
TUGBOAT

Volume 25, Number 1 / 2004

Practical TEX 2004 Conference Proceedings

2 Lance Carnes / Highlights of the Practical TEX 2004 conference

4 Conference program, delegates, and sponsors

6 Karl Berry / Welcome to Practical TEX 2004

Keynotes 7 Nelson Beebe / 25 Years of TEX and METAFONT: Looking back and looking forward —

TUG 2003 keynote address

31 Peter Flynn / TEX and the interfaces— Practical TEX2004 keynote address

Talks 35 Hàn Thé̂ Thành / Micro-typographic extensions of pdfTEX in practice

39 Eitan Gurari / TEX4ht: HTML production

48 Hans Hagen / The state of ConTEXt

52 Steve Grathwohl / A simple book design in ConTEXt

58 Steve Peter / TEX and linguistics

63 Brooks Moses / MetaPlot, MetaContour, and other collaborations with METAPOST

71 William Richter / TEX and scripting languages

89 Nelson Beebe / A bibliographer’s toolbox

Reports 105 Taco Hoekwater / MetaPost developments

105 Giuseppe Bilotta / The ℵ (Aleph) project

108 Hans Hagen / The TEX Live 2004 collection

News &

Announcements

112 Calendar

114 TUG 2005, 23–25 August 2005, Wuhan, China

c3 Practical TEX 2005, 14–17 June 2005, Chapel Hill, North Carolina

TUG Business 120 Recognition of support from Apple

115 TUG membership application

116 Institutional members

Advertisements 116 TEX consulting and production services

114 The LATEX Companion, 2nd edition, by Frank Mittelbach et al.

117 Easy Table, Khanh Ha

118 River Valley Technologies

118 MacKichan Software, Inc.

119 Carleton Production Centre

119 Cheryl Ponchin Training

120 Personal TEX, Inc.

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2004 dues for individual members are as follows:
Ordinary members: $75.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org) or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2004 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,

distributed or translated without their permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

Samuel Rhoads∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Steve Grathwohl
Jim Hefferon
Ross Moore
Arthur Ogawa
Gerree Pecht
Steve Peter
Cheryl Ponchin
Michael Sofka
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: March 2005]

Practical TEX 2004 Proceedings

San Francisco, California, USA

July 19–22, 2004

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 25, NUMBER 1 • 2004

PORTLAND • OREGON • U.S.A.

Highlights of the Practical TEX 2004 Conference

Lance Carnes
Personal TEX, Inc.
725 Greenwich Street, Suite 210
San Francisco, CA 94133, USA
lcarnes@pctex.com

Delegates came from the US and from around the
world— Ireland, England, The Netherlands, Ger-
many, Australia, and Vietnam — to the Holiday Inn
Fisherman’s Wharf in San Francisco, the site of the
first annual PracTEX meeting, July 19–22, 2004.

The purpose of the conference was to focus on
the practical, day-to-day use of LATEX, TEX, Con-
TEXt, and other applications. Speakers gave talks
and held workshops on a wide range of topics, in-
cluding TEX on the Web, basic and intermediate
LATEX, ConTEXt (a comprehensive TEX-based docu-
mentation system), and more.

The conference began with a welcome by TUG

President Karl Berry, and a keynote address by
Peter Flynn titled “TEX and the Interface”. The
conference program consisted of numerous presen-
tations — a few are presented in the first issue of the
new TUG online publication, The PracTEX Jour-
nal (http://tug.org/pracjourn/2005-1), and the
bulk are published in this volume of TUGboat.

On Monday afternoon long-time TUG contrib-
utor Wendy McKay and Apple Computer Product
Manager Ernest Prabhakar held an Special Interest
Group meeting on TEX running on Mac OS X. The
meeting was video conferenced using technology lent
by Marratech.

For beginning users and those who wanted a
refresher, workshops on beginning and intermediate
LATEX were offered each morning of the conference,
in parallel with talks. Sue DeMeritt and Cheryl
Ponchin (Center for Communications Research, and
TUG board members) presented these popular work-
shops.

During the conference there were daily Q&A
sessions, and on the final day a panel discussion was
held. These sessions were valuable for getting input
from attendees. The consensus seemed to be a need
for more education in the use of LATEX and TEX, and
the need for more sources of practical information.

On the day after the conference three one-
day courses were held: Cheryl Ponchin and Sue
DeMeritt conducted a workshop on Intermediate
LATEX; Peter Flynn (Silmaril Ltd., Ireland) taught
“TEX on the Web”; and Hans Hagen (Pragma ADE,

The Netherlands) taught an introductory class on
his ConTEXt system.

Hans Hagen, Practi-
cal TEX Man of the
Year

Keynote speaker
Peter Flynn

Attendees were treated to three social events:
an opening reception, a San Francisco treasure hunt,
and a Chinese banquet. The treasure hunt chal-
lenged teams of attendees to decipher clues as they
explored San Francisco’s North Beach and China-
town districts. (When it was learned that Don
Knuth was entering a team, a special Wizards Hunt
was added with more difficult clues.)

Don Knuth Leslie Lamport

The banquet was at the Empress of China
restaurant, which has a commanding view of the
northern area of San Francisco, including Alcatraz,
the Bay Bridge and the financial district. Some
special guests at the banquet were Don and Jill
Knuth, and Leslie Lamport. Barbara Mastrian of
Rutgers introduced Barbara Miller, a pioneer TEX

2 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

http://tug.org/pracjourn/2005-1

Highlights of the Practical TEX 2004 Conference

user who over the years has taught many others how
to navigate the boxes and glue.

Barbara Mastrian and TEX pioneer Barbara Miller

Treasure Hunt winners (Heidi Sestrich,
Alistair Smith, Jenny Levine, Terri Spence,
Alan Wetmore)

There were two coffee breaks and lunch each
day, which provided for plenty of attendee interac-
tion during the three-day conference. There was a
cybercafe with an ample number of computers, lent
by Apple Computer, which delegates used for check-
ing email and experimenting with new applications.

It was great to see several TEX and TUG pio-
neers again: Cal Jackson, Dave Fuchs, Art Ogawa,
Nelson Beebe, and Peter Flynn.

From the follow-up comments it seemed ev-
eryone had a good conference and an enjoyable
visit to San Francisco. See http://tug.org/

practicaltex2004/post.html for more photos and
information.

The next PracTEX conference will be held June
14–17, 2005, in Chapel Hill, North Carolina, hosted
by Steve Grathwohl and the Duke University Press.
See the web site for information and registration:
http://tug.org/practicaltex2005.

Karl Berry,
TUG President

Robin Laakso, TUG

Executive Director

Lance Carnes,
conference host

(Photo credits: Tim Null, Alan Wetmore, and

mistersf.com.)

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 3

http://tug.org/practicaltex2004/post.html
http://tug.org/practicaltex2004/post.html
http://tug.org/practicaltex2005
mistersf.com

Practical TEX 2004

Sponsors

TEX Users Group Personal TEX, Inc. Apple Computer

Addison-Wesley Carleton Production Centre Marratech, Inc.

MacKichan Software, Inc. River Valley Technologies

Thanks to all!

Acknowledgements

and heartfelt thanks to:

William Adams, for the Apple acknowledgement and help with the mug image.

Duane Bibby, for the typically wonderful conference and notepad drawings.

Wendy McKay, for organizing the Mac OS X session.

Kevin O’Malley, for the Mac OS X slide show.

Conference committee

Karl Berry Lance Carnes Sue DeMeritt Robin Laakso Steve Peter Cheryl Ponchin

Participants

David Allen, University of Kentucky

Mitchell Bakos, Professional Publications,

Belmont, CA

Kaveh Bazargan, TUGIndia and

River Valley Technologies

Nelson Beebe, University of Utah

Karl Berry, TEX Users Group

Linda Bethel, Graduate School of Business,

Stanford University

Jeannie Brown, University of California, Irvine

Brian Carnes, Personal TEX, Inc.

Lance Carnes, Personal TEX, Inc.

Barry Dale, Caloundra, Australia

Sue DeMeritt, Center for Communications

Research, La Jolla, CA

Michael Dickerson, Pomona College, CA

Sandra Farrier, Washington, DC

Ronald Fehd, Atlanta, GA

Peter Flynn, Silmaril Consultants

David Fuchs, Palo Alto, CA

Steve Grathwohl, Duke University Press

Eitan Gurari, Ohio State University

Hàn Thé̂ Thành, University of Education,

Ho Chi Minh City

Hans Hagen, NTG and Pragma ADE

Joseph Hesse, Saint Paul College

L. Carole Holbrook, Oak Ridge Laboratory, TN

Baden Hughes, University of Melbourne

Ned Hummel, University of Nebraska Lincoln

Susan Huot, Journal of Financial and

Quantitative Analysis, Seattle

Calvin Jackson, California Institute of Technology

David Jones, American Mathematical Society

N.G. Kalivas, Westminster School, UK

Richard Koch, University of Oregon

Robin Laakso, TEX Users Group

Alice Leonhardt, Rutgers University, NJ

Jenny Levine, Duke University Press

Donna Magnani, American Physical Society,

Ridge, NY

Barbara Mastrian, Rutgers University, NJ

Denise McCall, Institute for Defense Analysis,

Princeton, NJ

Wendy McKay, Control and Dynamical Systems,

California Institute of Technology

Barbara Miller, University of California, Riverside

Brooks Moses, Stanford University

Noelle Noble, Fred Hutchinson Cancer Research

Center, Seattle

Tim Null, San Jose, CA

Arthur Ogawa, TEX Consultants, Three Rivers, CA

Elliott Pearl, Toronto, Canada

Steve Peter, Beech Stave Press, NJ

Cheryl Ponchin, Center for Communications

Research, Princeton, NJ

Andrew Porter, Livermore, CA

K. David Prince, College of Engineering,

University of Washington

William Richter, Texas Life Insurance Co.

Volker R.W. Schaa, Dante e.V.

Catherine Schrott, Professional Publications,

Belmont, CA

Anita Schwartz, University of Delaware

Heidi Sestrich, Carnegie-Mellon University

Kathy Sheldon, Pomona College, CA

Alistair Smith, Sunrise Setting, Devon, UK

Doug Smylie, York University, Toronto

Terri Spence, Duke University Press

Anne Taub, ISIS, University of California, Irvine

Larry Thomas, Saint Peter’s College, NJ

Alan Wetmore, US Army, Adelphi, MD

Faye Yeager, University of California, Berkeley

Practical TEX 2004 — program and information

Sunday

July 18
3–5 pm registration

5–7 pm reception

Track 2: Introduction to LATEX class. Starting at 10:30 am Monday, and 9 am Tuesday and Wednesday,

and ending at lunchtime each day, Sue DeMeritt and Cheryl Ponchin will teach a continuing class on

beginning and intermediate LATEX, with no prerequisites. Participants can choose whether to attend this class

or the morning talks.

MacOS X & TEX session. Starting at lunch time Monday and continuing into the afternoon, a round-

table discussion on Mac OS X, led by Hans Hagen, Wendy McKay, and Ernest Prabhakar from Apple.

Monday

July 19
9 am Karl Berry, TEX Users Group Welcome

9:15 am Peter Flynn, Silmaril Consultants Keynote address: TEX and the interface

10:15 am break

10:30 am Eitan Gurari, Ohio State University TeX4ht: HTML production

11:15 am Kaveh Bazargan, River Valley

Technologies

LATEX to MathML and back: A case study of Elsevier

journals

11:45 pm Hans Hagen, NTG, Pragma ADE The pros and cons of PDF

12:30 pm lunch

2:00 pm Jenny Levine, Duke University Press Label replacement in graphics

2:30 pm David Allen, University of Kentucky Screen presentations, manuscripts, and posters from

the same LATEX source

3:15 pm break

3:30 pm Baden Hughes, University of Melbourne TEX and XML

4 pm Hàn Thé̂ Thành, University of Education,

Ho Chi Minh City

Micro-typographic extensions of pdfTEX in practice

4:45 pm q &a moderator: Lance Carnes

Tuesday

July 20
9 am Volker R.W. Schaa, Dante e.V. pdfTEX and XML workflow for conference proceedings

9:45 am Anita Schwartz, University of Delaware Paperless dissertations at the University of Delaware

10:30 am break

10:45 am Hans Hagen MetaPost: More than math and fonts

11:45 am Brooks Moses, Stanford University MetaPlot, MetaContour, and other collaborations with

MetaPost

12:30 pm lunch

1:30 pm Cheryl Ponchin, Ctr. for Comm. Research LATEX survey

2:15 pm Steve Grathwohl, Duke University Press What is ConTEXt, that we should be mindful of it?

3 pm break

3:15 pm William Richter, Texas Life Insurance Co. TEX and scripting languages

4 pm q &a moderator: Karl Berry

social events

5 pm treasure hunt

7:30 pm banquet

Wednesday

July 21
9 am Nelson Beebe, University of Utah A bibliographer’s toolbox

9:45 am David Jones, American Mathematical Soc. The amsrefs package

10:30 am break

10:45 am Steve Peter, Beech Stave Press TEX and linguistics

11:30 am Hans Hagen ConTEXt

12:30 pm lunch

1:30 pm Steve Grathwohl 70 years of the Duke Mathematical Journal online

2:15 pm q &a moderator: Baden Hughes

3 pm break

3:15 pm panel: Digital Publishing moderator: Lance Carnes; Kaveh Bazargan, Karl

Berry, Peter Flynn, David Fuchs, Hans Hagen.

4 pm end

Thursday

July 22
additional courses

Peter Flynn Practical TEX on the Web

Sue DeMeritt, Cheryl Ponchin Intermediate and Advanced LATEX

Hans Hagen Introduction to ConTEXt

Welcome to Practical TEX 2004

Karl Berry
TEX Users Group

P. O. Box 2311

Portland, OR 97208-2311

USA

karl@freefriends.org

http://freefriends.org/~karl/

The theme of this conference is practical TEX, and
indeed, TEX has always been superbly practical.
Some might say too practical. When Donald E.
Knuth devised TEX to typeset his monumental Art

of Computer Programming volumes, he did not
originally expect it to have such universal applica-
tion—these days to almost any kind of document
printed in virtually any language. As a result, some
of his more ad hoc decisions, perfectly reasonable for
his original purpose, have had ramifications of un-
fortunately long standing. For instance, the rather
idiosyncratic input syntax and difficult extension
language.

Nevertheless, TEX has remained a viable pro-
gram for document production for over two decades,
with no end in sight. I don’t know of any other
widespread application software that has had such
a lifetime. In large part, this is because Knuth had
the foresight to make TEX extensible in many ways.
For example, the core TEX program knows nothing
of graphics; yet it has been adapted to essentially all
the new graphics programs and file formats as they
have come along. A number of the papers here will
focus on this.

With the advent of the World Wide Web, a new
trend has arisen: the desire to reuse the same doc-
ument source in multiple contexts: in print, for on-
line display, as data for searches, and more. TEX
documents, and especially LATEX and ConTEXt doc-
uments, have always had the capability to be logi-
cally structured, and thus have adapted well to our
new Internet world.

In recent years, the emphasis on logical docu-
ment markup and structure has grown ever stronger,
and some of the typesetting processes invented for
TEX have been formalized by the W3C and other

standards bodies. These new initiatives suffice for
many purposes, and the conference discussed them
and their connections with TEX at length. Still, for
achieving Knuth’s goal of the very highest quality
typographic output, to my knowledge TEX remains
unsurpassed—a practical tool of the highest order.

A brief introduction to Peter Flynn, our key-
note speaker, is in order. Peter has been involved
with TEX for many years from his post at University
College in Cork, Ireland. We recently devoted an en-
tire issue of TUGboat to his excellent introduction
to and discussion of LATEX, entitled Formatting In-

formation. He has worked extensively with HTML,
XML, SGML and many other markup languages, in-
cluding integration with TEX. In addition to the pa-
per presented in this volume, he taught a workshop
at the conference on Practical TEX on the Web.

Lastly, some acknowledgements. On behalf of
TUG and the conference, I first thank our corpo-
rate sponsors: Personal TEX for major support, and
Apple for the loan of the computers. I also thank
Addison-Wesley, Carleton Production Centre, Mar-
ratech, MacKichan Software, and River Valley Tech-
nologies for their important contributions.

On the personal side, my mom, who attended
the conference opening, helped me extensively with
this small debut as a public speaker . . . among other
things. Thanks Mom! Also thanks to Duane Bibby
for the wonderful drawings, Wendy McKay for orga-
nizing the Mac OS X session, Robin Laakso for her
extraordinary organizational efforts, as well as gen-
erally being such a pleasure to work with on all
things TUG, all the members of the conference com-
mittee, and especially Lance Carnes, for much work
on the local arrangements, and for dreaming up the
idea in the first place.

6 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

25 Years of TEX and METAFONT: Looking Back and Looking Forward

TUG 2003 Keynote Address

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233
Salt Lake City, UT 84112-0090
USA
WWW URL: http://www.math.utah.edu/∼beebe

Telephone: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org

Abstract

TEX has lasted longer than many other computer software technologies.
This article reviews some of the history of TEX and METAFONT, how they

have come to be used in practice, and what their impact has been on document
markup, the Internet, and publishing.

TEX has several design deficiencies that limit its use and its audience. We
look at what TEX did right, and with 25 years of hindsight, what it did wrong.

We close with some observations about the challenges ahead for electronic
representation of documents.

Summary

1 Some historical highlights

2 What we’ve accomplished
2.1 Books and journals
2.2 Software archives
2.3 Document archives
2.4 Bibliography archives

3 What did TEX do right?
3.1 Open software
3.2 Typesetting kernel
3.3 Extensible typesetting language
3.4 Device-independent output
3.5 Font independence
3.6 Open font specification
3.7 Boxes, glue, and penalties
3.8 Compact markup for common cases
3.9 Nonsignificant spaces
3.10 Identical results on all systems
3.11 Dimension independence
3.12 Dynamic loading of files
3.13 Redefinition of character meaning
3.14 No system call
3.15 Last definition holds

Editor’s note: This important paper was inadvertently omit-
ted from the regular TUG2003 proceedings, TUGboat 24(1).
Our apologies.

3.16 \special command
3.17 Stability and reliability
3.18 Illustrations by Duane Bibby

4 What did TEX do wrong?
4.1 No rigorous grammar
4.2 Macro, not programming, language
4.3 Too much hard coded
4.4 Too many fixed-size objects
4.5 Too many global variables
4.6 Too little tracing
4.7 Name collision
4.8 Inadequate I/O
4.9 Character set limits
4.10 No input filters
4.11 No color state
4.12 No graphics
4.13 One page at a time
4.14 Multicolumn deficiency
4.15 Not general enough for all writing

directions
4.16 No DVI output pipe
4.17 No sandbox
4.18 Uncaught arithmetic overflow
4.19 32-bit precision too limiting
4.20 No floating-point arithmetic
4.21 No conventional arithmetic expressions
4.22 No word and line boundary markers
4.23 No paper size

TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address 7

http://www.math.utah.edu/~beebe

Nelson H. F. Beebe

4.24 No absolute page positioning
4.25 No grid typesetting
4.26 No comments in DVI files
4.27 No rotated material

5 What did METAFONT do right?
5.1 Open software
5.2 Font-design kernel
5.3 Programming language
5.4 ‘Meta’ fonts
5.5 Shaped pens
5.6 Open font formats

6 What did METAFONT do wrong?
6.1 Bitmap output premature
6.2 Pen shapes
6.3 Curve representations
6.4 Inadequate I/O
6.5 Font sizes
6.6 Inflexible character numbering
6.7 Not adopted by font designers

7 Future directions
7.1 XML directions
7.2 Unicode directions

Foreword

Some of the material in this article may seem old
hat to veteran TEX users, but I am writing it with
the intention that it can also be read by people who
are unfamiliar with TEX and METAFONT, but are
nevertheless interested in learning something about
the design and history of those programs.

Introduction

The TUG 2003 Conference at the Waikoloa Beach
Marriott Hotel on the northwest coast of Hawaii (the
Big Island) celebrated the 25th anniversary of TEX
and METAFONT, and the 24th anniversary of the
TEX Users Group. It was amusing to discover that
TEX already had a commercial presence there: see
Figure 1.

Donald Knuth enjoys finding numerical pat-
terns, so I looked for some in connection with this
meeting. The year 2003 contains the first two
primes, and two zeros. Two is the base of most
computer number systems, and 2003 is also the
first prime in this millenium. In base 2, 2003 =
11 111 010 0112 and 25 = 11 0012: their five low-
order bits are mirror images of each other. The

number 25 is 52, or (third prime)
(oddest prime of all)

.

1 Some historical highlights

Document production by humans goes back a rather

Figure 1: The TEX drive-in has two locations on
the Big Island, one in Honokaa in the northeast,
and one in Pahala, near the south center. It is
noted for malasadas, a puffy hole-less donut,
brought to Hawaii by Portuguese agricultural
workers. One Web site reports that “Tex sells
more malasadas than some McDonald’s outlets sell
hamburgers.”

long way, as shown in Tables 1 and 2. Although
paper was invented about 6000 years ago, it was not
until the middle of the 19th Century that wood pulp
became the primary source of paper, and it took
a few decades longer for paper to become widely
available at low cost.

Gutenberg’s invention predated Columbus’ dis-
covery of the Western World by just 40 years, and
made large-scale book production practical. Before
Gutenberg, each book was copied by hand; after
Gutenberg, literacy was no longer restricted to a
privileged class, and societal progress was poised for
a huge leap forward.

It took about 30 years after the invention of
digital computers for the first effective document
formatting and typesetting systems to be developed.
TEX and METAFONT were first implemented during
Donald Knuth’s 1977–78 sabbatical year. They were
written in the SAIL1 programming language, which
was available only on DEC-10 and DEC-20 computers
with PDP-10 CPUs. In 1978 or 1979, I had the
good fortune to hear a talk that he gave at Xerox
PARC about TEX, and I realized immediately that
older document production systems, like IBM’s ATS,

1 Stanford Artificial Intelligence Lab/Language

8 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

25 Years of TEX and METAFONT: Looking Back and Looking Forward

Table 1: Notable historical events BC (before
computers).

Year Event
4000 BCE Egyptians invent papyrus from

woven reeds
105 Ts’ai Lun invents bark/hemp/

rags-based paper in China
1009 First European paper mill, in

Xativa, Spain
1411 First paper mill in Germany
1452 Johannes Gutenberg invents

movable type
1680 First paper mill in New World,

in Culhuacan, Mexico
1690 First paper mill in English

colonies, near Philadelphia
1798 Nicholas Robert invents first

paper-making machine, in
France

1850–1879 Paper from wood pulp perfected
1889–1900 Economical mass-produced

paper

DEC’s runoff, and my own document, would be
obsolete as soon as TEX were widely available. We
had a DEC-20 at Utah, so we had early access to the
Stanford software.

The excitement that TEX and METAFONT gen-
erated among Donald Knuth’s colleagues, and at the
American Mathematical Society, led to a redesign
and reimplementation of both in Pascal, released in
1982, and tweaked a bit in 1989. At the time, the
only other widely-implemented programming lan-
guages were Fortran and Cobol, neither particularly
suitable for writing typesetting software. Neverthe-
less, there was at least one early implementation of
the SAIL version of METAFONT in Fortran [48], with
the goal of producing fonts for Burmese.

By the late 1980s, the C programming language
was becoming widely available: it became an ISO

Standard in 1989. While C has a number of draw-
backs, it has many fewer limitations than Pascal. A
successful manual translation of TEX from Pascal to
C by Pat Monardo at the University of California,
Berkeley, about 1990, encouraged a collaborative
effort on the Web2C translation system. Web2C rec-
ognizes just the subset of Pascal used in TEX, META-
FONT, and their associated utility programs, and
translates it to C. Today, most implementations are
based on the C translations, but the original Pascal
source code remains definitive. System-dependent
changes to the software are handled through change

Table 2: Notable historical events AC (after
computers).

Year Event
1940s First digital computers
1968–1973 Niklaus Wirth invents Pascal

language
1969–1970 Dennis Ritchie invents C

language
1970s roff, script, runoff, document
1975–1978 eqn (B. W. Kernighan and

L. Cherry)
1976 nroff and troff (J. Ossanna),
1978 bib and refer (M. Lesk)
1977–1978 classic TEX and METAFONT in

SAIL (D. Knuth)
1978–1980 Scribe (B. Reid)
1979 tbl (M. Lesk)
1981 pic (B. W. Kernighan)
1982 ideal (C. Van Wyk)
1982 ‘final’ TEX and METAFONT in

Pascal
1983–1985 LATEX (L. Lamport)
1984 BibTEX (O. Patashnik)
1984 PostScript (Adobe Systems)
1986 grap (J. Bentley and B. W.

Kernighan)
1989 ‘new’ TEX and METAFONT

(8-bit characters et al.)
1989–1991 HTML and HTTP at CERN

(T. Berners-Lee)
1990 METAPOST (J. Hobby)
1991 World-Wide Web at CERN

1993 xmosaic browser (NCSA:
M. Andreeson)

1993 PDF (Adobe Systems)
1994 LATEX2ε (F. Mittelbach et al.)
1994 Ω (Y. Haralambous and

J. Plaice) and Λ
1995–2000 WeBWork (University of

Rochester)

1996 PDFTEX (Hán Thé̂ Thánh)
1997 ε-TEX (P. Breitenlohner et al.)
1998 NT S (K. Skoupý)
2000 XMLTEX (D. Carlisle)
2001 JadeTEX (S. Rahtz)
2002 Donald Knuth celebrates

1,000,000th
2 birthday

2003 ant (ant is not TEX:
A. Blumensath) (OCaml: 24K
lines)

2003 Nottingham font conversion
project (D. Brailsford)

TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address 9

Nelson H. F. Beebe

files that the tools tangle and weave, or their C
equivalents, ctangle and cweave, turn into revised
source code and documentation.

Karel Skoupý’s NT S is a reimplementation of
TEX in Java with the goal of improving modular-
ization, and making possible experiments with new
ideas in typesetting. Achim Blumensath’s ant (for
ant is not TEX) system has similar goals, but is
done in the high-level OCaml language. Most of the
coding of Ω, the extension of TEX for Unicode, is
being done in C++, effectively a superset of C, and
now about as widely available as C.

Although the Bell Laboratories’ typesetting
systems did not influence TEX very much, and were
not available outside their development environment
at the time that Knuth began his work on TEX
and METAFONT in 1977, he was certainly aware of
them [38, Chapter 2]. The Unix small-is-beautiful
software-design methodology was similarly inappli-
cable on other operating systems, so TEX and META-
FONT are each monolithic programs, of about 20,000
lines of prettyprinted Pascal code each. While rela-
tively large programs at the time, they are dwarfed
today by code projects that run to millions (e.g.,
GNU C compiler and library) and tens of millions
(most modern operating systems) of lines.

What has set TEXware apart from most other
software projects is the high degree of stability and
reliability. Knuth attributes this to his development
of literate programming2 [55, 39, 37], which is so
nicely illustrated in the TEX and METAFONT pro-
gram source code [30, 32].

2 What we’ve accomplished

While TEX users are substantially outnumbered by
users of desktop-publishing systems, TEX’s open
markup and document longevity, and its ability
to handle mathematical and music markup, and
scripts in many languages, and its possibility of
identical output on all platforms from desktops to
supercomputers, has ensured its continued use in
some fields. In this section, we examine some of its
achievements.

2.1 Books and journals

More than a hundred books have been published
about TEX and METAFONT,3 and many thousands
of books, and numerous journals, have been pub-
lished with TEX acting behind the scenes as the
typesetting engine.

2 http://www.math.utah.edu/pub/tex/bib/

index-table-l.html#litprog.
3 http://www.math.utah.edu/pub/tex/bib/

index-table-t.html#texbook3.

0

50

100

150

200

1980 1985 1990 1995 2000 2005

A
rt

ic
le

s/
ye

ar

Year

TUGboat publication

0

500

1000

1500

2000

2500

1980 1985 1990 1995 2000 2005

T
ot

al
 a

rt
ic

le
s

Year

TUGboat publication

0
100
200
300
400
500
600
700
800

1980 1985 1990 1995 2000 2005

P
ag

es
/y

ea
r

Year

TUGboat publication

0
1000
2000
3000
4000
5000
6000
7000
8000

1980 1985 1990 1995 2000 2005

T
ot

al
 p

ag
es

Year

TUGboat publication

0

2

4

6

1980 1985 1990 1995 2000 2005

A
ve

ra
ge

 p
ag

es
/a

rt
ic

le

Year

TUGboat publication

0
5

10
15
20
25
30
35
40

0 250 500 750 1000 1250 1500

A
rt

ic
le

 p
ag

es

Article count

TUGboat publication

Figure 2: TUGboat publication statistics.

At least four journals, TUGboat, Electronic

Publishing—Origination, Dissemination, and De-

sign, Markup Languages: Theory & Practice, and
Serif, have been devoted to typography, markup,
and fonts; the bar charts in Figure 2 illustrate the
activity in the first of these.

Today, many journals in computer science,
mathematics, and physics use LATEX markup for
author-submitted manuscripts. Sometimes, that
material is converted by publishers into SGML or
XML markup that TEX then typesets.

Several major publishers, including Addison-
Wesley, Elsevier, Oxford, and Springer, have used
TEX in book production.

Importantly for researchers, TEX markup has
become a de facto standard in several technical
fields, and because it requires nothing more than
plain ASCII, it can even be used in e-mail messages.

2.2 Software archives

There are huge archives of TEXware in the CTAN

(Comprehensive TEX Archive Network) collections,
with three master hosts,4 and about 75 mirror sites
around the world. TUGboat issues have at least
twice been accompanied by CD-ROM copies of the
CTAN archives.

The existence of many mirror sites makes it
hard to document CTAN activity, but the logs from
just two of the master hosts record about 275,000

4 ftp://ftp.dante.de, ftp://ftp.tex.ac.uk, and ftp:

//tug.ctan.org.

10 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

http://www.math.utah.edu/pub/tex/bib/index-table-l.html#litprog
http://www.math.utah.edu/pub/tex/bib/index-table-l.html#litprog
http://www.math.utah.edu/pub/tex/bib/index-table-t.html#texbook3
http://www.math.utah.edu/pub/tex/bib/index-table-t.html#texbook3
ftp://ftp.dante.de
ftp://ftp.tex.ac.uk
ftp://tug.ctan.org
ftp://tug.ctan.org

25 Years of TEX and METAFONT: Looking Back and Looking Forward

hits per week over the last seven years, from over a
million Internet hosts.

In mid-2003, the CTAN archives contained
nearly 80,000 files in about 6,000 directories, with
close to 3,000,000 lines of class and style files. To
put these numbers into perspective, Knuth’s origi-
nal plain.tex is only 1235 lines, and manmac.tex,
which supplies additional macros needed for type-
setting the TEXbook [29], is only 715 lines. Knuth’s
Computer Modern fonts are programmed in about
260 files, but the CTAN archives now hold nearly
6500 other METAFONT font programs. Wonderful,
and skilled, volunteers did all of the rest of the
work!

2.3 Document archives

The rapid spread of the Internet led Paul Ginsparg
in the early 1990s to create the Los Alamos archive
of current research in high-energy physics. This
archive is now hosted at Cornell University,5 and
access statistics show that at times, the archive
has had more than a million hits a week. For
many physics researchers, the archive, not print
journals, is the current literature. Ginsparg was
awarded a prestigious MacArthur Fellowship (worth
US$500,000) in 2002 for this work.

The success of the physics archive has led to
creation of similar projects in mathematics, nonlin-
ear sciences, computer science, and quantitative bi-
ology, all reachable from links from the main archive
Web site. Related efforts include the Networked
Computer Science Technical Reference Library (NC-

STRL)6 and the Open Archives Initiative.7 Col-
lectively, these archives contains several hundred
thousand research papers, most written in LATEX or
TEX markup.

2.4 Bibliography archives

In 1991, I began to record bibliographic data for my
books and journals in BibTEX markup. This evolved
into the TEX Users Group Bibliography Project8

covering the literature of much of computer sci-
ence, electronic document production, and numer-
ical mathematics. In 1995, we started the BibNet
Project9 with the more limited goal of recording
complete publication bibliographies for leading re-
searchers in numerical mathematics.

5 http://arxiv.org/.
6 http://www.ncstrl.org/.
7 http://www.openarchives.org/.
8 http://www.math.utah.edu/pub/tex/bib/

index-table.html, http://www.math.utah.edu/pub/tex/

bib/idx/, and http://www.math.utah.edu/pub/tex/bib/

toc/.
9 http://www.math.utah.edu/pub/bibnet/.

These collections now amount to more than
366,000 bibliographic entries in about 540 separate
bibliographies, each of which is accompanied by
additional files for spell checking, indexing, and
typesetting the complete bibliographies. Because
the data has been collected from many sources and
extensively checked, it has considerably higher qual-
ity than most other collections. All BibTEX files
are prettyprinted, sorted, ordered, checksummed,
and documented with a consistent comment header.
Where possible, bibliographic entries contain hyper-
text links to the source of the data, and to online
electronic documents.

In my department at Utah, the bibsearch10

utility provides very fast access to these collec-
tions, plus another 203,000 in mathematical biology,
187,000 in computer science from the Digital Bibli-
ography and Library Project (DBLP) at Universität
Trier, Germany, and more than 1,261,000 in com-
puter science from the world-wide computer science
bibliography archive at Universität Karlsruhe. The
two projects hosted at Utah are mirrored daily to the
Karlsruhe archive. Archive statistics at Karlsruhe
record about 300,000 hits per month, and at Utah,
about 21,000 per month.

Both the American Mathematical Society
MathSciNet database11 and the European Mathe-
matical Society E-Math database12 now offer search
results in BibTEX markup.

The bibliography-archive work is supported by
about 137,000 lines of code in the awk programming
language, about 15,000 lines of code in Emacs Lisp,
several thousand lines of Unix shell scripts, and
several tens of thousands of lines of C code. Notable
standalone tools in the collection include bibcheck,
bibclean, bibdup, bibextract, bibjoin, bib-

label, biblex, biborder, bibparse, bibsearch,
bibsort, bibsplit, bibunlex, citefind, citesub,
and citetags.

Many journal publishers now provide Web sites
with publication data for recent issues. The JSTOR

Project13 provides complete coverage of all issues of
about 360 journals in science and the humanities; it
has allowed the preparation of complete bibliogra-
phies for the American Mathematical Monthly back
to the first issue in 1894.

The increasing availability of publication data
on the Web has made it feasible to develop tools

10 http://www.math.utah.edu/pub/mg/mg-1.3x/

bibsearch/.
11 http://www.ams.org/mathscinet/.
12 http://www.emis.de/ZMATH/ and http://zb.msri.org/

ZMATH/.
13 http://www.jstor.org/.

TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address 11

plain.tex
manmac.tex
http://arxiv.org/
http://www.ncstrl.org/
http://www.openarchives.org/
http://www.math.utah.edu/pub/tex/bib/index-table.html
http://www.math.utah.edu/pub/tex/bib/index-table.html
http://www.math.utah.edu/pub/tex/bib/idx/
http://www.math.utah.edu/pub/tex/bib/idx/
http://www.math.utah.edu/pub/tex/bib/toc/
http://www.math.utah.edu/pub/tex/bib/toc/
http://www.math.utah.edu/pub/bibnet/
http://www.math.utah.edu/pub/mg/mg-1.3x/bibsearch/
http://www.math.utah.edu/pub/mg/mg-1.3x/bibsearch/
http://www.ams.org/mathscinet/
http://www.emis.de/ZMATH/
http://zb.msri.org/ZMATH/
http://zb.msri.org/ZMATH/
http://www.jstor.org/

Nelson H. F. Beebe

for automatic conversion of such data, which tends
to be quite similar across all journals from a single
publisher. An essential tool for this work has been
the HTML prettyprinter, html-pretty,14 which al-
lows fast, rigorous, and highly-reliable conversion of
HTML documents to a standard layout of markup.
Simpler tools, usually written in awk, can readily
process that data to produce rough BibTEX markup
that can be further cleaned up in a pipeline of some
of the other tools listed above. A certain amount of
manual cleanup is still required, notably bracing of
proper nouns in document titles, but the bulk of the
work has been done completely automatically.

Although the individual bibliographic and
HTML tools are freely available, the Web page con-
version software is not: it tends to require frequent
maintenance as whimsy overtakes good sense at
publisher Web sites, and in any event, is really
needed only at the site doing the HTML-to-BibTEX
conversion work.

I have collaborated with several publishers and
journal editors, so that these BibTEX archives re-
ceive prominent links from their journal Web sites,
and so that I get prompt notification of the appear-
ance of new journal issues. In extremely favorable
cases, the BibTEX data can be available about ten
minutes after a journal issue announcement.

This bibliographic activity is a substantial ef-
fort on my part, but the reward is that the entire
Internet community gets quick access to the data.
Also, BibTEX, LATEX, and TEX get free advertising
in communities that might be entirely unaware of
them, and I can at last find material in the thou-
sands of journal issues on my own shelves.

BibTEX markup is extremely flexible, even if
the associated style-file language is somewhat ar-
cane. Publisher interest in XML markup led to the
BibTEXML project at the Swiss Federal Institute of
Technology (ETH) in Zürich, Switzerland, which has
developed software for conversion between XML and
BibTEX markup of bibliographic data; at the time
of writing, the project Web site is not accessible.
Because XML is not extensible at the document
level, such a conversion is not as simple as it might
first appear.

3 What did TEX do right?

Twenty-five years is a very long time in the rapidly-
developing computing industry, and it is appropriate
to look back over the use of TEX in that time, and
comment on its successes, and its failures.

While a list of such points is necessarily a

14 http://www.math.utah.edu/pub/sgml/.

matter of personal opinion, I believe that it is
worthwhile to enumerate the ones that I have found
significant. Although I concentrate mainly on TEX,
some of the remarks should be interpreted to include
the associated utilities that I call TEXware.

3.1 Open software

The most important done-right feature of TEX is
that it is an open-source literate program. Without
quibbling over the exact meaning of open source,
the essential point is that anyone can use TEX
for any purpose, commercial or noncommercial, as
long as they don’t change the non-system-dependent
parts of it without changing its name. One of the
TUG 2003 conference speakers, Ajit Ranade, noted
that TEX is responsible for a multimillion dollar
typesetting-support industry in India that employs
thousands of people.

