
TEX and Scripting Languages

William M. Richter
Texas Life Insurance Company
900 Washington Avenue, Waco, TX 76703, USA
wrichter@texaslife.com

Abstract

TEX is an ASCII text-based markup language. In a scheme of automated docu-
ment preparation TEX provides the foundation. The idea is for programs to do
the work of 1) generating the TEX code for documents, 2) running TEX on these
documents, and 3) post-processing the resulting .dvi files to obtain the finished
documents. Resulting PostScript documents may be further post-processed to
produce files that exploit the output capabilities of various printers. Discussed
herein are the techniques and benefits of such a scheme and how scripting lan-
guages (those languages outside the traditional edit/compile/link/run cycle) can
make the whole process fun and easy.

1 Introduction

In his web essay Hackers and Painters [2], Paul
Graham equated the much maligned and misunder-
stood activity of “hacking” [6] with the long-esteem-
ed tradition of painting (e.g., portrait painting, as
opposed to painting of porches, peeling house trim,
and such). He observed that what, today, we ac-
knowledge as masterworks actually evolved during
the artist’s act of creation from a sketch, the details
only gradually being filled in, to a finished, glorious
work of art. He argued that a writer goes through
the same process of refinement, starting from rough
outline or foggy idea until she finds nothing which
needs refining. One reason TEX is appealing to au-
thors is that it makes the process of refinement sec-
ondary. The tasks of creation (thinking is hard work
for most of us) and presentation are orthogonal.
Moreover the presentation task is assumed almost
entirely by TEX.1 One can, after all, create a TEX
document that is 90% complete using nothing more
than a tool as simple as NotePad. The implication
being that simple tools equate to less loss of creative
energy.

Graham believes that authors of computer code
(programmers, we often call them) follow the same
nonlinear/circuitous paths of painters and authors.
Seldom, if ever, is software conceived of and imple-
mented by following in a direct route from beginning
to end. Most great software, Graham claims, is the
product of hacking, that the implications for soft-
ware design are significant, and that what a com-

1 Except when we TEXnicians decide we know better and
begin to muck around in TEX’s own internal affairs.

puter language is and how an author interacts with
it defines the end result. In his view it means . . .

. . . a programming language should, above
all, be malleable. A programming language
is for thinking of programs, not for express-
ing programs you’ve already thought of. It
should be a pencil, not a pen.

And he continues,

We need a language that lets us scribble and
smudge and smear, not a language where you
have to sit with a teacup of types2 balanced
on your knee and make polite conversation
with a strict old aunt of a compiler.

A class of programming languages, called “scripting
languages”, is compatible with Graham’s ideas of
what a hacker’s language should be. “Malleable” in
nature, and easy to think with, scripting languages
are similar in spirit to TEX. Indeed, TEX itself may
even be considered as a scripting language for type-
setting.

So, on the one hand, we have TEX, a tool which
lets authors “scribble and smudge and smear” about
with their ideas. On the other hand we have hackers
using scripting languages pursuing similar creative
avenues. The question then arises, “What happens
if these two tools are combined and used in a collab-
orative effort?” We now explore various ways that
TEX and scripting languages can be combined.

2 For readers unfamiliar with the art of computer pro-
gramming, the “teacup of types” to which he is referring
will be addressed in a subsequent section on the attributes
of scripting languages, where static vs. dynamic data types
are discussed.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 71

William M. Richter

2 Scripting Languages

Before delving into scripting languages proper, let
us review a few of the attributes of traditional com-
puter languages (the ones compiled with Paul Gra-
ham’s strict old aunts).

3 Traditional Computer Languages

For readers unfamiliar with the art of authoring
computer software (programming computers), here
is what programmers do: they think of a task that
computers can accomplish better than humans (say,
typesetting, for example). Then they sit and think,
potentially at length, about how humans would go
about doing that task, and how to express those
steps algorithmically [3]. After sketching said al-
gorithm, they formalize and codify it in a so-called
“language” that is a sort of half-way meeting ground
between the way humans think and the way comput-
ers operate. This prose, called a program, consists of
two distinct entities: variables, which declare what
it is that the computer will be working on, and im-
perative procedures that define what is to be done
to that data.

Some salient details about these traditional lan-
guages:

1. The variables: Computer hardware can work
with data in different formats: numbers (in-
tegers and real numbers), strings of character
data, etc. Each variable in a program must be
defined in advance of its use to be of a specific
type. In computer science lingo this is called
static typing.

2. The code: Codifying an algorithm in a partic-
ular computer language isn’t really enough for
computer hardware. More work must be done.
This language must be compiled by Graham’s
“aunt” into “machine code” on which the com-
puter’s logic circuits can act.

3. But even the work of the compiler-aunt isn’t
enough. The fruit of her strict dominance must
then be linked with the work of other compiler-
aunts to produce a final collection of unread-
able “goo” that only a computer can under-
stand (machine code is unreadable to all but
the most deviant of human brains).

4. Nor is this the end of the story. When an
edited/compiled/linked program (called an ex-
ecutable) has finally been produced and a blaz-
ingly fast 3-gigahertz CPU is unleashed to ex-
ecute it the first time, the most likely end re-
sult is either an almost immediate decision by
the CPU that its human programmer is capa-
ble only of producing flawed code for it to ex-

ecute (it communicates this fact by printing
some rude message like “Segmentation Vio-
lation” and producing a huge file on disk con-
taining the entire contents of its memory), or
it lapses into a seemingly semi-comatose state
consuming large amounts of CPU time until its
programmer/master gets its attention with the
violence of the kill command.

One can see a definite “cycle of pain”: Edit, Com-
pile, Link, Test that must be repeated many times
until a flawless executable is produced. No wonder
computer programming is seen by many an outsider
as a black art to be pursued by only the most in-
trepid and determined souls.

4 Why Scripting Languages are Better,
and Why More People Should be
Hackers

Scripting languages [9] shrink the cycle of pain to
Edit, Test. With the crufty old compiler-aunt gone,
the whole process of software development proceeds
in a more efficient and pleasant manner with atten-
tion shifting to the “creative”, editing part and the
refinement, or testing part. But measure of pain
is not the only attribute that makes scripting lan-
guages attractive. Other important attributes are:

1. Simple syntax;

2. High-level data types;

3. Loosely typed;

4. Standard control structures: if/else, while, for;

5. Interfaces well with host operating system;

6. Plays well with external entities;

7. Embeddable inside more complex systems;

8. Often used as “glue” languages to link multiple
standalone applications and tools together;

9. Requires a runtime interpreter to execute the
script;

10. Compiles to bytecode which executes on a vir-
tual machine;

11. Often ‘dynamic’ in nature.

We need to expound on a few of these points.

