windows,

Small fonts Large fonts
13 pixels 96gf 10 pt 9 pt 8 pt
14 pixels 102gf 10 pt
15 pixels 108gf 11 pt 11 pt 9 pt
16 pixels 114gf 12 pt
17 pixels 120gf 13 pt 12 pt 10 pt
18 pixels 132gf 14 pt 13 pt 11 pt
20 pixels 144gf 15 pt 14 pt 12 pt
23 pixels 168gf 17 pt 17 pt 14 pt

Table 1: Bitmap font height in pixels and covered point sizes

How it all works

The source code for every glyph is stored in a separate
file in a METAFONT format. The scheme of glyph com-
pilation is shown in figure 1. As a result, the file in UGS
format is created, containing a contour and rasters for sev-
eral different pixel sizes.

When UGS files for all symbols are ready, the TTF
and BDF fonts are assembled (shown in figure 1).

This work is carried out by the Python scripts
mk_db.py, mk_ttx.py and mk_bdf.py. The mk_db.py
script collects all UGS glyphs into a single DBM database
to speed up working with the data. The mk_ttx.py

script builds XML font data files and, using the Fonttools
library, creates a TTF file. Lastly, the mk_bdf.py script
transforms raster data to the BDF format for use under
the X Window System.

UGS file format

For intermediate storage of the glyph data, a special for-
mat named UGS (Unicode Glyph Source) was devel-
oped. It is an ASCII-encoded text file where each line
contains a single statement. An example of a UGS file for
the symbol FULL_STOP is given below:

symbol 0x2e design-size 2048

advance-width 569

contour

path

dot-on 273 216

dot-off 258 213

dot-on 245 209

dot-off 231 203

...

dot-on 273 216

end path

end contour

left-bearing 176

right-bearing 177

ascend 218

descend -1

end symbol

symbol 0x2e design-size 33

advance-width 9

bitmap width 4 height 4

. * * .

* * * *

* * * *

. * * .

end bitmap

left-bearing 2

right-bearing 6

ascend 4

descend 0

end symbol

Installing METATYPE

The METATYPE distribution can be downloaded from
SourceForge [14]. The current version is available by
CVS [15].

METATYPE depends on the following 6 items:

1. Python 2.2.2 [16]

2. Fonttools 2.0b1 [17], with PyXML 0.8.2 [18], and
Numeric Python 23.0 [19]

3. Netpbm 10.15 [20], with libpng 1.2.5 [21]

4. Freetype 2.1.4 [22]

5. Web2C 7.3.1, including METAFONT 2.7182 and
METAPOST 0.641 (we used teTEX 1.0.7 [23])

6. Autotrace 0.31.1 [24], patched

Before installing Autotrace, you must apply the
patch autotrace.pch to it:

1. Unpack Autotrace 0.31.1

2. Enter directory autotrace-0.31.1
3. Apply patch:

patch -p1 < autotrace.pch

4. Execute automake

5. Run script ./configure

6. Execute make and make install.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 571



Serge Vakulenko

0041.mf

 + base.mf

 + encoding.mf

 + param.mf

metafont

autotrace gf2ugs

0041.ugs

metafont
metafont

metafont

Outline

glyph

base.14800gf
base.96gf

base.102gf

...

base.168gf

Raster

glyphs

F. 1: Translating MF to UGS

mk_ttx.py mk_bdf.py

texr.ttf

make bdf

tex09r.bdf

...

tex24r.bdf

font.db

mk_db.py

*.ugs

make ttf

F. 2: Translating UGS to TTF and BDF

572 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003



The METATYPE Project: Creating TrueType Fonts Based on METAFONT

The top directory of the METATYPE package con-
tains several utilities, scripts and makefiles necessary for
processing fonts. The source code of fonts is contained in
subdirectories, one directory per font family. For exam-
ple, the family of fonts named “TeX” is placed in subdi-
rectory cm/.

To prepare all the METATYPE utilities, execute
make in the top directory of the METATYPE project.

Font source code is organized into three levels. All
Unicode space is divided into blocks of 256 symbols,
and each block is placed in a separate directory. Blocks
are further divided into 16 subblocks with 16 characters
each. An example of the file structure of a single font
family is shown in figure 3.

The compile directory is used when compiling a
font. Each font style is compiled in a separate subdi-
rectory with the appropriate name: compile/roman,
compile/roman-italic, etc. During compilation,
subdirectories for all blocks and subblocks are created au-
tomatically.

• To compile all glyphs for all styles, enter the
compile directory and execute make.