This openness should be contrasted with the
abysmal state of the desktop-publishing industry
where markup is generally keep secret and propri-
etary, holding user documents hostage to marketing
whims of software vendors, and making it impossible
to achieve consistent output when documents are
moved between platforms, or to archive documents
for long-term access. This deplorable situation is
getting worse, not better: one desktop-publishing
vendor is moving towards encrypted file formats that
can be decoded only by that vendor’s products; the
marketing justification is called document security,
but it also locks out competition and gives the ven-
dor, not the user, control over document access.

3.2 Typesetting kernel

TEX provides a small kernel of primitives that are
specialized for the complex, and often idiosyncratic,
job of typesetting. The best-known analogue of this
software model is the PostScript page-description
language, which provides primitives that are highly
suited to placing marks on a page, assuming that
some other software package has first decided where
they go.

3.3 Extensible typesetting language

Although most of TEX’s typesetting kernel is rather
low level, dealing with object positioning and se-
lection, through a powerful, albeit arcane, macro
language, TEX can be extended to provide higher-
level markup. Such extensions significantly lessen
the demand for changes in the underlying software,
shielding it from the creeping featurism that plagues
most commercial software, and prevents reliability
and stability.

The most successful of these extensions is the

12 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

http://www.math.utah.edu/pub/sgml/

25 Years of TEX and METAFONT: Looking Back and Looking Forward

LATEX document preparation system [41, 42] and the
many packages built on top of it [47, 18, 19]. LATEX,
like BibTEX, is strongly influenced by Brian Reid’s
pioneering Scribe system.

The key feature of LATEX markup is that type-
setting objects such as title and author information,
tables of contents, abstracts, chapters, sections, sub-
sections, equations, figures, tables, glossaries, in-
dexes, and so on, are general concepts shared by
most documents, and are thus marked up with com-
mands that tell what to do, rather than how to do.
This is usually termed logical markup, as opposed to
physical, or visual, markup. Most desktop-publish-
ing software is modeled on physical markup: the
what-you-see-is-all-you’ve-got approach is burden-
some on the user, and makes it nearly impossible
to achieve formatting consistency.

In principle, the meaning of logical markup can
be changed simply by declaring a new document
class at the start of the top-level file. In practice,
other changes may be required as well, but they
are usually limited to issues of front-matter markup,
which can be quite complex for some documents,
and to issues of how literature citations are used
in the text (e.g., the numbered style used in this
article, versus the author-date style common in the
humanities). Nevertheless, the changes needed to
switch document style are generally a small part of
the total effort of document production.

The need for presentation of the same informa-
tion in different formats is often not appreciated by
authors, but publishers at past TEX Users Group
conferences have reported that they have sometimes
been able to reuse information in a dozen ways,
each of them generating income. Document reuse
is a major driving force in the use of SGML and
XML markup for long-term document storage in the
publishing industry. For example, while most article
submissions to the American Chemical Society (the
world’s largest publisher of chemistry literature)
are in word-processor formats, all submissions are
converted to SGML with a combination of in-house
format-conversion software and manual touch-ups.

3.4 Device-independent output

The Bell Laboratories’ troff system produced out-
put for one particular typesetting device, now long
defunct, and its design was heavily influenced by the
capabilities and limitations of that particular device.

TEX’s output pays homage to no particular
device: it is a compact device-independent format,
called a DVI file. The job of converting that file
for any particular output device is left to separate
software, called a DVI driver. This task is far from

trivial: current drivers for single devices are 22,000
(dvips) to 29,000 (xdvi) lines of code, and my own
DVI driver family, which supports dozens of devices,
is about 97,000 lines. These are all larger than TEX
itself. Popular output formats have evolved during
TEX’s life, but TEX remains blissfully independent
of that evolution.

Current analogues of TEX’s design choice are
the virtual machine definition underlying the Java
and C# programming languages, and the virtual
machine layer provided on IBM mainframes since the
early 1970s. More recently, the VMware15 system on
the Intel IA-32 platform permits multiple operating
systems to be simultaneously active on the same
hardware, and IBM PowerPC systems now support
sharing of CPUs by separate operating systems.

Although they were not part of the original
design of TEX, Geoffrey Tobin’s excellent dv2dt

and dt2dv tools included in many modern TEX
distributions provide a way to convert the compact
DVI format to a human-readable, and thus, editable,
form, and back again.

3.5 Font independence

The lack of good-quality vendor-independent fonts
forced Donald Knuth to develop an outstanding
font-design system, METAFONT. However, he was
careful to isolate most of the details, so that TEX
only needs to know about the dimensions of the
fonts, through the compact TEX font metric (TFM)
files. TEX remains completely unaware of character
shapes and how they are represented in font files.

This independence has proved a great virtue,
allowing TEX to use almost any font, subject to an
unfortunate limitation on the number of characters
in a font, provided that metrics are available. Some
commercial font vendors in the early days of TEX
would not release that information, and some still
do not permit its free distribution.

With virtual-font technology [26], composite
fonts can be created whose glyphs come from other
fonts, even other virtual fonts. This makes it
possible, for example, to remap glyphs into the
order expected inside TEX, avoiding the need to
redefine numerous macros that assign names to font
characters. PostScript Type 1 fonts are generally
accessed via virtual fonts.

3.6 Open font specification

Unlike most commercial fonts of the 1970s, META-
FONT’s output file formats are openly, and well,
documented. Besides the TFM file of font metrics,

15 http://www.vmware.com/.

TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address 13

http://www.vmware.com/

Nelson H. F. Beebe

METAFONT produces a file of character bitmaps,
called a generic font (GF) file.

When superior font compression techniques
were developed by Tom Rokicki in 1985 [53], he was
able to write a clean font-format translation tool,
gftopk. Today, most TEX sites store only the more
compact PK format.

3.7 Boxes, glue, and penalties

A great insight in the design of TEX is the concept
of boxes of text, and flexible space between them,
called glue (though springs might have been a better
characterization). TEX builds up lines, paragraphs,
and page galleys as lists of boxes separated by glue,
where the glue has user-defined stretchability and
shrinkability.

Centered, ragged-right, and ragged-left typeset-
ting are all straightforward to implement with glue.

For further control, users can insert penalties
at suitable points to encourage or discourage line
breaks and page breaks. TEX can then apply a
mathematical optimization technique to determine
the best way to typeset pages; few other systems,
before or since, do as good a job.

3.8 Compact markup for common cases

The first thing that one sees when comparing SGML

or XML markup with TEX markup is that the
first two are painfully verbose. TEX makes com-
mon cases simple and compact. For example, in-
stead of wrapping paragraphs with SGML com-
mands <paragraph> . . . </paragraph>, TEX sim-
ply assumes that a line that is blank or empty
separates paragraphs. When this is not convenient
or possible, it offers the \par control word to mark
the boundary.

Other examples of TEX’s brevity are the use
of braces for grouping, dollar signs around math-
ematics markup (Knuthian humor: mathematics
was traditionally expensive to typeset), and caret
and underscore for mathematical superscripts and
subscripts.

Consider the lowly, but important, period (dot
or full stop): it is the smallest character in a font,
but it can mean end of initial, end of abbreviation,
end of sentence, decimal point, Internet hostname
separator, filename separator, or be part of an
ellipsis. TEX has a simple rule for its interpretation
when it is followed by an input space: if it follows
a capital letter, it ends an initial, and otherwise,
it ends a sentence. This heuristic is almost always
correct, but careful LATEX typists will write Back in

the USSR\@. to instruct TEX that an intersentence
space, rather than an interword space, is called for,

or use a tie (~) or literal space (\) when only
an interword space is needed. The special spacing
required for ellipses is handled by standard control
words: \cdots, \ldots, and \ddots.

3.9 Nonsignificant spaces

In troff, spaces are significant: two spaces in the
input produces two spaces in the output, plus or mi-
nus a bit to justify lines. Consequently, indentation
cannot be used in troff input to improve readabil-
ity and highlight nested document structure.

TEX avoids this significant design flaw by treat-
ing a sequence of spaces as equivalent to a sin-
gle space. Similarly, any sequence of empty or
blank lines is equivalent to a single paragraph break.
When this behavior is unwanted, TEX offers verba-
tim environments.

3.10 Identical results on all systems

A huge virtue of TEX is the possibility of getting
identical output on all platforms. Indeed, as long
as all of the input macro packages and font metrics
are identical, output is identical. No commercial
desktop-publishing system even comes close.

TEX achieves this platform-independence by
carrying out all arithmetic identically: it uses ex-
act fixed-point arithmetic in all computations that
affect line and page breaking. For dimensions, an
underlying 32-bit integer word is split into fragments
1 + 1 + 14 + 16: a sign bit, an overflow bit, a 14-bit
integer part (214 = 16384), and a 16-bit fractional
part. The largest dimension is about the width of
a room, and the smallest spacing is less than the
wavelength of visible light: computational rounding
errors are invisible in the output. TEX also supports
pure 32-bit integer arithmetic in computations with
\count registers.

3.11 Dimension independence

Systems of measurement differ between different
cultures and countries: TEX allows dimensions to
be specified in any of nine different units that cater
to the majority of needs.

3.12 Dynamic loading of files

TEX permits temporary redirection of its input
stream to another file, via the \input control word.
That file can in turn contain other \input com-
mands, with the result that packages of commonly-
used commands are easily supported, and users can
break up large documents into manageable pieces.
This saves processing time, since only those pieces
being worked on need to be typeset, and also reduces
the effect of global editing disasters.

14 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

25 Years of TEX and METAFONT: Looking Back and Looking Forward

3.13 Redefinition of character meaning

TEX assigns each input character one of sixteen
category codes that controls further interpretation
of each character, and those assignments can be
changed at any time via the \catcode command.
Although few users directly exploit the feature,
its existence makes it possible for TEX to typeset
documents written in quite different markup, such
as control words that begin with @ in Texinfo, and
angle-bracket delimited words in SGML and XML

(e.g., jadetex and xmltex).

3.14 No system call

Because TEX is expected to run on many different
platforms, it does not offer any internal way of com-
municating with the underlying operating system,
such as via a \system{...} command.

While such an ability can be handy, allowing,
for example, a book index to be prepared imme-
diately before it is typeset, experience on the In-
ternet has shown that such power is too frequently
exploited for nefarious purposes. The words worm

and virus are now familiar to the general population,
even those who have never used a computer. When
the mere viewing of a document can cause arbitrary
commands to be executed, security and stability are
impossible.

3.15 Last definition holds

Although it seems trivial, in TEX, as in most pro-
gramming languages, the last definition or assign-
ment of an object is the one that is used.

SGML, by contrast, uses a first-definition-holds
rule. Instead of being able to load up a base
package of command definitions, and then make
minor tweaks to it by subsequent redefinitions and
assignments, each package modification must be
defined as a complete new package, with altered
definitions preceding an inclusion of the original
package.

3.16 \special command

In order to allow support of unforeseen features, TEX
provides the \special command whose argument is
recorded verbatim in the DVI file. Graphics, color,
and hypertext links are common examples that use
\special. Of course, DVI drivers then need to be
taught how to handle such material.

3.17 Stability and reliability

TEX is quite possibly the most stable and reliable
software product of any substantial complexity that
has ever been written by a human programmer.

Although its development has not been free of
errors, most TEX users have never seen an error,
much less a crash, in TEX.

What errors have been found have been well
studied and documented in The errors of TEX : see
[35] and an update in [37, pp. 243–339].

3.18 Illustrations by Duane Bibby16

In a remarkable collaboration that has lasted nearly
two decades, the gifted illustrator Duane Bibby has
worked with members of the TEX community to
prepare wonderful drawings for not only Knuth’s
Computers and Typesetting series, but also for sev-
eral LATEX books, and numerous T-shirts and mugs
at TEX Users Group conferences.

It was such a pleasure for many of us to meet
Duane for the first time at this meeting, to hear his
talk on his long collaboration with Donald Knuth,
and to see how the TEX lion and METAFONT lioness
evolved.

Duane Bibby’s drawings, and Donald Knuth’s
wit and superb writing skill, add light and humor to
what might otherwise be a dry and daunting manual
on the complex subject of typography.

4 What did TEX do wrong?

It is now time to drop our laudatory stance, and
become a grinch: nothing is perfect, not even TEX,
and with 25 years of hindsight, it is time to assess
what it did wrong.

There has been a lot of computer technology
developed since 1977 that few could have predicted
then, including personal computers, high-quality
printers, PostScript, PDF, window systems, and the
World-Wide Web. Hardware costs have dropped,
and speed and capacity have grown, at a pace that is
unparalleled in the history of human development.
Most of the criticisms of this section would have
been both unfair and unforeseen when TEX was first
designed.

4.1 No rigorous grammar

The biggest deficiency in TEX that has always
bothered me is that it is not based on a rigorous
programming-language grammar. This is particu-
larly puzzling when its author is the founder of mod-
ern LR parsing [28], and that work is cited among
the great papers in computer science [43]. When I
asked Don about this once, he jokingly responded
that he didn’t believe in grammars!

Most programming languages designed since

16 This section of my address was written long before I
found out that Duane would be attending the conference.

TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address 15

Nelson H. F. Beebe

Algol 60 have been based on grammars, but TEX
is not. Lack of an independent grammar means
that the only truly reliable parser of TEX input
is TEX itself, yet long experience with other pro-
gramming languages has shown that rigorous gram-
mars can lead to highly-reliable machine-generated
parsers (Unix yacc, Berkeley byacc, GNU bison,
and Holub’s occs [24] are good examples of parser
generators). Parsers are needed not only in com-
pilers, like TEX, but also in prettyprinters, syntax
checkers, tag extractors (ctags and etags), and
other tools that operate on the input language for
purposes other than its execution.

Precisely because human programmers are fal-
lible, it is important to have multiple independent
implementations of any significant program, and to
have implementations available on several machine
architectures. Only when those programs produce
identical output can one have any confidence in
their results. Languages like awk, Cobol, Fortran,
C, C++, Common Lisp, and Java enjoy this diver-
sity, while others, like axiom, C#, delphi, maple,
mathematica, perl, python, ruby, reduce, sas,
spss, tcl, and Visual Basic, do not. Since modern
compilers are usually very much bigger than the
programs that they process, when a bug or other
unexpected behavior surfaces, it is legitimate to
ask whether the bug is in the compiler, or in the
program. If the misbehavior disappears when the
compiler or platform changes, suspicion rests on the
compiler.

The lack of diversity for TEX has been less of
a problem, simply because of the enormous talent
behind it. Nevertheless, it is good to see the appear-
ance of NT S as an independent implementation of
TEX.

4.2 Macro, not programming, language

TEX’s extension language is a macro language, not
a proper programming language. Every TEX macro
programmer who has implemented a nontrivial op-
eration has suffered from the difficulty of TEX’s
macro language. Things that are simple to do in
other languages designed for text processing are
frequently very painful in TEX. Macro languages
have too many side effects, and lack the power of
true programming languages.

Lisp programmers would argue that the proper
approach is to eliminate that separation between
programs and data: making data look like programs
means that the data can be a program, and that has
been found to produce great power and generality.
Luigi Semenzato and Edward Wang at the Univer-
sity of California, Berkeley, investigated a Lisp-like

interface to TEX [54].

4.3 Too much hard coded

The limited 18-bit address space of the 36-bit DEC

PDP-10 architecture17 of TEX’s original development
platform, and severe limitations of the Pascal pro-
gramming language, constrained many aspects of
the program.

There are many examples of objects inside
TEX whose size is fixed when TEX is compiled for
a particular platform: the dreaded TeX capacity

exceeded message is familiar to every serious TEX
user.

Fortunately, in recent years, the Web2C imple-
mentation has replaced many of these fixed limits by
configurable limits settable in startup files, although
other implementations may not be so flexible. Nev-
ertheless, modern programming practice in the GNU

system and others is that software should have no
hard limits, other than those found to be available at
run time, or enforced by the underlying architecture.

It isn’t just table sizes that are hard coded
in TEX: many algorithms are too, notably, hy-
phenation, line breaking, page breaking, and float
placement. While TEX provides powerful ways to
influence these algorithms, the algorithms cannot be
ripped out and replaced dynamically at run-time,
and they cannot be changed in TEX itself without
producing a program that is no longer allowed to
call itself TEX.

4.4 Too many fixed-size objects

The need to squeeze a large program and data
into the small PDP-10 address space led to further
economizations in TEX that are difficult to remove,
because the sizes of various objects themselves are
encoded in bitfields of other data structures. If only
8 bits are available for the size, then only 28 = 256
objects can be created. This limitation is seen in
the number of various types of TEX boxes, category
codes, token lists, registers, and skips. Worse, it
permeates TEX’s internal source code, making it
very hard to eliminate.

Enlarging these limits was one of the major
design goals of ε-TEX, which is extended from TEX
with a change file that is about a third the size
of TEX itself. For comparison, pdfTEX augments
TEX’s DVI output with a completely new, and very
complex, output form: PDF; its change file is about
40% the size of TEX.

17 In modern terms, 1.3M characters or 0.25M words.

16 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

25 Years of TEX and METAFONT: Looking Back and Looking Forward

4.5 Too many global variables

In the 60-year history of computing, program after
program has foundered in complexity arising from
too much global state. When code depends on global
variables that can be changed arbitrarily at any
place in the code, it becomes impossible to reason
about the correctness of the program. Redesigns
of the relatively small and simple Unix operating
system in the form of Mach, Solaris, and GNU/Linux
all attempted to sharply limit the problem of global
state, by repackaging the software into independent
layers with simple, and well-defined, interfaces.

TEX has too many global variables and macros
that can be changed anywhere, at any time, by any
user.

4.6 Too little tracing

For debugging, and for understanding unfamiliar
packages, it is desirable to be able to request tracing
of the use and (re)definition of commands, files,
and registers. Although TEX provides a few tracing
commands, their output usually overwhelms the
user, because there is no way to restrict the tracing
to a specified set of names. Also, TEX provides
no way to record where definitions happen, yet
precisely that information is needed to prepare
customizations.

4.7 Name collision

Older programming languages, such as Algol, For-
tran, Cobol, Pascal, and C all have very limited
control over name visibility. Usually, this amounts
to just local variables (defined in a function or sub-
routine), and global variables, known throughout the
program. C adds a bit more control in offering file-

global variables that are known throughout a single
source file, but inaccessible elsewhere.

Descendants of these languages, such as Ada,
Fortran 90, Cobol 2002, Modula, C++, Java, and
C# all introduce additional constraints through
modules or namespaces to allow compartmentaliza-
tion and control of names.

Sadly, TEX has effectively only one level of
naming: global. Although names can be defined
inside braced groups, the size of groups can be
severely constrained by internal buffer sizes, and
in any event, groups are anonymous: you cannot
refer to names in other groups except by nasty or
tricky subterfuges that make program maintenance
impossible.

Lisp too had this defect, but it became common
practice to use long descriptive names that incor-
porate a package prefix, such as LaTeX-pageref-

with-completion from my LATEX editing-support
package for Emacs. However, with default category
codes, TEX limits command names to just the Latin
letters, so the only way to avoid inadvertent colli-
sions with names in other packages is to use long
names, and the only way to make them readable is
to use mixed capitalization, such as (in the LATEX
kernel) \DeclareRobustCommand.

The lack of hooks into the entry and exit of
commands means that packages are often forced to
redefine macros used by other packages. Loading of
multiple packages sometimes results in puzzling, and
hard-to-debug, interactions of these redefinitions.

4.8 Inadequate I/O

Like Fortran, TEX’s I/O model is based on lines,
rather than characters, with the additional restric-
tion that braces (or characters of that category)
must be properly nested. By contrast, the C pro-
gramming language provides getc() and putc()

primitives to read and write single characters, and
I/O of higher-level objects can be built from these
alone.

Java, C++, and C# go a step beyond C in
generalizing I/O to a stream of data in which pro-
cessing filters can be arbitrarily, and transparently,
inserted. The streams need not even be directed
to and from physical files, but can instead refer to
strings in memory, or network devices, or display
devices, or virtual files.

Unlike most other programming languages,
TEX does not offer anything analogous to Fortran’s
formatted I/O or C’s equivalent of fscanf() and
fprintf(), which provide detailed control over the
interpretation of input, and the appearance of out-
put. A satisfactory I/O library is astonishingly
complex: it deserves to be rigorously defined, stan-
dardized, and incorporated in every implementation
of the programming language.

The deceptively-easy task of expressing binary
fractional numbers as human-readable decimal num-
bers led TEX’s author to write a famous paper called
A Simple Program Whose Proof Isn’t [36]. Related
articles that finally properly solved the number-base
conversion problem have appeared only since 1990
[1, 7, 21, 56, 57].

4.9 Character set limits

TEX processing is based entirely on a model of
characters that can be represented as a single 8-bit
byte, in the ASCII encoding. This was not much
different from other software of the 1970s, and at
least, TEX could handle lowercase letters, and with
the help of control symbols and control words, even

TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address 17

Nelson H. F. Beebe

decorate letters with accents.
However, it was clear that 28 = 256 characters

are not enough, not even for European use. ISO has
already standardized ten different ISO-8859-n code

pages based on the Latin alphabet, with a few more
to support Arabic, Cyrillic, Hebrew, and Thai.

Two separate efforts to standardize much larger
character sets began in the early 1990s: Unicode and
ISO 10646. After some divergence, the two groups
are fortunately now coordinated, with Unicode guar-
anteed to be a strict subset of ISO 10646. Several
operating systems have adopted Unicode as their
standard character encoding.

Unicode developers hold that 21 bits are suffi-
cient to encode all real writing systems in human
history. This is a repertoire of about two million
characters, of which 96,283 are encoded in the lat-
est version [59]. Of these, 70,203 are ideographic
characters from Chinese, Japanese, Korean, Yi, and
historical Vietnamese [44, 45].

The large number of Unicode characters means
that neither 8-bit nor 16-bit values suffice. 24-bit
words are impractical in current computer architec-
tures, and native 32-bit words waste a third of the
bits. In practice, then, Unicode is represented in
one of several encodings that require one or more 8-
bit or 16-bit chunks to represent a single character.
One of these, UTF-8, contains ASCII and most ISO-
8859-1 characters in their normal positions, but uses
up to four bytes for some other characters. UTF-8

was developed at Bell Laboratories for the Plan 9
operating system, and because most of the world’s
existing computer files are in either ASCII or ISO-
8859-1, they are already Unicode-conformant when
interpreted in the UTF-8 encoding.

Existing programming languages have usually
been defined with the assumption that a single
character can be held in an 8-bit byte, and the
effects of that assumption are deeply rooted. Most
languages are only beginning to address the problem
of how to deal with Unicode data, and none of the
initial attempts, in C, C++, C#, and Java, are yet
very satisfactory.

TEX too requires massive changes to handle
Unicode, and although the work on Ω was originally
based on a change file for TEX, its developers
report that a completely new program, in C++, will
probably be needed.

4.10 No input filters

The code-page morass mentioned in the previous
subsection has an immediate impact on TEX doc-
uments written in a variety of European languages.
In particular, the encoding must be known, and then

translated to TEX’s internal expectations, before
TEX can process the document. Filesystems rarely
record character-set information, so documents have
to do so themselves.

TEX processing would be easier if it had input
filters that could transparently supply the needed
translations. It would have been relatively easy
to implement them by making the internal xchr[]
array [30, §21, p. 10] accessible to the TEX user.18

Instead, TEX erroneously assumes that character
sets are a unique property of each platform, and
therefore, can be hard-coded into the implementa-
tion on each system. That assumption was correct
for EBCDIC on IBM mainframes versus ASCII ev-
erywhere else, but it was false as soon as code pages
were introduced.

The need for input translation is so strong
that Ω developers from an early stage in its design
introduced Ω translation processes (OTPs).

4.11 No color state

In 1977, there were no low-cost color output devices,
and some commercial typesetting systems were in-
capable of handling color. Consequently, TEX is
completely ignorant of color. However, color is a
text attribute much like the current font, although
it can also be a page-background or region-shading
attribute. In particular, once set, the current colors
should remain in effect across line breaks and page
breaks, just like the current font does.

In order to make it possible to process selected
pages of DVI files, TEX records in the DVI postamble
a list of all required fonts, and at the start of
each page description in the DVI file, it records
the current font, so that the page can be rendered
independently of all preceding pages.

In the same way, the current colors are needed
at page start. Since TEX doesn’t provide for color,
its support has to come through the \special com-
mand. However, TEX lacks a hook (code fragment)
to be executed when a page is shipped out to the
DVI file (actually, it does have one, but output
routines are very fragile, and depend on the macro
package in use), so there is no clean way to record
the current colors on each page. This means that
DVI drivers that support color are now forced to
read the entire DVI file, parse all of its \special

commands, and build up a list of starting colors for
each page, even if the user just wants to display a
single page. Fortunately, modern machines are fast,
so most users probably never notice the delay.

18 Some implementations have extended TEX to provide
such access.

18 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

25 Years of TEX and METAFONT: Looking Back and Looking Forward

4.12 No graphics

In the 1970s, commercial typesetters had no graph-
ics capabilities. Although researchers in computer
graphics had produced a rudimentary draft graphics
standard [2] a few months before work began on
TEX, it took two more years for a more detailed
draft standard [3], and much of that specification
could not be implemented portably. Sadly, graph-
ics standardization splintered and foundered in the
1980s, and today, the ISO graphics standards that
exist are largely ignored by programmers.

Nevertheless, a small number of graphics oper-
ations, notably dot and line primitives, an elliptical
arc primitive, and a region fill, would have been suf-
ficient to represent most technical drawings. They
could have been compactly encoded in the DVI file,
and reasonably easily translated by DVI drivers.

LATEX’s picture mode can emulate curves by
drawing tiny squares along the curve path, but their
internal representation is extremely inefficient, and
even a few such curves soon exhaust TEX’s memory.

Today, most graphics in TEX documents is
represented by PostScript (released in 1984) figure
inclusions.

4.13 One page at a time

Memory constraints forced TEX to handle page
creation by building up a sequence of objects on
the main vertical list, asynchronously invoking an
output routine as the list contents get big enough to
fill a single output page.

However, in high-quality manual typesetting,
page-layout design proceeds in pairs of facing pages.
With a lot of work, it would be possible to program
a TEX output routine for handling pages in pairs,
but the task is decidedly nontrivial, and in LATEX,
the output routine is viewed as a fragile part of the
kernel that cannot be altered without great risk of
breaking other parts of LATEX.

4.14 Multicolumn deficiency

Multicolumn output is challenging, for three main
reasons:

1. Narrow columns make it difficult to maintain
right-margin justification without excessive hy-
phenation, or objectionable whitespace. Every
reader of a printed newspaper is familiar with
these problems.

2. Esthetic considerations require columns to be
balanced, perhaps all with the same length, or
with all but the last of uniform size.

3. Complex documents may require changing col-
umn formatting within a single page. In these

proceedings, for example, article front matter is
in one-column mode, but article text is in two-
column mode. Some American Physical Soci-
ety journals have particularly complex column-
formatting practices, and newspaper layout is
even more difficult.

Although it has been possible to prepare style
files to support multicolumn typesetting, such as
Frank Mittelbach’s multicol package [46] and
David Carlisle’s and Arthur Ogawa’s REVTEX pack-
age [50] designed for the American Physical Society,
and also style files to support the flowing of text
around figures [17, §6.4], only a handful of TEX
wizards are capable of creating such packages. I
suspect that all of these packages can be broken in
certain cases: while they may be quite good, they
are not robust.

Had TEX been designed from the beginning
to typeset into a list of regions of arbitrary user-
specifiable shapes, instead of into a single rectan-
gular page, even the most complex magazine and
newspaper layouts could readily be accommodated.

As the doctoral work of Michael Plass [40, 51]
and Stefan Wohlfeil [61] has shown, line-breaking
and page-breaking algorithms are extremely diffi-
cult. In my view, they should be implemented in
a dynamically-loaded module in the programming
language that TEX doesn’t have.

4.15 Not general enough for all writing
directions

TEX expects text to be laid out horizontally from
left to right. While this works for many languages,
it doesn’t handle right-to-left Semitic languages, or
vertical writing directions (left to right across the
page, or the reverse) needed for Chinese, Japanese,
Korean, and Mongolian.

Donald Knuth and Pierre MacKay were able
to extend the TEX program to handle mixtures of
left-to-right and right-to-left text [27], producing
the TEX--XET derivative, and ε-TEX now includes
that extension. In Semitic languages, numbers are
written from left to right, so those languages always
need bidirectional typesetting. Similar extensions
have allowed TEX derivatives to handle some of the
vertical typesetting needs in East Asia, although I
suspect that Mongolian remains unsupported.

In the troff world, Becker and Berry [5] were
able to extend that program for tri-directional type-
setting, but could not handle a fourth writing direc-
tion.

In our global community, a typesetting system
must be able to handle all traditional writing direc-
tions, including mixtures of all of them in a single

TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address 19

Nelson H. F. Beebe

document (e.g., a Chinese literary article citing En-
glish, Arabic, and Mongolian texts).

4.16 No DVI output pipe

TEX expects to write an entire DVI file under its
exclusive control, relinquishing it to others only
when TEX is done. Unix pipelines demonstrate that
it is very useful to sample program output before it
is complete, but Unix was only just emerging from
Bell Laboratories when TEX design began.

In the early 1980s, in unpublished work demon-
strated at early TEX Users Group conferences, David
Fuchs at Stanford University ported TEX to the
cramped and crippled environment of IBM PC DOS,
and then in a tremendous feat, extended TEX to
allow immediate communication with a screen pre-
viewer. His work became a commercial product, Mi-
croTEX, but its vendor shortly thereafter withdrew
it from the market.

Later, Blue Sky Research produced Lightning
Textures on the Apple Macintosh, which retypesets
the document as changes are made in its input files.

More recently, Jonathan Fine in Cambridge,
UK, developed texd [12], a permanently-running
resident daemon TEX that can be called upon at
any time to typeset a fragment of TEX code, and
return DVI code.

Certainly, TEX’s descendants should learn from
these extensions.

4.17 No sandbox

When TEX was born in 1977, the Arpanet was eight
years old, but still an infant, with fewer than a
hundred hosts and a few thousand users with a
strong community spirit. Today, the Internet has
hundreds of millions of hosts, and is a decidedly
hostile environment.

TEX does not offer a way of restricting its
actions to benevolent ones. Although we noted
earlier that TEX cannot run external programs, it
can nevertheless (over)write a file anywhere in the
file system that the user has write access to.

PostScript also has this problem, but the de-
signers of the ghostscript implementation of that
language added the SAFER option to limit filesystem
access.

The TEX Live implementation of TEX contains
changes to restrict output to the current directory,
and prevent writing special configuration files that
might open security holes, but most other imple-
mentations lack these features.

4.18 Uncaught arithmetic overflow

To enhance reliability, TEX catches arithmetic over-

flow from multiplication, but curiously, not from ad-
dition [30, §104], which you can readily demonstrate
with this small example:

\count0 = 2147483647

\advance \count0 by \count0

\message{ADD: count0 = \the \count0}

\count0 = 2147483647

\multiply \count0 by 2

\message{MULTIPLY: count0 = \the \count0}

\bye

TEX reports in the output log:

ADD: count0 = -2

! Arithmetic overflow.

l.8 \multiply \count0 by 2

MULTIPLY: count0 = 2147483647

When I asked Don about this, he responded that
there were too many places in TEX where integer
addition was done. In my view, that is simply a
design flaw: all of those additions should be done
in one function that is called wherever needed. It is
much better to get the right answer a little slower,
than to get the wrong answer fast.

TEX is not alone in partly, or wholly, ignoring
integer overflow: many CPU architectures, operat-
ing systems, and programming languages do too.
Several major civilian, government, and military
disasters have subsequently been attributed to arith-
metic overflow [49].

4.19 32-bit precision too limiting

Although TEX’s design choice of using fixed-point
arithmetic was critical in achieving its goal of identi-
cal results everywhere, there are applications where
32 bits are insufficient. One of them is the im-
plementation of trigonometric functions needed for
computing text rotations, and another is fixed-point
division.

4.20 No floating-point arithmetic

When TEX was designed, floating-point arithmetic
systems varied widely, with 24-bit, 32-bit, 36-bit,
48-bit, 60-bit, and 64-bit sizes on various platforms.
Worse, their implementations were sometimes seri-
ously flawed, with anomalies like (z + z) 6= 2 × z,
z 6= 1 × z, y × z 6= z × y, and if (z 6= 0.0) x = y/z
terminating with a zero-divide error. It would thus
have been untenable for TEX to use native hardware
floating-point arithmetic for calculations that affect
output appearance.

Starting in the late 1970s, a much-improved
floating-point arithmetic system was designed by

20 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

25 Years of TEX and METAFONT: Looking Back and Looking Forward

an IEEE working group. Although the system
was not standardized until 1985 [25], it was first
implemented in the Intel 8087 already in 1980. This
IEEE 754 floating-point arithmetic system has been
part of almost every new computer architecture
designed since then.

Despite standardization, variations in internal
details of specific hardware implementations of IEEE

754 prevent getting identical results everywhere.
However, but for TEX’s seniority, TEX could have
had its own software implementation of IEEE 754

arithmetic that behaved identically everywhere, and
it could have had its own repertoire of elementary
functions (trigonometric, logarithmic, exponential,
and so on) that would have greatly simplified some
typesetting applications.

4.21 No conventional arithmetic
expressions

TEX’s commands for integer arithmetic, illustrated
in the overflow example given earlier, are incon-
venient: it would have been much better to have
a conventional arithmetic-expression facility. It is
possible, though difficult, to do so in TEX’s macro
language [20]. The LATEX calc package only pro-
vides arithmetic expressions in a limited context.

Expression parsing of one of the first examples
given in books on compiler design, and is not
particularly difficult to implement; it should have
been in TEX from the beginning.

4.22 No word and line boundary markers

With any document formatting or markup system or
typesetting system, one sometimes needs to extract
text from the formatted output, perhaps because the
input is not available, or cannot be deduced from the
input without implementing a complete parser.

While input usually reflects output, this need
not be the case, as shown by David Carlisle’s
seasonal puzzle [8]. His plain TEX input file from
the CTAN archives19 is reproduced in Figure 3, and
has no apparent relation to the typeset output, a
well-known poem.

Unix tools such as antiword, dehtml, deroff,
detex, dexml, dvi2text, dvi2tty, pdftotext, ps-
2ascii, and pstotext attempt to do this text
extraction for common document formats, but none
is entirely successful, because they all have to apply
fragile heuristics to deduce word and line boundaries
from spacing.

Becker and Berry [5, p. 134] pointed out that

19 http://ctan.tug.org/tex-archive/macros/plain/

contrib/xii.tex.

\let~\catcode~‘76~‘A13~‘F1~‘j00~‘P2jdefA71F~‘7113jdefPALLF

PA’’FwPA;;FPAZZFLaLPA//71F71iPAHHFLPAzzFenPASSFthP;A$$FevP

A@@FfPARR717273F737271P;ADDFRgniPAWW71FPATTFvePA**FstRsamP

AGGFRruoPAqq71.72.F717271PAYY7172F727171PA??Fi*LmPA&&71jfi

Fjfi71PAVVFjbigskipRPWGAUU71727374 75,76Fjpar71727375Djifx

:76jelse&U76jfiPLAKK7172F71l7271PAXX71FVLnOSeL71SLRyadR@oL

RrhC?yLRurtKFeLPFovPgaTLtReRomL;PABB71 72,73:Fjif.73.jelse

B73:jfiXF71PU71 72,73:PWs;AMM71F71diPAJJFRdriPAQQFRsreLPAI

I71Fo71dPA!!FRgiePBt’el@ lTLqdrYmu.Q.,Ke;vz vzLqpip.Q.,tz;

;Lql.IrsZ.eap,qn.i. i.eLlMaesLdRcna,;!;h htLqm.MRasZ.ilk,%

s$;z zLqs’.ansZ.Ymi,/sx ;LYegseZRyal,@i;@ TLRlogdLrDsW,@;G

LcYlaDLbJsW,SWXJW ree @rzchLhzsW,;WERcesInW qt.’oL.Rtrul;e

doTsW,Wk;Rri@stW aHAHHFndZPpqar.tridgeLinZpe.LtYer.W,:jbye

Figure 3: David Carlisle’s seasonal puzzle file for
plain TEX.

they could not apply their method for tridirectional
text to TEX because of its lack of line-boundary
markers.

When text is typeset, TEX usually knows where
each word begins and ends, and where it has used
hyphenation for improved line breaking; sadly, this
important information is lost in the DVI output.

Given the complexity of deciphering TEX input,
checks for spelling, doubled-word, and delimiter-bal-
ance errors really should be done on text extracted
from the DVI file.

4.23 No paper size

TEX’s view of a page is a galley of material of
unknown width and indefinite height, measured in a
left-handed coordinate system beginning at an offset
from the top-left corner of the page. The main
body of each page is expected to fill a rectangle
of size \hsize × \vsize (in LATEX, \textwidth ×
\textheight). The corner offset of its (0, 0) point
is, regrettably, a parochial one inch from each edge.

TEX never admits that there might be a phys-
ical page of one of several common standard sizes
and names (e.g., A, A4, quarto, foolscap, JIS-B5,
. . .), and consequently, users who want to adjust
their text dimensions to suit a particular paper
size may have to tweak several different dimension
parameters.

4.24 No absolute page positioning

Because of the developing page galley, within the
input document, there is no way to refer to an
absolute position on the output page, such as for
typesetting a company logo, or displaying a red-
lettered document-security classification. The only
way that this can be achieved is to hook into the
fragile output routine, most safely by attaching the
desired material to running headers. Even that
is not foolproof, because those headers might be

TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address 21

http://ctan.tug.org/tex-archive/macros/plain/contrib/xii.tex
http://ctan.tug.org/tex-archive/macros/plain/contrib/xii.tex

Nelson H. F. Beebe

suppressed, such as on even-numbered pages at
chapter end.

It should have been relatively simple for TEX to
provide absolute-page-position commands.