4.1 Simple Syntax

If a language is to satisfy Graham’s requirement that
it be a malleable pallet for the smearing and smudg-
ing of ideas, it cannot be verbose (we don’t want to
spend time typing). So scripting languages (hence-
forth SLs— I’m tired of typing, too) are succinct in
nature; able to convey a significant amount of pro-
cedural instruction in as few words as necessary to
maintain clarity of meaning.3

3 For programming language scholars, the language APL

may come to mind, but perhaps not that succinct. It would

72 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

4.2 High-level data types

The concept of high-level data types parallels sim-
ple syntax. Just as we need to state procedural algo-
rithms in a succinct fashion, we also need constructs
that allow for the representation of bundles of data
that may be arbitrarily complex. We demand more
than simple integer, floating point, and strings of
character data that traditional languages like C and
C++ provide.4

Usually these higher-level data types come in
the form of lists and dictionaries; containers that
hold other data elements and allow for the expres-
sion of relationships between our data.

4.3 Loosely Typed / Dynamic Nature

Discussion of esoteric topics like Strongly vs. Loosely
Typed Data and Early vs. Late Binding is more than
can be discussed here (see [1]). Some understanding
is essential, however. Earlier, we pointed out that
in traditional languages, each element of data that
a program will use (its variables) must be defined
to exist as a particular type before it can be used.5

Moreover, as variables are passed between parts of
a program (function calls) the type of each variable
passed must match exactly the type expected by the
called function. This check is done by the strict old
compiler-aunts, and was designed to keep program-
mers from making errors that would only manifest
themselves during the test phase. Strict type check-
ing makes a lot of sense with traditional languages.

However, with dynamic SLs, there is a critical
difference, rooted in the ‘dynamicness’ of the lan-
guage. SLs need not declare variables in the first
place. Variables are created or ‘allocated’ (on-the-
fly, as it were) when they are first referenced. When
a variable is allocated it is associated with a partic-
ular type that is implied from the context in which
it was initially used. The association to type is per-
manent and observable. So not only can one ask,
“What value does a variable contain?”, one can also
make an inquiry about its type.

For example, the statement A = 123 allocates a
data element called A whose value is 123 and whose
type is integer. The statement B = 3.14 allocates
a variable called B whose value is 3.14 and whose
type is floating point. B was made a variable of type

be nice for non-hackers to be able to read and understand our
prose, too.

4 Admittedly, C, C++, and other traditional languages
may be made to represent arbitrarily complex data, but those
types are not intrinsic in the language.

5 This isn’t actually true. Data elements may be dynam-
ically allocated in traditional languages, but this introduces
additional complexity in both the design and debugging steps.

floating point because, contextually, the statement
contained a decimal point in the value implying a
floating point value. Had we desired A to be a float-
ing point variable we would have coded A = 123.0.

This leads to a new world of ways in which to
think about writing code. Functions, now dynamic
in nature, can easily accept an arbitrary number of
arguments, the type of each being any of a range of
possible types. Depending on the number and type
of variables passed to a function, the function may
act in different ways. This goes to the heart of mal-
leability. In the creative process if we change our
mind and decide to “smudge and smear” in a differ-
ent direction, our existing code may not go to waste.
It may be possible just to extend it to conform to
our new conditions.

A world of new and easier programming lan-
guages, the SLs, may also introduce hacking to a
wider audience. Whereas the “old world” traditional
languages excluded or intimidated many people for
the reasons above (there are, after all, only so many
work hours in a day), SLs remove the complexity of
programming and make hacking the creative process
that it should be.

Finally, there is another reason more people
(at least for those who must live with a computer)
should become hackers. While most of us are not
master software developers, developing cathedral-
size financial accounting packages, for example, we
do a surprising amount of “sketch” work (in Gra-
ham’s paradigm) and having skills to write small
programs can be effective.

5 Real Scripting Languages

A mid-June 2004 google-search for the keywords
script language programming

returned approximately 1,570,000 hits. Top-ranked
pages returned from a search of keywords scripting
languages reside on the sites:

1. www.php.net

2. www.python.org

3. www.ruby-lang.org

4. www.perl.org

All these websites are homes of important scripting
languages. And there are more SLs; many more . . . a
veritable zoo, with names like: Awk, JavaScript,
Lisp, Lua, Perl, PHP, Python, Rebol, Ruby, Small,
Groovy, Tcl. If one were to rank SLs in order of
popularity, the top of that list would include:6

• Perl

• Python

6 Not listed in order.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 73

William M. Richter

• Tcl/Tk
• JavaScript
• Unix shell scripts (sh/bash/csh/etc.)

Several of these SLs have outgrown their scripting
origins and have gone on to become “general purpose
programming languages of considerable power” [5].
The only argument for continuing to use the term
“scripting language” is the lack of a better term.

6 A Particular Scripting Language:
Python

Chapter one of the official Python Tutorial reads:7

Python is simple to use, but it is a real
programming language, offering much more
structure and support for large programs
than the shell has. On the other hand, it
also offers much more error checking than C,
and, being a very-high-level language, it has
high-level data types built in, such as flexible
arrays and dictionaries that would cost you
days to implement efficiently in C. Because
of its more general data types Python is ap-
plicable to a much larger problem domain
than Awk or even Perl, yet many things
are at least as easy in Python as in those
languages.

The tutorial continues to highlight these important
attributes:

1. It has a modular architecture so that code de-
veloped for one application can be reused in
other programs. Likewise, it comes with a large
number of built-in modules for things like file I/

O, system calls, sockets, and many common In-
ternet protocols (FTP, HTTP, SMTP, etc.).

2. It is an interpreted language conforming to the
edit/test cycle discussed previously.

3. Its interpreter can be used interactively, mak-
ing it easy to experiment with features of the
language, or to test code before actually run-
ning a program (we’ll see an example later, in
fig. 11).