• To build TrueType fonts, execute make ttf.
• To build fonts in BDF format (sizes 9, 10, 11, 12,
13, 14, 18 and 24 points at 100 dpi), run make

bdf.

The result

Here is an example of the TeX Roman and Maestro Ro-
man fonts created by METATYPE. These figures were
made using Adobe Illustrator and imported into the ar-
ticle as EPS graphics.

TeX:

"Мой дядя самых честных правил,

Когда не в шутку занемог,

Он уважать себя заставил

И лучше выдумать не мог."

"My uncle was a man of virtue,

When he became quite old and sick,

He sought respect and tried to teach me,

His only heir, verte and weak."

Maestro Roman:

"Мой дядя самых честных правил,

Когда не в шутку занемог,

Он уважать себя заставил

И лучше выдумать не мог."

"My uncle was a man of virtue,

When he became quite old and sick,

He sought respect and tried to teach me,

His only heir, verte and weak."

(A. S. Pushkin. Yevgeny Onegin; English translation by
Dennis Litoshick.)

Unsolved problems

At present the Fonttools library does not support adding
raster data to TrueType fonts. Extending this library by
adding support for the tables EBDT, EBLC and EBSC is
required.

The problem of kerning is not yet solved. We plan
on adding an algorithm for automatic kerning.

Further, the character set of the TeX and Maestro
font families is incomplete. To cover even the simplest
of needs, adding support for Latin-1, Latin Extended-A
and Latin Extended-B is highly desirable.

Lastly, the contours created by tracing rasters are
not optimal. It would be nice to build an optimizer to
reduce the number of spline segments without distorting
the glyph’s appearance.

Acknowledgments

The author wishes to thank Cronyx Engineering Com-
pany for making available the necessary resources for the
project.

References

[1] http://www.unicode.org/history/

[2] http://www.microsoft.com/typography/

specs/

[3] http://www.freetype.org/

[4] http://www.tug.org/web2c/

[5] ftp://cam.ctan.org/tex-archive/fonts/

cm/mf/

[6] http://www.vak.ru/proj/metatype/cm/

roman/

[7] http://www.vak.ru/proj/metatype/

cm-math/roman/

[8] http://obelix.ee.duth.gr/~apostolo/

mf2pt3.html

[9] http://autotrace.sourceforge.net/

[10] http://www.freetype.org/freetype2/

index.html

[11] http://www.freetype.org/patents.html

[12] http://sourceforge.net/projects/

fonttools/

[13] http://www.python.org/

[14] http://sourceforge.net/project/

showfiles.php?group_id=41605

[15] cvs -d:pserver:anonymous@cvs.

sourceforge.net:/cvsroot/metatype

checkout metatype

[16] http://python.org/2.2.2/

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 573



Serge Vakulenko

cm/ —TeX font family, based on Computer Modern
00/ —Unicode block 0x0000-0x00FF

002/ —Unicode block 0x0020-0x002F
0020.mf —Glyph 0x0020— SPACE

0021.mf —Glyph 0x0021— EXCLAMATION_MARK

. . .
002f.mf —Glyph 0x002F— SOLIDUS

003/ —Unicode block 0x0030-0x003F
. . .
00f/ —Unicode block 0x00F0-0x00FF
encoding.mf — List of charcodes for block 0x0000-0x00FF

02/ —Unicode block 0x0200-0x02FF
03/ —Unicode block 0x0300-0x03FF
. . .
compile/ — Compilation directory

roman/ — Roman style font
Makefile — Build script
param.mf — Parameters for Roman style font

roman-bold/ — Roman Bold style font
. . .
sans-italic/ — Sans Italic style font
Makefile — Build script
base.mf —Definitions for all glyphs
cyrbase.mf —Definitions for Cyrillic glyphs
greekbase.mf —Definitions for Greek glyphs

F. 3: Structure of the METATYPE font source directory

[17] http://prdownloads.sourceforge.net/

fonttools/fonttools-2.0b1.tgz

[18] http://prdownloads.sourceforge.net/

pyxml/PyXML-0.8.2.tar.gz

[19] http://prdownloads.sourceforge.net/

numpy/Numeric-23.0.tar.gz

[20] http://prdownloads.sourceforge.net/

netpbm/netpbm-10.15.tgz

[21] http://prdownloads.sourceforge.net/

libpng/libpng-1.2.5.tar.gz

[22] http://prdownloads.sourceforge.net/

freetype/freetype-2.1.4.tar.gz

[23] http://www.tug.org/teTeX/

[24] http://prdownloads.sourceforge.net/

autotrace/autotrace-0.31.1.tar.gz

574 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003