4.25 No grid typesetting

The boxes-and-glue model of typesetting that TEX
exploits so successfully has one drawback: if it is
required that all typeset material line up on a grid,
it can be extremely difficult to guarantee this in
TEX. The reason is that there are a great many
dimensional parameters in TEX that have a certain
amount of stretch associated with them, and it isn’t
possible to tell TEX that it should limit spacing and
stretch to multiples of a grid unit. Also, in the
presence of inherently two-dimensional material, like
mathematics, music, figures, and tables, it is difficult
in TEX to guarantee grid-aligned results.

Even if high-quality typography would reject
grid-based typesetting, there is nevertheless a de-
mand for it for certain document types, and it needs
to be available in the typesetting system.

4.26 No comments in DVI files

The DVI format permits a single comment in the
preamble, but has no mechanism for embedding
comments anywhere else. Programmers have always
found comments useful, and a few other programs
besides TEX can produce DVI files. The \special

command could, of course, be used for this purpose,
but it is already rather a mess.

Some people feel that it would be useful to
preserve all input in document-formatter output, so
that the original text could be recovered. Consider,
for example, a programmer faced with the task after
a corporate merger of updating company names in
all documentation, much of which exists only in DVI,
PostScript, and PDF format. Specially-formatted
comments would be one way for input to be hidden
in the output.

4.27 No rotated material

TEX provides no direct way to typeset material at
some angle relative to the horizontal. This capa-
bility is sometimes required for landscape display of
tables, and for labeling of axes and curves in graphs.

PostScript allows text to be typeset along arbi-
trary curved paths, and allows the coordinate sys-
tem to be scaled, rotated, and translated. Text rota-
tion later became possible from TEX via \special

commands for a suitable DVI-to-PostScript driver,
as described in [17, Chapter 11].

5 What did METAFONT do right?

METAFONT’s manual [31] has many similarities
with TEX’s [29], including charming illustrations by
Duane Bibby.

METAFONT is used directly by many fewer peo-
ple than TEX is: although we all use, and sometimes
generate, fonts, few of us have the interest, need, and
skill to design them. Indeed, authors of books and
journal articles rarely have any choice: publishers,
editors, designers, and marketing staff have already
made all font decisions.

The next two sections are therefore consider-
ably shorter than the preceding pair on TEX.

5.1 Open software

The most important done-right feature of META-
FONT is that it is an open-source literate program

[32], and the same favorable comments made above
for TEX apply to METAFONT.

This openness made it possible for John Hobby
to produce METAPOST [22] [23, Chapter 13], a
substantial modification of METAFONT intended for
creation of drawings, as well as fonts, with output
in PostScript instead of GF and TFM files.

5.2 Font-design kernel

METAFONT has a small kernel of primitive com-
mands that are highly suited to font design.

5.3 Programming language

Unlike TEX, METAFONT is a true programming
language, though perhaps not as general as one
might like.

One of the very interesting features of the
METAFONT language is the ability to define char-
acters in terms of constraint equations, to ensure,
for example, that both legs of the letters H, M, and
N have the same width. Font formats like PostScript
Type 1, TrueType, and OpenType provide a feature
called hints with a similar purpose, but they are less
powerful than METAFONT equations.

Although TEX actually does use native floating-
point arithmetic for some internal glue calculations
that cannot affect line breaking or page breaking,
METAFONT has no floating-point arithmetic what-
soever in either the language, or the program.

5.4 ‘Meta’ fonts

A superb achievement of Knuth’s work on the
Computer Modern family of typefaces [33] is that he
was not only able to reproduce closely an existing
traditional font (Monotype Modern 8A, used in
his Art of Computer Programming treatise), but

22 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

25 Years of TEX and METAFONT: Looking Back and Looking Forward

to generalize the character programs with a few
dozen well-chosen parameters in such a way as to
allow changes in those parameters to produce several
different styles that are still recognizably members
of the Computer Modern type family, and to allow
tiny tweaks to those characters to accommodate the
imaging characteristics of various output devices.

Before METAFONT, no font designer had the
tools to pull off such a design coup. Since then, only
Adobe’s no-longer-supported Multiple Master font
technology has attempted to do something similar,
and even then, the results were much less flexible
than METAFONT can produce, and only a few such
fonts were marketed. For an Adobe insider’s view of
their failure, see [10].

For technical text, the lack of a broad choice of
families of related fonts is a serious problem: Alan
Hoenig [23, pp. 316–344] shows 29 samples of the
same page of a scientific article with various font
choices.

Apart from Computer Modern, there are only
a few families with a repertoire that includes a
typewriter font and a mathematical font: Bigelow
& Holmes’ Lucida is probably the best example,
and there was once talk of Adobe extending the
Stone family to add them. The widely-used Times
family lacks Times-like sans-serif and typewriter
fonts: most books set in Times use Helvetica and
Courier for that purpose, but they are a poor match.

5.5 Shaped pens

An interesting feature of METAFONT is that draw-
ing of characters can be done by moving a pen of a
user-definable shape along a curved path: the enve-
lope of the pen shape traces strokes of the character.
The tracing can add dots to, or subtract dots from,
the drawing. Also, the dots need not just be on or
off: they can have small signed integer values. At
output time, the positive values become black dots,
and the zero or negative values, white dots.

This can be compared with character descrip-
tions in PostScript Type 1, TrueType, and Open-
Type fonts, which are based on describing paths that
are then stroked with a fixed-shape pen, or closed
and filled with a solid color.

5.6 Open font formats

The formats of the GF and TFM font files produced
by METAFONT are well documented in [31, Appen-
dices F and G] and [32, §45 and §46], and the gftype
and tftopl utilities in standard TEX distributions
can produce human-readable dumps. The compan-
ion program pltotf can convert a possibly-modified
property-list dump back into a TFM file.

This situation should be contrasted with the
secrecy surrounding most commercial fonts before
TEX: even the PostScript Type 1 font format was
not documented until competition from the True-
Type camp forced Adobe to publish the black-and-
white book [14], and the hinting in some True-
Type and OpenType fonts is encumbered by vendor
patents.

6 What did METAFONT do wrong?

6.1 Bitmap output premature

In the 1970s, typesetting technology was moving
away from the 500-year tradition of hot-lead type,
and the much more recent optical-mask generation
of character shapes, to a digital representation of the
shapes in grids of tiny dots that can be displayed on
dot-matrix, ink-jet, and laser printers.

Although METAFONT character descriptions
are in terms of continuously-varying pen strokes,
the shape that is recorded in the GF file is just a
compressed bitmap at a particular resolution. This
made the job of DVI translators easier: they could
either copy those little bitmaps into a large page-
image bitmap, or they could encode them in a
bitmap font format understood by a particular out-
put model, such as Hewlett-Packard PCL or Adobe
PostScript.

One significant effect of this decision is that the
font resolution must be chosen at DVI translation
time. That is acceptable when the DVI output
is sent immediately to an output device with a
matching resolution and imaging technology.

A few years later, PostScript appeared with
a different model: fonts would normally be repre-
sented by outline shapes, and those outlines would
be either resident in, or downloaded to, a PostScript
interpreter in the printing device. Since that inter-
preter could be specially tuned for each device, it
could handle the conversion of shapes to bitmaps.
Since hints are embedded in the font files, rather
than the font programs, they could be applied dur-
ing rasterization. With initial laser-printer reso-
lutions of about 300 dots/inch, typical characters
contained only a few hundred dots in the bitmap,
and that rasterization could be done acceptably fast
at print time, as long as shapes, once converted to
bitmaps, were cached for reuse.

The benefit of the PostScript (and later, PDF)
approach is twofold: dependence on device reso-
lution and device-imaging characteristics is moved
from fonts to output devices, and character shape
information is preserved, so that documents viewed

TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address 23

Nelson H. F. Beebe

under any magnification will retain smooth charac-
ters.

While PostScript Type 1 font outline represen-
tations of all Computer Modern fonts are now freely
available, it has taken nearly two decades, and a lot
of hard work by several groups of people, to achieve
that.

6.2 Pen shapes

While pen shapes are a powerful feature, their use
in fonts designed with METAFONT makes it very
hard to translate to other font formats that lack
that feature. This can only be called a misfeature
of METAFONT if one needs to cater to other font
formats, but most of us have to.

For a long time, most PostScript-producing DVI

drivers simply output fonts as PostScript Type 3
bitmap fonts, with the result that when PDF con-
version became commonplace, screen quality was
horrid.

This need not have been the case, since Adobe’s
own co-founder, and chief architect of PostScript,
had long ago shown how to convert high-resolution
character bitmaps to gray-scale displays [60], and
the xdvi translator on Unix systems has always done
a superb job of bitmap-font display.

It took ten years after the appearance of PDF

for a new release of Adobe’s own Acrobat Reader
to improve the display of bitmap fonts, and even
then, the improved version is not yet available on
any Unix platform.

Fortunately, researchers at the Nottingham font
conversion project have found clever ways to replace
bitmap fonts in PostScript files with outline fonts
[52]. Their software should allow repair of a lot of
existing PostScript files, such as Web documents,
for which TEX source files are unavailable. Once
converted to PDF, those files should have much
better screen readability.

6.3 Curve representations

The computer graphics and computer-aided design
community in the 1960s and 1970s developed well-
understood, and widely-implemented, representa-
tions of curves as special polynomial forms known
as Bézier and B-spline curves, and later, nonuni-
form rational B-splines (NURBs). The first two
can represent conic sections, including circular arcs,
only approximately, but NURBs can describe them
exactly.

The interest in these special polynomials is that
they are bounded by a companion polyline whose
vertices can be moved around to obtain smooth, and
humanly-predictable, variations in curve shapes.

Ordinary polynomials lack this important design-
control property: small changes in their parameters
can often produce large, and surprising, changes in
curve shape.

John Warnock, the PostScript architect, had
learned about these curve representations in courses
at Utah, and realized that they could be used to
describe letter shapes, just as well as the shapes
needed in aircraft, automobile, and ship design for
which they were originally developed. PostScript
Type 1 fonts are therefore based on cubic Bézier
curve segments.

METAFONT supports Bézier curves, but also
some more general curve types with curl and ten-
sion parameters that are difficult to reduce to the
simpler curves. The tex-fonts mailing list20 in
2003 carried extensive debates about how to handle
these reductions, since there is considerable interest
in automated conversion of fonts between any pair
of popular formats.

The subject of this subsection is thus not really
a criticism of METAFONT, but it has nevertheless
proved a serious stumbling block for font-format
conversion.

6.4 Inadequate I/O

Like TEX, METAFONT too has inadequate I/O,
but the situation is even worse. TEX can open
an arbitrary filename for output, but the META-
FONT language can only write to its log file, which
is cluttered with lots of other material beyond
programmer control.

One of the things that METAFONT can do is
report the outlines that it discovers as it sweeps the
pen shape around the character. Some of the work
in translation of METAFONT output to PostScript
Type 1 form has used that trace information, but
the task is much harder than it could have been
with a more powerful I/O model.

6.5 Font sizes

Although METAFONT can be used to produce fonts
with more than 256 characters, such as would be
needed for some East Asian languages, the magic
number 256 is still present in a way that suggests
the format may not be well-suited to alphabets
or syllabaries with more than 256 characters of
arbitrary dimensions. TEX itself cannot handle fonts
with more than 256 characters.

20 http://www.math.utah.edu/mailman/listinfo/

tex-fonts/.

24 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

http://www.math.utah.edu/mailman/listinfo/tex-fonts/
http://www.math.utah.edu/mailman/listinfo/tex-fonts/

25 Years of TEX and METAFONT: Looking Back and Looking Forward

6.6 Inflexible character numbering

Font programs for METAFONT contain character
definitions, each beginning with a hard-coded dec-
laration of the position of the character in the font.
These positions then carry over into the output GF

and TFM files. TEX and METAFONT have to agree
on character numbering, so that a TEX character
definition can declare, for example, that the math-
ematics Greek letter Ω is found in the tenth slot in
the Computer Modern roman font. That numerical
position is then fixed, and embedded in at least four
separate files: the METAFONT program file, the two
font files, and a TEX startup file. In practice, the
redundancy is widespread: I found 44 different files
in the CTAN archives that declared the position of
Ω, and that problem is repeated for several hundred
other characters in common use with TEX.

PostScript Type 1 fonts take a different, and
more flexible, approach. Character definitions are
given names in the .pfa (PostScript font ASCII) or
.pfb (PostScript font binary) outline font file, and
both names and numbered positions in the .afm

(Adobe font metric) file. However, the number is
used only for a default position.

What really determines the character position
in the font is the font encoding vector, a list of up
to 256 names that can be specified in PostScript
code outside the font file itself. Only a handful
of standard encoding vectors [4, Appendix E] are
defined and known to all PostScript interpreters,
even though there are thousands of different Type 1
fonts. Most Latin text fonts use the encoding vector
named StandardEncoding, and therefore omit its
definition from the font files.

As shown at TUG 2001 [6], about 20% of Type 1
fonts actually contain more than 256 characters,
even though only 256 can be accessed from one
encoding vector. However, the same font can be
loaded by a PostScript program and assigned differ-
ent internal names and encoding vectors, so with a
little more work, all characters can still be accessed
in single PostScript job.

Had METAFONT used character names instead
of numbers, and provided a TEX-accessible encoding
vector, many of the difficulties in using non-META-
FONT fonts in TEX would disappear, and TEX
virtual fonts would be rarely needed.

6.7 Not adopted by font designers

Many of us expected that professional font designers
would use METAFONT to create new implementa-
tions of old fonts, and entirely new fonts. This has
not happened, despite Donald Knuth’s extensive col-

laboration with noted font designers Chuck Bigelow,
Richard Southall, and Hermann Zapf. Richard in
particular taught us at early TEX Users Group con-
ferences that font designers are highly skilled artists,
craftsmen, and draftsmen; they are not program-
mers, and describing character shapes in an abstract
programming language, like METAFONT, is not an
easy task.

This is unfortunate, because I think that font
designers could make great progress with ‘meta’ness.
Perhaps significant gains will come from an en-
tirely different direction: the important work of Wai
Wong and Candy Yiu presented at TUG 2003 on the
programmatic representation of Chinese characters,
combined with progress in optical character recog-
nition, could make possible the scanning of tens of
thousands of characters, and the automatic creation
of METAFONT programs to regenerate them in a
range of beautiful shapes and styles.

The huge East Asian character repertoire is the
biggest hurdle for font vendors to address as the
world moves to Unicode. Although there are more
than 20,000 fonts with 256 or fewer characters,21

there is hardly a handful of Unicode fonts yet.22

None is even close to complete, and none comes in
a family of styles.

7 Future directions

While TEX, troff, and commercial desktop-
publishing systems can continue to be used as be-
fore, I believe quite strongly that the electronic
representation of documents in the future is going
to involve two key technologies:

1. XML, XML, XML, XML, XML, XML, . . .

2. Unicode and ISO 10646 character encoding.

7.1 XML directions

I have already given economic reasons why publish-
ers are interested in XML. If the archived document
at the publisher’s end is going to be XML, perhaps
authors should be writing in XML to begin with.
The major problem seems to be the lack of good
XML tools, and a wide selection of sample document
type definitions (SGML and XML DTDs correspond
roughly to LATEX class files).

Like HTML, XML [15] is a particular instance of
the Standard Generalized Markup Language, SGML

[16].
Because SGML is exceedingly complex and gen-

eral, it is very difficult to write parsers for it: two

21 http://www.math.utah.edu/∼beebe/fonts/

fonts-to-vendors.html.
22 http://www.math.utah.edu/∼beebe/fonts/unicode.

html.

TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address 25

http://www.math.utah.edu/~beebe/fonts/fonts-to-vendors.html
http://www.math.utah.edu/~beebe/fonts/fonts-to-vendors.html
http://www.math.utah.edu/~beebe/fonts/unicode.html
http://www.math.utah.edu/~beebe/fonts/unicode.html

Nelson H. F. Beebe

of the best-known freely-available ones are James
Clark’s sgmls23 (22,000 lines of C) and sp24 (78,000
lines of C++ and C).

XML is a reaction to this complexity: its major
design goal is that it should be possible for any
competent programmer to write a working parser
for XML in an afternoon. XML removes much of
the freedom of SGML, and eliminates character-
set variations by adopting Unicode. For most
applications where SGML might be used, XML is
good enough.

I spent several months in 2002–2003 on a joint
book project authored directly in XML (and typeset
by troff, though TEX could have done the job
too if the publisher had provided the needed tools),
and found that the project has not been notably
harder than it would have been with LATEX markup.
Fortunately, there is virtually no mathematics in the
book, because that would have been very painful
to produce in XML with the current state of input
tools.

The major LATEX feature that I’ve missed is the
ability to define new commands to obtain consistent
formatting of certain technical names. Once I’d
prepared a powerful Emacs editing mode for XML,25

input of the more verbose XML tags took about
as few keystrokes as I would have needed with my
LATEX editing mode.26

A significant advantage of XML is that many
markup mistakes were quickly caught by a rigorous
SGML parser before typesetting began: with LATEX,
the mistake would often not be evident until the
typeset output was proofread.

I missed a companion to html-pretty during
the book work, so I ultimately wrote a workable,
but still rudimentary, equivalent for XML.27

7.2 Unicode directions

The biggest difficulty for the future is likely to be
Unicode, not XML.

First, Unicode requires very much larger fonts,
and the few that are currently available lack many
glyphs, including virtually everything that is not a
Latin, Greek, Hebrew, or Arabic relative.

23 http://www.math.utah.edu/pub/sgml/sgmls/.
24 http://www.math.utah.edu/pub/sgml/ and http://

www.jclark.com/.
25 http://www.math.utah.edu/pub/emacs/docbook.el

and http://www.math.utah.edu/pub/emacs/docbookmenu.

el.
26 http://www.math.utah.edu/pub/emacs/latex.el,

http://www.math.utah.edu/pub/emacs/ltxaccnt.el, and
http://www.math.utah.edu/pub/emacs/ltxmenu.el.

27 http://www.math.utah.edu/pub/xmlfixup/: the name
xmlpretty is already in use on the Internet.

Second, Unicode raises the issue of how strings
of characters are to be interpreted and displayed.
Those accustomed to the languages of Europe and
the Americas are used to alphabets, and words
displayed in the same order as they are spelled and
present in the input stream. This is not always so.

Ancient inscriptions were often written in lines
that alternated reading direction, a practice called
boustrophedon, Greek for as the ox follows the plow.

Lao, Khmer, and Thai are based on alphabets
of reasonable size (70 to 116 characters, including
letters, digits, and punctuation), and are written
from left to right. However, in these languages, and
several ancient ones, there are no spaces between
words, only between sentences, as shown in Figure 4.
Without input word-boundary marks, hyphenation
and line breaking are insurmountable problems.

Figure 4: Sample of Khmer text, from Franklin
E. Huffman (ed.), Intermediate Cambodian Reader,
Yale University Press, New Haven and London
(1972), p. 274. There are no interword spaces.
The isolated symbol that looks like a digit 7 is
called khan; it is the Khmer end-of-sentence mark.

Hindi, and several other Indic scripts, are also
based on an alphabet (about 100 characters cover
letters, digits, and punctuation), but characters in
Hindi are often combined into new shapes, and are
often displayed in an order different from their input
sequence, as shown in Figure 5.

−→

Figure 5: A Hindi word, adapted from [59, p. 17],
with circled digits marking the input character
order.

26 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

http://www.math.utah.edu/pub/sgml/sgmls/
http://www.math.utah.edu/pub/sgml/
http://www.jclark.com/
http://www.jclark.com/
http://www.math.utah.edu/pub/emacs/docbook.el
http://www.math.utah.edu/pub/emacs/docbookmenu.el
http://www.math.utah.edu/pub/emacs/docbookmenu.el
http://www.math.utah.edu/pub/emacs/latex.el
http://www.math.utah.edu/pub/emacs/ltxaccnt.el
http://www.math.utah.edu/pub/emacs/ltxmenu.el
http://www.math.utah.edu/pub/xmlfixup/

25 Years of TEX and METAFONT: Looking Back and Looking Forward

While Arabic is a nicely-flowing calligraphic
script written from right to left along a common
baseline, with spaces between words, text justifi-
cation is normally done by stretching horizontal
strokes in letters, instead of the spaces. Also,
each Arabic letter has three shapes, depending on
whether it appears first, medial, or last in the word.

Urdu uses a script closely related to Arabic, but
the language is Indo-European, not Semitic, and
the spoken form is often mutually comprehensible
with Hindi speakers in north India and Pakistan, as
shown in the trilingual dictionary entry in Figure 6.

ghāgar, s.m. (Dahk.), The rope
tied to the foot of an elefant.

Figure 6: An Urdu/Hindi/English dictionary
entry.

Despite its Arabic appearance, characters in
Urdu words tend to march in from the Northeast
Frontier (remember, this is a right-to-left script), in-
stead of hugging a horizontal baseline, as illustrated
by the poem in Figure 7.

Today when my petition was rejected
I asked the Sahib, feeling much dejected,
‘Where shall I go to now Sir? Kindly tell.’
He growled at me and answered ‘Go to Hell!’
I left him, and my heart was really sinking;
But soon I started feeling better, thinking,
‘A European said so! In that case
At any rate there must be such a place!’

Figure 7: Urdu satirical verse of Akbar Ilahabadi.
From Ralph Russell, The Pursuit of Urdu

Literature: A Select History, Zed Books, London
(1992), p. 153.

These are only a small sampling of some of
the difficulties in store as the world moves to a
common character-set encoding. A lot has already
been accomplished, but a great deal more remains
to be done. It has become clear that Ω development

is not just TEX extended for Unicode: a typesetting
system capable of handling all of the world’s writing
systems must be able to do much more than TEX
can.

For further reading on Unicode issues, I recom-
mend Unicode Demystified [13] and Digital Typog-

raphy Using LATEX [58].

References

[1] P. H. Abbott, D. G. Brush, C. W. Clark III,
C. J. Crone, J. R. Ehrman, G. W. Ewart, C. A.
Goodrich, M. Hack, J. S. Kapernick, B. J. Minchau,
W. C. Shepard, R. M. Smith, Sr., R. Tallman,
S. Walkowiak, A. Watanabe, and W. R. White.
Architecture and software support in IBM S/390
Parallel Enterprise Servers for IEEE floating-point
arithmetic. IBM Journal of Research and Develop-
ment, 43(5/6):723–760, 1999. CODEN IBMJAE.
ISSN 0018-8646. URL http://www.research.ibm.

com/journal/rd/435/abbott.html. Besides im-
portant history of the development of the S/360
floating-point architecture, this paper has a good
description of IBM’s algorithm for exact decimal-
to-binary conversion, complementing earlier ones
[56, 9, 36, 7, 57].

[2] ACM/SIGGRAPH. Status report of the Graphic
Standards Planning Committee of ACM/SIG-
GRAPH. ACM SIGGRAPH—Computer Graphics,
11(3), 1977.

[3] ACM/SIGGRAPH. Status report of the Graphic
Standards Planning Committee of ACM/SIG-
GRAPH. ACM SIGGRAPH—Computer Graphics,
13(3), August 1979.

[4] Adobe Systems Incorporated. PostScript Lan-
guage Reference. Addison-Wesley, Reading, MA,
USA, third edition, 1999. ISBN 0-201-37922-8.
xii + 897 pp. LCCN QA76.73.P67 P67 1999.
US$49.95, CDN$74.95. URL http://www.adobe.

com/products/postscript/pdfs/PLRM.pdf. This
new edition defines PostScript Language Level 3.
An electronic version of the book is available at the
Adobe Web site, and is also included in a CD-ROM
attached to the book.

[5] Zeev Becker and Daniel Berry. triroff, an adapta-
tion of the device-independent troff for formatting
tri-directional text. Electronic Publishing—Origi-
nation, Dissemination, and Design, 2(3):119–142,
October 1989. CODEN EPODEU. ISSN 0894-3982.

[6] Nelson Beebe. The TEX font panel. TUGboat, 22
(3):220–227, September 2001. ISSN 0896-3207.

[7] Robert G. Burger and R. Kent Dybvig. Printing
floating-point numbers quickly and accurately.
ACM SIGPLAN Notices, 31(5):108–116, May
1996. CODEN SINODQ. ISSN 0362-1340.
URL http://www.acm.org:80/pubs/citations/

proceedings/pldi/231379/p108-burger/. This
paper offers a significantly faster algorithm than

TUGboat, Volume 25 (2004), No. 1 — TUG2003 Keynote Address 27

http://www.research.ibm.com/journal/rd/435/abbott.html
http://www.research.ibm.com/journal/rd/435/abbott.html
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.acm.org:80/pubs/citations/proceedings/pldi/231379/p108-burger/
http://www.acm.org:80/pubs/citations/proceedings/pldi/231379/p108-burger/

Nelson H. F. Beebe

that of [56], together with a correctness proof and
an implementation in Scheme. See also [9, 1, 57].

[8] David Carlisle. A seasonal puzzle: XII. TUGboat,
19(4):348, December 1998. ISSN 0896-3207.

[9] William D. Clinger. How to read floating
point numbers accurately. ACM SIGPLAN
Notices, 25(6):92–101, June 1990. CODEN
SINODQ. ISBN 0-89791-364-7. ISSN 0362-1340.
URL http://www.acm.org:80/pubs/citations/

proceedings/pldi/93542/p92-clinger/. See also
output algorithms in [36, 56, 7, 1, 57].

[10] Stephen Coles and Thomas Phinney. Adobe &
MM fonts: Insight from the inside. Typographica,
October 9, 2003. URL http://typographi.com/

000706.php.

[11] W. H. J. Feijen, A. J. M. van Gasteren, D. Gries,
and J. Misra, editors. Beauty is our business: a
birthday salute to Edsger W. Dijkstra. Springer-
Verlag, Berlin, Germany / Heidelberg, Germany /
London, UK / etc., 1990. ISBN 0-387-97299-4. xix
+ 453 pp. LCCN QA76.B326 1990.

[12] Jonathan Fine. Instant Preview and the TEX
daemon. TUGboat, 22(4):292–298, December 2001.
ISSN 0896-3207.

[13] Richard Gillam. Unicode demystified: a practical
programmer’s guide to the encoding standard. Ad-
dison-Wesley, Reading, MA, USA, 2003. ISBN 0-
201-70052-2. xxxiii + 853 pp. LCCN QA76.6 G5535
2002. UK£37.99.

[14] Adobe Systems Incorporated. Adobe Type 1 Font
Format—Version 1.1. Addison-Wesley, Reading,
MA, USA, August 1990. ISBN 0-201-57044-0.
iii + 103 pp. LCCN QA76.73.P67 A36 1990.
US$14.95. URL http://partners.adobe.com/

asn/developer/pdfs/tn/T1 SPEC.PDF.

[15] Charles F. Goldfarb and Paul Prescod. The
XML Handbook. Prentice-Hall PTR, Upper Saddle
River, NJ 07458, USA, 1998. ISBN 0-13-081152-
1. xliv + 639 pp. LCCN QA76.76.H92 G65
1998. US$44.95. URL http://www.phptr.com/

ptrbooks/ptr 0130811521.html.

[16] Charles F. Goldfarb and Yuri Rubinsky. The SGML
handbook. Clarendon Press, Oxford, UK, 1990.
ISBN 0-19-853737-9. xxiv + 663 pp. LCCN
Z286.E43 G64 1990. US$75.00.

[17] Michel Goossens, Frank Mittelbach, and Alexander
Samarin. The LATEX Companion. Tools and Tech-
niques for Computer Typesetting. Addison-Wesley,
Reading, MA, USA, 1994. ISBN 0-201-54199-8. xxi
+ 530 pp. LCCN Z253.4.L38 G66 1994. US$34.25.

[18] Michel Goossens and Sebastian Rahtz. The LATEX
Web Companion: Integrating TEX, HTML, and
XML. Tools and Techniques for Computer Type-
setting. Addison-Wesley Longman, Harlow, Essex
CM20 2JE, England, 1999. ISBN 0-201-43311-7.
xxii + 522 pp. LCCN QA76.76.H94 G66 1999.

US$36.95. With Eitan M. Gurari, Ross Moore and
Robert S. Sutor.

[19] Michel Goossens, Sebastian Rahtz, and Frank Mit-
telbach. The LATEX Graphics Companion: Illus-
trating Documents with TEX and PostScript. Tools
and Techniques for Computer Typesetting. Addi-
son-Wesley, Reading, MA, USA, 1997. ISBN 0-201-
85469-4. xxi + 554 pp. LCCN Z253.4.L38 G663
1997. US$39.75.

[20] Andrew Marc Greene. BASIX: An interpreter writ-
ten in TEX. TUGboat, 11(3):381–392, September
1990. ISSN 0896-3207.

[21] David Gries. Binary to decimal, one more time. In
Feijen et al. [11], chapter 16, pages 141–148. ISBN
0-387-97299-4. LCCN QA76.B326 1990. This paper
presents an alternate proof of Knuth’s algorithm
[36] for conversion between decimal and fixed-point
binary numbers.

[22] John D. Hobby. A METAFONT-like system with
PostScript output. TUGboat, 10(4):505–512, De-
cember 1989. ISSN 0896-3207.

[23] Alan Hoenig. TEX Unbound: LATEX and TEX Strate-
gies for Fonts, Graphics, & More. Oxford Uni-
versity Press, Walton Street, Oxford OX2 6DP,
UK, 1998. ISBN 0-19-509685-1 (hardcover), 0-
19-509686-X (paperback). ix + 580 pp. LCCN
Z253.4.L38 H64 1997. US$60.00 (hardcover),
US$35.00 (paperback). URL http://www.oup-usa.

org/gcdocs/gc 0195096851.html.

[24] Allen I. Holub. Compiler Design in C. Prentice-
Hall, Upper Saddle River, NJ 07458, USA, 1990.
ISBN 0-13-155045-4. xviii + 924 pp. LCCN
QA76.76.C65 H65 1990. Prentice-Hall Software
Series, Editor: Brian W. Kernighan.

[25] IEEE Task P754. ANSI/IEEE 754-1985, Standard
for Binary Floating-Point Arithmetic. IEEE,
New York, NY, USA, August 12, 1985. ISBN
1-55937-653-8. 20 pp. US$35.00. URL http://

standards.ieee.org/reading/ieee/std public/

description/busarch/754-1985 desc.html.
Revised 1990. A preliminary draft was published in
the January 1980 issue of IEEE Computer, together
with several companion articles. Also standardized
as IEC 60559 (1989-01) Binary floating-point
arithmetic for microprocessor systems.

[26] Donald Knuth. Virtual Fonts: More Fun for Grand
Wizards. TUGboat, 11(1):13–23, April 1990. ISSN
0896-3207.

[27] Donald Knuth and Pierre MacKay. Mixing right-
to-left texts with left-to-right texts. TUGboat, 8(1):
14–25, April 1987. ISSN 0896-3207.

[28] Donald E. Knuth. On the translation of languages
from left to right. Information and Control, 8(6):
607–639, December 1965. CODEN IFCNA4. ISSN
0019-9958. Russian translation by A. A. Muchnik
in ⁀Iazyki i Avtomaty, ed. by A. N. Maslov and É.

28 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

http://www.acm.org:80/pubs/citations/proceedings/pldi/93542/p92-clinger/
http://www.acm.org:80/pubs/citations/proceedings/pldi/93542/p92-clinger/
http://typographi.com/000706.php
http://typographi.com/000706.php
http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF
http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF
http://www.phptr.com/ptrbooks/ptr_0130811521.html
http://www.phptr.com/ptrbooks/ptr_0130811521.html
http://www.oup-usa.org/gcdocs/gc_0195096851.html
http://www.oup-usa.org/gcdocs/gc_0195096851.html
http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html
http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html
http://standards.ieee.org/reading/ieee/std_public/description/busarch/754-1985_desc.html

25 Years of TEX and METAFONT: Looking Back and Looking Forward

D. Stotskĭı (Moscow: Mir, 1975), 9–42. Reprinted
in Great Papers in Computer Science (1996) [43].

[29] Donald E. Knuth. The TEXbook, volume A of Com-
puters and Typesetting. Addison-Wesley, Reading,
MA, USA, 1986. ISBN 0-201-13447-0. ix + 483 pp.
LCCN Z253.4.T47 K58 1986.

[30] Donald E. Knuth. TEX: The Program, volume B
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13437-3. xv
+ 594 pp. LCCN Z253.4.T47 K578 1986.

[31] Donald E. Knuth. The METAFONTbook, volume C
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13445-4. xi
+ 361 pp. LCCN Z250.8.M46 K58 1986.

[32] Donald E. Knuth. METAFONT: The Program,
volume D of Computers and Typesetting. Addison-
Wesley, Reading, MA, USA, 1986. ISBN 0-201-
13438-1. xv + 560 pp. LCCN Z250.8.M46 K578
1986.

[33] Donald E. Knuth. Computer Modern Typefaces,
volume E of Computers and Typesetting. Addison-
Wesley, Reading, MA, USA, 1986. ISBN 0-201-
13446-2. xv + 588 pp. LCCN Z250.8.M46 K574
1986.

[34] Donald E. Knuth. The errors of TEX. Techni-
cal Report STAN-CS-88-1223, Stanford University,
Department of Computer Science, September 1988.
See [35].

[35] Donald E. Knuth. The errors of TEX. Software—
Practice and Experience, 19(7):607–685, July 1989.
CODEN SPEXBL. ISSN 0038-0644. This is an
updated version of [34]. Reprinted with additions
and corrections in [37, pp. 243–339].

[36] Donald E. Knuth. A simple program whose proof
isn’t. In Feijen et al. [11], chapter 27, pages 233–
242. ISBN 0-387-97299-4. LCCN QA76.B326 1990.
This paper discusses the algorithm used in TEX for
converting between decimal and scaled fixed-point
binary values, and for guaranteeing a minimum
number of digits in the decimal representation. See
also [9] for decimal to binary conversion, [56, 57]
for binary to decimal conversion, and [21] for an
alternate proof of Knuth’s algorithm.

[37] Donald E. Knuth. Literate Programming. CSLI
Lecture Notes Number 27. Stanford University Cen-
ter for the Study of Language and Information,
Stanford, CA, USA, 1992. ISBN 0-937073-80-6
(paper), 0-937073-81-4 (cloth). xv + 368 pp. LCCN
QA76.6.K644. US$24.95.

[38] Donald E. Knuth. Digital Typography. CSLI
Publications, Stanford, CA, USA, 1999. ISBN 1-
57586-011-2 (cloth), 1-57586-010-4 (paperback). xvi
+ 685 pp. LCCN Z249.3.K59 1998. US$90.00
(cloth), US$39.95 (paperback).

[39] Donald E. Knuth and Silvio Levy. The CWEB
System of Structured Documentation, Version 3.0.

Addison-Wesley, Reading, MA, USA, 1993. ISBN
0-201-57569-8. 226 pp. LCCN QA76.9.D3 K6 1993.

[40] Donald E. Knuth and Michael F. Plass. Breaking
paragraphs into lines. Software—Practice and Ex-
perience, 11(11):1119–1184, November 1981. CO-
DEN SPEXBL. ISSN 0038-0644.

[41] Leslie Lamport. LATEX—A Document Preparation
System—User’s Guide and Reference Manual. Ad-
dison-Wesley, Reading, MA, USA, 1985. ISBN 0-
201-15790-X. xiv + 242 pp. LCCN Z253.4.L38 L35
1986.

[42] Leslie Lamport. LATEX: A Document Preparation
System: User’s Guide and Reference Manual. Ad-
dison-Wesley, Reading, MA, USA, second edition,
1994. ISBN 0-201-52983-1. xvi + 272 pp. LCCN
Z253.4.L38 L35 1994. Reprinted with corrections in
1996.

[43] Phillip Laplante, editor. Great papers in com-
puter science. IEEE Computer Society Press, 1109
Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1996. ISBN 0-314-06365-X (paperback), 0-
07-031112-4 (hardcover). iv + 717 pp. LCCN
QA76.G686 1996. US$23.95. URL http://bit.

csc.lsu.edu/∼chen/GreatPapers.html.
[44] Ken Lunde. Understanding Japanese Information

Processing. O’Reilly & Associates, Inc., 981 Chest-
nut Street, Newton, MA 02164, USA, 1993. ISBN
1-56592-043-0. xxxii + 435 pp. LCCN PL524.5.L86
1993. US$29.95.

[45] Ken Lunde. CJKV Information Processing: Chi-
nese, Japanese, Korean & Vietnamese Comput-
ing. O’Reilly & Associates, Inc., 981 Chestnut
Street, Newton, MA 02164, USA, 1999. ISBN
1-56592-224-7. 1174 pp. LCCN PL1074.5.L85
1999. US$64.95. URL http://www.oreilly.com/

catalog/cjkvinfo/.
[46] Frank Mittelbach. An environment for multicolumn

output. TUGboat, 10(3):407–415, November 1989.
ISSN 0896-3207.

[47] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris Rowley, Christine
Detig, and Joachim Schrod. The LATEX Compan-
ion. Tools and Techniques for Computer Type-
setting. Addison-Wesley, Reading, MA, USA, sec-
ond edition, 2004. ISBN 0-201-36299-6. xxvii +
1090 pp. LCCN Z253.4.L38 G66 2004. US$59.99,
CAN$86.99.

[48] Sao Khai Mong. A Fortran version of METAFONT.
TUGboat, 3(2):25, October 1982. ISSN 0896-3207.

[49] Peter G. Neumann. Computer-Related Risks. Addi-
son-Wesley, Reading, MA, USA, 1995. ISBN 0-201-
55805-X. xv + 367 pp. LCCN QA76.5.N424 1995.
URL http://www.csl.sri.com/neumann.html.

[50] Arthur Ogawa. REVTEX version 4.0, an authoring
package by the American Physical Society. TUG-
boat, 22(3):131–133, September 2001. ISSN 0896-
3207.

[51] Michael F. Plass and Donald E. Knuth. Choosing
better line breaks. In J. Nievergelt, G. Coray, J.-D.