4. It has a high-level syntax that allows for writing
compact, readable programs.

5. It has high-level data types allowing for expres-
sions of complex data relationships.

6. It is object-oriented [10], but does not require
the use of those object-oriented features, or O-O

programming skills to use the language.
7. Statement grouping is done by indentation in-

stead of explicit begin/end brackets.
8. It is extensible: if you know how to program

in C it is easy to add a new built-in function

7 www.python.org

or module to the interpreter, either to perform
critical operations at maximum speed, or to
link Python programs to libraries that may only
be available in binary form (such as a vendor-
specific graphics library).

9. It is embeddable: You can link the Python in-
terpreter into an application written in C and
use it as an extension or command language for
that application.

An excellent first book for readers unfamiliar with
but interested in learning Python is Mark Lutz’s
Programming Python [4].

Finally, the tutorial enlightens us regarding the
name:

. . . the language is named after the BBC show
Monty Python’s Flying Circus and has noth-
ing to do with nasty reptiles. Making refer-
ences to Monty Python skits in documenta-
tion is not only allowed, it is encouraged!

7 Combining Python and TEX

There are a number of ways in which to combine
TEX and Python to automatically produce docu-
ments. If one considers the amount of “work” nec-
essary to produce a document as fixed, then that
work can be allocated partly to TEX and partly to
Python. One can then imagine a scatter diagram
with X and Y axes that represent, for any possible
scheme, the amount of work allocated to Python and
TEX, respectively. Such a diagram is illustrated in
fig. 1.

Figure 1: Application Domains of Python/TEX
integration.

74 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

The diagram shows several different “applica-
tion domains”, defined by which component (TEX
or Python) receives the most development effort, or
places the most demands on computing resources.
These domains allow us to classify various approach-
es to Python/TEX integration.

7.1 The Imperative Approach

Imagine writing a Python script that produces a file
of TEX code by executing a series of write state-
ments as in fig. 2 and then runs TEX and dvips on
that file. Here the emphasis is clearly all on the
Python script and the details of how the TEX code
is to be produced; we know TEX will dutifully do
its job if it is provided good code. Applications of
this nature we call imperative, and occupy the lower
right region of fig. 1.

Figure 2: Imperative TEX code-writing script.

#!/usr/bin/env python

import sys

import os

f = open(’MyDocument.tex’, ’w’)

f.write(’\\nopagenumbers\n’)

f.write(’This is my first \\TeX\\ document \

produced from a script.\n’)

f.write(’\\vfil\\eject\\bye\n’)

f.close()

os.system(’tex MyDocument.tex’)

os.system(’dvips MyDocument’)

print ’Done.’

This technique is the simplest way to integrate
Python and TEX,8 and is surprisingly effective. Al-
though the example in fig. 2 is trivial, the imper-
ative technique can be used in applications where
documents are assembled from a large database of
text “snippets”. Logic in the Python script provides
the “smarts” that determine what snippets to select
and how to arrange them for presentation to TEX.
More logic and scripts of increasing complexity push
the application further to the right on the X-axis in
fig. 1.

7.2 Using m4

A slight increase in sophistication (but still remain-
ing near the X-axis of fig. 1, is to employ the macro
processor program, m4.9 m4 [8] is an elaborate

8 The other simple extreme would be to prepare an entire
document by hand-editing and then have Python run TEX on
that file. Quite uninteresting.

9 Quoting from the m4 manual page: “The m4 utility is
a macro processor that can be used as a front end to any

search-and-replace engine for text. For example,
given the text:

Hello, NAME, today is DATE.

If we present that text to m4 as input with the fol-
lowing command-line:

m4 -DNAME=Sally -DDATE=’22-June-2004’

the output from m4 would appear as:

Hello, Sally, today is 22-June-2004.

Now we can play the same game as in the imper-
ative approach, but with a new wrinkle: tags can be
embedded in our text snippets. Once the TEX code
is assembled, it is preprocessed through m4 and then
presented to TEX. Here are the steps:

1. Assemble TEX code from snippets of text,

2. Gather data for tag-replacement from a data
source,

3. Build m4 command line with -Dname=value ar-
guments for each unique tag in the TEX file,

4. Execute the command just built and save the
output,

5. Present the saved output to TEX.

8 TEXmerge

We now move away from the X-axis of fig. 1.
The m4 approach introduced an important con-

cept: the idea of template files. There exist a large
class of applications whose function is to produce,
for lack of a better term, “form letters”.10 The m4
technique of the previous section lends itself pre-
cisely to this merging application: Build a .tex file
with tag names, then repeat steps 2–5 above until
end of data. The end result will be a stack of form
letters ready to print and drop in the mail.

While m4 is an efficient macro-replacement en-
gine, we know of another engine that eclipses it:
TEX. Consider the TEX document in fig. 3.

Figure 3: form.tex: A merge-ready TEX file.

\nopagenumbers

This is my first \TeX\ document produced

from a script.

\par

Hello, \NAME, today is \DATE.

\vfil\eject

Alone, this file will result in undefined macro refer-
ences because the macros \NAME and \DATE are not

language (e.g., C, ratfor, fortran, lex, yacc) . . . ” and now,
TEX!

10 Every technological advance seems to bring with it a
raft of nastiness. With email comes spam, with computer-
aided printing comes the dreaded form letter. At least with
TEXmerge, they can be beautiful form letters.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 75

William M. Richter

defined. However, when used in conjunction with
the Python script in fig. 4, it works beautifully.

Figure 4: Imperative TEX code-writing script
relying on TEX’s macro replacement facility.

#!/usr/bin/env python

import sys

import os

f = open(’temp.tex’, ’w’)

f.write(’\\def\\NAME{Sally}\n’)

f.write(’\\def\\DATE{22-June-2004}\n’)

f.write(’\\input form.tex\n’)

f.write(’\\bye\n’)

f.close()

os.system(’tex temp.tex’)

os.system(’dvips temp’)

print ’Done.’

Scripts like 4 can be represented schematically
as in fig. 5. It is important to note that in this
scheme we are dealing with two (or more) .tex files:
1) The template file(s) containing the structure of
our form letter(s) (more than a single type of form
letter can be produced in a single run simply by
inputting different template files), which have tags
where merge variables are to be inserted, and 2) the
temporary file which defines macros for the merge
variables and has input commands to bring in the
templates. Inside the temporary .tex file there can
be many occurrences of the \def. . . and \input. . .
lines; one occurrence for each letter to be produced.

8.1 TEXmerge API

The technique illustrated in fig. 4 works well. Data
for the merge variables can be arbitrarily long, for
example, and TEX will ‘do the right thing’ and wrap
the merged text into our form, etc. But there are
problems:

1. The biggest problem is data containing tokens
having special meaning to TEX. If our merge
data contains $,%,&, etc., we have a problem,

2. It’s rather tedious to read the script, and we
find ourselves repeatedly re-implementing this
tedious code for every application.

The whole process of opening the temporary .tex

file, protecting sensitive tokens, preparing the \def

lines for the merge variables, doing the \input. . . ,
executing TEX and the DVI backend need to be for-
malized inside an application programming interface
(API).

We call that API “TEXmerge”. It was first pre-
sented [7] as a C-language API with a Python ex-
tension wrapper module. Since that time, the API

Figure 5: Schematic overview of document
production via the TEXmerge API.

has been re-written in pure Python and is presented
here (see appendix A for a technical description of
the API).

First, an example using the TEXmerge API (the
TEXmerge module). Fig. 6 re-implements the script
presented in fig. 4 using the module-level interface:

Figure 6: A simple Python script using the
TEXmerge module-level API functions.

#!/usr/bin/env python

import sys

import os

import TeXmerge

f = TeXmerge.openOutput(’temp.tex’)

mergeVars = {’NAME’: ’Sally’,

’DATE’: ’22-June-2004’}

TeXmerge.merge(’form.tex’, mergeVars)

TeXmerge.closeOutput(f)

TeXmerge.process(’temp.tex’, ’dvips’)

print ’Done.’

Note the following:

1. Access to the TEXmerge module is provided via
the import statement: import TeXmerge.

76 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

2. The native Python open/close calls have been
replaced with calls to TeXmerge.openOutput()

and TeXmerge.closeOutput().

3. Merge variables are formally presented to the
API as a Python dictionary object.

4. The merge() call takes care of protecting sen-
sitive tokens in the merge data that would oth-
erwise confuse TEX.

5. The os.system() calls have been replaced with
TeXmerge.process().

Finally, Python is an object-oriented language,
so the TEXmerge module also offers a TEXmerge
class. Fig. 7 re-implements fig. 6 using the object-
oriented interface:

Figure 7: A simple Python script using the
TEXmerge object-oriented interface.

#!/usr/bin/env python

import sys

import os

import TeXmerge

mergeObj = TeXmerge.TeXmerge(’temp.tex’)

mergeVars = {’NAME’: ’Sally’,

’DATE’: ’22-June-2004’}

mergeObj.merge(’form.tex’, mergeVars)

mergeObj.process(’dvips’)

print ’Done.’

9 Going Further with Macros

Now it is time to move up the Y-axis of fig. 1, focus
attention on the TEX domain and investigate what
benefits can be gained by writing specialized macros
to enhance integration with TEXmerge.

9.1 Do-Nothing Macros

The first class of macros to be considered is the “do-
nothing” macros. These macros, from TEX’s view,
evaluate to \relax. They exist in a TEXmerge tem-
plate file in order to communicate information to
a Python script which scans the template file. A
more traditional method used to communicate in-
formation to an external entity would be to embed
that information in comment strings within the file.
Writing first-class macros, however, seems to pro-
duce a cleaner, readable file, and is more flexible
since a do-nothing macro could, in the future, be
turned into a “do-something” macro.

9.1.1 Classic Merge Variable Declarations

Do-nothing macros were introduced in the first re-
lease of TEXmerge, with the \texmergevar macro.
Just looking at a merge-ready template .tex file, it

is not immediately clear what the names of all the
merge variables are. \texmergevar allows the au-
thor of the template file to explicitly state the names
of all merge variables that will be referenced in the
file by coding:

\texmergevar name

for each merge variable. The TEXmerge module
has a module-level method, getNames, which scans
a passed .tex file name (and recursively any in-
cluded files) and returns a list of all declared variable
names. Python scripts can inspect TEX template
files and determine the names of all declared merge
variables.

9.1.2 Extended Merge Variable
Declarations

Several years’ use of the TEXmerge API has shown
that document-producing applications could be
made more robust if a template .tex file could spec-
ify precisely what values a merge variable should
contain. The need for merge variables to take on
only one value from a small set of possible values
stems from the use of conditional TEX code, via the
\ifx control sequence, etc. Conditional typesetting
is powerful because it allows documents to become
intelligent. A single .tex source file can produce
entirely different finished documents by testing the
value of merge variable(s) and typesetting text ac-
cordingly.

A life insurance company, for example, falls
under the jurisdiction of every state in which it is
licensed to conduct business. A document, say a
“sales practice guide”, often must contain language
mandated by a particular state. Sales practice
guides for forty different states may have 90% of
their language in common, but each may also have
unique state-specific language that none of the oth-
ers contains. Having a single, intelligent source
file, salesPracticeGuide.tex, lowers the cost of
change management substantially; changes made to
shared text need only be made once.

The do-nothing macro \texmergevardef de-
fines merge variables with extended attributes, like
this:
\texmergevardef[attrName=attrValue,. . .]

Attributes of the merge variables that can be speci-
fied are:

• name = the name of the merge field.

• type = the type of merge field. The intended
use of this attribute is to convey a recommended
style of data entry element for graphical (GUI)
applications. Valid types are:

– entry: a simple text entry field,

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 77

William M. Richter

Figure 8: A sampling of extended merge variable declarations.

\texmergevardef[name=ISTATE, type=optionmenu,values=TX|OK|AZ|CA|OR|WA,descr=Issuing state]

\texmergevardef[name=ONAME,type=entry,descr=Owner name]

\texmergevardef[name=APPTYPE,type=radiobutton,values=1|2|3,labels=Employee|Spouse|Child,

descr=Applicant type]

Figure 9: Result of getExtendedNames(): a Python dictionary of field-attribute dictionaries

{’ISTATE’: {’name’: ’ISTATE’, ’type’: ’optionmenu’, ’values’: (’TX’, ’OK’, ’AZ’, ’CA’, ’OR’, ’WA’),

’descr’ : ’Issuing state’}, ’APPTYPE’: {’name’: ’APPTYPE’, ’type’: ’radiobutton’,’values’:

(’1’, ’2’, ’3’), ’labels’: (’Employee’, ’Spouse’, ’Child’), ’descr’: ’Applicant type’}, ’ONAME: {

’name’: ’ONAME’, ’type’: ’entry’, ’descr’: ’Owner name’}}

– text: a multi-line text entry field,

– toggle: a toggle button field,

– optionmenu: a drop-down option menu of
choices,

– radiobutton: a set of mutually-exclusive
toggle buttons.