TUGboat, Volume 25 (2004), No. 1 — TUG2003 Keynote Address 29

http://bit.csc.lsu.edu/~chen/GreatPapers.html
http://bit.csc.lsu.edu/~chen/GreatPapers.html
http://www.oreilly.com/catalog/cjkvinfo/
http://www.oreilly.com/catalog/cjkvinfo/
http://www.csl.sri.com/neumann.html

Nelson H. F. Beebe

Nicoud, and A. C. Shaw, editors, Document Prepa-
ration Systems: A Collection of Survey Articles,
pages 221–242. Elsevier North-Holland, Inc., New
York, NY, USA, 1982. ISBN 0-444-86493-8. LCCN
Z244.D63 1982. US$46.50.

[52] S. G. Probets and D. F. Brailsford. Substituting
outline fonts for bitmap fonts in archived PDF files.
Software—Practice and Experience, 33(9):885–899,
July 25, 2003. CODEN SPEXBL. ISSN 0038-0644.
URL http://www.eprg.org/research/.

[53] Tomas Rokicki. Packed (PK) font file format.
TUGboat, 6(3):115–120, November 1985. ISSN
0896-3207.

[54] Luigi Semenzato and Edward Wang. A text pro-
cessing language should be first a programming lan-
guage. TUGboat, 12(3):434–441, November 1991.
ISSN 0896-3207.

[55] E. Wayne Sewell. Weaving a Program: Literate
Programming in WEB. Van Nostrand Reinhold, New
York, NY, USA, 1989. ISBN 0-442-31946-0. xx +
556 pp. LCCN QA76.73.W24 S491 1989.

[56] Guy L. Steele Jr. and Jon L. White. How to print
floating-point numbers accurately. ACM SIGPLAN
Notices, 25(6):112–126, June 1990. CODEN SIN-
ODQ. ISSN 0362-1340. See also input algorithm
in [9], and a faster output algorithm in [7] and [36],
IBM S/360 algorithms in [1] for both IEEE 754 and
S/360 formats, and a twenty-year retrospective [57].
In electronic mail dated Wed, 27 Jun 1990 11:55:36
EDT, Guy Steele reported that an intrepid pre-
SIGPLAN 90 conference implementation of what
is stated in the paper revealed 3 mistakes:

1. Table 5 (page 124):

insert k <-- 0 after assertion, and also delete
k <-- 0 from Table 6.

2. Table 9 (page 125):

for -1:USER!("");

substitute -1:USER!("0");

and delete the comment.

3. Table 10 (page 125):

for fill(-k, "0")

substitute fill(-k-1, "0")

[57] Guy L. Steele Jr. and Jon L. White. How to
print floating-point numbers accurately. In ACM,
editor, 20 Years of the ACM/SIGPLAN Conference
on Programming Language Design and Implemen-
tation (1979–1999): A Selection. ACM Press, New
York, NY 10036, USA, 2003. ISBN 1-58113-623-4.

[58] Apostolos Syropoulos, Antonis Tsolomitis, and
Nick Sofroniou. Digital typography using LATEX.
Springer-Verlag, Berlin, Germany / Heidelberg,
Germany / London, UK / etc., 2003. ISBN 0-387-
95217-9. xxix + 510 pp. LCCN Z253.4.L38 S97
2003.

[59] The Unicode Consortium. The Unicode Stan-
dard, Version 4.0. Addison-Wesley, Reading, MA,
USA, 2003. ISBN 0-321-18578-1. xxxviii + 1462
pp. LCCN QA268.U545 2004. URL http://www.

unicode.org/versions/Unicode4.0.0/. Includes
CD-ROM.

[60] J. E. Warnock. The display of characters using
gray level sample arrays. Computer Graphics, 14
(3):302–307, July 1980. CODEN CGRADI. ISSN
0097-8930.

[61] Stefan Wohlfeil. On the Pagination of Complex,
Book-Like Documents. Shaker Verlag, Aachen
and Maastricht, The Netherlands, 1998. ISBN
3-8265-3304-6. 224 pp. DM 98.00. URL
http://www.shaker.de/Online-Gesamtkatalog/

Details.idc?ID=24201&CC=59311&IDSRC=1&ISBN=

3-8265-3304-6&Reihe=15.

30 TUGboat, Volume 25 (2004), No. 1 —TUG2003 Keynote Address

http://www.eprg.org/research/
http://www.unicode.org/versions/Unicode4.0.0/
http://www.unicode.org/versions/Unicode4.0.0/
http://www.shaker.de/Online-Gesamtkatalog/Details.idc?ID=24201&CC=59311&IDSRC=1&ISBN=3-8265-3304-6&Reihe=15
http://www.shaker.de/Online-Gesamtkatalog/Details.idc?ID=24201&CC=59311&IDSRC=1&ISBN=3-8265-3304-6&Reihe=15
http://www.shaker.de/Online-Gesamtkatalog/Details.idc?ID=24201&CC=59311&IDSRC=1&ISBN=3-8265-3304-6&Reihe=15

TEX and the Interfaces

Peter Flynn
Electronic Publishing Unit, University College, Cork, Ireland

pflynn@ucc.ie

http://imbolc.ucc.ie/~pflynn

Abstract

TEX systems have been a cornerstone of research and academic publishing for a
long time. Development of the interfaces with different classes of user or potential
user, however, has been uneven. Recent developments in other areas of text
processing are opening up new opportunities for TEX-based systems. Should
TEX development become involved in these areas, or should it be restricted to
those areas where it has traditionally been a strong player? This is a summary of
my keynote presentation to the Practical TEX 2004 conference in San Francisco.

The cornerstone

Gutenberg’s inventions were not Open Source: he
worked on them alone, in relative secrecy, for many
years before starting to print.

N principio erat verbũ: 7- verbũ erat
apud deũ: et de9 erat verbũ. Hoc erat
in principio apud deũ. Om̃ia p ĩpm
facta sunt: 7- sine ĩpo factum eĆ niĚil.
Quod factũ eĆ in ĩpo vita erat: 7- vita
erat lux hominũ: et lux in tenebriŊ lu-
cet· 7- tenebre ẽa ño comp̃henderũt. Fu-

• He had to get the blessing of the Church, his
principal customer, and that meant keeping
stumm.

• But he did have partners, and they had to know
what he was doing and how he did it.

• He finally screwed up (or was screwed over) and
sold out to his backers.

• Eventually someone had to teach the next gen-
eration of printers, and the ‘secret’ was out.

How different from the origins of TEX, where Knuth
placed the whole system at the disposal of the world
virtually from the start.

Development of the interfaces

If it hadn’t been for the spread of the knowledge,
Caxton would never have been able to bring the idea
of printing from movable type to England, nor Ben
Franklin have been able to print in America.

The same holds true for most printing and pub-
lishing inventions down the ages —some they tried
to keep secret, but in general you can’t keep tech-
nological inventions from a technically literate and
mobile workforce (printers).

In these old printed documents we see the first
signs of an interface: between printer, reader, and
publisher. Not a technical interface but a moral,
social, and business interface.

TEX was explicitly freed from the normal com-
mercial restrictions on software by its author. This
was an unusual move in 1978. This was a major
contributing factor to its initial success in research
labs and academia (no money needed, no license to
prevent copying), and also to its successful commer-
cialization.

Printing equips your paragraphs of text with
certain features and facilities: dissemination (you
can make multiple identical copies), usefulness (peo-
ple can use your text in different ways), education
(literacy and the spread of printing have a well-

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 31

Peter Flynn

established association), reusability (especially in in-
volving photocopying, scanning, and reprinting!)—
and there are many others. The use of an openly-
accessible system like TEX equips your pars with
other associated benefits:

Extensibility
Quality
Usability
I ndependence
Portability
Persistence
Accuracy
Robustness
Speed

Success is what has made TEX a cornerstone. Much
of its success is due to the fact that it keeps on pro-
ducing the goods, especially when other systems fail.

Differences between the interfaces

However, if you show TEX being edited to a pub-
lisher, or a business person, or a non-Computer Sci-
ence, non-Physics, non-Math student, or Marketing,
or Sales, or even Management, they’ll take one look
and laugh.

Learning

Editing

Installing

Selling
Finance

T XEE

All they see is the physical (editing) interface:
and we don’t sell TEX as a solution to their prob-
lems, we sell it as something else, something akin to
a religion.

In fact, there are lots of interfaces: Sales, Mar-
keting, Finance, Management, Research, Produc-
tion, Education . . . and each is multi-faceted: it’s
not just the solution to a typesetting or information-
management problem. For management, for exam-
ple it may be the fact that it can be downloaded and
installed without signing a contract.

There’s also another interface: what it looks
like. It’s only in recent years that we have had
a style file or document class for classical printed
books (octavo, [3]). One of the biggest complaints
from new users is that everything looks ‘LATEXy’,
and yet we (the community) keep insisting that this
is a benefit, not a drawback. Principally, though,
there is the visual interface: the plain text editor
interface we all know and love or hate.

But there are lots of others, including synchron-
ous typographic interfaces like LyX. It’s not WYSI-
WYG but What You See Is What You Meant.

32 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

TEX and the Interfaces

And of course other interfaces we know and hate
or love. If you turn on all the facilities LATEX has:

Dissonance

So why are there all these differences? There is a
considerable degree of disparity and dissonance be-
tween those who want TEX to stay plain text and
therefore psychologically inacessible to the user—
whose mind-set has largely been conditioned by syn-
chronous typographical interfaces; and those who
want a more approachable interface.

There is the ‘user-seductive’ interface (Micro-
soft Word, for example) in all its forms (almost any
‘office productivity’ package, for example) which lets
the user ‘draw a document instead of writing it’ [2].

There is the learning interface which I men-
tioned a few years ago at the TUG meeting in Del-
aware [1], which ranged from ‘sitting by Nellie’ to a
full-scale two-week training course tailored for your
organization.

There is the support interface —fixed by com-
mercial versions, but the free versions still use TUG

and comp.text.tex, for obvious reasons.
And there is also another kind of interface grow-

ing, used for XML. Because of its ubiquity in busi-
ness and publishing, there is a huge amount of soft-
ware, and it has many of the features we know from
LATEX.

<?xml version=’1.0’ encoding=’UTF-8’?>

<cap:alert xmlns:cap=

’http://www.incident.com/cap/1.0’>

<cap:identifier>NOAA-NWS-ALERTS

California 2004-07-19T08:06:55

</cap:identifier>

<cap:category>Met</cap:category>

<cap:event>Flood Watch</cap:event>

<cap:description>MONSOONAL MOISTURE

WILL PEAK OVER CALIFORNIA TODAY.

</cap:description>

</cap:alert>

XML has synchronous typographical interfaces too:

I’m reminded of a paper presented at a TUG
conference very many years ago, entitled something
like ‘TEX versus PostScript’, as if PostScript were
some kind of competitor. There are of course areas
where LATEX and XML compete, and probably none
more so than in the interface, but it’s extremely easy
to convert XML to LATEX for output using XSLT.
The XSL-FO path to PDF means reinventing the
wheel multiple times, whereas LATEX has everything
already built in.

The following output was produced from the
XML above, using XSLT into LATEX. (The source
files noaa.xml and noaa.xsl are available at http:
//silmaril.ie/xml if you want to try it for your-
self.)

NOAA-NWS-ALERTS

California

2004-07-19T08:06:55

1 Met

1.1 FloodWatch

MONSOONAL MOISTURE WILL PEAK OVER CALIFORNIA TODAY.

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 33

Peter Flynn

Paying attention

So why isn’t everyone is paying attention to the in-
terface? They’re certainly not . . . at least not for
documents. Unless we are very careful, we run the
risk of turning our primary asset into its primary
liability. (I may be preaching to the converted here,
but it is the current users who form the interface be-
tween the potential user and TEX.) We need more
development. If you examine the interfaces in more
detail, and start asking questions about new users’
expectations, you find some surprising difficulties:

• What do you expect to happen when you press
the Enter key?

• Can the B, I, and U buttons capture the reason
why you want bold, italics, or underlining?

• Can the font style and size drop-downs be used
to capture the reason why you want big bold
type at this point?

As I noted earlier, I deliberately authored this
in LATEX: I missed the rigour of using XML, but I
still haven’t found anything to beat TEX and LATEX
for formatting. We just need to tell people.

References

[1] Peter Flynn. TEX—A mass-market product?
Or just an image in need of a makeover?
TUGboat, 22(3):137–139, Sept 2001.

[2] Anthony Goreham. Re: Installing a new font:
PFM, PFB. comp.text.tex, (m3r8qj42o3.fsf@
micawber.queens.ox.ac.uk), 28 November
2001.

[3] Stefan A. Revets. The octavo package.
http://www.ctan.org/tex-archive/macros/

latex/contrib/octavo.

Note: I am grateful to Prof. Knuth for permission
to reproduce the mock-woodcut of a printer’s shop
experiencing the arrival of TEX, which he used in
Digital Typography.

34 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

Micro-typographic Extensions of pdfTEX in Practice

Hàn Thé̂ Thành
University of Education, Ho Chi Minh City, Vietnam

hanthethanh@myrealbox.com

Abstract

pdfTEX provides two micro-typographic extensions: margin kerning (also known
as character protrusion) and font expansion. While they have been available
around for quite a long time and the samples showed interesting results, these
features have not been much used in practice. The reason is that pdfTEX only
provides very low-level support, so in order to use these features, a high degree of
TEX knowledge was required. In this article I would like to share some experiences
in using these extensions from the user’s point of view. Thus, I will not go into
any technical detail — there are already papers that have done that job. My
wish is that after reading this article, anyone can start using these extensions in
practice without much difficulty. Therefore, I will try to look at these extensions
from a practical point of view, and focus on things most useful for newcomers.

Introduction

We briefly describe here the concepts of margin kern-
ing and font expansion, collectively called the hz ex-
tensions, and what purpose they serve.

Margin kerning Margin kerning is the term used
for slight shifting of certain characters at the mar-
gins so the margins look smooth. This technique is
sometimes called hanging punctuation, as it is use-
ful mostly for punctuation marks such as comma,
period and the like. However, margin kerning is a
more general concept, as it can be usefully applied
to certain letters as well.

Margin kerning in principle is quite similar to
general kerning. Kerning is the adjustment of space
between certain letters to make the text look good,
while margin kerning deals with space between let-
ters and the margins of text. Hence, similar to kern-
ing, margin kerning is also a question of taste: to
one person margin kerning makes things look better,
to another, it makes no sense. Still, this technique
used to be quite common in traditional typography,
and its disappearance probably has more to do with
its difficult deployment in DTP systems than any
change of taste.

Margin kerning is not something completely un-
known to TEX users. It is possible to have hanging
punctuation (margin kerning applied to punctuation
only) in TEX using macros. However, there are cer-
tain limitations and problems; for instance, it re-
quires all hanging punctuation marks to be (in TEX
terms) active characters, and it doesn’t work for the
hyphen character. To “hang” the hyphen, a font

with a special hyphen character is required. pdfTEX
makes use of margin kerning much easier and better.

A sample text with and without margin kerning
is shown in figure 1.

Font expansion Font expansion is the technique
of expanding or shrinking a font very, very, slightly,
in order to break a paragraph into lines in a bet-
ter way. Of course a font must not be expanded
or shrunk too much, otherwise the effect caused by
font distortion will spoil everything. Using font ex-
pansion can lead to line breaking with:

1. fewer hyphenations,
2. fewer overfull and underfull boxes,
3. more nearly uniform interword spacing (fewer

“rivers”).

Therefore, font expansion is useful when one
wishes to get a more even color of page, or just
to reduce the number of hyphenation or overfull/
underfull boxes. Such needs are quite common in
narrow-column typesetting. When it comes to au-
tomated typesetting, such small improvements can
significantly reduce the manual work required to cor-
rect “problematic” cases.

A sample text with and without margin kerning
is shown in figure 2. This entire article is also typeset
with margin kerning enabled.

Usability

The micro-typographic extensions of pdfTEX were
originally developed for experimental purposes. As
a result, the underlying concepts were designed to be
general and flexible, so we could examine the effect

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 35

Hàn Thé̂ Thành

A father had two sons, of
whom the eldest was clever and
bright, and always knew what he
was about; but the youngest was
stupid, and couldn’t learn or un-
derstand anything. So much so
that those who saw him exclaimed:
“What a burden he’ll be to his fa-
ther!” Now when there was any-
thing to be done, the eldest had
always to do it; but if something
was required later or in the night-
time, and the way led through the
churchyard or some such ghostly
place, he always replied: “Oh! no,
father: nothing will induce me to
go there, it makes me shudder!” for

Figure 1: Text without (left column) and with (right column) margin kerning

of those extensions in many contexts. The draw-
back, however, is that in order to make use of those
extensions, a certain degree of knowledge of TEX pro-
gramming and font-related issues is required. This is
especially true for font expansion, as it required the
user to be able to generate so-called expanded TFM

files. The lack of an easy user interface also discour-
aged the average user from trying margin kerning,
although this is much easier to use than font expan-
sion.

However, enough people have been interested
in testing and using those new features, and hence
there has been also some progress on the user inter-
face as well as the implemention:

1. An important step for LATEX users was the pack-
age pdfcprot by Carsten Schurig, allowing acti-
vation of margin kerning in an easy way.

2. In summer 2004 I added a feature called “auto
expansion” for easy use of font expansion to
pdfTEX. Now generation of actual expanded
TFMs is no longer required, as pdfTEX can ex-
pand required TFM’s on-the-fly in memory.

3. Not very long after the version with auto expan-
sion had been released, a LATEX package called
microtype was created by Robert Schlicht, al-

lowing easy access to both margin kerning and
font expansion. Furthermore, this package con-
tains a rich collection of predefined settings of
margin kerning for various fonts.

With the microtype package and an up-to-date
enough version of pdfTEX, using micro-typographic
extensions has become accessible to the average user,
without having to deal with low-level commands and
messy font issues.

How to begin?

In order to make use of what will be described along,
we need two things:

1. pdfTEX version at least 1.20a;1

2. the LATEX package microtype, which is available
from CTAN.

Instructions on how to upgrade pdfTEX or in-
stall a LATEX package onto your system are system-
specific and are not covered here. The best place to
look or ask for them is probably a mailing list or a
forum dedicated to the specific TEX system you are
using.

1 At least pdfTEX 1.20b is the recommended version at

the time of writing this article; 1.20a still had some problems

with hz extensions.

36 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

Micro-typographic Extensions of pdfTEX in Practice

Figure 2: Text without (left column) and with (right column) font expansion

Given that the two above requirements are met,
we can already do something practical. A quick test
can be done by making a copy of the standard file
sample2e.tex and insert into the preamble one line,
namely:

\usepackage{microtype}

Let’s call the resulting document, with microtype

loaded, sample2ex.tex. When you run pdfLATEX
on the document, you get a PDF file sample2ex.pdf
that is almost the same as sample2e.pdf (the PDF

you get without loading microtype). Let us focus on
the differences.

1. First, the two files are quite different in size:
sample2ex.pdf is much larger, because of the
font expansion. You can check this if you open
it in Acrobat Reader, for instance, and check for
embedded fonts, you will see many instances of
the same font with the _Extend tag appended.2

2. In sample2ex.pdf, certain characters slightly
“protrude” out when at the margins, like the
period, comma or double quotes (we don’t have
any hyphenation in this document to see how

2 Or you can use the tool pdffonts coming from the XPDF

distribution. This tool lists embedded fonts in a PDF file.

the hyphen char would protrude). The effect of
such “protrusions” is to achieve the visual effect
that the margins look smooth. This is, in short,
what margin kerning brings to you.

3. The two files have slightly different line breaks!
The line breaking in sample2ex.pdf can be con-
sidered better, as there are fewer hyphenations
than in sample2e.pdf. This is, in short, what
font expansion brings. The effect of font expan-
sion is more visible when applied to narrow col-
umn typesetting; in that case, typesetting with-
out font expansion there results in problems of
frequent hyphenations, overfull boxes or rivers.

And that’s the essential part of what pdfTEX
and microtype offers. If you like it, you can experi-
ment more by loading microtype into some of your
own documents, and maybe try a few options of the
microtype package. Don’t neglect the documenta-
tion, as microtype has very nice documentation, with
good advice for new users.

How to learn more?

The default settings of the microtype package are rea-
sonable and safe for typical cases (and taste). How-
ever, the time may come when you wish to control

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 37

Hàn Thé̂ Thành

the hz extensions according to your own taste. To
this end, it may be useful to:

1. read the microtype documentation and try the
options it offers;

2. read about hz extensions in the pdfTEX man-
ual;

3. ask on the pdfTEX mailing list for advice.

What about ConTEXt?

I asked Hans Hagen for a short introdution to the
ConTEXt interface to hz extensions. The following
text in this section comes from him.

In ConTEXt, margin kerning as well as font ex-
pansion are hooked into the font handling mecha-
nism. This permits users to apply these features to
any font and on each abstraction level of the font
mechanism. We provide a few examples, to give you
an idea of how it’s done.

\setupfontsynonym [Serif] [handling=hz]

\setupfontsynonym [SerifBold] [handling=pure]

This marks all Serif fonts as candidates for ex-
pansion, and all bold serifs for protruding. We can
now load the Palatino typeface combination, using
a predefined typescript:

\usetypescript[palatino][\defaultencoding]

These Palatino fonts are enabled by for instance:

\setupbodyfont[palatino,10pt]

Both mechanisms will only be available when
they are turned on:

\setupalign[hz,hanging]

This demonstrates that both features are also
hooked into the alignment handler. They can be
disables by ‘nohz’ and ‘nohanging’.

You can finetune expansion with:

\setupfonthandling [hz] [min=80,max=80,step=5]

In a similar fashion, one can finetune protrud-
ing, for instance for specific font shapes or for classes
of glyphs. In the previous example we used the pro-
truding alternative tagged as ‘pure’ but there are
more variants.

A quick and dirty approach to enabling both
features for all fonts is for instance:

\definefonthandling[default][hz,pure]

\usetypescript[palatino][\defaultencoding]

\setupbodyfont[palatino,10pt]

\setupalign[hanging,hz]

In the ConTEXt file ‘hand-def’ you can see what
combinations are defined and what parameters can
be set. Both features work for all font encodings sup-
ported by ConTEXt; defining your own preferences
is not that hard and involves no TEX coding. Over-
loading and inheritance of features is provided.

The most important thing you need to keep in
mind is that the font handling you wish to apply
must be known to the font before the font is first
used. This is a result of the way pdfTEX implements
this feature.

How to contribute?

If you use the microtype package and have deter-
mined your own settings for a particular font, please
send your settings to microtype’s author. As well as
the easy user interface, the package also offers a col-
lection of settings for various typefaces. The more
feedback the author gets, the richer the collection
will be and the more pleasurable it will be to use.

Likewise, if you use ConTEXt, please send your
feedbacks or suggestions to ConTEXt’s author, so
other ConTEXt users can share your experiences as
well.

38 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

TEX4ht: HTML Production

Eitan M. Gurari

Ohio State University
USA
gurari@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~gurari

Abstract

TEX4ht is a highly configurable system for producing hypertext from TEX-based
sources. The system is distributed with a large set of configuration files. The most
commonly used configurations are those supporting LATEX inputs and HTML,
MathML, OpenOffice, and DocBook targets. The first part of the presentation
will describe how the system can be used for different applications.

ConTEXt is a new addition to the style files being supported by TEX4ht. The
second part of the presentation will describe the work done to provide TEX4ht
configurations for ConTEXt, with the objective of offering an insight into the inner
working of TEX4ht.

1 From LATEX to Hypertext

Reports authored in LATEX may be converted into
hypertext through the TEX4ht system [1]. The sys-
tem offers an assortment of basic commands for in-
voking translations to different target mark-up lan-
guages, provides switches for requesting predefined
variations to the default configurations, and lets the
users tailor configurations of their own.

1.1 Basic Translations

To activate a translation relying on a default con-
figuration, one needs just to invoke an appropri-
ate command and provide it with the LATEX file
name. Figure 1 lists a few examples. Most users of
the TEX4ht system are probably familiar just with
the htlatex option. However, the mzlatex option
seems also to be quite popular.

From the perspective of a user, the process is
similar to that employed in requesting a standard
translation to DVI or PDF. In such cases, typically
the translations are requested through a command
named latex or pdflatex, respectively.

HTML devotes very little support to mathe-
matics, providing only simple superscript and sub-
script elements. Bitmap representations are offered
for mathematical expressions to try to address this
shortcoming. Such representations are commonly
employed as most users are able to view them in

This material is based upon work supported by the National

Science Foundation under Award No. IIS-0312487. Any opin-

ions, findings, and conclusions or recommendations expressed

in this publication are those of the author and do not neces-

sarily reflect the views of the National Science Foundation.

command output comment

htlatex abc abc.html HTML, bitmap math
xhlatex abc abc.html XHTML, bitmap math
mzlatex abc abc.xml XHTML, MathML math
oolatex abc abc.sxw OpenOffice XML

(uses MathML math)
dbmlatex abc abc.xml DocBook, MathML math

Figure 1: Requests to compile abc.tex.

their browsers. Yet, bitmap representations are vis-
ually inferior with respect to their surrounding text,
as they do not scale in size. In addition, non-visual
applications can make little use of these representa-
tions.

MathML introduces a markup language for ex-
pressing mathematics, in a manner compatible with
HTML support of regular text. Currently, not many
browsers come with built-in support for MathML.
Mozilla is an example of a browser which supports
MathML. For Microsoft Internet Explorer, an easily
installed plug-in program named MathPlayer offers
similar capabilities [2]. Stylesheets are also available
to render MathML through XSLT and CSS code [3].

1.2 Available Adjustments

The distribution of TEX4ht provides configurations
for default behavior, as well as configurations for
achieving alternative outcomes. The latter configu-
rations can be requested by referring to their named
options through generalized invocation commands
of the following form:

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 39

Eitan M. Gurari

\documentclass{article}

\usepackage{makeidx}

\makeindex

\title{A Title}

\author{An Author}

\date{July 19, 2004}

\begin{document}

\maketitle \tableofcontents

\section{First Section}

Some text.

\section{Second Section}

\subsection{A Subsection}

Put \index{this}this

and \cite{bib-1}.

\subsection{Another Subsection}

Put \index{this}this

and \index{that}that

and \index{one}one,

\index{two}two,

\index{three}three.

\begin{thebibliography}{99}

\bibitem{bib-1}

A bib entry.

\bibitem{bib-2}

Another bib entry.

\end{thebibliography}

\printindex

\end{document}

A Title

An Author
July 19, 2004

Contents

1 First Section

2 Second Section

2.1 A Subsection
2.2 Another Subsection

1 First Section

Some text.

2 Second Section

2.1 A Subsection

Put this and [1].

2.2 Another Subsection

Put this and that and one, two, three.

References

[1] A bib entry.

[2] Another bib entry.

Index

one, 1

that, 2
this, 3, 4
three, 5
two, 6

(a) (b)

Figure 2: (a) A LATEX file source.tex. (b) A view of the HTML outcome of ‘htlatex source’.

command-name file-name "html,options"

Figure 2(a) lists an example source LATEX file
source.tex which requests standard logical struc-
tures, including a title segment, sectioning blocks,
table of contents, bibliography, and index. A com-
pilation of this file with the command

htlatex source

produces the default outcome for HTML code. Fig-
ure 2(b) shows a possible rendering of this outcome.

A compilation of the same LATEX file with
htlatex source "html,index=2,3"

sets the index in two columns, and partitions the
document into web pages based on the sectioning
units to a depth of three levels. Figure 3 shows a
possible rendering of the different web pages and
their hierarchy in a tree structure. The tables of
contents enable navigation down the tree levels, and
the ‘up’ buttons enable navigation in the opposite

direction. Navigation between siblings is possible
through ‘next’ and ‘prev’ buttons. For instance,
the ‘next’ button on the web page of the Second
Section leads to the web page of the References.

A somewhat similar organization of content can
be achieved with

htlatex source "html,index=2,3,next"

Figure 4 shows the result. Here, however, due to the
‘next’ option, the ‘next’ and ‘prev’ navigation but-
tons assume a different ordering of pages in which
the document content is visited sequentially. For in-
stance, under this option the ‘next’ button of the
root web page leads to the web page of the table
of contents. Similarly, the ‘next’ button of the web
page of Second Section leads to the web page of sub-
section 2.1. On the other hand, the ‘next’ button
of the web page of subsection 2.2 leads to the web
page of the References.

40 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

TEX4ht: HTML Production

[next] [tail] [up]

Contents

1 First Section

2 Second Section

2.1 A Subsection
2.2 Another Subsection

[next] [front] [up]

[next] [prev] [prev-tail] [tail] [up]

1 First Section

Some text.

[next] [prev] [prev-tail] [front] [up]

[next] [tail] [up]

2.1 A Subsection

Put this and [1].

[next] [front] [up]

[prev] [prev-tail] [tail]
[up]

2.2 Another Sub-

section

Put this and that
and one, two, three.

[prev] [prev-tail]
[front] [up]

[next] [prev] [prev-tail] [tail] [up]

2 Second Section

2.1 A Subsection
2.2 Another Subsection

[next] [prev] [prev-tail] [front] [up]

[next] [prev] [prev-tail] [tail] [up]

References

[1] A bib entry.

[2] Another bib entry.

[next] [prev] [prev-tail] [front] [up]

[prev] [prev-tail] [tail] [up]

Index

one, 1
that, 2
this, 3, 4

three, 5
two, 6

[prev] [prev-tail] [front] [up]

A Title

An Author
July 19, 2004

Contents

1 First Section

2 Second Section

2.1 A Subsection
2.2 Another Subsection

References

Index

Figure 3: A view of the HTML outcome of ‘htlatex source "html,index=2,3"’. This produces the
index in two columns, and separates sections to the third level into their own files.

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 41

Eitan M. Gurari

[next] [prev] [prev-tail] [tail] [up]

Contents

1 First Section

2 Second Section

2.1 A Subsection
2.2 Another Subsection

[next] [prev] [prev-tail] [front] [up]

[next] [prev] [prev-tail] [tail] [up]

1 First Section

Some text.

[next] [prev] [prev-tail] [front] [up]

[next] [prev]
[prev-tail] [tail] [up]

2.1 A Subsection

Put this and [1].

[next] [prev]
[prev-tail] [front] [up]

[next] [prev]
[prev-tail] [tail] [up]

2.2 Another Sub-

section

Put this and that
and one, two, three.

[next] [prev]
[prev-tail] [front] [up]

[next] [prev] [prev-tail] [tail] [up]

2 Second Section

2.1 A Subsection
2.2 Another Subsection

[next] [prev] [prev-tail] [front] [up]

[next] [prev] [prev-tail] [tail] [up]

References

[1] A bib entry.

[2] Another bib entry.

[next] [prev] [prev-tail] [front] [up]

[prev] [prev-tail] [tail] [up]

Index

one, 1
that, 2
this, 3, 4

three, 5
two, 6

[prev] [prev-tail] [front] [up]

A Title

An Author
July 19, 2004

Contents

1 First Section

2 Second Section

2.1 A Subsection
2.2 Another Subsection

References

Index

[next]

Figure 4: A view of the HTML outcome of ‘htlatex source "html,index=2,3,next"’. Similar to the
previous figure, but with sequential navigation, due to the next option.

42 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

TEX4ht: HTML Production

/.../texmf/tex/generic/tex4ht/tex4ht.sty

version 2004-05-26-22:19

-- Note -- for automatic sectioning pagination, use

the command line option ‘1’, ‘2’, or ‘3’

-- Note -- for i-columns index, use the command line

option ‘index=i’ (e.g., index=2)

-- Note -- for linear crosslinks of pages, use the

command line option ‘next’

-- Note -- for inline footnotes use

command line option ‘fn-in’

-- Note -- for content and toc in 2 frames,

use the command line option ‘frames’

-- Note -- For multi-platform MathML through

stylesheet transforms, use the command

line option ‘pmathml’. If css rendering

is preferred, use ‘pmathml-css’.

-- \TeX4ht{} warning -- If not done so, the index is

to be processed by

tex ’\def\filename{{source}{idx}{4dx}{ind}}

\input idxmake.4ht’

makeindex -o source.ind source.4dx

instead of

makeindex -o source.ind source.idx

Figure 5: TEX4ht messages recorded in the log.

A few other selected options:

• The ‘frames’ option may be used to incorporate
a table of contents as a navigation bar for the
web pages.

• The ‘fn-in’ option asks for footnotes at the end
of the web pages, instead of being placed at
separate pages.

• The ‘mouseover’ option requests pop up mes-
sages showing content associated with pointers
to footnotes and bibliography entries.

1.3 Log Files: A Source of Information

A compilation of a LATEX file source.tex produces
messages that are recorded in a source.log file.
Some of these messages, though not all of them,
are also listed on the user’s terminal. The mes-
sages depend on the TEX4ht configurations being
activated, and contain useful hints, including the
available command line options, version indicators,
warnings about possible problems, and information
about errors encountered. Figure 5 lists a few exam-
ples of the messages obtained in compiling the file
of Figure 2(a) with the mzlatex command.

The listed command line options ‘3’, ‘index=2’,
‘next’, ‘fn-in’, and ‘frames’ were considered ear-
lier. The ‘pmathml’ and ‘pmathml-css’ options re-

\documentclass{article}

\def\greeting{Hi}

\begin{document}

\greeting{} from \LaTeX{}!

\end{document}

(a)

\Preamble{html}

\begin{document}

\def\greeting{Hello}

\def\LaTeX{}{\TeX4ht{}}

\EndPreamble

(b)

Figure 6: (a) A LATEX file src.tex. (b) A
configuration file cf.cfg, changing macros.

fer to the stylesheets of [3]. The warning message
indicates how indexes are to be compiled.

LATEX is a system comprised of a very large
set of style files, with new styles being added and
old ones being modified periodically. Furthermore,
there are numerous ways to represent in hypertext
the special properties of the style files. The TEX4ht
system is quite often updated to address changes in
the LATEX environment, users’ requests for new fea-
tures, and errors in the implementation.

1.4 User Configurations

A single LATEX file might be employed by different
commands to create a document in an assortment
of formats, such as PDF and HTML. Consequently,
it is undesirable to explicitly include TEX4ht code
in LATEX sources. Commands of the following form
can be used to indirectly load configuration files into
compilations (the cfg-file is the new piece):

command-name file-name "cfg-file,options"

An extension .cfg is assumed for a configura-
tion file specified without an extension. The config-
uration file is loaded into the compilation when the
start of the LATEX source body is reached; that is,
at ‘\begin{document}’. The configuration file must
have a structure compatible with the following tem-
plate:

\Preamble{options}
configurations before the HTML header
\begin{document}

configurations within the HTML header
\EndPreamble

For instance, Figure 6(a) lists a LATEX source
file whose body is intended to produce the content
“Hi from LATEX!”. Yet, when compiled with the
command

htlatex src "cf"

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 43

Eitan M. Gurari

\begin{itemize}

\item First item

\item Second item

\end{itemize}

(a)

<ul class="itemize1">

<li class="itemize">

First item

<li class="itemize">

Second item

(b)

\Preamble{html}

\begin{document}

\Css { ul.itemize1 {

color : red ;

background-color : yellow;

font-weight: bold ;

font-size : 150\%

}}

\Css { li {

border : black 1px solid;

margin : 2em ;

text-align : center

}}

\EndPreamble

(c)

Figure 7: (a) LATEX fragment. (b) Corresponding HTML code. (c) Possible CSS configurations.

the outcome is “Hello from TEX4ht!” given the con-
figuration file cf.cfg listed in Figure 6(b). This ex-
ample illustrates, rather dramatically, the idea and
potential of configuration files. However, configura-
tion files are typically used to tailor mark-up for the
content, not to actually change the content!

1.5 Touch-Up With CSS

According to its definition, “Cascading Style Sheets
(CSS) is a simple mechanism for adding style (e.g.,
fonts, colors, spacing) to Web documents” [4]. Ac-
cordingly, TEX4ht provides a \Css{...} instruction
for incorporating CSS code into target files.

Figure 7(a) lists a sample LATEX source frag-
ment. When compiled for HTML output, the code
produced is as listed in Figure 7(b). The configu-
ration file of Figure 7(c) can be introduced into the
compilation to associate the given CSS decorations
with the HTML code.

1.6 Changing HTML Configurations

TEX4ht indirectly seeds hooks within the LATEX con-
structs and associates default configurations with
the constructs through the hooks. Users can change
these configurations, but typically should do this
with a good understanding of LATEX programming,
HTML, and TEX4ht.

Hints as to how the default configurations can
be modified may be seen through the ‘info’ com-
mand line option. The hints are recorded within
the log files of the compilations. For instance, the
command

htlatex source "html,info"

shows hints like this within source.log:

• Configure environments \begin{name} ...

\end{name} with \ConfigureEnv{name}

{...} {...} {...} {...}

• Configure lists \begin{name}\item ...

\item ... \end{name} with \ConfigureList

{name}{...}{...}{...}{...}

Figure 8(a) exhibits a possible use of the above
instructions for configuring typical LATEX sources,
as shown in Figure 8(b). The outcome is listed in
Figure 8(c).

1.7 Beware of Errors: Validate

LATEX is forgiving of different kinds of misuses of
the language. In addition, TEX4ht is not configured
for all features of LATEX and their possible interac-
tions. In contrast, hypertext markup languages im-
pose strict requirements on their use. Consequently,
translations are not immune to errors and users are
therefore encouraged to validate the output files.

Validators can be invoked via constructs similar
to ‘.html utility %%1.html’ in the system environ-
ment file tex4ht.env.

2 Configuring TEX4ht for ConTEXt

ConTEXt is a macro package offering high-level con-
structs for expressing logical units of documents [5].
The remainder of this report describes what it took
to introduce support for ConTEXt in TEX4ht. The
underlying ideas are similar to those employed to
support LATEX.

2.1 Getting Background Information

TEX4ht processes a source file by indirectly modify-
ing the style files in use, invoking the native compiler
to translate the source file into DVI code and then
processing the DVI output into hypertext markup.
In the case of ConTEXt, ‘texexec filename’ is the
basic command to output DVI code.

44 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

TEX4ht: HTML Production

\ConfigureEnv{titlepage}

{\ifvmode \IgnorePar\fi

\EndP

\HCode{<h1>}\IgnorePar }

{\ifvmode \IgnorePar\fi

\EndP \HCode{</h1>}}

{} {}

\ConfigureList{enumerate}

{\HCode{<div>}}

{\HCode{</div>}}

{\HCode{<span

class="mark">}}

{\HCode{} }

(a)

\begin{titlepage}

Some Title

\end{titlepage}

\begin{enumerate}

\item First item

\item Second item

\end{enumerate}

(b)

<h1> Some Title </h1>

<div>

1. First item

2. Second item </div>

(c)

Figure 8: (a) TEX4ht configurations changing the HTML output for the titlepage and enumerate

environments. (b) LATEX source. (c) HTML outcome.

The modification of the style files consisted of
indirectly seeding hooks into the files and providing
default configurations to the seeds. To achieve this
end, simple sample files were needed for experiment-
ing with the features under consideration and learn-
ing the issues involved. The files had to be minimal
in size and address the different issues in isolation.

Berend de Boer offers a rich assortment of sim-
ple source ConTEXt files [6]. These files turned out
to be very helpful in the development of TEX4ht
support for ConTEXt.

2.2 Proof of Concept

To provide support for a new package, TEX4ht must
find a way to indirectly access the different features
introduced by the package. The first challenge was
to determine whether TEX4ht can deal with the sim-
plest ConTEXt source files.

\starttext

Hello world.

\stoptext

(a)

\input tex4ht.sty

\Preamble{xhtml}

\EndPreamble

\starttext

Hello world.

\stoptext

(b)

Figure 9: (a) The simplest ConTEXt file.
(b) Explicit request for TEX4ht configuration
within the ConTEXt file.

To answer this question, the hello.tex source
of Figure 9(a) was compiled for DVI output with the

command ‘texexec hello’. The successful compi-
lation ensured that ConTEXt installed correctly and
that the source file was correct. The next stage con-
sisted of creating a similar file hello4ht.tex that
explicitly loaded the core TEX4ht configurations into
the compilation. This modified file is shown in Fig-
ure 9(b).

The modified file was similarly compiled with
the command ‘texexec hello4ht’ to produce DVI

output. Then the sequence of commands ‘tex4ht
hello4ht’ and ‘t4ht hello4ht’ post-processed the
DVI output into HTML format. The compilation
into the DVI target complained along the way about
a few errors. Similarly, the post-processing created
an imperfect HTML file, with extra text scattered
around.

The above problems called for a few corrections
to the core TEX4ht configurations. In addition, they
required the tailoring of a nucleus of a TEX4ht con-
figuration file context.4ht for ConTEXt.

The configuration file incrementally grew in size
as the different features of ConTEXt were treated
for TEX4ht support. Eventually, all the HTML code
was transferred into a configuration file html4.4ht

dedicated to handling HTML code, and context.

4ht contained just the code for seeding ConTEXt
hooks.

2.3 Setting an Invocation Script

A desirable objective of TEX4ht is to leave the user
source file and the ConTEXt style files untouched.
In the case of ConTEXt, a new htcontext command
was introduced to invoke the following script.

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 45

Eitan M. Gurari

\def\complexstartsmaller[#1]%

{\par \bgroup ...

\advance\leftskip ...

\advance\rightskip ...}

\def\stopsmaller{\par \egroup}

(a)

\let\o:complexstartsmaller: =

\complexstartsmaller

\def\complexstartsmaller[#1]{%

\o:complexstartsmaller:[#1]%

\a:narrower\bgroup

\aftergroup\b:narrower

\aftergroup\egroup }

\NewConfigure{narrower}{2}

(b)

\Configure{narrower}

{\ifvmode\IgnorePar\fi \EndP \HCode{<div class="narrower">}}

{\ifvmode\IgnorePar\fi \EndP \HCode{</div>}}

\Css{div.narrower {margin-left:2em; margin-right:2em;}}

(c)

Figure 10: (a) ConTEXt’s \complexstartsmaller macro. (b) TEX4ht hooks. (c) HTML configuration.

texexec \

--arg="opt-arg=configuration-options" \

--use=tex4ht ConTEXt-options filename
tex4ht filename tex4ht-options
t4ht filename t4ht-options

The texexec command line loads the TEX4ht
configurations, including the file context.4ht, at
the \starttext instruction of the source file. The
\starttext instruction marks the end of the pream-
ble of the document and the start of the body. Con-
sequently, the TEX4ht configurations have the last
word on how the environment will look for the com-
pilations into DVI.

2.4 Planting and Configuring Hooks

Planting hooks indirectly into a package’s macros re-
quires a deep understanding of the implementation
of the macros. For many features, acquiring such
knowledge is not an easy task. Experiments with
simple source files that use these features can pro-
vide very helpful hints. Still, the job is often tedious
and time consuming.

Figure 10(b) illustrates how TEX4ht hooks are
indirectly introduced, within the context.4ht file,
into the ConTEXt macro \complexstartsmaller.
This macro is defined in the style file core-spa.tex
of ConTEXt— its outline is shown in Figure 10(a).
The implementation takes advantage of having the
context.4ht file loaded at the \starttext instruc-
tion, while core-spa.tex is loaded earlier.

Figure 10(c) shows the HTML configurations to
be associated with the hooks in the default setting.

2.5 Observations

ConTEXt is a TEX environment very rich in features.
The work described in this report relates to the core
ConTEXt features discussed in [6]. Additional con-
figurations will be provided in response to requests
from users of the system.

The following are a few of the hardships encoun-
tered in preparing TEX4ht configurations for Con-
TEXt.

• ConTEXt is written in Dutch. Not knowing the
language makes it difficult to follow the mean-
ing of commands.

• Having a limited understanding of ConTEXt,
too much time was spent on brute force exper-
imentations and tracing of computations.

• General purpose environments such as ‘\begin
{env} ...\end{env}’ in LATEX are very reward-
ing. They require very few hooks and cover
large sets of commands. ConTEXt offers simi-
lar environments through hidden definitions to
macros of the form ‘\??env’.

• Lack of a clear semantics makes it difficult to
provide intelligent configurations (this seemed
to be the case for enumerated versus description
lists).

• Hooks at different levels of grouping make it dif-
ficult to communicate information between the
hooks. For instance, the \@@somedefinitie

macro apparently forces this type of approach.

The ConTEXt system has been created to help
produce good looking documents with well-specified
page formats, often in PDF format. In this respect it
has achieved outstanding results. Hypertext seems

46 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

TEX4ht: HTML Production

to offer a large array of additional opportunities for
this system.

2.6 Acknowledgment

I am grateful to Bob Kerstetter for initially request-
ing TEX4ht configurations for ConTEXt and for ar-
ranging help to get me started with ConTEXt. I am
indebted to Patrick Gundlach for his considerable
effort to install ConTEXt on my platform. I would
like to thank Hans Hagen for his input, and Karl
Berry for editing the report.

References

[1] Eitan M. Gurari, TEX4ht: LATEX and TEX for

Hypertext, http://www.cse.ohio-state.edu/
∼gurari/TeX4ht/.

[2] Design Science, MathPlayer, http://www.
dessci.com/en/products/mathplayer/

default.htm.

[3] David Carlisle, XSLT stylesheets for
MathML, http://www.w3.org/Math/
XSL/Overview-tech.html.

[4] Cascading Style Sheets (CSS), http:
//www.w3.org/Style/CSS/.

[5] Ton Otten and Hans Hagen, ConTEXt: An
excursion, Pragma Ade, http://pragma-ade.
nl/general/manuals/mp-cb-en.pdf.

[6] Berend de Boer, LATEX in proper ConTEXt,
http://www.berenddeboer.net/tex/

LaTeX2ConTeXt.pdf, July 2003.

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 47

48 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

The State of ConTEXt

Hans Hagen
Pragma ADE, The Netherlands

pragma@wxs.nl

Abstract

In this article I will describe the current state of the ConTEXt macro package and
the forces that play a role in its evolution. I will also indicate the directions in
which we look for further developments.

1 ConTEXt developments

The public part of the ConTEXt story started around
1995. If we summarize the main developments in
this macro package we can roughly identify the fol-
lowing points of focus:

• a configurable environment where users can
define styles, using an interface in a language
of choice; the multilingual interface was first
needed when the chemical package ppchTEX

was adapted to English and made generic
• support for document collections such as we

find in educational settings, with a focus on
re-usability; multilingual support, selective
processing and dedicated modules for chemi-
cal formulas and consistent usage of physical
units evolved from there

• features aimed at highly interactive docu-
ments, optimized for reading on computer
screens; support for one source, multiple out-
put was part of that

• extensive support for grid snapping combined
with advanced multi-column typesetting

• typescripts as a means of building font collec-
tions and combining typefaces in many (possi-
bly weird) ways

• all kinds of fuzzy configuration options need-
ed in order to mimic the behavior of desktop
publishing applications

• integrated support for processing XML docu-
ments and using XML databases

Extending and improving ConTEXt have never been
related to strong versioning or promises for succes-

Editor’s Note: This article is reprinted from MAPS 31 by

kind permission of the author and editor. The author made

several related presentations at the Practical TEX 2004 con-

ference.

sors. Part of the game is that we try to remain down-
ward compatible. And so, officially, we still have
ConTEXt version 1. Successive releases are tagged
by date.

The most recent change was not so much related
to new features but more to the machinery behind
the screens. Those who have looked into the source
code probably have noticed that for reasons we will
not discuss now, keywords and variable names look
rather Dutch, that is, until recently. Around August
2004 we made the move to a low level English inter-
face. Although we had some help from a Perl script
that had been written for this purpose years ago,
still quite some manual checking had to be done.

This does not mean that ConTEXt is completely
clean under the hood. When we started developing
the system, TEX’s were small, and so we ended up
with quite some dirty (not that verbose) code. One
can easily recognize the older code, but we hope to
weed out the ugly bits in due time.

There is good reason to qualify the current ver-
sion as ConTEXt version 2. The reason for this is
that users who use low level Dutch keyword con-
stants (prefixed by \v! and \c!) in their non-Dutch
styles, now need to translate these into English. A
bonus is that third party extensions will be easier to
implement. Such developments will further be stim-
ulated by Taco Hoekwater’s ConTEXt API project
and Patrick Gundlach’s ConTEXt interface descrip-
tion project hosted at contextgarden.net. I must
admit that the decision to go low-level-English now
and not later, was triggered by their initiatives.

Of course one can legitimately ask whether
there is still need for further developments in TEX

macro packages like ConTEXt. At Pragma ADE

we deal with documents coded in TEX as well as
the more avant-garde XML format. It cannot be de-
nied that XML coding makes documents much less
error-prone: it’s much simpler to check the syntax

The State of ConTEXt

TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference 49

of an XML file than of a TEX file. However, it can
also not be denied that the loss of typographic de-
tail (or more precisely: the means of authors to im-
prove the look and feel of the final result) is a high
price to pay. Of course there are also document
types that cannot easily be covered by a manage-
able set of XML elements. Just think of highly com-
plex math, physics or chemistry, or manuals that use
a wide range of visualisations. One easily ends up
with something that, although coded without back-
slashes, looks rather familiar to TEX users.

An even more important observation is that
whatever means of going from document source to
typeset product we choose, the visualisation prob-
lem will not change. No matter how many tools (or
macros) one writes, differences in designs (and not
seldom inconsistencies in designs) demand unique
solutions. Although one can easily become over-
whelmed by the possibilities that today’s publishing
tools provide, there is still a place for the proven
TEX technology.

2 ConTEXt and browsers

Recently we redesigned the Pragma ADE web-site,
a site that is mostly dedicated to ConTEXt. The
HTML pages are generated from XML sources using
XSLTPROC. Some of the PDF documents are gen-
erated from the same XML code. In addition, we
generate templates and interfaces for the eXaM-

pLe framework, of which we now run an instance
on the web site. This framework is a shell around
TEX and friends, and provides features like page im-
position and font tests, wrapped in an interface, but
very TEXish underneath.

When rebuilding the web site, it was enlight-
ening to find out that standards like CSS were not
always precisely supported, even after being around
for many years. Firefox (Mozilla Gecko engine) does
a decent job. But for Internet Explorer, we have
to cheat dimensions and use dirty tricks to get the
alignment right. Opera was not that bad, but could
not handle relative dimensions well. In the end we
had to follow yet another approach to make Apple’s
Safari Browser (based on the KDE engine) happy
as well. One lesson that I learned here was that
even an abundance of implementations (or render-
ers) and tons of documentation (it’s easy to find
info in the web on CSS and HTML) makes defining
a simple layout a painful and time consuming pro-
cess. It’s also interesting to see that the amount of
XSLT code needed is not necessarily smaller than
the ConTEXt code needed to generate similar out-

put in PDF. Although the TEX community is under
pressure of evolving techniques, it should also real-
ize that its huge repository of tools and macros is
not that bad after all.

Interestingly, browsers can handle complex op-
erations, like displaying Arab or Chinese and han-
dling widgets and JavaScript quite well, but setting
up a simple geometry based on fractions (percent-
ages of the screen size) goes beyond their capacity.
Something similar can be observed with the XML

related CSS cousin XSL-FO: I still have to run into a
nicely typeset book done that way with a better than
mediocre design. Again the focus seems to be more
on the machinery around it, than on the creation of
masterpieces. But then, this may well be beyond its
purpose. Whatever a TEX user may think of CSS

compared to his or her favorite macro package, its
influence is undeniable. The evolution of the Mozilla
platform demonstrates this: it provides a user inter-
face builder based on CSS and XHTML called XUL.
When PDF came around, I made some documents
that could be considered to be programs. It looks
like in the end typesetting and user interfacing fi-
nally meet each other.

3 Future developments

The majority of documents is a collection of para-
graphs of running text, itemized lists, a few graph-
ics here and there, and a couple of tables. TEX and
TEX-related packages can handle such documents
with ease. However, it seems that even in auto-
mated work-flows, where most of the interface can
be hidden, TEX is seldom considered to be an op-
tion. But, when no other alternative is available, or
when other applications failed to perform, this 25
year old program can come to help. It’s interesting
to observe that the TEX community can still attract
new users who don’t consider the user interface too
much of a problem. So it definitely makes sense to
continue development, if only because there is still
a large group of documents that demand such tools
and typographical detail. As long as TEX can keep
up, the ConTEXt story will continue and we will see
version 4 (extremely modularized), version 8, 16 and
maybe 32 some time in the future. In the end it may
be that properly typeset documents where time and
effort is put in the look and feel, become a niche, and
make way for documents with a minimum of design
that can be generated each time they are updated,
using the user’s preferences.

What is currently happening at the ConTEXt
frontier? ConTEXt has been ε-TEX aware for a long

Hans Hagen

50 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

time, and the PDFTEX engine is supported quite
well. The good news is that PDFTEX is still under
active development. For instance large parts of the
font handling were redesigned, and paragraph opti-
mization (PDFTEX implements a font expansion al-
gorithm akin to the hz micro-typography algorithm
by Prof. Hermann Zapf) as well as protruding (hang-
ing punctuation) have become more user friendly.
ConTEXt supports both mechanisms quite well.

With the arrival of Aleph, the stable descen-
dant of Omega, support for this extension will be-
come more visible than it was so far. Although UTF

is supported, as well as some specialized Chinese en-
codings, using Aleph will bring Unicode support in
the broadest sense, given that adequate fonts and
hyphenation patterns become available. In many
aspects Omega is not as multilingual as advertised,
and certainly not by nature. Omega and therefore
Aleph provide some mechanisms, but one still needs
macros on top of these to tie the directional type-
setting to actual languages and layout. Taking fonts
as a starting point, the Mac OSX specific unicod-
ed TEX variant XeTEX also looks promising. Ac-
cording to one of the ConTEXt Mac OSX experts,
Adam Lindsay, hardly any extensions to ConTEXt
are needed in order to get documents typeset in vir-
tually every script.

Other developments that may become of inter-
est are Taco Hoekwater’s merge of TEX and META

POST. There ConTEXt will not only benefit from a
speedup due to more efficient inter-process commu-
nication, but it may also open new worlds. The aver-
age user will probably not use ConTEXt the way we
do, for instance to create DTP like output from XML

sources, which often means multiple calls to META

POST per page. Think of documents with 250--500
pages, hundreds of (possibly run time manipulated)
graphics, thousands of calls to METAPOST, with an
occasional size of over 500 megabytes, and you can
imagine that any speed improvement counts. Most
features that we use in projects end up in the ker-
nel, and so many users may profit from an efficient
integration.

I already mentioned XML. In the next couple of
years, more ConTEXt subsystems will use this for-
mat in one way or another. If you take a closer look
at the distribution, you will notice that quite some
XML objects are present already, like in the figure
database mechanism and other tools. New is foX-

et, yet another XSL-FO engine. Formatting Objects
(FO’s) are a kind of building block to be handled by
a typesetting engine.

Although foXet ended up on our agenda due

to some vague promises made long ago, the actual
development of foXet was triggered by the observa-
tion that the ConTEXt MathML engine is being used
to fill in the gap in commercial engines. Why bother
making small bitmaps (or PDF snippets) of formulas
while TEX can do the whole thing? It is interest-
ing to notice that most of the documents that this
applies to are rather trivial to typeset with either
ConTEXt built-in XML features or by using XSLT to
generate intermediate TEX code. It is also inter-
esting to observe that there are ConTEXt users who
use XML documents with ConTEXt as a backend,
thereby hiding TEX completely.

The magic sound of XSL-FO occasionally makes
our customers express the wish for an engine that
can handle them (even if their designs are not that
well suited for it). Somehow the magic obscures the
fact that it’s a relatively slow process, that it may
take longer to implement (as said before: the prob-
lem does not change), does not necessarily lead to
well typeset documents, et cetera. If one knows that
something is possible (and with TEX much is possi-
ble) the demands of designers are seldom adapted.
When something is not possible at all (and this oc-
curs with XSL-FO) my guess is that the demands
will be dropped. Float handling and marginal notes
are examples of areas where TEX is hard to beat.

4 Paragraph building

So what about TEX’s superior paragraph builder?
Unfortunately most of the documents that we have
to typeset professionally are designed by those
who use DTP systems with poor quality paragraph
builders. This means that they simply cannot be-
lieve that there are programs that can do a de-
cent job. As a result we end up with colorful and
abundantly illustrated documents that have rather
complex layouts (especially if you take into account
that they are typeset automatically) but with poorly
typeset paragraphs, and that is what they recognize.
It is hard to explain that by setting all TEX’s penal-
ties to their maximum, the solution space becomes
pretty small. Even the somehow always demand-
ed ragged right justification then looks plain bad.
The problem for the TEX community is that alter-
natives for TEX don’t have to provide TEX quality
paragraph routines. As long as they can get the lay-
out done, they win the game. ConTEXt users who
like to look into the source will have noticed that
quite some control was added in order to meet these
demands, even to the extent that it may lower the
quality.

The State of ConTEXt

TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference 51

So what good is it for TEX users? As with many
things, it’s no bad idea to take the best of all worlds.
There is nothing wrong with DTP, and for many
applications, an Office Suite does well. And for a
certain range of documents XSL-FO is a good choice.
Of course it remains puzzling why some of today’s
publishing on demand workflows are presented as
something new, while in practice it already could
have be done that way for decades using SGML and
TEX, at far lower costs too. In some sense TEX was
simply too far ahead.

One can mix those techniques. Just as one
makes a graphic in a drawing program, one can
imagine embedding a one page document coded in
XSL-FO as a graphic in a TEX document. In this
way we get a kind of ‘placed XML’. And ConTEXt
already can happily combine TEX and XML in such
ways. Also, it’s more convenient to store informa-
tion in a standardized (XML) format, than to invent
some syntax for each situation and develop differ-
ent tools for each of them. For instance, if we want
file information in our documents, we use xmltools

to generate a directory database (this can be done
at document processing time by using a system call)
and we then let TEX filter the information from that

database. Another example is OpenOffice. Anyone
who has taken a closer look at this program will
probably have recognized similarities with XSL-FO

related developments. Seeing TEX as an alternative
back-end for texts edited in that environment is not
such a bad idea.

All these worlds can meet each other in Con-
TEXt. In ConTEXt, TEX and XML come together
not only in foXet, but also in what we’ve called
‘The Example Framework’. The eXaMpLe logo has
the x, m, and l hidden inside, but the actual purpose
of this project is to hide TEX from users. On our
web site you can play with some of these framework
features.

It will be clear that the future of ConTEXt is
to some extent related to the advance of XML, al-
though the pure TEX approach will not be neglect-
ed. For many documents the TEX syntax (or in our
case, the ConTEXt one) is quite well suited and ef-
ficient. Although I nowadays code most database
related documents in XML (like the PDF showcase
document interfaces) I have no plans to abandon
TEX. Even thinking of coding a manual like the one
about MetaFun in XML already gives reasons for
nightmares. And so. . . plenty of ConTEXt ahead.

52 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

A Simple Book Design in ConTEXt

Steve Grathwohl
Duke University Press, Durham, NC, USA

sgrathwohl@dukeupress.edu

Abstract

As a test of book design implementation in ConTEXt, I report on a design for
A Voyage to Arcturus by David Lindsay, including page setups, chapter heads,
headers, and typescripts for fonts.

1 Motivation

Whenever I learn a new TEX system, I try to im-
plement a design for a significant number of pages.
Many years ago, when I was learning LATEX (2.09), I
wrote a rawls.sty to mimic Harvard Press’s design
for John Rawls’s A Theory of Justice [3], a design
that featured a number of interesting features: not
only were there parts, chapters, and sections, but
the sections were numbered consecutively through-
out the book, orthogonally to the chapters. So the
first section of Chapter 3, say, might be numbered
section 16. Page headers had rules under the head-
er texts. I mention all this because in those pre-
LATEX2ε days, it was far from trivial to make sub-
stantive changes to the default styles. I remember
studying Don Knuth’s (plain) code for his Computer
Journal article on Literate Programming and think-
ing what a nightmare it would be to implement in
LATEX; but that was 1988. Matters have certainly
improved since then.

When I first encountered ConTEXt I was imme-
diately impressed by the setups mechanism of key/
value pairs approach to a design interface. I began
using ConTEXt for typesetting internal documenta-
tion here at the Duke Press (coded in DocBook XML

and processed using Simon Pepping’s Docbook In

ConTeXt [2]). But I had in mind all along trying
out ConTEXt in a larger project. I wanted to see
how easy it would be to render a book design com-
pared to LATEX. I suspected it would be much easier;
I was right.

2 The Text

When I discovered that a very strange book I had
first read as a youth, A Voyage to Arcturus by David
Lindsay [1], had been deposited in Project Guten-
berg, I knew I had my text. In the event, the OCR

text was quite corrupt, and it took a while to make
the necessary edits to bring it to an acceptable stan-
dard.

The design I had in mind for the book was based
on a mathematics text I read in college. The unify-
ing theme was a vertical rule separating visual ele-
ments of the chapter headings and page headers.

3 Fonts

I decided to use a Bembo clone (called Bergamo) for
the text and an Optima clone (called Opus) for the
chapter headings and header texts. Both are from
the FontSite 500 collection [4]. To use these fonts
with ConTEXt, I write some typescripts.

\starttypescript [serif] [bergamo] [ec]

\definefontsynonym [Bergamo-Roman]

[5borjx8t] [encoding=ec]

\definefontsynonym [Bergamo-Bold]

[5bobjx8t] [encoding=ec]

\definefontsynonym [Bergamo-Italic]

[5borix8t] [encoding=ec]

\definefontsynonym [Bergamo-Bold-Italic]

[5bobix8t] [encoding=ec]

\definefontsynonym [Bergamo-Caps]

[5borcj8t] [encoding=ec]

\definefontsynonym [Bergamo-Bold-Caps]

[5bobcj8t] [encoding=ec]

\stoptypescript

Observant readers who know the Berry naming
conventions will see that Bergamo contains both full
‘f’ ligatures and old-style numerals.

In the following I declare that maths be in
scaled Palatino (even though in this project there
are no maths). I find that Palatino for maths blends
well with Bergamo, and I wanted to go ahead and
set this up for future projects.

A Simple Book Design in ConTEXt

TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference 53

\starttypescript [Bergamo]

\definetypeface [Bergamo] [rm] [serif]

[bergamo] [default] [encoding=ec]

\definetypeface [Bergamo] [ss] [sans]

[opus] [default] [encoding=ec]

\definetypeface [Bergamo] [tt] [mono]

[modern] [default]

\definetypeface [Bergamo] [mm] [math]

[palatino] [default] [encoding=ec,

rscale=.90]

\stoptypescript

The code for Opus is similar. I store these
typescripts in type-fontsite.tex and invoke them.
Note that I use hanging punctuation and open up
the lines to improve readability.

% Set up hanging punctuation, pure style;

% Declare Berry naming conventions, ec

% encoding

\usetypescript[serif] [hanging] [pure]

\usetypescript[berry] [ec]

% Load Bergamo and Opus fonts,

% declare sizes and leading.

% Looks better with lines opened a bit.

\usetypescriptfile[type-fontsite]

\usetypescript[Bergamo]

\setupbodyfont[Bergamo,10pt]

\setupinterlinespace[line=1.35em]

\setupalign[hanging]

4 Chapter Heads, Page Headers

and Footers

I set up the heads with these options

\setuphead

[chapter]

[page=yes,

before={\blank[force,4*line]},

after={\blank[4*line]},

command=\mychap]

Note the command option. This allows me to
design my own chapter head appearance. \mychap

looks like this (#1 refers to the chapter number, and
#2 refers to the chapter title):

% the % after] and } suppresses space

\def\mychap#1#2%

{\hbox to \hsize \bgroup

\hfill

\setupframed

[offset=0.5em,frame=off]%

\tbox

{\framed

[width=2cm,align=left]

{\ss #1}}%

% now instructions for #2,

% anything but ragged right with

% no hyphenation looks bad

\tbox

{\framed

[width=.5\textwidth,

align=flushright,

leftframe=on]

{\hyphenpenalty 10000 \ss #2}}%

\egroup}

I want dropped caps for my chapter openers,
and small caps afterwards for a certain number of
words that I choose. (It is also possible to set this up
so the entire first line is in small caps automatically;
but I prefer to choose my own breaks.) The dropped
cap will be in Opus, be 3 \baselineskips tall, be
dropped one line, and have 2 points of padding.

\def\Drop {\DroppedCaps

{} {Sans} {3\baselineskip}

{2pt} {1\baselineskip} {2}}

\def\chap#1/#2/{\Drop #1{\sc#2}}

so I can say

\chapter{The S\’eance}

\chap O/n a march evening/, at eight

o’clock, Backhouse, the

You can see the result in Figure 1.
To unify the design, I make the headlines mir-

ror the chapter openers, with a vertical rule sep-
arating verso the page number and book title and
recto the chapter title and page number, all in Opus.
First I declare doublesided pages and turn off auto
page-number placement. Then I specify a different
scheme for chapter opening pages.

Steve Grathwohl

54 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

% Remove auto page numbering placement;

% I’ll do it manually.

\setuppagenumbering

[alternative=doublesided,

location=]

% Set up header texts, recto and verso

\setupheadertexts

[] [\setups{text:header:1}]

[\setups{text:header:2}] []

\startsetups text:header:1

\getmarking[chapter][current]

\quad\vrule\quad

\pagenumber

\stopsetups

\startsetups text:header:2

\pagenumber

\quad\vrule\quad

A Voyage to Arcturus

\stopsetups

% Define heads for chapter opening pages

\definetext

[chapterstart]

[footer]

[pagenumber]

\setuphead

[chapter]

[header=empty,

footer=chapterstart]

\setupheader

[style=\ss]

A page spread can be seen in Figure 2.
Now I specify the Table of Contents:

% Set up table of contents format.

% Move whole operation to the right

% to better center the TOC, and make

% sure chap numbers align properly

% (flushright) in their own box

\definelist

[chapter]

\setuplist

[chapter]

[alternative=a,

margin=.2\textwidth,

numbercommand=\NumCom]

\def\NumCom#1{\hbox to 2em{\hfill #1}}

5 Setting Up the Pages

Last (actually first) I set up the pages and a switch
for page imposition. Pay attention to the comment-
ed lines for crop marks, etc.

% Set the sizes.

\definepapersize

[arc]

[height=220mm,

width=145mm]

\setuppapersize

[arc]

[letter]

% Set up arrangements for printing as

% booklet. Toggle as needed.

% \setuparranging[2UP,rotated,doublesided]

\setuplayout

[margin=0pt,

width=middle]

\setuplayout

[topspace=2\baselineskip,

height=middle]

% Layout modifications to headers, etc

\setuplayout

[header=2\baselineskip,

footer=2\baselineskip,

location=middle]

% Crop marks.

%

% \setuplayout[marking=on]

\setupindenting

[medium]

A Simple Book Design in ConTEXt

TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference 55

% I guess Bush would call this

% ‘freedomspacing’

\setuplanguage

[en]

[spacing=broad] % french spacing

Finally, for output targeted for a computer
screen instead of print, I can say

\setuppapersize[S6][S6]

\setupinteraction[state=start]

I can’t argue emphatically enough for this ap-
proach to books and articles destined for a com-
puter screen. The advantages to making one’s way
through the text by just the touch of the space bar
are, to me, self evident.

6 Future Work

Clearly, implementing a simple design in ConTEXt
is quite straightforward. In fact, the advantages of
using ConTEXt become more obvious the more com-
plicated the document design. I hope that this arti-
cle might motivate others to give ConTEXt a try for
their own typesetting projects.

Eventually I plan to code the book in XML

along with supporting files for browser display and
direct typesetting with ConTEXt. For the moment,
I will post the screen version at http://www.duke.
edu/~grath/arcS6.pdf, after a friend designs a

suitable cover page for it. Other versions will fol-
low when ready.

But be warned—many have found Lindsay’s
philosophy detestable (a worship of suffering is one
characteristic of it). The English writer C. S. Lewis
certainly found it so, even if the book did influence
his wonderful space novels.

Acknowledgments. Thanks are due to Hans Hagen
for improving my humble code in places and for writ-
ing the ConTEXt TUGboat style.

References

[1] Lindsay, David, A Voyage to Arcturus, Lon-
don, Methuen, 1920. Text available at Project
Gutenberg: http://www.gutenberg.net

/etext/1329. Other, corrupt editions can
be found on amazon.com.

[2] Pepping, Simon, DocbookInConTeXt, avail-
able at http://www.leverkruid.nl/context
/index.html.

[3] Rawls, John, A Theory of Justice, Revised
edition, Belknap Press, Cambridge, MA, 1999.

[4] FontSite. http://www.fontsite.com. TEX
font metrics and LATEX support files by
Christopher League are available at http:
//contrapunctus.net/league/haques

/fs500tex/.

Steve Grathwohl

56 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

1

1 The Séance

O n a march evening, at eight o’clock, Backhouse, the medium—a

fast-rising star in the psychic world—was ushered into the study at

Prolands, the Hampstead residence ofMontague Faull. The roomwas illumi-

nated only by the light of a blazing fire. The host, eying him with indolent

curiosity, got up, and the usual conventional greetings were exchanged. Hav-

ing indicated an easy chair before the fire to his guest, the South American

merchant sank back again into his own. The electric light was switched on.

Faull’s prominent, clear-cut features, metallic-looking skin, and general air

of bored impassiveness, did not seem greatly to impress the medium, who

was accustomed to regard men from a special angle. Backhouse, on the con-

trary, was a novelty to the merchant. As he tranquilly studied him through

half closed lids and the smoke of a cigar, he wondered how this little, thick-

set person with the pointed beard contrived to remain so fresh and sane in

appearance, in view of the morbid nature of his occupation.

“Do you smoke?” drawled Faull, by way of starting the conversation.

“No? Then will you take a drink?”

“Not at present, I thank you.”

A pause.

“Everything is satisfactory? The materialisation will take place?”

“I see no reason to doubt it.”

“That’s good, for I would not like my guests to be disappointed. I have

your check written out in my pocket.”

“Afterward will do quite well.”

“Nine o’clock was the time specified, I believe?”

“I fancy so.”

Figure 1 A chapter opening page

A Simple Book Design in ConTEXt

TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference 57

12
2

A
V
o
ya
g
e
to
A
rc
tu
ru
s

“
It
is
S
h
ap
in
g
strip
p
ed
o
f
illu
sio
n
.”

“
H
o
w
co
m
es
th
is
h
o
rrib
le
w
o
rld
to
ex
ist?”

C
atice

d
id
n
o
t
an
sw
er.

“
W
h
o
is
S
u
rtu
r?”

“
Y
o
u
w
ill
g
et
n
earer

to
h
im
to
m
o
rro
w
;
b
u
t
n
o
t
h
ere.”

“
I
am
w
ad
in
g
th
ro
u
gh
to
o
m
u
ch
b
lo
o
d
,”
said
M
ask
u
ll.
“
N
o
th
in
g
go
o
d

can
co
m
e
o
f
it.”

“
D
o
n
o
t
fear
ch
an
g
e
an
d
d
estru

ctio
n
;
b
u
t
lau
gh
ter
an
d
jo
y.”

M
ask
u
ll
m
ed
itated

.

“
T
ell
m
e,
C
atice.

If
I
h
ad
elected

to
fo
llo
w
S
p
ad
evil,

w
o
u
ld
yo
u
really

h
ave
accep

ted
h
is
faith
?”

“
H
e
w
as
a
g
reat-so

u
led
m
an
,”
rep
lied
C
atice.

“
I
see
th
at
th
e
p
rid
e
o
f
o
u
r

m
en
is
o
n
ly
an
o
th
er
sp
ro
u
tin
g—
o
u
t
o
f
p
leasu

re.
T
o
m
o
rro
w
I
to
o
sh
all
leave

S
an
t,
to
refl
ect
o
n
all
th
is.”

M
ask
u
ll
sh
u
d
d
ered
.
“
T
h
en
th
ese
tw
o
d
eath
s
w
ere
n
o
t
a
n
ecessity,

b
u
t
a

crim
e!”

“
H
is
p
art
w
as
p
layed

an
d
h
en
cefo
rw
ard
th
e
w
o
m
an
w
o
u
ld
h
ave
d
ragg
ed

d
o
w
n
h
is
id
eas,
w
ith
h
er
so
ft
lo
ve
an
d
lo
yalty.

R
eg
ret
n
o
th
in
g,
stran

g
er,
b
u
t

go
aw
ay
at
o
n
ce
o
u
t
o
f
th
e
lan
d
.”

“
T
o
n
igh
t?
W
h
ere
sh
all
I
go
?”

“
T
o
W
o
m
b
fl
ash
,
w
h
ere
yo
u
w
ill
m
eet
th
e
d
eep
est
m
in
d
s.
I
w
ill
p
u
t
yo
u

o
n
th
e
w
ay.”

H
e
lin
k
ed
h
is
arm

in
M
ask
u
ll’s,
an
d
th
ey
w
alk
ed
aw
ay
in
to
th
e
n
igh
t.

F
o
r
a
m
ile
o
r
m
o
re
th
ey
sk
irted

th
e
ed
g
e
o
f
th
e
p
recip

ice.
T
h
e
w
in
d
w
as

search
in
g,
an
d
d
ro
ve
g
rit
in
to
th
eir
faces.

T
h
ro
u
gh
th
e
rifts
o
f
th
e
clo
u
d
s,

stars,
fain
t
an
d
b
rillian

t,
ap
p
eared

.
M
ask
u
ll
saw
n
o
fam
iliar
co
n
stellatio

n
s.

H
e
w
o
n
d
ered

if
th
e
su
n
o
f
earth

w
as
visib
le,
an
d
if
so
w
h
ich
o
n
e
it
w
as.

T
h
ey
cam
e
to
th
e
h
ead
o
f
a
ro
u
gh
staircase,

lead
in
g
d
o
w
n
th
e
cliff
sid
e.

It
resem

b
led
th
e
o
n
e
b
y
w
h
ich
h
e
h
ad
co
m
e
u
p
;
b
u
t
th
is
d
escen

d
ed
to
th
e

W
o
m
b
fl
ash
F
o
rest.

“
T
h
at
is
yo
u
r
p
ath
’,”
said
C
atice,

“
an
d
I
sh
all
n
o
t
co
m
e
an
y
farth
er.”

M
ask
u
ll
d
etain

ed
h
im
.
“
S
ay
ju
st
th
is,
b
efo
re
w
e
p
art
co
m
p
an
y—
w
h
y

d
o
es
p
leasu

re
ap
p
ear
so
sh
am
efu
l
to
u
s?”

“
B
ecau
se
in
feelin

g
p
leasu

re,
w
e
fo
rg
et
o
u
r
h
o
m
e.”

“A
n
d
th
at
is
.
.
.?”

“
M
u
sp
el,”
an
sw
ered

C
atice.

H
avin
g
m
ad
e
th
is
rep
ly,
h
e
d
isen
g
ag
ed
h
im
self,

an
d
,
tu
rn
in
g
h
is
b
ack
,

d
isap
p
eared

in
to
th
e
d
ark
n
ess.

S
p
a
d
e
v
il

12
3

M
ask
u
ll
stu
m
b
led
d
o
w
n
th
e
staircase

as
b
est
h
e
co
u
ld
.
H
e
w
as
tired
,
b
u
t

co
n
tem
p
tu
o
u
s
o
f
h
is
p
ain
s.
H
is
u
n
in
ju
red
p
ro
b
e
b
eg
an
to
d
isch
arg
e
m
atter.

H
e
lo
w
ered

h
im
self
fro
m
step
to
step
d
u
rin
g
w
h
at
seem

ed
an
in
term

in
ab
le

tim
e.
T
h
e
ru
stlin
g
an
d
sigh
in
g
o
f
th
e
trees

g
rew
lo
u
d
er
as
h
e
ap
p
ro
ach
ed
th
e

b
o
tto
m
;
th
e
air
b
ecam

e
still
an
d
w
arm
.

H
e
at
last
reach

ed
level

g
ro
u
n
d
.
S
till
attem

p
tin
g
to
p
ro
ceed
,
h
e
b
eg
an
to

trip
o
ver
ro
o
ts,
an
d
to
co
llid
e
w
ith
tree
tru
n
k
s.
A
fter
th
is
h
ad
h
ap
p
en
ed
a
few

tim
es,
h
e
d
eterm

in
ed
to
go
n
o
farth
er
th
at
n
igh
t.
H
e
h
eap
ed
to
g
eth
er
so
m
e

d
ry
leaves

fo
r
a
p
illo
w
,
an
d
im
m
ed
iately

fl
u
n
g
h
im
self
d
o
w
n
to
sleep

.
D
eep

an
d
h
eavy

u
n
co
n
scio
u
sn
ess
seized

h
im
alm
o
st
in
stan
tly.