• values = a list of valid values for the variable,
separated by |’s.

• labels = a list of alternate labels that should
be associated with the values attribute for
display purposes. Used with the toggle,
optionmenu, and radiobutton field types.

• descr = a description of the merge variable.

The TEXmerge module-level function
getExtendedNames extracts these extended merge
variable definitions, parses them, and returns them
in a dictionary (keyed by the name attribute’s
value) of field attribute dictionaries.11 Fig. 8 shows
an example .tex file with extended merge variable
definitions. Fig. 9 shows the return value from
applying getExtendedNames on that file.

9.1.3 Named Text Blocks

Another class of applications has the need to share
identical text between two markup languages: TEX
and HTML. Here it is language within the document
that needs to be identical (for legal reasons, say)
and not the structure of the document that is con-
stant between the two presentation platforms. In-
deed, structure of the printed TEX document may
be substantially more complex than its briefer, light-
weight, HTML cousin. How can the common text be
shared between the markup languages?

One way is to make the TEX document “own”
the text. It declares, via a set of macros, where the

11 getExtendedNames also detects occurrences of the prior
texmergevar macro and treats them as extended merge fields
having an attribute type = entry.

common blocks of text begin and end. We refer to
these blocks as named text blocks. The demarcation
macros look like this:

• \StartNamedTextBlock[attrName=value. . .]
Text block attributes are as follows:

– name = Name of the text block,

– seq =Integer; several sections of text
can be assigned the same name, but with
unique sequence numbers. The extracted
text will be a concatenation of like-named
blocks, ordered by sequence number,

– subkey =subvalue: See the text for full
discussion.

• \StopNamedTextBlock

Once text boundaries have been marked and
named with these macros, the text can be ex-
tracted and used by the HTML producing part of
the application. The TEXmerge module provides a
module-level function, getNamedTextBlocks, to ex-
tract the named text blocks, and two helper classes
TextBlock and TextBlockManager to make access-
ing the extracted blocks simpler.

We explain the functional use of named text
blocks by way of the example file in fig. 10 and
the interactive Python interpreter session shown in
fig. 11.12

Note the following:

1. The block demarcation macros are essentially
invisible to TEX and have no effect on typeset-
ting.

2. The TextBlockManager class is used to extract
the named blocks. One simply passes a path-
name to the .tex file containing named text

12 About the interactive interpreter session: >>> is the
interpreter’s prompt. Text appearing after that prompt was
entered by the user. Python’s response appears on the line
immediately below the prompt input line.

78 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

Figure 10: TEX file test.tex containing four named text blocks: B1, B2, C1, D1.

This is a test document containing \textit{named text blocks.}

\StartNamedTextBlock[name=B1]

This is the first block.

\StopNamedTextBlock

Now for a second block:

\StartNamedTextBlock[name=B2]

Second block

\StopNamedTextBlock

Now for a series of sequenced blocks \ldots

\line{\hbox{\StartNamedTextBlock[name=C1,seq=1]C1.Left\StopNamedTextBlock}\hfil

\hbox{\StartNamedTextBlock[name=C1,seq=2]C1.Right\StopNamedTextBlock}

}

Finally, a named text block having a subkey:

\StartNamedTextBlock[name=D1,istate=TX]

This text is specific to the state of Texas.

\StopNamedTextBlock

Figure 11: Interactive Python interpreter session. Working with named text blocks.

[hawkeye2:~/sftug] williamr% python

Python 2.3.2 (#1, Nov 6 2003, 13:18:07)

[GCC 2.95.2 19991024 (release)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import TeXmerge

>>> o = TeXmerge.TextBlockManager(’test.tex’)

>>> o

<TeXmerge.TextBlockManager instance at 0x750648>

>>> o.getBlockNames()

[’C1’, ’B1’, ’B2’, ’D1’]

>>> b1 = o.getBlock(’B1’)

>>> b1

<TeXmerge.TextBlock instance at 0x72b5d0>

>>> b1.getText()

’This is the first block.’

>>> c1 = o[’C1’]

>>> c1.getTextSegments()

{1: ’C1.Left’, 2: ’C1.Right’}

>>> c1.getText()

’C1.Left C1.Right’

>>> d1 = o[’D1’]

>>> d1.getSubkeys()

[’istate’]

>>> d1.getSubkeyValues(’istate’)

[’TX’]

>>> d1.getText(’istate’,’TX’)

’This text is specific to the state of Texas.’

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 79

William M. Richter

Figure 12: Complex document produced by
Hybrid Script-TEX-Script scheme.

blocks in order to instantiate an object of the
TextBlockManager class.

3. The names of all the text blocks in the file
can be retrieved by calling the manager object’s
getNamedTextBlocks method.

4. Individually named text blocks are retrieved via
the manager object’s getTextBlock method, or
simply by indexing the manager using the name
of a text block as the index key (as was done
for block C1 in fig. 11). Either operation will
return a TextBlock object.

5. Access to the text of a TextBlock object is via
its getText method.

9.2 Do-Something Macros

9.2.1 Hybrid Script-TEX-Script Scheme:
A Case Study

If we have an application where a substantial
amount of the document’s content may vary, the
merge paradigm of TEXmerge begins to break down
under the complexity of so many variables. This is
especially true of variable tabular data.

Example: The annotated page shown in fig. 12
is a rate sheet of life insurance premiums. As the
figure shows, there is more variable data than static

text on the page. The rate sheet, however, is only
one page of a twenty page document. Other pages
in its parent document also have variable data, and
state-specific language, as well. Overall the docu-
ment’s nature fits well in the TEXmerge scheme; the
rate sheet page is the “trouble maker”. Another im-
portant consideration: the rate sheet needs to be
embeddable in many other documents.

We desire a TEX macro as in fig. 13 that, when
executed, magically produces a finished rate sheet.13

Figure 13: Rate sheet macro.