Figure 2 A page spread as arranged in signatures

TEX and Linguistics

Steve Peter

Beech Stave Press

310 Hana Road

Edison, NJ 08817, USA

speter@beechstave.com

Abstract

TEX has long been associated with mathematics and “hard” sciences such as
physics. But even during the early days of TEX, linguists were attracted to the
system, and today a growing number of them are turning to TEX (LATEX, Con-
TEXt). Aside from the general advantages of TEX for producing academic papers,
it offers linguists largely intuitive means for dealing with often complex notational
issues. In this paper, an abbreviated version of my Practical TEX 2004 talk, I
show some notational issues and their solutions in TEX.

Why TEX?

As a linguist and an avid user of TEX, I’m frequently
asked why linguists would want to use TEX, as op-
posed to a word processor, to write their papers. Of
course, there are the general reasons why any aca-
demic would benefit from TEX, such as easy han-
dling of numbered examples, footnotes that make
sense, bibliographic management via BibTEX, etc.

For me, the main reason to use TEX to typeset
linguistic papers and books is due to the complex,
but often mathematically-inspired, notational sys-
tems used in the various subfields of linguistics. In
fact, there are some cases1 where the ability of TEX
to format certain constructs aided their adoption by
the field.

In this paper, I discuss various aspects of us-
ing TEX and LATEX to typeset linguistics. One thing
you will find largely absent here is a discussion of
Omega, which should offer great hope for linguists
using TEX. Until its development is further along,
discussion of it only presents users with a utopian
taste of what might be. I would dearly love for
Omega to advance, but the wait (for me) has been
painful. Your mileage may of course vary. Digital

Typography Using LATEX [1] has a good overview of
language support in Omega.

I should note that the union of TEX and lin-
guistics goes back quite far, even here in the pages
of TUGboat [2, 3]. Donald E. Knuth2 notes that lin-
guists were among the first outside of mathematics
to embrace TEX.

1 Such as Attribute Value Matrices in Head-driven Phrase

Structure Grammar.
2 Personal communication at the Practical TEX banquet.

The field of linguistics

Linguistics is a large field that stands at the cross-
roads of several other disciplines, but is united in
dealing with the scientific study of language. As
you might expect from a large field, linguistics is
commonly subdivided into various disciplines, each
of which has various notational traditions and goals.

What is important for TEXnicians is that the
notational issues presented here fall essentially into
the general categories of “special symbols” or “special
layouts”. In order to partition the field into units we
can deal with here, though, let us instead adopt a
fairly traditional division that linguists often use.

1. philology

2. phonology

3. phonetics

4. syntax

5. semantics

6. “hyphenated”

(a) psycholinguistics

(b) sociolinguistics

(c) biolinguistics

(d) discourse analysis

(e) . . .

Fortunately for us, the “hyphenated” subdivisions
largely make do with notation from other subfields,
so they need not concern us further here.

In the remainder of the paper, I will take up
each subfield in turn and discuss notational issues
and how they may be solved with TEX. Most of the
discussion deals with various LATEX packages, which
reflects the “market share” of LATEX. Some of what

58 TUGboat, Volume 25 (2004), No. 1—Proceedings of the Practical TEX 2004 Conference

TEX and Linguistics

follows can be done with more or less difficulty in
Plain TEX or ConTEXt.3

Due to the complexity of syntactic notation and
the generality of application of tree structures, I will
postpone discussion of Syntax until installment two
of this paper.

Philology

Philology was once the general term for linguistic
science, but is now more commonly used to refer
to textual (rhetoric, poetics, textual criticism) and
historical/diachronic linguistics. Most of the nota-
tional issues here deal either with different writing
systems or with modifications of Latin.

The latter is usually quite straightforward in
TEX, such as ā, ē, ı̄, ō, ū, š, s. , etc., obtained by
\=a, \=e, \=\i, \=o, \=u, \v{s}, \d{s}. For exam-
ple, Figure 1 is an example of something you might
encounter in a paper on Indo-European.4

to me (although the suggestion of Kuryłowicz, Apophonie 170, that the ablaut
CeHi : CHı̄ is paralleled by a type CeRi : CRı̄ seems worth considering).

2.2.4. When the laryngeal followed *r., l.,m. , or n. , we expect the resonants to
become αρ, αλ, αµ, αν, with the same α that appears outside laryngeal environ-
ments, and this is what we often get, e.g. �βαλον ‘they threw’ < *egwl.E-, �καµον
‘they toiled’ < *eḱm. A-. But where the following laryngeal was O, we gener-
ally get ορ, ολ : �µολον ‘they went’, �θορον ‘they leapt’, �τορε ‘pierced’, �πορον ‘they
granted’ to the presents βλ
σκω, θρ
(ι)σκω, τιτρ
σκω and the perfect π�πρωται.
An ablaut ρω : αρ or λω : αλ seems not to occur in Greek. F. B. J. Kuiper has
suggested, India Antiqua 199, that the development to ορ and ολ here was pho-
netically regular, the laryngeal influencing the vocalization of the resonant. I
doubt that this is correct, because I believe that Dor. πρ�τος represents a di-
rect outcome of *pr.O-tos (cf. §2.3.2). If preconsonantal O failed to color the

Figure 1: What an Indo-Europeanist reads at the
breakfast table

Paleography, for example, often uses a dot be-
low a letter to indicate an obscured reading, which
is quite easy to do in TEX (via \d{}), but in Word
requires a special font, and a utility to access the
needed characters.5 A few other symbols require
the use of the TIPA package, which we will discuss
below in the section on Phonology.

A major undertaking in philology is the pro-
duction of critical editions (see Figure 2). The re-
quirements of line numbers, cross-references lem-
mata, layer upon layer of notes, marginalia, etc. can
bring a typesetter to the brink of madness, but for
the edmac (Plain TEX), ledmac and ednotes (LATEX)
packages. Unfortunately, none of these packages of-

3 Hans Hagen is aware of many of these issues, and we are

working on adding more support for linguistics to ConTEXt.
4 From The Collected Writings of Warren Cowgill, Beech

Stave Press, 2005.
5 I once tried to explain to my advisor how to get at some

of these characters on a Mac. He shook his head and told me,

“If I learn how to do that, I’ll forget Hittite.”

fers a complete solution, so you will need to select
one based on your specific goals and circumstances.
Uwe Lück offers a critical overview of these critical
edition packages in [4]. Recently, David Kastrup has
created the bigfoot package [5], but I have yet to try
it, so I cannot offer an opinion.

1 A dhuine gan chéill do mhaisligh an chléir
b is tharcaisnigh naomhscruipt na bhfáige,
c na haitheanta réab ’s an t-aifreann thréig
d re taithneamh do chlaonchreideamh Mhártain,
e cá rachair ’od dh́ıon ar Íosa Nasardha
f nuair chaithfimid cruinn bheith ar mhaoileann

Josepha?
g Nı́ caraid Mac Crae chuim t’anama ’ phlé
h ná Calvin bhiais taobh ris an lá sin.

2 Nách damanta an scéal don chreachaire chlaon
b ghlac baiste na cléire ’na pháiste
c ’s do glanadh mar ghréin ón bpeaca ró-dhaor
d tŕı ainibhfios Éva rinn Ádam,
e tuitim aŕıs fé chuing na haicme sin
f tug atharrach bŕı don scŕıbhinn bheannaithe,
g d’aistrigh béasa agus reachta na cléire
h ’s nách tugann aon ghéilleadh don Phápa?

3 Gach scolaire baoth, ńı mholaim a cheird
b ’tá ag obair le géilleadh dá tháille
c don doirbhchoin chlaon dá ngorthar Mac Crae,
d deisceabal straeigh as an gcolláiste.
e Tá adaithe th́ıos in ı́ochtar ifrinn,
f gan solas gan soilse i dt́ıorthaibh dorcha,
g tuigsint an léinn, gach cuirpeacht déin
h is Lucifer aosta ’na mháistir.

22 Teideal : Dhuinnluinng T, Seághan Mac Domhnaill cct B

1.a dhuinne T 1.a mhaslaidh T, mhaslaig B 1.c raob T 1.d le B 1.e

dod B 1.f chaithfamı́d T 1.f maoilinn B 1.g phleidh T 1.h bh́ıos B

1.h leis B 2.a claon B 2.c glannuig T 2.d ainnibhfios T, ainnbhfios B

2.d Éabha B 2.g is B 2.h tuigionn T 3.a sgollaire T 3.a mholluim T

3.b ’tág ccobar T 3.b re B 3.c dorbhchon daor B 3.d straodhaig T

3.e fhadoghthe tśıos T 3.e fadaighthe B 3.f sollus T 3.g cuirripeacht T

3.h Luicifer T, Lúcifer B 3.h mhaighistir T

Figure 2: A critical edition

Typesetting Greek critical editions presents the
same problems as above, plus the need for good
Greek fonts. Claudio Beccari [6] has extended ba-

bel to produce a remarkable facsimile of the famous
Teubner editions. It still lacks some refinement for
producing the critical apparatus, but the package is
under active development, and the results thus far
are quite pleasing.

But Greek fonts aren’t an issue just when doing
Greek critical editions. Due to whatever historical
accident, Greek examples in philology are usually
typeset in Greek, even while other languages that
don’t use the Latin alphabet (such as Sanskrit, Rus-
sian, Armenian, Tocharian, etc.) are transliterated.
Fortunately there are several options for getting and
entering Greek examples. The Beccari Greek fonts
are excellent, and there is also the PSGreek package
[7], which bundles Greek PostScript fonts and a style
file to make accessing them easier, by hiding some

TUGboat, Volume 25 (2004), No. 1—Proceedings of the Practical TEX 2004 Conference 59

Steve Peter

of the horrors of encoding vectors. The quality of
the PS fonts bundled is somewhat uneven, and in-
stalling new fonts for use in the same manner is not
easy. To do so requires the grkfinst fontinst plugin
[8] and some time configuring. I wish it were a bit
easier, since the PSGreek interface is one I find quite
comfortable to use, and it has proven to be a life-
saver for switching Greek fonts.

The Greek in Figure 1 was produced with PS-

Greek. For example, to get �µολον ‘they went’, you
enter \textgreek{>’emolon}. I am now quite used
to entering Greek in this manner, and therefore I
can do it quite rapidly. However, you may be more
comfortable entering Greek in Unicode, given an ap-
propriate text editor. For that, put the following in
your preamble:

\usepackage{ucs}

\usepackage[utf8]{inputinc}

\usepackage[polutonikogreek,english]{babel}

There are two general contexts for typesetting
languages in alphabets other than Latin. First, of
course there are times when you need to typeset a
single language solely for speakers of that language,
such as setting a Russian text in Cyrillic for a Rus-
sian reader. On the other hand, at times it is neces-
sary to mix two or more languages, such as in dic-
tionaries or instructional material.

Both scenarios are supported in TEX, although
dealing with encoding vectors can cause a headache
or two.6 Since I can’t detail all possible language
packages, let me limit myself here to a couple of
packages I’ve found to be useful.

Underpinning nearly all multilingual endeavors
in LATEX is babel by Johannes Braams [9]. It is
included in (I believe) all TEX distributions, the
manual is comprehensive and well written, and you
should spend some time familiarizing yourself with
it if you plan to do multilingual typesetting.

For Russian and the other Cyrillic-alphabet lan-
guages, there is the default Computer Modern Cyril-
lic font, which matches the standard Soviet look
nicely.7 At some point, though, you’ll no doubt want
a change of pace. The pscyr package [10] contains a
number of serif, sans serif, and a couple of display
faces.

6 For Mac OSX users, the X ETEX system frees you from

many of these problems. http://scripts.sil.org/cms/

scripts/page.php?site_id=nrsi&item_id=xetex. However,

you cannot exchange source files with colleagues who use

other operating systems.
7 The Soviets heavily standardized book typefaces at a

time when “modern” fonts were popular. There were some

fantastic Russian typefaces developed during the 1920s that

were neglected for decades.

Languages that use Indic scripts, such as Devā-
nagar̄ı, have a complication that not all graphemes
occur in the same order as they are pronounced, plus
there are many, many di- and trigraphs. The devnag

package [11] provides a preprocessor to take care of
these complexities, plus good fonts and macros for
both Plain TEX and LATEX. Using devnag makes it
possible to typeset a bilingual critical edition with
essentially the same input for both the Devānagar̄ı
and the transliterated text. Figure 3 shows the vow-
els of Marāt.h̄ı, typeset with the devnag package.

a aA i I u U
about car sit seat put root

ff ‰ e ẽ ao aO
under bottle say by road loud

a\ a,

Figure 3: The vowels of Marāt.h̄ı

For languages written in the Arabic alphabet
(such as Arabic, Persian, Pashto, etc.), Klaus La-
gally’s ArabTEX is a must. The system is by now
quite stable, and the output is very good. Several
people are working on various extensions, especially
for typesetting Arabic mathematics. See for ex-
ample, Lazrek et al. [12, 13]. While it is possible
to typeset Hebrew using ArabTEX, Alan Hoenig’s
Makor [14] is worth every penny.8

Typesetting Chinese using TEX is possible with
the CJK [15] package (which provides for much more
than just Chinese, Japanese, and Korean support).
However, I prefer ConTEXt, due to its support of
visual debugging via \tracechinesetrue. Num-
bering can be toggled between Chinese and western
styles via [conversion=chinese] or [conversion=
numbers]. More traditional vertical typesetting is
possible essentially by flowing the text into narrow
columns.

Semantics

Semantics is the study of meaning, and the nota-
tion used is tied closely to formal logic. Thus it is
very straightforward to typeset with TEX. So the
function of the set of things similar to houses is
denoted by λxSimilar_to(x, houses). The TEX to
get this is $\lambda x \textit{Similar_to}(x,

\textit{houses})$. We had to wrap the ‘English’
inside the function with \textit to prevent TEX

8 Yes, it is free software, and yes, I am making an excep-

tion to not discussing Omega software.

60 TUGboat, Volume 25 (2004), No. 1—Proceedings of the Practical TEX 2004 Conference

TEX and Linguistics

from interpreting the words as a series of variables.
In some cases \mbox will work, and note that some-
times spaces inside the \mboxes are important. So
a possible interpretation for the sentence I have told

one friend of mine all those stories9 is given as
∃x[∀y[(x ∈ friends of mine ∧ y ∈ those stories) →

I have told y to x]], or in TEX terms

$\exists x [\forall y[

(x \in \mbox{friends of mine}

\wedge y \in \mbox{those stories})

\rightarrow \mbox{I have told }

y \mbox{ to } x]]$

Double brackets (representing semantic evalu-
ation) are provided by the stmaryrd package [16].
With that loaded, typing
$\llbracket(MN)\rrbracket^{ \mathcal{M}}$

yields J(MN)KM. You may also need to load the
latexsym package for an occasional symbol.

Phonetics and Phonology

Phonetics is a branch of acoustics that deals with
speech sounds and their production and perception.
The notation used is a combination of transcription
symbols (as covered below) and diagrams represent-
ing articulatory spaces. For example, Figure 4 shows
a typical representation of a vowel system.10

Figure 4: Some American English vowels

Also frequent are diagrams of the human vocal
tract. Unfortunately there is no easy way to han-
dle automatic generation of notation of this type. A
typical way to handle them is to create the illustra-

9 From Ray Jackendoff, Semantic Interpretation in Gen-

erative Grammar, Cambridge: MIT Press, 1972, p. 308.
10 From Peter Ladefoged, A Course in Phonetics, San

Diego: Harcourt Brace Jovanovich, 1982, p. 198.

tion in a vector program (such as Inkscape or Illus-
trator) and then to import it into TEX. Given the
complexity of creating them, publishers (and there-
fore also authors) have been reluctant to use them
aside from in very specialized books.11

The International Phonetic Association came
into existence in 1886 with a goal of promoting pho-
netics in education and the creation of an interna-
tional phonetic alphabet (now known as the IPA) for
the universal transcription of languages.12 A sepa-
rate tradition of transcription developed among an-
thropological linguists in America. Both systems
of transcription [18, 19] are supported via the TIPA

package [17].
While there are numerous fonts that provide

IPA symbols that more or less match existing type-
faces, there are to my knowledge still only a small
number of type families that have complete sets of
corresponding IPA symbols: Computer Modern, Lu-
cida, Times, Le Monde, Gentium, Garamond, and
Stone — and two of them are provided for by TIPA.
To wit, the Computer Modern IPA symbols work
best with Computer Modern,13 but they will fit in
reasonably with other vertical-stress typefaces. The
Times IPA symbols, again, work best with Times,
but in a pinch, they fit in with other oblique-stress
typefaces. In a sans-serif environment, TIPA pro-
vides a Helvetica-like symbol set.

In addition to the IPA fonts and the interface
(more on which below), TIPA provides a style file
to produce simple vowel diagrams (simpler than the
one shown in Figure 4). I could conceive —given
enough labor—of creating the more complex charts
like Figure 4, with arrows and swooshes, program-
matically via the tools provided by PSTricks [20] or
MetaFun [21].

TIPA provides for a couple of different ways to
enter phonetic notation. There are long forms that
have generally mnemonic names, so I can write [@h"a]
as [\textschwa h\textprimstress a] if my paper
uses a limited set of symbols, and I don’t want to
learn the more involved transcription.

On the other hand, if you need to input larger
amounts of transcription, it is useful to enter the IPA

environment via \textipa{}, {\tipaencoding },
or \begin{IPA} and \end{IPA}. So, if we enter the
IPA environment and type

D@ "nO;T "wInd @nd D@ "s2n w@ dIs"pju;tIN

wItS w@z D@ "str6Ng5, wEn @ "tr\ae vl5

keIm @"l6N "r\ae pt In @ "wO:m "kloUk. DeI

11 They can hardly be avoided in an introduction to pho-

netics, for example.
12 Remember that there were no tape recorders in 1886!
13 And variants such as Latin Modern.

TUGboat, Volume 25 (2004), No. 1—Proceedings of the Practical TEX 2004 Conference 61

Steve Peter

@"gri:d D@t D@ "w2n hu; f3;st s@k"si;dId

In "meIkiN D@ "tr\ae vl5 teIk hIz "kloUk

6f SUd bI k@n"sId@d "str6Ng@ D@n DI "2D@.

this will be rendered into IPA as follows:14

D@ "nO;T "wInd @nd D@ "s2n w@ dIs"pju;tIN wItS w@z D@

"str6Ng5, wEn @ "trævl5 keIm @"l6N "ræpt In @ "wO:m

"kloUk. DeI @"gri:d D@t D@ "w2n hu; f3;st s@k"si;dId In

"meIkiN D@ "trævl5 teIk hIz "kloUk 6f SUd bI k@n"sId@d

"str6Ng@ D@n DI "2D@.

TIPA allows you to enter tonal specifications and
has many other nice features to explore. I heartily
recommend reading the excellent manual included
in the package.

As I mentioned earlier in the paper, the TIPA

package also allows you to enter Indo-European re-
constructed forms. For example, the work for ‘100’
is reconstructed as *“km

˚
tóm, which can be entered

as \textroundcap{k}\textsubring{m}t\’om or as
\textipa{*\|c{k}\r*mt\’om}.

A new notational twist entered both phonol-
ogy and syntax within the past decade as Optimal-
ity Theory grew in popularity. The central part of
its notation are the so-called optimality tableaux.
There are a number of ways to enter them, but I’ve
settled on using PSTricks together with colortab [22].
Here is source and output using some totally non-
sensical data.

\begin{tabular}[t]{r|c|c|c|}

\cline{2-4}

& /ba/ & \textipa{\!@} & b\textturna\\

\LCC

& & & \lightgray \\ \cline{2-4}

\w & [ba] & & * \\ \cline{2-4}

& [*ba] & *! & \\ \cline{2-4}

\ECC

\end{tabular}

/ba/ á@ b5

[ba] *
[*ba] *!

One other subdivision of phonology, computa-
tional phonology, uses a mixture of standard phono-
logical notation plus tree structures. As such it will
be covered in the second installment of this paper.

Next time

The subfield of linguistics with perhaps the widest
variety of notations is syntax. I will postpone un-

14 The north wind and the sun were disputing which was

the stronger, when a traveler came along wrapped in a warm

cloak. They agreed that the one who first succeeded in making

the traveler take his cloak off should be considered stronger

than the other. The text comes from the International Pho-

netic Association.

til installment two of this paper a discussion of the
trees, matrices, and derivations, as I wish to cover
them in greater detail than space or time allows at
present. In particular, the macros for drawing trees
have far wider application than just linguistics.15

References

[1] Apostolos Syropoulos, Antonis Tsolomitis,
and Nick Sofroniou, Digital Typography Using

LATEX, New York: Springer, 2003.

[2] Christina Thiele, “TEX and Linguistics”,
TUGboat 16(1), 42–44.

[3] Christina Thiele, “TEX and the Humanities”,
TUGboat 17(4), 388–393.

[4] Uwe Lück, “ednotes—critical edition
typesetting with LATEX”, TUGboat 24(2),
224–236.

[5] David Kastrup, “The bigfoot bundle for
critical editions”, Preprints for the 2004
Annual TUG Meeting, 105–110.

[6] CTAN/macros/latex/contrib/teubner

[7] CTAN/fonts/greek/psgreek

[8] CTAN/fonts/utilities/fontinst-contrib/

grkfinst

[9] http://www.braams.cistron.nl/babel/

[10] http://www.opennet.ru/prog/info/

1117.shtml

[11] http://devnag.sarovar.org/

[12] Mustapha Eddahibi, Azzeddine Lazrek,
and Khalid Sami, “Arabic mathematical
e-documents”, Preprints for the 2004 Annual
TUG Meeting, 42–47.

[13] Azzeddine Lazrek, “CurExt, typesetting
variable-sized curved symbols”, TUGboat

24(3), 323–327.

[14] CTAN/language/hebrew/makor

[15] CTAN/language/chinese/CJK

[16] CTAN/fonts/stmaryrd

[17] CTAN/fonts/tipa

[18] Geoff Pullum and William Ladusaw, Phonetic

Symbol Guide, Chicago: University of Chicago
Press, 1996.

[19] Handbook of the International Phonetic

Association, Cambridge: Cambridge
University Press, 1999.

[20] http://tug.org/applications/PSTricks

[21] http://contextgarden.net/MetaFun

[22] CTAN/macros/generic/colortab

15 As Nelson Beebe remarked at the PracTEX conference.

Installment two will, I hope, serve as his requested paper.

62 TUGboat, Volume 25 (2004), No. 1—Proceedings of the Practical TEX 2004 Conference

MetaPlot, MetaContour, and Other Collaborations with METAPOST

Brooks Moses
Mechanical Engineering
Building 520
Stanford University
Stanford, CA 94305
USA
bmoses@stanford.edu

Abstract

Most methods of creating plots in METAPOST work by doing all of their cal-
culations in METAPOST, or by doing all of their calculations in a preprocessing
program. There are advantages to dividing the work more equitably, by doing the
mathematical and data-visualization calculations in a preprocessing program and
doing the graphical and layout calculations in METAPOST. The MetaPlot pack-
age provides a standard, flexible, interface for accomplishing such a collaboration
between programs, and includes a general-purpose set of formatting macros that
are applicable to a wide range of plot types. Examples are shown of linear plots
with idiosyncratic annotation and two-dimensional contour plots with lines and
filled contours on a non-Cartesian mesh.

1 Introduction

One of the challenges of scientific writing in TEX
(or in LATEX) is producing figures that are of com-
parable quality to the typesetting. These fig-
ures often include plots and graphs that represent
mathematically-intense visualization of large data
files, implying that some form of specialized program
must be used to create them. They also typically
contain labels, notes, and other text that should be
typeset in a manner consistent with the rest of the
document, which requires using TEX’s typesetting
engine.

Traditionally, programs that meet these goals
have taken one of two approaches. The first ap-
proach, used by programs such as ePiX [1] and Gnu-
plot [2], is to implement the program in a “tradi-
tional” programming language such as C++ or For-
tran, and produce the complete figure as output in
TEX/eepic or METAPOST code, which is then post-
processed. The other approach, taken by META-
POST’s graph package and m3D [3], is to imple-
ment the program directly in METAPOST’s macro
language.

There are advantages and tradeoffs to both of
these approaches. Programming in METAPOST al-
lows one to work directly with the language features
such as declarative equations and ability to measure
the size of typeset text, and thus to specify the fig-
ure layout in an intuitive, simple, and flexible man-
ner. On the other hand, programming in a tradi-
tional language allows one to write mathematically-

intensive programs that use floating-point numbers
and can be compiled rather than run slowly through
an interpreter; in addition, it may allow one to take
advantage of existing visualization libraries, or to
provide an interactive user interface.

This paper describes an intermediate approach,
which combines the benefits of METAPOST and
traditional-language programs. The initial data pro-
cessing is done with a program written in a tra-
ditional language, which produces a METAPOST

source file containing the processed data in an en-
capsulated form. This processed data is then fed
into a set of METAPOST formatting macros, and
the scaling, drawing, and annotation of the plots is
all done by user-written commands within META-
POST.

Creating plots in two steps in this manner has
several advantages:

• The initial data visualization can be done in a
special-purpose program that uses a program-
ming language and code libraries intended for
substantial computations, with no need to im-
plement more than a very simple output rou-
tine.

• The METAPOST macros for formatting plots
and arranging them within a figure are largely
independent of the details of the plots they are
working with, and can be written in a generic
manner suitable for widespread distribution.

• The layout of any given figure can be done us-
ing the same processes as a native-METAPOST

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 63

Brooks Moses

z

y
θ

Figure 1: A capillary surface on a liquid touching
a solid wall, after Batchelor [4].

drawing.

2 A simple example

Consider, by way of example, a plot of the shape
of a meniscus formed by a liquid surface meeting a
solid wall, as shown in Figure 1. The surface curve
is given by a somewhat complicated expression in-
volving inverse hyperbolic cosines,1 and is represen-
tative of calculations that would be easier to do in
a traditional programming language.

The C++ program to produce this curve in a
METAPOST format is straightforward. The most
complicated part is the function to generate a string
containing a METAPOST representation of a point,
which we accomplish using the <sstream> standard
library.

string mpoint(double x, double y) {

ostringstream pointstring;

pointstring.setf(ios base::fixed, ios base::

floatfield);

pointstring.precision(5); pointstring << ’(’ << x

<< ’,’ << y <<

’)’; return pointstring.str(); }

The setf and precision commands set the numeric
format for the stream (fixed-precision, five decimal
places), and then the coordinates are fed into the
ostringstream with the appropriate punctuation,
producing a result like (0.01556,0.75006).

Given this and a capillary() function that com-
putes the equation for the surface, creating the
METAPOST command for the curve is simply a mat-
ter of looping through the points and dumping them
to the standard output, with appropriate text before
and after the loop to define the picture variable and
close the curve into a cyclic path.

1 For those who are curious, the equation (from [4]) is

y

d
= cosh−1

2d

z
− cosh−1

2d

h
+

(

4−
h2

d2

) 1

2

−

(

4−
z2

d2

) 1

2

,

where h2 = 2d2(1 − sin θ) is the height of the meniscus, θ is
the contact angle, and d is a scaling parameter related to the
surface tension and liquid density.

int main() { double theta = pi/4.0; double d =

1.0; double h =

sqrt(2.0 ∗ d∗d ∗ (1.0 − sin(theta))); double y, z;

cout << "picture capillary;\n"; cout << "

capillary :=

nullpicture;\n"; cout << "addto capillary

contour " << mpoint(0.0,

h); for(int i = 99; i > 2; i--) { z = (i/100.0) ∗ h;

y =

capillary(z,h,d); cout << " .. " << mpoint(y, z); }

cout << " -- "

<< mpoint(y, −0.5); cout << " -- " << mpoint

(0.0, −0.5); cout << "

-- cycle;\n"; }

This produces the following METAPOST code
as output:

picture capillary; capillary :=

nullpicture; addtocapillary contour

(0.00000,0.76537) .. (0.00772,0.75771)..

(0.01556,0.75006)

% [. . . and so forth . . .]

.. (3.39322,0.02296) --

(3.39322,-0.50000) --(0.00000,-0.50000)

-- cycle;

We can then follow this with additional META-
POST commands to scale the figure to an appro-
priate size for printing on the page, and draw axes
and labels, in order to produce the plot shown in
Figure 1.

beginfig(1) draw (capillary scaled 0.5in) withcolor

0.85white; linecap := butt; pickup pencircle scaled

1pt; drawarrow

(0,−0.25in) -- (0, 0.5in); label.top(btex z etex

,(0,

0.5in)); x1 := (xpart(lrcorner capillary) ∗ 0.5in, 0)

+ (0.1in, 0);

drawarrow (0,0) -- x1; label.rt(btex y etex, x

1);

pickup pencircle scaled 0.25pt; x2 := ulcorner

capillary scaled

0.5in; draw ((0,0) -- (0.24in, −0.24in)) shifted x2;

label(btex

θ etex, x2 + (0.07in, −0.18in)));

endfig; end

Although this example produces a perfectly ser-
viceable result, it has some noteworthy drawbacks.
The scale factor of 0.5 in does not have a clear re-
lationship to the size of the plot, and producing a
plot of a particular size would require measurement
of the capillary picture and explicit computation of
the scale factor. The locations of the annotations

64 TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference

MetaPlot, MetaContour, and Other Collaborations with METAPOST

are likewise determined by explicit measurement, or
by being typed in directly. If we were to change one
of the parameters in the C++ program and re-run it,
many of the values in the METAPOST code would
need to be changed as well.

3 A more general example: The MetaPlot

package

The MetaPlot package is designed to address many
of the shortcomings of the example given in Sec-
tion 2. It provides a consistent way of transferring
the plot commands and associated metadata from
the generating program into METAPOST, and direct
handles for manipulating the plots within META-
POST using its normal idiom of declarative equa-
tions rather than procedural assignments.

To accomplish this in a general manner, we de-
fine two types of METAPOST data structures: plot

objects and plot instances. A plot object is a plot
“in the abstract”, containing paths, filled contours,
and metadata that make up the plot (or a set of
related plots), represented in a manner that is inde-
pendent of the details of how the plot is positioned.
By contrast, a plot instance is a plot “on the page”,
containing parameters for the scaling and position-
ing of a given plot, and a reference to a parent plot
object that gives the actual pictures to be drawn.

A typical preamble for a figure using MetaPlot
will consist of an input metaplot command to load
the MetaPlot macros, an input command to load
the METAPOST file that contains the plot objects
(typically an output file from the preprocessing pro-
gram), and calls to the MetaPlot macros to generate
plot instances from the plot objects.

3.1 The concept of a plot-object

Suffix arguments and multi-token variable names
in METAPOST allow us to define data structures
that approximate structures or objects in more tra-
ditional programming. The correspondence is not
exact; in particular, there is no data type associ-
ated with the overall object. METAPOST is simply
passing around a fragment of a variable name and
constructing complete variable names from it, so any
arbitrary element can be added to the class without
changing its type. Thus, the MetaPlot macros can
deal with arbitrary types of plots in a generic man-
ner, so long as they meet a few minimal requirements
that allow them to be scaled and positioned.

The paths and contours that make up a plot
object are not defined in terms of the native data
coordinates, but are rescaled to fit within a unit box
(that is, extending from 0 to 1 in both coordinate
directions), which is treated as the bounding box of

the plot for purposes of scaling and positioning.2 As
a result, the possibility of coordinates too small or
too large for METAPOST’s fixed-point number rep-
resentation is avoided; in addition, positioning the
plot on the page is a simple matter of scaling by
the final width and height and shifting by the final
position of the lower-left corner. The original data
scales are stored in four numeric components that
record the values corresponding to the extents of
the bounding box, and can be used later to rescale
the plot to an appropriate size and aspect ratio.3

The remaining details of the format can be
shown by rearranging the example from Section 2
into a plot object, as follows. For purposes of later
examples, we will presume that this has been saved
as capillary.mp.

% Definition of capillary plot-object

% Picture components

picture capillary.fplot; capillary.fplot := nullpicture;

addto

capillary.fplot contour (0.00000,1.00000) ..

(0.00227,0.99395)

.. (0.00459,0.98790)

% [. . . and so forth . . .]

.. (1.00000,0.41329) -- (1.00000, 0.00000) --

(0.00000, 0.00000) --

cycle; picture capillary.lplot; capillary.lplot :=

nullpicture;

addto capillary.lplot doublepath

(0.00000,1.00000)

.. (0.00227,0.99395)

% [. . . and so forth . . .]

.. (1.00000,0.41329);

% Required metadata

numeric capillary.xleft; capillary.xleft = 0.0;

numeric

capillary.xright; capillary.xright = 3.39322; numeric

capillary.ybot;

capillary.ybot = −0.5; numeric capillary.ytop;

capillary.ytop =

0.76537;

% Plot-specific metadata

pair capillary.contactpoint; capillary.contactpoint =

(0.0, 1.0);

2 Using a box from −4096 to +4096 would make better
use of METAPOST’s fixed-point number range, but even on a
unit box expanded to a 2-meter-wide poster, the granularity is
only 0.03mm— which is better than most printers. A larger
box is probably not worth the inconvenience.

3 Although these variables are represented here as numer-
ics and thus are still vulnerable to under- or overflow, it would
be a simple matter to replace them with string-represented
numbers from the sarith package.

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 65

Brooks Moses

numeric capillary.contactangle; capillary.

contactangle = 45.0;

In this case, I have also added an additional
component: this version of capillary contains a path
for the liquid surface line (capillary.lplot), as well as
the original filled contour (now capillary.fplot); the
decision about which of them to draw can be made
later. A plot object can contain any number of these
pictures (even zero), with arbitrary names.

The four required scale variables are capillary.

xleft, .xright, .ybot, and .ytop; these, for purposes of
the MetaPlot macros, must be named thus.

Finally, there are two metadata variables for
this particular plot, capillary.contactpoint and cap-

illary.contactangle, which will be useful in drawing
the annotations. Any number of additional vari-
ables can be present, with arbitrary names. Of note
is that .contactpoint is given in the same unit-box
coordinate system that the paths and contours are
in, allowing it to be positioned by the same macros
that scale and position the picture components.

3.2 Creation of a plot instance

The next step after creating plot objects is manipu-
lating them on the page by means of plot instances.
A plot instance thus needs to contain three sets of
components: coordinates and dimensions of the plot
as shown on the page, a representation of the plot’s
internal scale for use in alignment and producing
axes, and a means of accessing picture components
from its parent plot object. These are created by the
plot instantiate() macro, which is part of MetaPlot;
the version below is simplified somewhat.

% Args: inst is the new plot instance.

% plot object is the parent plot object.

def plot instantiate(suffix inst)(suffix plot object) =

% Define (unknown) parameters for plot-instance

% location on page

numeric inst.pagewidth, inst.pageheight; numeric

inst.pageleft,

inst.pageright, inst.pagetop, inst.pagebottom; inst.

pageleft +

inst.pagewidth = inst.pageright; inst.pagebottom +

inst.pageheight =

inst.pagetop;

% Define (known) parameters for plot’s scaling

numeric inst.scaleleft, inst.scaleright, inst.scaletop,

inst.scalebottom; inst.scaleleft :=

plot object.xleft;

inst.scaleright := plot object.xright; inst.

scalebottom :=

Figure 2: The capillary surface, in its unadorned
form as plot object elements scaled to 2.0in by
0.75in.

plot object.ybottom; inst.scaletop :=

plot object.ytop;

% Pointer-function to plot object’s plots, scaled

% and positioned.

vardef inst.plot(suffix name) = plot object.name

xscaled

inst.pagewidth yscaled inst.pageheight shifted (

inst.pageleft,

inst.pagebottom) enddef; enddef;

Note that, immediately after a plot instance is cre-
ated, the page information is unknown while the
scale information is known.

We can now start putting plot objects on the
page in a limited fashion, by assigning known values
to the unknown page information, and then drawing
the scaled picture elements.

input metaplot % MetaPlot macros

input capillary % capillary plot object

plot instantiate(plotA, capillary); plotA.pageleft =

0.0;

plotA.pagebottom = 0.0; plotA.pagewidth = 2.0in;

plotA.pageheight =

0.75in; beginfig(2) draw plotA.plot(fplot)

withcolor

0.85white; draw plotA.plot(lplot) withpen pencircle

scaled 1pt;

endfig; end

The result of this is shown in Figure 2. Note that
the color of the filled plot and the line size for the
line plot are specified in the draw command, rather
than in the plot object.

3.3 Manipulation of plot-objects

The bare plot instances are of little use without a
set of macros for manipulating them. We start with
a macro to set the x-axis and y-axis scales to equal
values:

def plot setequalaxes(suffix inst) = inst.pagewidth =

inst.pageheight

66 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

MetaPlot, MetaContour, and Other Collaborations with METAPOST

∗ ((inst.scaleright − inst.scaleleft) / (inst.scaletop

−

inst.scalebottom)); enddef;

This is written so that the page-related variables do
not appear in the denominator of fractions, because
either one (or both) of them may be unknown when
the macro is called, and METAPOST can only solve
linear equations.

There is also a set of macros for converting be-
tween locations expressed in the plot’s coordinates
and locations on the page. For example,

def plot xpageloc(suffix inst)(expr scalex) = inst.

pageleft + (scalex

− inst.scaleleft) ∗ (inst.pagewidth / (inst.scaleright

−

inst.scaleleft)); enddef;

The additional macros in this series are ypageloc,
zpageloc (which takes an x and a y coordinate as in-
put, and returns a point), and xscaleloc and yscaleloc

for the reverse direction of converting from a page
location to a plot coordinate.