\MakeRateSheet[uwclass=express,

mode=semi-monthly,

groupsize=150,

formno=test,

waiver=yes,

adb=yes

]

\MakeRateSheet[...] is definitely a do-some-
thing macro. The trick is to do as little work as pos-
sible in TEX and most of the something in a Python
script. The work for TEX in this case is in two parts:

1. Gather macro arguments and marshal them
into a Python script command-line, then exe-
cute the command with \write18.

2. Input and typeset the TEX code produced by
the Python script.

We call schemes such as these hybrid or Script-
TEX-Script schemes. The job of the secondary script
(the one executed by TEX via \write18) is to act on
arguments received from TEX, or from some other
external source, do whatever calculations, etc., and
output TEX code. The whole scheme is represented
in fig. 14. Since the secondary script is unbounded
by the complexity and amount of TEX code that
may be returned, hybrid schemes are the ultimate
in flexibility.

9.2.2 Document Template Macros

Document template macros also fall into the class of
do-something macros. Another case study will serve
as a description of their functionality. TEXmerge is
in widespread use at Texas Life having applications
in almost every major department, from Marketing,
to New Business, to Policy Owner Service, to Com-
puting Services. Several years ago, a graphic artist
was hired to develop a new ‘look-and-feel’ for all
printed material disseminated from the company. A

13 Writing parameter based macros such as these is effort-
less with the aid of support macros found in Hans Hagen’s
ConTEXt macro package.

80 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

Figure 14: Schematic overview of document
production via the hybrid technique.

new graphics standards manual was written and all
parts of the company were informed that compli-
ance with the new standard was mandatory by a set
date. This directly affected users of TEXmerge. The
Policy Owner Service department, for example, had
600+ TEXmerge-based form letters used daily for
corresponding with clients. Compounding the prob-
lem were the non-standard fonts and a peculiar for-
mat to which standard letterhead should conform: a
wide left margin, except for various items that were
to remain left hanging, right-justified. How could
over 600 documents be quickly converted to this new
format? Language inside the documents could re-
main unaltered; only the structure was changing.

Serendipitous earlier decisions, made when orig-
inally planning and setting up the TEXmerge let-
ters, made conversion to the new graphics standard
straightforward. The serendipity was in a decision
to separate the text for the body of each letter into
its own .tex file. That being the case, all that was
needed was a mechanism to enforce the policy of
the graphics standard; a way to automatically pro-
duce the required layout of the document. This we
do with so-called template macros. Fig. 15 shows
the structure enforced by the \StartClientLetter

Figure 15: Template view for the client-letter
macro.

macro. Based on a plug-and-socket model, it relies
heavily on macro parameters (almost all having de-
fault values), as can be seen in the figure. Template
macros classify parameters into three categories:

• Simple parameters: parameter names begin-
ning with mp,

• Data sockets: parameter names beginning with
sd,

• Slots: parameter names beginning with sl.14

The mpSkip... parameters (gray strips shown in
fig. 15) can be specified to alter whitespace. Merge
variable data is connected to a template using a plug-
and-socket model. Merge variable names are termed
plugs and the sd... macro parameters are termed
sockets. One plugs a variable to particular posi-
tion on the letter by equating the name of the plug
with the desired socket name. The socket names are
shown on the template letter in fig. 15 with default
plug values in parenthesis. Finally, slots are macro
parameters that can accept arbitrary TEX code as
arguments.

14 There are two other prefixes: ss, related to insertion of
digitized versions of handwriting signatures; and sf, related
to input files.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 81

William M. Richter

Figure 16: Sample letter produced using the
client-letter macro.

The body of the letter can be supplied to the
template macro in one of two ways:

1. Put the text of the body into a separate .tex

file and pass the name of the file in the sfBODY

parameter,

2. Code text of the body immediately after invok-
ing \StartClientLetter. In this case the let-
ter must end with \FinishClientLetter.

Finally, fig. 16 shows a sample letter produced from
the \StartClientLetter macro.

10 Building GUI Applications with
TEXmerge

So far, our discussion of TEXmerge has tended
toward batch-style applications. The API is also
effective in building GUI applications. The mod-
ule’s getNames and getExtendedNames functions
provide useful metadata about merge fields, which
can be used to construct user interfaces. Python
is equally effective in programming GUI interfaces.
The “Gimp Toolkit”15 is especially easy to access
from Python and provides a robust set of GUI inter-
face components, including Pixmap buffers which,

15 www.gtk.org and www.pygtk.org.

along with Ghostscript16, can be used to effectively
render PostScript.

10.1 TEXmerge— the Application

The TEXmerge API was originally developed for use
in an interactive application, also called TEXmerge,
for production of form letters. Originally written in
C and based on the Motif toolkit, the current version
is written in pure Python and is based on GTK+ 2.4.
The application is arranged around categories of cor-
respondence (collections of form letters, grouped by
activity. Each activity category’s letters are stored
in a category subdirectory.

A sample TEXmerge main application window
is shown in fig. 17. A category frame consists of
the document selection window on the left, and a
set of merge variable data entry fields on the right.
A single set of input fields (a record), generates a
single copy of the associated letter. Control buttons
exist along the bottom to accomplish tasks such as
adding new records, removing records, printing, and
saving. A built-in PostScript viewer (not visible) is
also provided to view the letter before printing or
saving.

10.2 TEXtool

As long as we’re writing GUI applications, why not
write one that aids in the development of TEX-
merge documents? TEXtool is an integrated devel-
opment utility for editing, “TEX’ing”, and viewing
TEXmerge documents. Figs. 18, 19, and 20 are
three successive views of the application, each view
revealing one of the major notebook tab pages:
Document, Editor, and Preferences.

Applications of this style exist that are more
effective in general; however, TEXtool is unique be-
cause it is oriented especially for TEXmerge docu-
ments. It also shows the feasibility of integrating
TEX into a non-trivial GUI application written in a
scripting language. As can been gleaned from the
figures, the Document tab displays the input frame
of TEXmerge variables as they will appear in the
normal TEXmerge application. The edit/test cycle
can be quickly done all inside a single application
window.

11 The Big Picture at Texas Life

As mentioned in the case studies earlier, TEXmerge
is in widespread use at Texas Life. Fig. 21 is repro-
duced from [7]. It is a convincing illustration of how
effective TEX can be as a document production en-
gine, especially if combined with the right scripting

16 www.ghostscript.com

82 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

Figure 17: The TEXmerge application main window.

Figure 18: The textool application with the Documents tab visible.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 83

William M. Richter

Figure 19: The textool application with the Editor tab visible.

Figure 20: The textool application with the Preferences tab visible.

84 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

Figure 21: The big picture of TEXmerge at Texas Life.

language (Python). Most of the ovals in the figure
use TEXmerge in some fashion. An important les-
son learned is that once a facility like TEXmerge is
available, the movement of documents between sys-
tems becomes much simpler. Only data required to
build documents need be communicated along the
arrows in the figure. Documents are only built and
rendered when necessary for viewing or printing.

12 Conclusion

Because TEX is an ASCII text markup language,
it is effective to write computer codes to process
the TEX code for purposes other than typesetting.
Scripting languages simplify writing these extraction
codes. Embedding metadata into TEX files via sim-
ple macros allows the TEX author to communicate
information to other computer applications. And, fi-
nally, using TEX alongside scripting languages in an
automated document production environment pro-
vides flexibility and robustness to meet almost any
demand imaginable. “Hacking” with scripting lan-
guages has never been simpler. Now is the time for
more people to become script literate; the author
encourages those with little or no programming ex-
perience to mix up a scripting language with their
favorite TEX macro package.

References

[1] Bruce Eckel. Strong typing vs. strong testing.
2003. http://www.mindview.net/WebLog/

log-0025.
[2] Paul Graham. Hackers and painters. 2004.

http://www.paulgraham.com/hp.html.
[3] Donald E. Knuth. The Art of Computer Pro-

gramming, volume 1. Addison-Wesley, third
edition, 1997.

[4] Mark Lutz. Python Programming. O’Reilly and
Associates, Inc., first edition, 1996.

[5] Eric S. Raymond. The art of Unix pro-
gramming. 2003. http://www.faqs.org/doc/
artu/ch14s01.html.

[6] Eric S. Raymond. The meaning of ‘hack’.
2003. http://www.catb.org/∼esr/jargon/

html/meaning-of-hack.html.
[7] William M. Richter. Integrating TEX into a

document imaging system. TUGboat, 22(3),
2001.

[8] René Seindal. GNU m4 development site. 2003.
http://www.seindal.dk/rene/gnu.

[9] Unknown. Technical definition of scripting
language. 2003. http://c2.com/cgi/wiki?

ScriptingLanguage.
[10] Webopedia. What is object oriented program-

ming? 2003. http://webopedia.com/TERM/O/
object-oriented-programming-OOP.html.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 85

William M. Richter

Appendix A The TEXmerge Python API

A.1 How TEXmerge Runs TEX

Because there are a significant number of macro
packages available as TEX formats, TEXmerge needs
to be adaptable, both to the format to use, and to
the way in which the TEX interpreter is started. To
allow for this flexibility, many of the functions below
take two arguments, format and strategy; format
specifies what TEX format to use and strategy

specifies the way in which TEX will be started. In
many cases, these arguments are optional and ap-
propriate values will be derived, either from the
context of use or from the environment variable
TEXMFORMAT. The environment variable has two dif-
ferent forms:

1. TEXMFORMAT=format

2. TEXMFORMAT=@ strategy:format

The second form allows for specification of both the
strategy and format. Currently strategy can be set
to one of: context, latex,17 or plain. The table
below maps strategies to command lines:

strategy command line
context texexec --format format --once %s

latex latex %s

plain tex &format %s

A.2 Module-level Functions

getNames(pathname) → [name1, name2, . . .]
Recursively scans the passed pathname and re-
turns a list of merge variable names declared by
instances of the \texmergevar macro.

getExtendedNames(pathname) → {attrDict1,
attrDict2, . . . }

Recursively scans the passed pathname and re-
turns a dictionary of merge variable field attribute
dictionaries. These dictionaries are created from
instances of the \texmergevardef macro, which
defines merge variables with extended attributes,
like this:

\texmergevardef[attrName=attrValue,. . .]

Attributes of the merge variables that can be spec-
ified are:

• name = the name of the merge field,

• type = the type of merge field. The intended
use of this attribute is to convey a recommended
style of data entry element for graphical (GUI)
applications. Valid types are:

– entry: a simple text entry field,

17 For the latex strategy, format = latex is always as-
sumed.

– text: a multi-line text entry field,

– toggle: a toggle button field,

– optionmenu: a drop-down option menu of
choices,

– radiobutton: a set of mutually-exclusive
toggle buttons

• values = a list of valid values for the variable,
separated by |’s.

• labels = a list of alternate labels that should
be associated with the values attribute for
display purposes. Used with the toggle,
optionmenu, and radiobutton field types.

• descr = a description of the merge variable.

hashNames(fieldAttributesDict) → StringObject

Computes a 64-bit MD5 hash of the passed field
attributes dictionary and returns it as a string
object of hexadecimal characters.

getInputFiles(pathname) → [pathname1,
pathname2, . . .]

Recursively scans the passed pathname for occur-
rences of \input control sequences and returns a
list of pathnames.

openOutput(pathnameOrFileObject,

preambleCode=None, formatIn=None,

strategyIn=None) → FileObject

Prepares a temporary work file for merge opera-
tions. The first argument can be either a string
object or a file object. In the case of a string
object, it is interpreted as the pathname to a file
where the temporary merge file should be created.
If it exists, it will be removed and re-created. In
the case of a file object, the argument is assumed
to be a previously opened file. Any write opera-
tions issued by TEXmerge will be executed against
the passed file object.

preambleCode, if specified will be written at
the beginning of the file in place of TEXmerge’s
normal preamble code. formatIn is currently un-
used. strategyIn determines the default form of
preamble code to write. Valid values are context,
latex, or plain.

closeOutput(fileObject, postambleCode=None,

formatIn=None, strategyIn=None,

keepOpen=False) → None

Completes preparation of a temporary work
merge file for processing. postambleCode is writ-
ten to the file if passed, otherwise an appropriate
postamble will be supplied depending on the
values of formatIn and strategyIn, if passed, or
a default postamble will be written. The passed

86 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

fileObject will be closed unless keepOpen is passed
as True.