With these, we have most of what we need to
manipulate plots in an intuitive way. For instance,
consider the figure from Section 2, which can now
(with some small changes) be written in a much
more general way as

input metaplot % MetaPlot macros

input capillary % capillary plot object

plot instantiate(plotB, capillary);

plot setequalaxes(plotB); plotB.pageleft = 0.0; plotB.

pagebottom =

0.0; plotB.pageheight = 0.75in; beginfig(3) draw

plotB.plot(fplot) withcolor 0.85white; linecap :=

butt; pickup

pencircle scaled 1pt;

% z-axis (vertical)

z1 = (plotB.pageleft, plotB.pagebottom); z2 = (

plotB.pageleft,

plotB.pagetop + 0.1in);

% y-axis (horizontal)

z3 = (plotB.pageleft, plot ypageloc(plotB,0.0)); z4

=

(plotB.pageright + 0.1in, plot ypageloc(plotB,0.0));

drawarrow z1 --

z2; label.top(btex z etex, z2); drawarrow z3

-- z4;

label.rt(btex y etex, z4); pickup pencircle

scaled

0.25pt;

% Label for contact angle

z

y

θ

Figure 3: The capillary surface, with equal y and
z scales, a page height of 0.75in, and appropriate
annotations.

z

y

θ

Figure 4: The capillary surface with parameters
and page height as in Figure 3, but with θ = π/6.

z5 = plotB.plot(contactpoint); z6 = z5 + 0.24in ∗

dir(−90 +

capillary.contactangle); z7 = z5 + 0.18in ∗ dir(−90

+

0.5∗capillary.contactangle); draw z5 -- z6; label(

btex

θ etex, z7); endfig; end

The result of this is shown in Figure 3. We can
demonstrate that this is flexible by changing the
value of θ to π/6 rather than π/4, and recreating
the figure using exactly the same files; the result is
shown in Figure 4. Note that changing the contact
angle raises the contact point, making the plot taller
in scale coordinates; thus, it is drawn at a smaller
scale to maintain the 0.75-inch page height.

Having two figures in this way is not the clearest
way to compare the two plots, particularly with the
differences in scale. A better approach is to overlay
them at the same scale, making use of the existence
of the filled plot from one plot object and the line
plot from the other to provide a visually clear result.
A simple way of placing both plots on the same co-
ordinate axes is to require that their (0,0) and (1,1)
points coincide on the page, which we do by means
of the plot zpageloc command; the remainder of the
file is as much in the previous plots, although there
is a little additional code to make certain that the
axis-arrows cover both plots.

input metaplot % MetaPlot macros

input capillary % capillary plot object

input capillary2 % capillaryb plot object

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 67

Brooks Moses

z

y

Figure 5: Two capillary surfaces, as in Figure 3
and Figure 4, showing the difference in the curves
as a result of varying θ.

plot instantiate(plotB, capillary);

plot setequalaxes(plotB); plotB.pageleft = 0.0; plotB.

pagebottom =

0.0; plotB.pageheight = 0.75in;

plot instantiate(plotC, capillaryb); plot zpageloc(plotB

, 0.0, 0.0) =

plot zpageloc(plotC, 0.0, 0.0); plot zpageloc(plotB, 1.0,

1.0) =

plot zpageloc(plotC, 1.0, 1.0);

beginfig(5) linecap := butt; pickup pencircle scaled

1pt; draw plotB.plot(fplot) withcolor 0.85white;

draw

plotC.plot(lplot) dashed evenly withpen pencircle

scaled 0.5pt;

% z-axis (vertical)

z1 = (plotB.pageleft, plotB.pagebottom); x2 = plotB

.pageleft; y2 =

max(plotB.pagetop, plotC.pagetop) + 0.1in;

% y-axis (horizontal)

z3 = (plotB.pageleft, plot ypageloc(plotB,0.0)); x4

=

max(plotB.pageright,plotC.pageright) + 0.1in; y4 =

plot ypageloc(plotB,0.0); drawarrow z1 -- z2;

label.top(btex

z etex, z2); drawarrow z3 -- z4; label.rt(

btex

y etex, z4); endfig; end

The result of this is shown in Figure 5.

3.4 Creation of axes

Any quantitative graph is meaningless without grid-
labels for the coordinate axes, and so MetaPlot in-
cludes macros to create them. Unlike METAPOST’s
graph.mp package, MetaPlot’s axis-drawing func-
tionality requires that the user specify most of the
details of the formatting, with the benefit of having

a much more flexible implementation.4

The core of the axis-drawing functionality is a
set of macros for creating generic tickmarks, labeled
tickmarks, rows of tickmarks, and so forth, which
are included with MetaPlot in a axes.mp file (and
thus, for consistency, are prefaced with axes rather
than plot). These are interfaced to the plot object
coordinates by the plot xtickscale and plot ytickscale

macros.

def plot xtickscale (suffix inst) (expr startpoint,

endpoint,

ticklength , tickspace , tickdir , tickzero , tickstep

, ticklabelformat)

=

axes tickscale (

startpoint , % First endpoint of the tickrow

endpoint, % Second endpoint of the tickrow

ticklength , % Length of tickmarks

tickspace , % Space between tickmark and label

tickdir , % Tickmark direction

plot xscaleloc (inst)(xpart(startpoint)),

% Coordinate value at first endpoint

plot xscaleloc (inst)(xpart(endpoint)),

% Coordinate value at second

endpoint

tickzero , % Coordinate value for a known

% tick location

tickstep , % Coordinate space between ticks

ticklabelformat

% Format for tick labels

% (syntax from format.mp package)

% (use "" for no tick labels)

) enddef;

The plot ytickscale definition is nearly identical.
Note that these macros do not actually draw the
tickmarks; they return a picture object, which can
then be explicitly drawn or otherwise manipulated.

A simple way of adding grid labels to the pre-
vious example would be the following:

beginfig(6)

% [. . . repeat of definitions from fig(4) . . .]

x5 = plotB.pageleft; x6 = x4; y5 = y6 = plotB.

pagebottom; draw

plot xtickscale(plotB)(z5, z6,

0.08in, 0.06in, down, 0.0, 1.0, "%3f")

withpen pencircle scaled 0.5pt; y7 = plotB.

pagebottom; y8 = y2; x7

= x8 = plotB.pageleft; draw plot ytickscale(plotB)(

z7, z8,

4 There is, of course, no need for flexible implementations
and simple interfaces to be mutually exclusive, and functions
for more automated axes may be included in MetaPlot as it
continues to be developed.

68 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

MetaPlot, MetaContour, and Other Collaborations with METAPOST

z

y

0 1 2 3

−0.5

0

0.5

1

Figure 6: A repeat of Figure 5, with simple grid
labels added.

0.08in, 0.06in, left, 0.0, 0.5, "%3f")

withpen pencircle scaled 0.5pt; endfig;

The results of this are shown in Figure 6. As can
be seen with the x-axis, the tickscale macros do not
include the axis-lines themselves, thus allowing the
user to draw them with a different line style than
that used for the ticks, or to leave them off entirely.

For a more polished look, we can move the grid
ticks a small distance away from the plot, limit the
y-axis range to the region that has meaningful sig-
nificance, and add intermediate ticks without labels.
In addition, this example illustrates the use of the
tickzero parameter to start the labeled x-axis ticks
at 0.5 rather than zero.

beginfig(7)

% [. . . repeat of definitions from fig(4) . . .]

x5 = plotB.pageleft; x6 = x4 − 0.1in; y5 = y6 =

plotB.pagebottom −

0.06in; draw plot xtickscale(plotB)(z5, z6,

0.08in, 0.06in, down, 0.5, 1.0, "%3f")

withpen pencircle scaled 0.5pt; draw

plot xtickscale(plotB)(z5,

z6, 0.08in, 0.06in, down, 0.0, 1.0, "") withpen

pencircle scaled

0.5pt; draw plot xtickscale(plotB)(z5, z6, 0.04in,

0.06in, down,

0.0, 0.1, "") withpen pencircle scaled 0.5pt; y7 =

y4; y8 = y2 −

0.1in; x7 = x8 = plotB.pageleft − 0.06in; draw

plot ytickscale(plotB)(z7, z8,

0.08in, 0.06in, left, 0.0, 0.5, "%3f")

withpen pencircle scaled 0.5pt; draw

plot ytickscale(plotB)(z7,

z8, 0.04in, 0.06in, left, 0.0, 0.1, "") withpen

pencircle scaled

0.5pt; endfig;

The result is shown in Figure 7.

z

y

0.5 1.5 2.5

0

0.5

1

Figure 7: A repeat of Figure 5 again, with more
advanced grid labels.

3.5 MetaContour: A C++ program for

contour plots

Now that the METAPOST side of the collaboration
has been described in some detail, we return to the
matter of programs that generate plot objects as
output. One of the particular reasons for developing
MetaPlot was to have a way of producing contour
plots, and so the MetaPlot package comes with a
C++ program, MetaContour, for creating them.

The internals of MetaContour are beyond the
scope of this paper, but it does make use of one ad-
ditional capability of plot objects that is worth not-
ing — the ability to include color information. The
plot object is defined with commands like the fol-
lowing, with color directives.

picture contplotA.LinePlot; contplotA.LinePlot :=

nullpicture; addto

contplotA.LinePlot doublepath (0.48075,0.50000)

-- (0.48163,0.50597)

withcolor contourcolor27; addto contplotA.LinePlot

doublepath

(0.48420,0.50000)-- (0.48492,0.50490) withcolor

contourcolor28; addto

contplotA.LinePlot doublepath (0.45994,0.50000)

-- (0.46169,0.51245)

withcolor contourcolor23;

% [. . . and so forth . . .]

Then, before the plot object file is read into the main
METAPOST file, the contourcolor array is defined as
desired.

% Contour colors for grayscale scheme

color contourcolor[]; contourcolor0 = 1white;

contourcolor1 =

0.98white;

% [. . . and so forth . . .]

contourcolor30 = 0.4white;

Thus, each line of the contour plot is associated with
a color, and it will be drawn in that color unless it is
overridden by another color directive; for instance,

TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference 69

Brooks Moses

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 8: Sample graph created by MetaContour
and MetaPlot, showing potential lines for a
combination of a linear gradient and a point
source, plotted on a polar grid.

if we wanted to plot the contour lines all in black,
we could do so simply by specifying:

draw continstA.plot(LinePlot) withcolor black;

Aside from the color contour-line plot just described,
the MetaContour output contains a filled contour
plot, and an image of the mesh of data points. Some
examples of these are shown in Figure 8 and Fig-
ure 9; although these are much more complex than
the examples from preceding sections, the MetaPlot
commands to generate them are nearly identical.

4 Conclusion

The examples that have been shown illustrate only
a small sampling of the capabilities of MetaPlot. In
using METAPOST to generate the figures, it pro-
vides an easily extensible layout capability that is
not limited by the imagination of the package au-
thor. The standardized plot-object interface simpli-
fies the process of writing plot-generation programs,
as they can leave the details of layout and annota-
tion to the MetaPlot postprocessing.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 9: Another sample graph created by
MetaContour and MetaPlot, illustrating a filled
contour-plot style rather than using contour lines.

MetaPlot and MetaContour are available from
CTAN in the /graphics/metaplot directory. They
are still very much works in progress; I look for-
ward to suggestions and improvements, and hope
that others will find them to be useful tools.

References

[1] Hwang, A., ePiX, http://mathcs.holycross.
edu/∼ahwang/current/ePiX.html.

[2] Gnuplot, http://www.gnuplot.info.

[3] Phan, A., m3D, http://www-math.
univ-poitiers.fr/∼phan/m3Dplain.html.

[4] Batchelor, G. K., An Introduction to Fluid

Dynamics, Cambridge University Press, 1967.

70 TUGboat, Volume 25 (2004), No. 1 —Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

William M. Richter
Texas Life Insurance Company
900 Washington Avenue, Waco, TX 76703, USA
wrichter@texaslife.com

Abstract

TEX is an ASCII text-based markup language. In a scheme of automated docu-
ment preparation TEX provides the foundation. The idea is for programs to do
the work of 1) generating the TEX code for documents, 2) running TEX on these
documents, and 3) post-processing the resulting .dvi files to obtain the finished
documents. Resulting PostScript documents may be further post-processed to
produce files that exploit the output capabilities of various printers. Discussed
herein are the techniques and benefits of such a scheme and how scripting lan-
guages (those languages outside the traditional edit/compile/link/run cycle) can
make the whole process fun and easy.

1 Introduction

In his web essay Hackers and Painters [2], Paul
Graham equated the much maligned and misunder-
stood activity of “hacking” [6] with the long-esteem-
ed tradition of painting (e.g., portrait painting, as
opposed to painting of porches, peeling house trim,
and such). He observed that what, today, we ac-
knowledge as masterworks actually evolved during
the artist’s act of creation from a sketch, the details
only gradually being filled in, to a finished, glorious
work of art. He argued that a writer goes through
the same process of refinement, starting from rough
outline or foggy idea until she finds nothing which
needs refining. One reason TEX is appealing to au-
thors is that it makes the process of refinement sec-
ondary. The tasks of creation (thinking is hard work
for most of us) and presentation are orthogonal.
Moreover the presentation task is assumed almost
entirely by TEX.1 One can, after all, create a TEX
document that is 90% complete using nothing more
than a tool as simple as NotePad. The implication
being that simple tools equate to less loss of creative
energy.

Graham believes that authors of computer code
(programmers, we often call them) follow the same
nonlinear/circuitous paths of painters and authors.
Seldom, if ever, is software conceived of and imple-
mented by following in a direct route from beginning
to end. Most great software, Graham claims, is the
product of hacking, that the implications for soft-
ware design are significant, and that what a com-

1 Except when we TEXnicians decide we know better and
begin to muck around in TEX’s own internal affairs.

puter language is and how an author interacts with
it defines the end result. In his view it means . . .

. . . a programming language should, above
all, be malleable. A programming language
is for thinking of programs, not for express-
ing programs you’ve already thought of. It
should be a pencil, not a pen.

And he continues,

We need a language that lets us scribble and
smudge and smear, not a language where you
have to sit with a teacup of types2 balanced
on your knee and make polite conversation
with a strict old aunt of a compiler.

A class of programming languages, called “scripting
languages”, is compatible with Graham’s ideas of
what a hacker’s language should be. “Malleable” in
nature, and easy to think with, scripting languages
are similar in spirit to TEX. Indeed, TEX itself may
even be considered as a scripting language for type-
setting.

So, on the one hand, we have TEX, a tool which
lets authors “scribble and smudge and smear” about
with their ideas. On the other hand we have hackers
using scripting languages pursuing similar creative
avenues. The question then arises, “What happens
if these two tools are combined and used in a collab-
orative effort?” We now explore various ways that
TEX and scripting languages can be combined.

2 For readers unfamiliar with the art of computer pro-
gramming, the “teacup of types” to which he is referring
will be addressed in a subsequent section on the attributes
of scripting languages, where static vs. dynamic data types
are discussed.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 71

William M. Richter

2 Scripting Languages

Before delving into scripting languages proper, let
us review a few of the attributes of traditional com-
puter languages (the ones compiled with Paul Gra-
ham’s strict old aunts).

3 Traditional Computer Languages

For readers unfamiliar with the art of authoring
computer software (programming computers), here
is what programmers do: they think of a task that
computers can accomplish better than humans (say,
typesetting, for example). Then they sit and think,
potentially at length, about how humans would go
about doing that task, and how to express those
steps algorithmically [3]. After sketching said al-
gorithm, they formalize and codify it in a so-called
“language” that is a sort of half-way meeting ground
between the way humans think and the way comput-
ers operate. This prose, called a program, consists of
two distinct entities: variables, which declare what
it is that the computer will be working on, and im-
perative procedures that define what is to be done
to that data.

Some salient details about these traditional lan-
guages:

1. The variables: Computer hardware can work
with data in different formats: numbers (in-
tegers and real numbers), strings of character
data, etc. Each variable in a program must be
defined in advance of its use to be of a specific
type. In computer science lingo this is called
static typing.

2. The code: Codifying an algorithm in a partic-
ular computer language isn’t really enough for
computer hardware. More work must be done.
This language must be compiled by Graham’s
“aunt” into “machine code” on which the com-
puter’s logic circuits can act.

3. But even the work of the compiler-aunt isn’t
enough. The fruit of her strict dominance must
then be linked with the work of other compiler-
aunts to produce a final collection of unread-
able “goo” that only a computer can under-
stand (machine code is unreadable to all but
the most deviant of human brains).

4. Nor is this the end of the story. When an
edited/compiled/linked program (called an ex-
ecutable) has finally been produced and a blaz-
ingly fast 3-gigahertz CPU is unleashed to ex-
ecute it the first time, the most likely end re-
sult is either an almost immediate decision by
the CPU that its human programmer is capa-
ble only of producing flawed code for it to ex-

ecute (it communicates this fact by printing
some rude message like “Segmentation Vio-
lation” and producing a huge file on disk con-
taining the entire contents of its memory), or
it lapses into a seemingly semi-comatose state
consuming large amounts of CPU time until its
programmer/master gets its attention with the
violence of the kill command.

One can see a definite “cycle of pain”: Edit, Com-
pile, Link, Test that must be repeated many times
until a flawless executable is produced. No wonder
computer programming is seen by many an outsider
as a black art to be pursued by only the most in-
trepid and determined souls.

4 Why Scripting Languages are Better,
and Why More People Should be
Hackers

Scripting languages [9] shrink the cycle of pain to
Edit, Test. With the crufty old compiler-aunt gone,
the whole process of software development proceeds
in a more efficient and pleasant manner with atten-
tion shifting to the “creative”, editing part and the
refinement, or testing part. But measure of pain
is not the only attribute that makes scripting lan-
guages attractive. Other important attributes are:

1. Simple syntax;

2. High-level data types;

3. Loosely typed;

4. Standard control structures: if/else, while, for;

5. Interfaces well with host operating system;

6. Plays well with external entities;

7. Embeddable inside more complex systems;

8. Often used as “glue” languages to link multiple
standalone applications and tools together;

9. Requires a runtime interpreter to execute the
script;

10. Compiles to bytecode which executes on a vir-
tual machine;

11. Often ‘dynamic’ in nature.

We need to expound on a few of these points.

4.1 Simple Syntax

If a language is to satisfy Graham’s requirement that
it be a malleable pallet for the smearing and smudg-
ing of ideas, it cannot be verbose (we don’t want to
spend time typing). So scripting languages (hence-
forth SLs— I’m tired of typing, too) are succinct in
nature; able to convey a significant amount of pro-
cedural instruction in as few words as necessary to
maintain clarity of meaning.3

3 For programming language scholars, the language APL

may come to mind, but perhaps not that succinct. It would

72 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

4.2 High-level data types

The concept of high-level data types parallels sim-
ple syntax. Just as we need to state procedural algo-
rithms in a succinct fashion, we also need constructs
that allow for the representation of bundles of data
that may be arbitrarily complex. We demand more
than simple integer, floating point, and strings of
character data that traditional languages like C and
C++ provide.4

Usually these higher-level data types come in
the form of lists and dictionaries; containers that
hold other data elements and allow for the expres-
sion of relationships between our data.

4.3 Loosely Typed / Dynamic Nature

Discussion of esoteric topics like Strongly vs. Loosely
Typed Data and Early vs. Late Binding is more than
can be discussed here (see [1]). Some understanding
is essential, however. Earlier, we pointed out that
in traditional languages, each element of data that
a program will use (its variables) must be defined
to exist as a particular type before it can be used.5

Moreover, as variables are passed between parts of
a program (function calls) the type of each variable
passed must match exactly the type expected by the
called function. This check is done by the strict old
compiler-aunts, and was designed to keep program-
mers from making errors that would only manifest
themselves during the test phase. Strict type check-
ing makes a lot of sense with traditional languages.

However, with dynamic SLs, there is a critical
difference, rooted in the ‘dynamicness’ of the lan-
guage. SLs need not declare variables in the first
place. Variables are created or ‘allocated’ (on-the-
fly, as it were) when they are first referenced. When
a variable is allocated it is associated with a partic-
ular type that is implied from the context in which
it was initially used. The association to type is per-
manent and observable. So not only can one ask,
“What value does a variable contain?”, one can also
make an inquiry about its type.

For example, the statement A = 123 allocates a
data element called A whose value is 123 and whose
type is integer. The statement B = 3.14 allocates
a variable called B whose value is 3.14 and whose
type is floating point. B was made a variable of type

be nice for non-hackers to be able to read and understand our
prose, too.

4 Admittedly, C, C++, and other traditional languages
may be made to represent arbitrarily complex data, but those
types are not intrinsic in the language.

5 This isn’t actually true. Data elements may be dynam-
ically allocated in traditional languages, but this introduces
additional complexity in both the design and debugging steps.

floating point because, contextually, the statement
contained a decimal point in the value implying a
floating point value. Had we desired A to be a float-
ing point variable we would have coded A = 123.0.

This leads to a new world of ways in which to
think about writing code. Functions, now dynamic
in nature, can easily accept an arbitrary number of
arguments, the type of each being any of a range of
possible types. Depending on the number and type
of variables passed to a function, the function may
act in different ways. This goes to the heart of mal-
leability. In the creative process if we change our
mind and decide to “smudge and smear” in a differ-
ent direction, our existing code may not go to waste.
It may be possible just to extend it to conform to
our new conditions.

A world of new and easier programming lan-
guages, the SLs, may also introduce hacking to a
wider audience. Whereas the “old world” traditional
languages excluded or intimidated many people for
the reasons above (there are, after all, only so many
work hours in a day), SLs remove the complexity of
programming and make hacking the creative process
that it should be.

Finally, there is another reason more people
(at least for those who must live with a computer)
should become hackers. While most of us are not
master software developers, developing cathedral-
size financial accounting packages, for example, we
do a surprising amount of “sketch” work (in Gra-
ham’s paradigm) and having skills to write small
programs can be effective.

5 Real Scripting Languages

A mid-June 2004 google-search for the keywords
script language programming

returned approximately 1,570,000 hits. Top-ranked
pages returned from a search of keywords scripting
languages reside on the sites:

1. www.php.net

2. www.python.org

3. www.ruby-lang.org

4. www.perl.org

All these websites are homes of important scripting
languages. And there are more SLs; many more . . . a
veritable zoo, with names like: Awk, JavaScript,
Lisp, Lua, Perl, PHP, Python, Rebol, Ruby, Small,
Groovy, Tcl. If one were to rank SLs in order of
popularity, the top of that list would include:6

• Perl

• Python

6 Not listed in order.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 73

William M. Richter

• Tcl/Tk
• JavaScript
• Unix shell scripts (sh/bash/csh/etc.)

Several of these SLs have outgrown their scripting
origins and have gone on to become “general purpose
programming languages of considerable power” [5].
The only argument for continuing to use the term
“scripting language” is the lack of a better term.

6 A Particular Scripting Language:
Python

Chapter one of the official Python Tutorial reads:7

Python is simple to use, but it is a real
programming language, offering much more
structure and support for large programs
than the shell has. On the other hand, it
also offers much more error checking than C,
and, being a very-high-level language, it has
high-level data types built in, such as flexible
arrays and dictionaries that would cost you
days to implement efficiently in C. Because
of its more general data types Python is ap-
plicable to a much larger problem domain
than Awk or even Perl, yet many things
are at least as easy in Python as in those
languages.

The tutorial continues to highlight these important
attributes:

1. It has a modular architecture so that code de-
veloped for one application can be reused in
other programs. Likewise, it comes with a large
number of built-in modules for things like file I/

O, system calls, sockets, and many common In-
ternet protocols (FTP, HTTP, SMTP, etc.).

2. It is an interpreted language conforming to the
edit/test cycle discussed previously.

3. Its interpreter can be used interactively, mak-
ing it easy to experiment with features of the
language, or to test code before actually run-
ning a program (we’ll see an example later, in
fig. 11).

4. It has a high-level syntax that allows for writing
compact, readable programs.

5. It has high-level data types allowing for expres-
sions of complex data relationships.

6. It is object-oriented [10], but does not require
the use of those object-oriented features, or O-O

programming skills to use the language.
7. Statement grouping is done by indentation in-

stead of explicit begin/end brackets.
8. It is extensible: if you know how to program

in C it is easy to add a new built-in function

7 www.python.org

or module to the interpreter, either to perform
critical operations at maximum speed, or to
link Python programs to libraries that may only
be available in binary form (such as a vendor-
specific graphics library).

9. It is embeddable: You can link the Python in-
terpreter into an application written in C and
use it as an extension or command language for
that application.

An excellent first book for readers unfamiliar with
but interested in learning Python is Mark Lutz’s
Programming Python [4].

Finally, the tutorial enlightens us regarding the
name:

. . . the language is named after the BBC show
Monty Python’s Flying Circus and has noth-
ing to do with nasty reptiles. Making refer-
ences to Monty Python skits in documenta-
tion is not only allowed, it is encouraged!

7 Combining Python and TEX

There are a number of ways in which to combine
TEX and Python to automatically produce docu-
ments. If one considers the amount of “work” nec-
essary to produce a document as fixed, then that
work can be allocated partly to TEX and partly to
Python. One can then imagine a scatter diagram
with X and Y axes that represent, for any possible
scheme, the amount of work allocated to Python and
TEX, respectively. Such a diagram is illustrated in
fig. 1.

Figure 1: Application Domains of Python/TEX
integration.

74 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

The diagram shows several different “applica-
tion domains”, defined by which component (TEX
or Python) receives the most development effort, or
places the most demands on computing resources.
These domains allow us to classify various approach-
es to Python/TEX integration.

7.1 The Imperative Approach

Imagine writing a Python script that produces a file
of TEX code by executing a series of write state-
ments as in fig. 2 and then runs TEX and dvips on
that file. Here the emphasis is clearly all on the
Python script and the details of how the TEX code
is to be produced; we know TEX will dutifully do
its job if it is provided good code. Applications of
this nature we call imperative, and occupy the lower
right region of fig. 1.

Figure 2: Imperative TEX code-writing script.

#!/usr/bin/env python

import sys

import os

f = open(’MyDocument.tex’, ’w’)

f.write(’\\nopagenumbers\n’)

f.write(’This is my first \\TeX\\ document \

produced from a script.\n’)

f.write(’\\vfil\\eject\\bye\n’)

f.close()

os.system(’tex MyDocument.tex’)

os.system(’dvips MyDocument’)

print ’Done.’

This technique is the simplest way to integrate
Python and TEX,8 and is surprisingly effective. Al-
though the example in fig. 2 is trivial, the imper-
ative technique can be used in applications where
documents are assembled from a large database of
text “snippets”. Logic in the Python script provides
the “smarts” that determine what snippets to select
and how to arrange them for presentation to TEX.
More logic and scripts of increasing complexity push
the application further to the right on the X-axis in
fig. 1.

7.2 Using m4

A slight increase in sophistication (but still remain-
ing near the X-axis of fig. 1, is to employ the macro
processor program, m4.9 m4 [8] is an elaborate

8 The other simple extreme would be to prepare an entire
document by hand-editing and then have Python run TEX on
that file. Quite uninteresting.

9 Quoting from the m4 manual page: “The m4 utility is
a macro processor that can be used as a front end to any

search-and-replace engine for text. For example,
given the text:

Hello, NAME, today is DATE.

If we present that text to m4 as input with the fol-
lowing command-line:

m4 -DNAME=Sally -DDATE=’22-June-2004’

the output from m4 would appear as:

Hello, Sally, today is 22-June-2004.

Now we can play the same game as in the imper-
ative approach, but with a new wrinkle: tags can be
embedded in our text snippets. Once the TEX code
is assembled, it is preprocessed through m4 and then
presented to TEX. Here are the steps:

1. Assemble TEX code from snippets of text,

2. Gather data for tag-replacement from a data
source,

3. Build m4 command line with -Dname=value ar-
guments for each unique tag in the TEX file,

4. Execute the command just built and save the
output,

5. Present the saved output to TEX.

8 TEXmerge

We now move away from the X-axis of fig. 1.
The m4 approach introduced an important con-

cept: the idea of template files. There exist a large
class of applications whose function is to produce,
for lack of a better term, “form letters”.10 The m4
technique of the previous section lends itself pre-
cisely to this merging application: Build a .tex file
with tag names, then repeat steps 2–5 above until
end of data. The end result will be a stack of form
letters ready to print and drop in the mail.

While m4 is an efficient macro-replacement en-
gine, we know of another engine that eclipses it:
TEX. Consider the TEX document in fig. 3.

Figure 3: form.tex: A merge-ready TEX file.

\nopagenumbers

This is my first \TeX\ document produced

from a script.

\par

Hello, \NAME, today is \DATE.

\vfil\eject

Alone, this file will result in undefined macro refer-
ences because the macros \NAME and \DATE are not

language (e.g., C, ratfor, fortran, lex, yacc) . . . ” and now,
TEX!

10 Every technological advance seems to bring with it a
raft of nastiness. With email comes spam, with computer-
aided printing comes the dreaded form letter. At least with
TEXmerge, they can be beautiful form letters.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 75

William M. Richter

defined. However, when used in conjunction with
the Python script in fig. 4, it works beautifully.

Figure 4: Imperative TEX code-writing script
relying on TEX’s macro replacement facility.

#!/usr/bin/env python

import sys

import os

f = open(’temp.tex’, ’w’)

f.write(’\\def\\NAME{Sally}\n’)

f.write(’\\def\\DATE{22-June-2004}\n’)

f.write(’\\input form.tex\n’)

f.write(’\\bye\n’)

f.close()

os.system(’tex temp.tex’)

os.system(’dvips temp’)

print ’Done.’

Scripts like 4 can be represented schematically
as in fig. 5. It is important to note that in this
scheme we are dealing with two (or more) .tex files:
1) The template file(s) containing the structure of
our form letter(s) (more than a single type of form
letter can be produced in a single run simply by
inputting different template files), which have tags
where merge variables are to be inserted, and 2) the
temporary file which defines macros for the merge
variables and has input commands to bring in the
templates. Inside the temporary .tex file there can
be many occurrences of the \def. . . and \input. . .
lines; one occurrence for each letter to be produced.

8.1 TEXmerge API

The technique illustrated in fig. 4 works well. Data
for the merge variables can be arbitrarily long, for
example, and TEX will ‘do the right thing’ and wrap
the merged text into our form, etc. But there are
problems:

1. The biggest problem is data containing tokens
having special meaning to TEX. If our merge
data contains $,%,&, etc., we have a problem,

2. It’s rather tedious to read the script, and we
find ourselves repeatedly re-implementing this
tedious code for every application.

The whole process of opening the temporary .tex

file, protecting sensitive tokens, preparing the \def

lines for the merge variables, doing the \input. . . ,
executing TEX and the DVI backend need to be for-
malized inside an application programming interface
(API).

We call that API “TEXmerge”. It was first pre-
sented [7] as a C-language API with a Python ex-
tension wrapper module. Since that time, the API

Figure 5: Schematic overview of document
production via the TEXmerge API.

has been re-written in pure Python and is presented
here (see appendix A for a technical description of
the API).

First, an example using the TEXmerge API (the
TEXmerge module). Fig. 6 re-implements the script
presented in fig. 4 using the module-level interface:

Figure 6: A simple Python script using the
TEXmerge module-level API functions.

#!/usr/bin/env python

import sys

import os

import TeXmerge

f = TeXmerge.openOutput(’temp.tex’)

mergeVars = {’NAME’: ’Sally’,

’DATE’: ’22-June-2004’}

TeXmerge.merge(’form.tex’, mergeVars)

TeXmerge.closeOutput(f)

TeXmerge.process(’temp.tex’, ’dvips’)

print ’Done.’

Note the following:

1. Access to the TEXmerge module is provided via
the import statement: import TeXmerge.

76 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

2. The native Python open/close calls have been
replaced with calls to TeXmerge.openOutput()

and TeXmerge.closeOutput().

3. Merge variables are formally presented to the
API as a Python dictionary object.

4. The merge() call takes care of protecting sen-
sitive tokens in the merge data that would oth-
erwise confuse TEX.

5. The os.system() calls have been replaced with
TeXmerge.process().

Finally, Python is an object-oriented language,
so the TEXmerge module also offers a TEXmerge
class. Fig. 7 re-implements fig. 6 using the object-
oriented interface:

Figure 7: A simple Python script using the
TEXmerge object-oriented interface.

#!/usr/bin/env python

import sys

import os

import TeXmerge

mergeObj = TeXmerge.TeXmerge(’temp.tex’)

mergeVars = {’NAME’: ’Sally’,

’DATE’: ’22-June-2004’}

mergeObj.merge(’form.tex’, mergeVars)

mergeObj.process(’dvips’)

print ’Done.’

9 Going Further with Macros

Now it is time to move up the Y-axis of fig. 1, focus
attention on the TEX domain and investigate what
benefits can be gained by writing specialized macros
to enhance integration with TEXmerge.

9.1 Do-Nothing Macros

The first class of macros to be considered is the “do-
nothing” macros. These macros, from TEX’s view,
evaluate to \relax. They exist in a TEXmerge tem-
plate file in order to communicate information to
a Python script which scans the template file. A
more traditional method used to communicate in-
formation to an external entity would be to embed
that information in comment strings within the file.
Writing first-class macros, however, seems to pro-
duce a cleaner, readable file, and is more flexible
since a do-nothing macro could, in the future, be
turned into a “do-something” macro.

9.1.1 Classic Merge Variable Declarations

Do-nothing macros were introduced in the first re-
lease of TEXmerge, with the \texmergevar macro.
Just looking at a merge-ready template .tex file, it

is not immediately clear what the names of all the
merge variables are. \texmergevar allows the au-
thor of the template file to explicitly state the names
of all merge variables that will be referenced in the
file by coding:

\texmergevar name

for each merge variable. The TEXmerge module
has a module-level method, getNames, which scans
a passed .tex file name (and recursively any in-
cluded files) and returns a list of all declared variable
names. Python scripts can inspect TEX template
files and determine the names of all declared merge
variables.

9.1.2 Extended Merge Variable
Declarations

Several years’ use of the TEXmerge API has shown
that document-producing applications could be
made more robust if a template .tex file could spec-
ify precisely what values a merge variable should
contain. The need for merge variables to take on
only one value from a small set of possible values
stems from the use of conditional TEX code, via the
\ifx control sequence, etc. Conditional typesetting
is powerful because it allows documents to become
intelligent. A single .tex source file can produce
entirely different finished documents by testing the
value of merge variable(s) and typesetting text ac-
cordingly.

A life insurance company, for example, falls
under the jurisdiction of every state in which it is
licensed to conduct business. A document, say a
“sales practice guide”, often must contain language
mandated by a particular state. Sales practice
guides for forty different states may have 90% of
their language in common, but each may also have
unique state-specific language that none of the oth-
ers contains. Having a single, intelligent source
file, salesPracticeGuide.tex, lowers the cost of
change management substantially; changes made to
shared text need only be made once.

The do-nothing macro \texmergevardef de-
fines merge variables with extended attributes, like
this:
\texmergevardef[attrName=attrValue,. . .]

Attributes of the merge variables that can be speci-
fied are:

• name = the name of the merge field.

• type = the type of merge field. The intended
use of this attribute is to convey a recommended
style of data entry element for graphical (GUI)
applications. Valid types are:

– entry: a simple text entry field,

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 77

William M. Richter

Figure 8: A sampling of extended merge variable declarations.

\texmergevardef[name=ISTATE, type=optionmenu,values=TX|OK|AZ|CA|OR|WA,descr=Issuing state]

\texmergevardef[name=ONAME,type=entry,descr=Owner name]

\texmergevardef[name=APPTYPE,type=radiobutton,values=1|2|3,labels=Employee|Spouse|Child,

descr=Applicant type]

Figure 9: Result of getExtendedNames(): a Python dictionary of field-attribute dictionaries

{’ISTATE’: {’name’: ’ISTATE’, ’type’: ’optionmenu’, ’values’: (’TX’, ’OK’, ’AZ’, ’CA’, ’OR’, ’WA’),

’descr’ : ’Issuing state’}, ’APPTYPE’: {’name’: ’APPTYPE’, ’type’: ’radiobutton’,’values’:

(’1’, ’2’, ’3’), ’labels’: (’Employee’, ’Spouse’, ’Child’), ’descr’: ’Applicant type’}, ’ONAME: {

’name’: ’ONAME’, ’type’: ’entry’, ’descr’: ’Owner name’}}

– text: a multi-line text entry field,

– toggle: a toggle button field,

– optionmenu: a drop-down option menu of
choices,

– radiobutton: a set of mutually-exclusive
toggle buttons.

• values = a list of valid values for the variable,
separated by |’s.

• labels = a list of alternate labels that should
be associated with the values attribute for
display purposes. Used with the toggle,
optionmenu, and radiobutton field types.

• descr = a description of the merge variable.

The TEXmerge module-level function
getExtendedNames extracts these extended merge
variable definitions, parses them, and returns them
in a dictionary (keyed by the name attribute’s
value) of field attribute dictionaries.11 Fig. 8 shows
an example .tex file with extended merge variable
definitions. Fig. 9 shows the return value from
applying getExtendedNames on that file.

9.1.3 Named Text Blocks

Another class of applications has the need to share
identical text between two markup languages: TEX
and HTML. Here it is language within the document
that needs to be identical (for legal reasons, say)
and not the structure of the document that is con-
stant between the two presentation platforms. In-
deed, structure of the printed TEX document may
be substantially more complex than its briefer, light-
weight, HTML cousin. How can the common text be
shared between the markup languages?

One way is to make the TEX document “own”
the text. It declares, via a set of macros, where the

11 getExtendedNames also detects occurrences of the prior
texmergevar macro and treats them as extended merge fields
having an attribute type = entry.

common blocks of text begin and end. We refer to
these blocks as named text blocks. The demarcation
macros look like this:

• \StartNamedTextBlock[attrName=value. . .]
Text block attributes are as follows:

– name = Name of the text block,

– seq =Integer; several sections of text
can be assigned the same name, but with
unique sequence numbers. The extracted
text will be a concatenation of like-named
blocks, ordered by sequence number,

– subkey =subvalue: See the text for full
discussion.

• \StopNamedTextBlock

Once text boundaries have been marked and
named with these macros, the text can be ex-
tracted and used by the HTML producing part of
the application. The TEXmerge module provides a
module-level function, getNamedTextBlocks, to ex-
tract the named text blocks, and two helper classes
TextBlock and TextBlockManager to make access-
ing the extracted blocks simpler.