merge(targetPathname, mergeVariableDict,

fileObject, options=0) → None

Encapsulates the merge variables passed in merge-

VariableDict for use in targetPathname. The
merge variables are written to the merge work file
as \def control sequences, and targetPathname

is referenced via \input targetPathname.
Several merge options can be passed in the

options argument:

1. TXM FRAMEVARS: draw a box around every
merged variable.

2. TXM DUPLEX: assume the output will be printed
on a duplexing device and insert \eject macros
between merge invocations, when appropriate,
to ensure that each merge invocation starts on
the front side of the printed sheet.

process(pathname, driverCommand, format,

strategy) → IntegerObject

Runs the TEX interpreter and a DVI backend
against the merge work file pathname. The com-
mand used to run the TEX interpreter is derived
from the format and strategy parameters. Strat-

egy may be one of context, latex, or plain. If
strategy is set to context then the environment
variable TEXENGINE is used as the TEX processor,
if set, or texexec otherwise. The DVI command
string passed in driverCommand is used to run the
DVI backend. It can contain a single %s which will
be replaced with pathname. If no %s is present,
pathname will be appended to driverCommand.

Returns the exit status of TEX interpreter or
of the DVI backend command.

processWithExtendedOutput(pathname,

driverCommand, format, strategy) →
(texstderr, texstdout, texlog,

dvistderr, dvistdout)

Works like the process function above, except
for error handling. Failure of the TEX interpreter
raises the exception TeXException. Failure of
the DVI backend command raises the exception
DviException. Successful completion of both the
TEX interpreter and the DVI backend returns a
tuple as above, providing complete diagnostics of
the run.

getNamedTextBlocks(pathname) → {block1:
{block1AttrDict}, . . . }

Recursively scans pathname for occurrences of
named text blocks, demarcated by the pair of
macros \StartNamedTextBlock[attrName =
value, ...] and \EndNamedTextBlock.

Text block attributes are as follows:

• name = Name of the text block,

• seq = Integer; several sections of text
can be assigned the same name, but
with unique sequence numbers. The ex-
tracted text will be a concatenation of
like-named blocks, ordered by sequence
number,

• subkey=subvalue; subkey name/value
pairs provide a way to declare multiple
blocks with the same name. Assigning
differing name/value pairs makes each
like-named block unique.

The class TextBlockManager can be used as
an alternative to this function; it provides a simple
frontend to this function’s return value.

A.3 TEXmerge Class

The TEXmerge class provides an object-oriented in-
terface to the module-level functions shown above.

Constructor

TeXmerge(mergeTargetPathname=None,

workPathname=None, mergeOptions=0,

preambleCode=None, postambleCode=None,

texmformat=None, strategy=None,

keepIntermediateFiles=False)

Methods

setMergeTargetPathname(pathname) → None

Sets the default merge target pathname for sub-
sequent merge operations.

setMergeOptions(self, mergeOptions) → None

Sets the default merge options for future merge
operations.

setFormatAndStrategy(self, texmformat,

strategy=None) → None

Sets the default format and strategy to be used
for future merge operations.

probeMergeTargetAndSetFormat() → None

Scans the current merge target pathname to de-
termine the appropriate format and strategy that
should be used during the process() method call.

setFormatFromMergeTargetParentDirectory()

→ None

Checks the merge target’s parent directory for ex-
istence of the file .texmformat. If found, the con-
tents of the file is assumed to be the format and
strategy (specified similarly to the environment
variable TEXMFORMAT) to be used when processing
the merge file.

getVariables() → {mergeVariableAttrDict}
Calls the function getExtendedNames described
above, passing the currently set merge target

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 87

William M. Richter

pathname as an argument. Returns the result of
the call.

openOutput(workPathnameOrFileObject=None)

→ FileObject

Prepares the work file for subsequent merge opera-
tions. If no argument is passed, a default filename
will be constructed.

closeOutput() → None

As above.

merge(mergeVars=None, altMergeOptions=None,

altMergeTargetPathname=None) → None

Performs a merge operation using mergeVars, if
passed, and alternate merge options and merge
target pathname, also if passed.

process(driverCommand) → None

Run TEX interpreter according to currently set
strategy and format. See process description
above for details on the driverCommand string.

A.4 TextBlock Manager Class

Constructor

TextBlockManager(pathname)

Methods

setPathname(pathname) → None

Requests the TextBlockManager instance to scan
pathname for named text blocks. Any informa-
tion about previously scanned blocks is lost.

getBlockNames() → [block1, block2, ...]

Returns a list of the names of all named text
blocks in the pathname last scanned.

getBlock(blockName) → TextBlock

Returns a TextBlock instance representation of
the text block named blockName. Returns None

if no such named block exists.
This same operation can be performed by us-

ing array indexing notation against the instance,
i.e., indexing as with a dictionary object.

A.5 TextBlock Class

Constructor

TextBlock(text-block-descriptor-dictionary)

Methods

getName() → StringObject

Returns the instance’s block name.

getSubKeys() → [blockName1, ...] | None

Returns a list of unique subkey names associated
with the given text blocks, or None if there are no
associated subkeys.

getSubkeyValues(subkeyName) →
[subkeyName1, ...]

Returns a list of all the subkey values correspond-
ing to the passed subkey name.

getTextSegments(subkeyName=None,

subkeyValue=None) → {1: textSeg1,
2: textSeg2, . . . }

Returns a dictionary of text segments, keyed by
segment sequence number. The subkeyName and
subkeyValue are optional; if specified, they are
used to select the specific text block to access.

getText(subkeyname=None, subkeyValue=None)

→ StringObject

Returns a concatenation of all text segments in
order by sequence number. The subkeyName and
subkeyValue are optional; if specified, they are
used to select the specific text block to access.

A.6 Exceptions

Exceptions can be raised by some of the class meth-
ods above. The exception objects have attributes
which provide diagnostics about the associated er-
ror condition.

A.6.1 TeXException

This exception is raised when TEX cannot success-
fully interpret a file. Attributes:

• stdout: StringObject containing the standard
output stream from the interpreter invocation,

• stderr: StringObject containing the standard
error stream from the interpreter invocation,

• logText: StringObject containing the log file
written by TEX.

A.6.2 DviException

This exception is raised when a DVI backend driver
fails. Attributes:

• stdout: StringObject containing the standard
output stream from the backend invocation,

• stderr: StringObject containing the standard
error stream from the backend invocation.

88 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