We explain the functional use of named text
blocks by way of the example file in fig. 10 and
the interactive Python interpreter session shown in
fig. 11.12

Note the following:

1. The block demarcation macros are essentially
invisible to TEX and have no effect on typeset-
ting.

2. The TextBlockManager class is used to extract
the named blocks. One simply passes a path-
name to the .tex file containing named text

12 About the interactive interpreter session: >>> is the
interpreter’s prompt. Text appearing after that prompt was
entered by the user. Python’s response appears on the line
immediately below the prompt input line.

78 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

Figure 10: TEX file test.tex containing four named text blocks: B1, B2, C1, D1.

This is a test document containing \textit{named text blocks.}

\StartNamedTextBlock[name=B1]

This is the first block.

\StopNamedTextBlock

Now for a second block:

\StartNamedTextBlock[name=B2]

Second block

\StopNamedTextBlock

Now for a series of sequenced blocks \ldots

\line{\hbox{\StartNamedTextBlock[name=C1,seq=1]C1.Left\StopNamedTextBlock}\hfil

\hbox{\StartNamedTextBlock[name=C1,seq=2]C1.Right\StopNamedTextBlock}

}

Finally, a named text block having a subkey:

\StartNamedTextBlock[name=D1,istate=TX]

This text is specific to the state of Texas.

\StopNamedTextBlock

Figure 11: Interactive Python interpreter session. Working with named text blocks.

[hawkeye2:~/sftug] williamr% python

Python 2.3.2 (#1, Nov 6 2003, 13:18:07)

[GCC 2.95.2 19991024 (release)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import TeXmerge

>>> o = TeXmerge.TextBlockManager(’test.tex’)

>>> o

<TeXmerge.TextBlockManager instance at 0x750648>

>>> o.getBlockNames()

[’C1’, ’B1’, ’B2’, ’D1’]

>>> b1 = o.getBlock(’B1’)

>>> b1

<TeXmerge.TextBlock instance at 0x72b5d0>

>>> b1.getText()

’This is the first block.’

>>> c1 = o[’C1’]

>>> c1.getTextSegments()

{1: ’C1.Left’, 2: ’C1.Right’}

>>> c1.getText()

’C1.Left C1.Right’

>>> d1 = o[’D1’]

>>> d1.getSubkeys()

[’istate’]

>>> d1.getSubkeyValues(’istate’)

[’TX’]

>>> d1.getText(’istate’,’TX’)

’This text is specific to the state of Texas.’

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 79

William M. Richter

Figure 12: Complex document produced by
Hybrid Script-TEX-Script scheme.

blocks in order to instantiate an object of the
TextBlockManager class.

3. The names of all the text blocks in the file
can be retrieved by calling the manager object’s
getNamedTextBlocks method.

4. Individually named text blocks are retrieved via
the manager object’s getTextBlock method, or
simply by indexing the manager using the name
of a text block as the index key (as was done
for block C1 in fig. 11). Either operation will
return a TextBlock object.

5. Access to the text of a TextBlock object is via
its getText method.

9.2 Do-Something Macros

9.2.1 Hybrid Script-TEX-Script Scheme:
A Case Study

If we have an application where a substantial
amount of the document’s content may vary, the
merge paradigm of TEXmerge begins to break down
under the complexity of so many variables. This is
especially true of variable tabular data.

Example: The annotated page shown in fig. 12
is a rate sheet of life insurance premiums. As the
figure shows, there is more variable data than static

text on the page. The rate sheet, however, is only
one page of a twenty page document. Other pages
in its parent document also have variable data, and
state-specific language, as well. Overall the docu-
ment’s nature fits well in the TEXmerge scheme; the
rate sheet page is the “trouble maker”. Another im-
portant consideration: the rate sheet needs to be
embeddable in many other documents.

We desire a TEX macro as in fig. 13 that, when
executed, magically produces a finished rate sheet.13

Figure 13: Rate sheet macro.

\MakeRateSheet[uwclass=express,

mode=semi-monthly,

groupsize=150,

formno=test,

waiver=yes,

adb=yes

]

\MakeRateSheet[...] is definitely a do-some-
thing macro. The trick is to do as little work as pos-
sible in TEX and most of the something in a Python
script. The work for TEX in this case is in two parts:

1. Gather macro arguments and marshal them
into a Python script command-line, then exe-
cute the command with \write18.

2. Input and typeset the TEX code produced by
the Python script.

We call schemes such as these hybrid or Script-
TEX-Script schemes. The job of the secondary script
(the one executed by TEX via \write18) is to act on
arguments received from TEX, or from some other
external source, do whatever calculations, etc., and
output TEX code. The whole scheme is represented
in fig. 14. Since the secondary script is unbounded
by the complexity and amount of TEX code that
may be returned, hybrid schemes are the ultimate
in flexibility.

9.2.2 Document Template Macros

Document template macros also fall into the class of
do-something macros. Another case study will serve
as a description of their functionality. TEXmerge is
in widespread use at Texas Life having applications
in almost every major department, from Marketing,
to New Business, to Policy Owner Service, to Com-
puting Services. Several years ago, a graphic artist
was hired to develop a new ‘look-and-feel’ for all
printed material disseminated from the company. A

13 Writing parameter based macros such as these is effort-
less with the aid of support macros found in Hans Hagen’s
ConTEXt macro package.

80 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

Figure 14: Schematic overview of document
production via the hybrid technique.

new graphics standards manual was written and all
parts of the company were informed that compli-
ance with the new standard was mandatory by a set
date. This directly affected users of TEXmerge. The
Policy Owner Service department, for example, had
600+ TEXmerge-based form letters used daily for
corresponding with clients. Compounding the prob-
lem were the non-standard fonts and a peculiar for-
mat to which standard letterhead should conform: a
wide left margin, except for various items that were
to remain left hanging, right-justified. How could
over 600 documents be quickly converted to this new
format? Language inside the documents could re-
main unaltered; only the structure was changing.

Serendipitous earlier decisions, made when orig-
inally planning and setting up the TEXmerge let-
ters, made conversion to the new graphics standard
straightforward. The serendipity was in a decision
to separate the text for the body of each letter into
its own .tex file. That being the case, all that was
needed was a mechanism to enforce the policy of
the graphics standard; a way to automatically pro-
duce the required layout of the document. This we
do with so-called template macros. Fig. 15 shows
the structure enforced by the \StartClientLetter

Figure 15: Template view for the client-letter
macro.

macro. Based on a plug-and-socket model, it relies
heavily on macro parameters (almost all having de-
fault values), as can be seen in the figure. Template
macros classify parameters into three categories:

• Simple parameters: parameter names begin-
ning with mp,

• Data sockets: parameter names beginning with
sd,

• Slots: parameter names beginning with sl.14

The mpSkip... parameters (gray strips shown in
fig. 15) can be specified to alter whitespace. Merge
variable data is connected to a template using a plug-
and-socket model. Merge variable names are termed
plugs and the sd... macro parameters are termed
sockets. One plugs a variable to particular posi-
tion on the letter by equating the name of the plug
with the desired socket name. The socket names are
shown on the template letter in fig. 15 with default
plug values in parenthesis. Finally, slots are macro
parameters that can accept arbitrary TEX code as
arguments.

14 There are two other prefixes: ss, related to insertion of
digitized versions of handwriting signatures; and sf, related
to input files.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 81

William M. Richter

Figure 16: Sample letter produced using the
client-letter macro.

The body of the letter can be supplied to the
template macro in one of two ways:

1. Put the text of the body into a separate .tex

file and pass the name of the file in the sfBODY

parameter,

2. Code text of the body immediately after invok-
ing \StartClientLetter. In this case the let-
ter must end with \FinishClientLetter.

Finally, fig. 16 shows a sample letter produced from
the \StartClientLetter macro.

10 Building GUI Applications with
TEXmerge

So far, our discussion of TEXmerge has tended
toward batch-style applications. The API is also
effective in building GUI applications. The mod-
ule’s getNames and getExtendedNames functions
provide useful metadata about merge fields, which
can be used to construct user interfaces. Python
is equally effective in programming GUI interfaces.
The “Gimp Toolkit”15 is especially easy to access
from Python and provides a robust set of GUI inter-
face components, including Pixmap buffers which,

15 www.gtk.org and www.pygtk.org.

along with Ghostscript16, can be used to effectively
render PostScript.

10.1 TEXmerge— the Application

The TEXmerge API was originally developed for use
in an interactive application, also called TEXmerge,
for production of form letters. Originally written in
C and based on the Motif toolkit, the current version
is written in pure Python and is based on GTK+ 2.4.
The application is arranged around categories of cor-
respondence (collections of form letters, grouped by
activity. Each activity category’s letters are stored
in a category subdirectory.

A sample TEXmerge main application window
is shown in fig. 17. A category frame consists of
the document selection window on the left, and a
set of merge variable data entry fields on the right.
A single set of input fields (a record), generates a
single copy of the associated letter. Control buttons
exist along the bottom to accomplish tasks such as
adding new records, removing records, printing, and
saving. A built-in PostScript viewer (not visible) is
also provided to view the letter before printing or
saving.

10.2 TEXtool

As long as we’re writing GUI applications, why not
write one that aids in the development of TEX-
merge documents? TEXtool is an integrated devel-
opment utility for editing, “TEX’ing”, and viewing
TEXmerge documents. Figs. 18, 19, and 20 are
three successive views of the application, each view
revealing one of the major notebook tab pages:
Document, Editor, and Preferences.

Applications of this style exist that are more
effective in general; however, TEXtool is unique be-
cause it is oriented especially for TEXmerge docu-
ments. It also shows the feasibility of integrating
TEX into a non-trivial GUI application written in a
scripting language. As can been gleaned from the
figures, the Document tab displays the input frame
of TEXmerge variables as they will appear in the
normal TEXmerge application. The edit/test cycle
can be quickly done all inside a single application
window.

11 The Big Picture at Texas Life

As mentioned in the case studies earlier, TEXmerge
is in widespread use at Texas Life. Fig. 21 is repro-
duced from [7]. It is a convincing illustration of how
effective TEX can be as a document production en-
gine, especially if combined with the right scripting

16 www.ghostscript.com

82 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

Figure 17: The TEXmerge application main window.

Figure 18: The textool application with the Documents tab visible.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 83

William M. Richter

Figure 19: The textool application with the Editor tab visible.

Figure 20: The textool application with the Preferences tab visible.

84 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

Figure 21: The big picture of TEXmerge at Texas Life.

language (Python). Most of the ovals in the figure
use TEXmerge in some fashion. An important les-
son learned is that once a facility like TEXmerge is
available, the movement of documents between sys-
tems becomes much simpler. Only data required to
build documents need be communicated along the
arrows in the figure. Documents are only built and
rendered when necessary for viewing or printing.

12 Conclusion

Because TEX is an ASCII text markup language,
it is effective to write computer codes to process
the TEX code for purposes other than typesetting.
Scripting languages simplify writing these extraction
codes. Embedding metadata into TEX files via sim-
ple macros allows the TEX author to communicate
information to other computer applications. And, fi-
nally, using TEX alongside scripting languages in an
automated document production environment pro-
vides flexibility and robustness to meet almost any
demand imaginable. “Hacking” with scripting lan-
guages has never been simpler. Now is the time for
more people to become script literate; the author
encourages those with little or no programming ex-
perience to mix up a scripting language with their
favorite TEX macro package.

References

[1] Bruce Eckel. Strong typing vs. strong testing.
2003. http://www.mindview.net/WebLog/

log-0025.
[2] Paul Graham. Hackers and painters. 2004.

http://www.paulgraham.com/hp.html.
[3] Donald E. Knuth. The Art of Computer Pro-

gramming, volume 1. Addison-Wesley, third
edition, 1997.

[4] Mark Lutz. Python Programming. O’Reilly and
Associates, Inc., first edition, 1996.

[5] Eric S. Raymond. The art of Unix pro-
gramming. 2003. http://www.faqs.org/doc/
artu/ch14s01.html.

[6] Eric S. Raymond. The meaning of ‘hack’.
2003. http://www.catb.org/∼esr/jargon/

html/meaning-of-hack.html.
[7] William M. Richter. Integrating TEX into a

document imaging system. TUGboat, 22(3),
2001.

[8] René Seindal. GNU m4 development site. 2003.
http://www.seindal.dk/rene/gnu.

[9] Unknown. Technical definition of scripting
language. 2003. http://c2.com/cgi/wiki?

ScriptingLanguage.
[10] Webopedia. What is object oriented program-

ming? 2003. http://webopedia.com/TERM/O/
object-oriented-programming-OOP.html.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 85

William M. Richter

Appendix A The TEXmerge Python API

A.1 How TEXmerge Runs TEX

Because there are a significant number of macro
packages available as TEX formats, TEXmerge needs
to be adaptable, both to the format to use, and to
the way in which the TEX interpreter is started. To
allow for this flexibility, many of the functions below
take two arguments, format and strategy; format
specifies what TEX format to use and strategy

specifies the way in which TEX will be started. In
many cases, these arguments are optional and ap-
propriate values will be derived, either from the
context of use or from the environment variable
TEXMFORMAT. The environment variable has two dif-
ferent forms:

1. TEXMFORMAT=format

2. TEXMFORMAT=@ strategy:format

The second form allows for specification of both the
strategy and format. Currently strategy can be set
to one of: context, latex,17 or plain. The table
below maps strategies to command lines:

strategy command line
context texexec --format format --once %s

latex latex %s

plain tex &format %s

A.2 Module-level Functions

getNames(pathname) → [name1, name2, . . .]
Recursively scans the passed pathname and re-
turns a list of merge variable names declared by
instances of the \texmergevar macro.

getExtendedNames(pathname) → {attrDict1,
attrDict2, . . . }

Recursively scans the passed pathname and re-
turns a dictionary of merge variable field attribute
dictionaries. These dictionaries are created from
instances of the \texmergevardef macro, which
defines merge variables with extended attributes,
like this:

\texmergevardef[attrName=attrValue,. . .]

Attributes of the merge variables that can be spec-
ified are:

• name = the name of the merge field,

• type = the type of merge field. The intended
use of this attribute is to convey a recommended
style of data entry element for graphical (GUI)
applications. Valid types are:

– entry: a simple text entry field,

17 For the latex strategy, format = latex is always as-
sumed.

– text: a multi-line text entry field,

– toggle: a toggle button field,

– optionmenu: a drop-down option menu of
choices,

– radiobutton: a set of mutually-exclusive
toggle buttons

• values = a list of valid values for the variable,
separated by |’s.

• labels = a list of alternate labels that should
be associated with the values attribute for
display purposes. Used with the toggle,
optionmenu, and radiobutton field types.

• descr = a description of the merge variable.

hashNames(fieldAttributesDict) → StringObject

Computes a 64-bit MD5 hash of the passed field
attributes dictionary and returns it as a string
object of hexadecimal characters.

getInputFiles(pathname) → [pathname1,
pathname2, . . .]

Recursively scans the passed pathname for occur-
rences of \input control sequences and returns a
list of pathnames.

openOutput(pathnameOrFileObject,

preambleCode=None, formatIn=None,

strategyIn=None) → FileObject

Prepares a temporary work file for merge opera-
tions. The first argument can be either a string
object or a file object. In the case of a string
object, it is interpreted as the pathname to a file
where the temporary merge file should be created.
If it exists, it will be removed and re-created. In
the case of a file object, the argument is assumed
to be a previously opened file. Any write opera-
tions issued by TEXmerge will be executed against
the passed file object.

preambleCode, if specified will be written at
the beginning of the file in place of TEXmerge’s
normal preamble code. formatIn is currently un-
used. strategyIn determines the default form of
preamble code to write. Valid values are context,
latex, or plain.

closeOutput(fileObject, postambleCode=None,

formatIn=None, strategyIn=None,

keepOpen=False) → None

Completes preparation of a temporary work
merge file for processing. postambleCode is writ-
ten to the file if passed, otherwise an appropriate
postamble will be supplied depending on the
values of formatIn and strategyIn, if passed, or
a default postamble will be written. The passed

86 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

TEX and Scripting Languages

fileObject will be closed unless keepOpen is passed
as True.

merge(targetPathname, mergeVariableDict,

fileObject, options=0) → None

Encapsulates the merge variables passed in merge-

VariableDict for use in targetPathname. The
merge variables are written to the merge work file
as \def control sequences, and targetPathname

is referenced via \input targetPathname.
Several merge options can be passed in the

options argument:

1. TXM FRAMEVARS: draw a box around every
merged variable.

2. TXM DUPLEX: assume the output will be printed
on a duplexing device and insert \eject macros
between merge invocations, when appropriate,
to ensure that each merge invocation starts on
the front side of the printed sheet.

process(pathname, driverCommand, format,

strategy) → IntegerObject

Runs the TEX interpreter and a DVI backend
against the merge work file pathname. The com-
mand used to run the TEX interpreter is derived
from the format and strategy parameters. Strat-

egy may be one of context, latex, or plain. If
strategy is set to context then the environment
variable TEXENGINE is used as the TEX processor,
if set, or texexec otherwise. The DVI command
string passed in driverCommand is used to run the
DVI backend. It can contain a single %s which will
be replaced with pathname. If no %s is present,
pathname will be appended to driverCommand.

Returns the exit status of TEX interpreter or
of the DVI backend command.

processWithExtendedOutput(pathname,

driverCommand, format, strategy) →
(texstderr, texstdout, texlog,

dvistderr, dvistdout)

Works like the process function above, except
for error handling. Failure of the TEX interpreter
raises the exception TeXException. Failure of
the DVI backend command raises the exception
DviException. Successful completion of both the
TEX interpreter and the DVI backend returns a
tuple as above, providing complete diagnostics of
the run.

getNamedTextBlocks(pathname) → {block1:
{block1AttrDict}, . . . }

Recursively scans pathname for occurrences of
named text blocks, demarcated by the pair of
macros \StartNamedTextBlock[attrName =
value, ...] and \EndNamedTextBlock.

Text block attributes are as follows:

• name = Name of the text block,

• seq = Integer; several sections of text
can be assigned the same name, but
with unique sequence numbers. The ex-
tracted text will be a concatenation of
like-named blocks, ordered by sequence
number,

• subkey=subvalue; subkey name/value
pairs provide a way to declare multiple
blocks with the same name. Assigning
differing name/value pairs makes each
like-named block unique.

The class TextBlockManager can be used as
an alternative to this function; it provides a simple
frontend to this function’s return value.

A.3 TEXmerge Class

The TEXmerge class provides an object-oriented in-
terface to the module-level functions shown above.

Constructor

TeXmerge(mergeTargetPathname=None,

workPathname=None, mergeOptions=0,

preambleCode=None, postambleCode=None,

texmformat=None, strategy=None,

keepIntermediateFiles=False)

Methods

setMergeTargetPathname(pathname) → None

Sets the default merge target pathname for sub-
sequent merge operations.

setMergeOptions(self, mergeOptions) → None

Sets the default merge options for future merge
operations.

setFormatAndStrategy(self, texmformat,

strategy=None) → None

Sets the default format and strategy to be used
for future merge operations.

probeMergeTargetAndSetFormat() → None

Scans the current merge target pathname to de-
termine the appropriate format and strategy that
should be used during the process() method call.

setFormatFromMergeTargetParentDirectory()

→ None

Checks the merge target’s parent directory for ex-
istence of the file .texmformat. If found, the con-
tents of the file is assumed to be the format and
strategy (specified similarly to the environment
variable TEXMFORMAT) to be used when processing
the merge file.

getVariables() → {mergeVariableAttrDict}
Calls the function getExtendedNames described
above, passing the currently set merge target

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 87

William M. Richter

pathname as an argument. Returns the result of
the call.

openOutput(workPathnameOrFileObject=None)

→ FileObject

Prepares the work file for subsequent merge opera-
tions. If no argument is passed, a default filename
will be constructed.

closeOutput() → None

As above.

merge(mergeVars=None, altMergeOptions=None,

altMergeTargetPathname=None) → None

Performs a merge operation using mergeVars, if
passed, and alternate merge options and merge
target pathname, also if passed.

process(driverCommand) → None

Run TEX interpreter according to currently set
strategy and format. See process description
above for details on the driverCommand string.

A.4 TextBlock Manager Class

Constructor

TextBlockManager(pathname)

Methods

setPathname(pathname) → None

Requests the TextBlockManager instance to scan
pathname for named text blocks. Any informa-
tion about previously scanned blocks is lost.

getBlockNames() → [block1, block2, ...]

Returns a list of the names of all named text
blocks in the pathname last scanned.

getBlock(blockName) → TextBlock

Returns a TextBlock instance representation of
the text block named blockName. Returns None

if no such named block exists.
This same operation can be performed by us-

ing array indexing notation against the instance,
i.e., indexing as with a dictionary object.

A.5 TextBlock Class

Constructor

TextBlock(text-block-descriptor-dictionary)

Methods

getName() → StringObject

Returns the instance’s block name.

getSubKeys() → [blockName1, ...] | None

Returns a list of unique subkey names associated
with the given text blocks, or None if there are no
associated subkeys.

getSubkeyValues(subkeyName) →
[subkeyName1, ...]

Returns a list of all the subkey values correspond-
ing to the passed subkey name.

getTextSegments(subkeyName=None,

subkeyValue=None) → {1: textSeg1,
2: textSeg2, . . . }

Returns a dictionary of text segments, keyed by
segment sequence number. The subkeyName and
subkeyValue are optional; if specified, they are
used to select the specific text block to access.

getText(subkeyname=None, subkeyValue=None)

→ StringObject

Returns a concatenation of all text segments in
order by sequence number. The subkeyName and
subkeyValue are optional; if specified, they are
used to select the specific text block to access.

A.6 Exceptions

Exceptions can be raised by some of the class meth-
ods above. The exception objects have attributes
which provide diagnostics about the associated er-
ror condition.

A.6.1 TeXException

This exception is raised when TEX cannot success-
fully interpret a file. Attributes:

• stdout: StringObject containing the standard
output stream from the interpreter invocation,

• stderr: StringObject containing the standard
error stream from the interpreter invocation,

• logText: StringObject containing the log file
written by TEX.

A.6.2 DviException

This exception is raised when a DVI backend driver
fails. Attributes:

• stdout: StringObject containing the standard
output stream from the backend invocation,

• stderr: StringObject containing the standard
error stream from the backend invocation.

88 TUGboat, Volume 25 (2004), No. 1— Proceedings of the Practical TEX 2004 Conference

A Bibliographer’s Toolbox

Nelson H. F. Beebe
University of Utah

Department of Mathematics, 110 LCB

155 S 1400 E RM 233

Salt Lake City, UT 84112-0090

USA

WWW URL: http://www.math.utah.edu/~beebe

Telephone: +1 801 581 5254

FAX: +1 801 581 4148

Internet: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org

Abstract

This article surveys a portion of a set of software tools that I have developed over
the last decade for the production, maintenance, testing, and validation of very
large bibliographic archives.

It provides resource locations for all them, and shows how they can make
bibliography preparation and maintenance more productive, and much more
reliable.

Summary

1 Introduction

2 The problem(s)
2.1 Data errors
2.2 Markup features
2.3 Markup deficiencies

3 Creating bibliographic data
3.1 The emacs environment
3.2 Converting Web data to BIBTEX
3.3 Other external tools
3.4 XML for bibliographic data

4 Checking bibliographic data
4.1 Spelling
4.2 Delimiter balance
4.3 Doubled words
4.4 File validation
4.5 Field-value validation
4.6 Typesetting

5 Other platforms

6 Conclusions

Editor’s note: As an experiment, this paper is not typeset in
Computer Modern. The main text is Bitstream Charter, with
monospaced material in Bigelow & Holmes LuxiMono. We do not
plan at this time to change from Computer Modern in general,
but we still welcome your comments.

1 Introduction

LEXICOGRAPHER, N. A WRITER OF DICTIONARIES;

A HARMLESS DRUDGE THAT BUSIES HIMSELF IN

TRACING THE ORIGINAL, AND DETAILING THE

SIGNIFICATION OF WORDS.

SAMUEL JOHNSON

Dictionary of the English Language (1755)

BIBLIOGRAPHER, N. SEE LEXICOGRAPHER.

ANONYMOUS

Large documents, especially in technical fields,
often contain a list of other related documents, in
the form of a bibliography or reference list. That
list usually appears at the end of the document, but
may instead be sprinkled through it in footnotes,
or collected in endnotes, or be divided in multiple
parts, with one part at the end of each major
document division, such as a chapter.

Before computers came into wide use for docu-
ment preparation, these reference lists were tedious
to prepare, and were often sparse, with authors
after the first reduced to the Latin catch-all et al.,1

article titles, issue numbers, and months omitted,
and page ranges reduced to the initial page.

This is a disservice to the reader, who has little
idea what the referenced publication is about, and
who then must work harder to find it. Much of the
chemistry literature still follows this practice.

1 A colleague once quipped: “When you see a paper cited as
Jones et al., it means that Jones got the credit, but Al did the
work.”

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 89

http://www.math.utah.edu/~beebe

Nelson H. F. Beebe

The tedious manual labor of preparing a refer-
ence list had to be repeated if the publication style
changed, and error rates were high.

Bibliographic database systems, such as bib/
refer, bibix, BIBTEX, EndNote,2 Papyrus,3 and Pro-
Cite,4 have made it possible to remedy this sit-
uation. Bibliographic data can now be carefully
prepared once and for all, freely used by anyone,
automatically reformatted into scores of styles, and
converted between different database formats with
reasonable ease.

As one example of a significant shared collec-
tion, the Karlsruhe Bibliography Archive5 in mid-
2004 contained about 1.4M references in BIBTEX
form, covering major areas of computer science, nu-
merical analysis, electronic document production,
fonts, and typography. A good portion of that ar-
chive is the result of my own work.6

A key feature of all of bibliographic database
systems is the separation of database markup (data
types author, title, journal, year, etc.) from
presentation markup. Style files guide bibliographic
software in the conversion from database form to
presentation form. For example, a famous letter to
the editor might be marked up like this in a BIBTEX
file:

@Article{Dijkstra:1968:GSC,

author = "Edsger Wybe Dijkstra",

title = "Go to statement considered

harmful",

journal = j-CACM,

volume = "11",

number = "3",

pages = "147--148",

month = mar,

year = "1968",

CODEN = "CACMA2",

ISSN = "0001-0782",

note = "This letter inspired scores of

others, published mainly

in SIGPLAN Notices up to

the mid-1980s. The best-known

is \cite{Knuth:1974:SPG}.",

}

For comparison, a subset of that data might be
marked up in bib style like this:

%A Edsger Wybe Dijkstra

%T Go to statement considered harmful

%J Comm. ACM

%V 11

2 http://endnote.com/
3 http://www.researchsoftwaredesign.com/
4 http://www.procite.com/
5 http://liinwww.ira.uka.de/bibliography/
6 http://www.math.utah.edu/~beebe/bibliographies.

html

%N 3

%P 147-148

%D March 1968

In author-date reference style, inline citations
to it might read (Dijkstra, 1968), with the bibliog-
raphy item in a .bbl file marked up like this for TEX
or LATEX:

\bibitem[\protect\citename{Dijkstra, }1968]

{Dijkstra:1968:GSC}

Dijkstra, Edsger~Wybe. 1968.

\newblock Go to statement considered harmful.

\newblock \emph{Communications of the ACM},

\textbf{11}(3), 147--148.

\newblock This letter inspired scores of others,

published mainly in SIGPLAN Notices up to the

mid-1980s. The best-known is

\cite{Knuth:1974:SPG}.

It produces typeset output like this:

Dijkstra, Edsger Wybe. 1968. Go to statement

considered harmful. Communications of the ACM,

11(3), 147–148. This letter inspired scores of

others, published mainly in SIGPLAN Notices up

to the mid-1980s. The best-known is (Knuth,

1974).

Notice in this example that it is possible for biblio-
graphic entries to cite other entries; the cited entries
are automatically retrieved and formatted by the
software, without any extra effort by the document
author.

A chemistry-literature citation of the same data
might have a numeric superscript pointing to a
footnote,7 without any change to the citation in the
document.

Bibliographic databases deserve to be widely
used, freely shared, and contributed to by many.
The time has come to abandon the cryptic reference-
list practices of the past that were developed primar-
ily as labor-saving devices, and replace them with
accurate, and detailed, reference lists, as exempli-
fied by the bibliography at the end of this article.

The databases that I have developed intention-
ally avoid unnecessary abbreviations: does J. chem.

phys. mean Journal of Chemical Physics, or Jour-

nal de chimie et physique, or maybe even Journal

of Chemosurgery and Physiology? They also sup-
ply details that historically were omitted, such as
book and periodical numbers, library catalog num-
bers, and publisher states-or-provinces and coun-
tries. While there are many publishers in London,
England, and in Paris, France, there are also some in

7 E. Dijkstra, Comm. ACM 11 147 (1968). [Notice here that
the reader may have to search up to twelve monthly issues of this
journal to find the article, because page numbers restart at one
each issue, and the abbreviated reference style omits the issue
and month information.]

90 TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference

http://endnote.com/
http://www.researchsoftwaredesign.com/
http://www.procite.com/
http://liinwww.ira.uka.de/bibliography/
http://www.math.utah.edu/~beebe/bibliographies.html
http://www.math.utah.edu/~beebe/bibliographies.html

A Bibliographer’s Toolbox

London, Ontario, Canada, and maybe even a small
one in Paris, Idaho, USA, not very far from my home
in Utah.

The rapid spread of the Internet, the use of the
World-Wide Web for sharing electronic documents,
and free and independent search engines for finding
them, requires a radical change to past practices.
We need to get our old documents onto the Web,
and we need to make our new documents include
pointers to electronic versions of all documents that
we reference.

If Brewster Kahle’s magnificent vision [29, 16]
of having all of the world’s entire historical literary
production online in the Internet Archive Wayback
Machine8 for free access by everyone comes to
fruition, we will have an unprecedented resource
of human knowledge. We will need to index it,
search it, and be able to reference any part of it,
so that others can find the same material. We
also need to replicate it in many countries, and
in many storage technologies, to avoid repeating
the catastrophic destruction of the great Library of
Alexandria, though just when, or how often, that
happened is uncertain.9

2 The problem(s)

2.1 Data errors

The biggest problem with databases is errors:
insurance-company studies have reported errors in
as many as a third of all stored fields [31], and
sometimes in up to 80% [26].

Bibliographic data is no exception; the quality
of much of the Karlsruhe archive (apart from my
own section) is poor, entirely due to careless prepa-
ration and checking on the part of human contribu-
tors.

The same criticism applies to many commercial
and governmental bibliographic databases, such as
Compendex, Medline, Science Citation Index, and the
many OCLC databases. The Uncover database is so
bad that virtually all of its data is suspect.

You may well be able to find a publication listed
in these sources, but you cannot rely on their in-
formation to provide you with correct bibliographic
data. Every field of data potentially contains errors
introduced by careless, or low-paid, human typ-
ists. Mathematical markup is almost nonexistent,
and when it is there, it is frequently unintelligible
or completely wrong. Accents on letters are not
recorded, which is particularly offensive when per-
sonal names are grossly misspelled.

8 http://www.archive.org/
9 http://en.wikipedia.org/wiki/Library_of_Alexandria

Notable exceptions in database quality are the
American Mathematical Society’s MathSciNet facil-
ity,10 the European Mathematical Society’s Zentral-

blatt MATH archives,11 and the SIAM journal pub-
lication lists.12 These organizations deserve high
praise for the care with which they have recorded
bibliographic data.

Fortunately, major journal publishers now offer
Web pages with issue tables of contents, and it is
often possible to write software to automatically
derive bibliographic entries directly from the HTML

or XML markup. Since the publisher has the original
data from which the bibliographic information is
derived, and has a business interest in its quality,
we can hope that fewer errors exist. I’ll have more
to say about this later.

Why does citation accuracy matter? Here are
some reasons:

• Getting your references correct is not just a
matter of ethical and professional responsibil-
ity: it shows respect for your reader.

• There are many more readers than writers,
authors, and bibliographers. Your work will
be seen by many, and for shared bibliographic
data, also used and reused by many. Errors in
such data will be amplified many times.

• When literature references are inaccurate, your
competency is called into question. Erroneous
bibliographic citations suggest carelessness in
the rest of your work.

• An encouraging recent trend is for the full
text of articles to be available electronically,
with Web cross-links from the references to the
publications that they cite. The ACM, AMS,
EMS, and IEEE all have digital-library projects
underway that provide such linking. Accurate
bibliographic data is essential for correct links.

The huge ArXiv e-print service13 in physics,
mathematics, non-linear science, computer sci-
ence, and quantitative biology does not cur-
rently provide such links, possibly to avoid
competition with professional-society and com-
mercial collections, but live links between doc-
uments are too valuable to continue to ignore
in the future.

• In business and law, contracts and legal deci-
sions depend critically on document accuracy,
including references to prior agreements and
legal cases.

10 http://ams.org/mathscinet/
11 http://www.emis.de/
12 http://epubs.siam.org/
13 http://www.arxiv.org/

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 91

http://www.archive.org/
http://en.wikipedia.org/wiki/Library_of_Alexandria
http://ams.org/mathscinet/
http://www.emis.de/
http://epubs.siam.org/
http://www.arxiv.org/

Nelson H. F. Beebe

2.2 Markup features

BIBTEX goes further than most other bibliographic
systems in addressing the need for adequate mark-
up. While its name implies a connection with TEX,
its design was strongly influenced by the Scribe
document-formatting system, and there was a pe-
riod, now long past, where database interchange-
ability between the two systems was essential.
There are BIBTEX styles available that format refer-
ences for consumption by other typesetting systems,
notably, nroff and troff, and some of the commercial
bibliographic database systems can import and ex-
port BIBTEX data.

One of the most important design decisions in
BIBTEX is that the publication types and the data
field types are not hard-coded into the BIBTEX pro-
gram. Instead, that program knows what their syn-
tax is, but their names are defined only in style files.
All such style files recognize a standard set of docu-
ment types (Article, Book, PhDThesis, TechReport,
. . .), and a standard set of field names (author,
title, year, . . .). However, database entries can
contain additional field names: unknown ones are
silently ignored, even though they might simply be
misspelled!

This flexibility has been enormously helpful in
extending the markup to handle needs that were not
foreseen when BIBTEX was designed. Perhaps the
most notable of these is the World-Wide Web, with
uniform resource locators (URLs) providing location
information as a supplement, or alternative, to
conventional data, like journal, volume, pages,
year, and so on.

Other examples include the DOI (Digital Ob-
ject Identifier),14 ISBN (International Standard Book
Number), ISSN (International Standard Serial Num-
ber), and CODEN (Chemical Abstracts serial number)
field names, which provide handles that uniquely
identify a document, a book or a periodical. The
is-*.bst style files are extensions of the BIBTEX
base styles that recognize these field names, and
several others, and also understand an additional
document type, Periodical.

Compared to other systems, BIBTEX markup is
clear and simple. It requires only ordinary text
files, and those files are readily understandable by
anyone who can read English, even an elementary-
school child. That is not the case with other systems;
for example, in Unix bib, you might be able to guess
that %A stands for author , but you probably have no
idea what %Q means. [It is used for a corporate or
‘foreign’ author.]

14 http://www.doi.org/

The clarity of BIBTEX markup has turned out
to have an unexpected, but extremely valuable,
benefit. Entries from BIBTEX files are readily found
by Web search engines: try searching for +@Book

+Knuth in your favorite search engine.
One important problem that BIBTEX has solved

cleanly is the need for identification of proper
nouns, so that those styles that downcase titles can
be correctly supported. Thus, a field assignment like

title = "The Use of {Green} Functions for

Modeling Growth of Green Algae",

lets BIBTEX preserve lettercase on the first instance
of Green, and downcase the second, when the style
calls for it. German capitalizes all nouns, so titles
in that language need only an outer brace layer to
eliminate disastrous downcasing:

title = "{Einschlie{\ss}en der L{\"o}sungen

von Randwertaufgaben}. ({German})

[{Bracketing} Solutions to Boundary

Value Problems]",

The lack of such markup in other systems forces
downcasing of the title data, thus losing possibly-
important information about the lettercasing in the
original publication.

It is certainly bad form for the database to
lose information; any such data reduction should be
entirely up to the style.

2.3 Markup deficiencies

While I am convinced that BIBTEX markup is cur-
rently the best choice for bibliographic databases,
the experience of personally creating more than a
third of a million entries, and using them daily for
more than a decade, has turned up limitations that
must be addressed in the final, and frozen, release
of BIBTEX. Its author (Oren Patashnik) and I have
had numerous electronic and face-to-face exchanges
about these issues, and I’m confident that proper
solutions will be found.

Here are just two examples of markup deficien-
cies:

• There is no author/editor value markup to dis-
tinguish between levels of authors. For exam-
ple, my entry for the second edition of The LATEX

Companion [30] includes this (unused) field:

remark = "Authors listed as: Frank

Mittelbach and Michel Goossens

with Johannes Braams, David

Carlisle, and Chris Rowley, and

with contributions by Christine

Detig and Joachim Schrod.",

These wonderful people have done a truly out-
standing job in this new edition, and it is unfair

92 TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference

http://www.doi.org/

A Bibliographer’s Toolbox

to omit any of their names in the database.
Consequently, they each appear in the author

field separated by the BIBTEX keyword and, so
the book entry at the end of this article loses
the level information.

• Parsing of personal names into first, von, and
last parts is not general enough to handle dif-
ferent name order, such as Chinese, Hungarian,
Japanese, and Vietnamese, where the family
name comes first.

Nor does it properly handle the case of South
Indian authors with a single name: Arvind is a
well-known example in computer science.

It also fails for Spanish names with pater-
nal and maternal contributions: Juan García

y Rodriguez may be known as Juan García R.,
or just J. García, when the maternal part is
abbreviated or dropped.

As we learn more about the personal-name
conventions of other parts of the world, more
limitations of the current markup will certainly
be found.

Much more could be said about markup defi-
ciencies and challenges, but instead, I now want to
turn to a review of tools that can be profitably used
to ease the job of bibliography-entry preparation,
checking, and typesetting.

3 Creating bibliographic data

A common way to create bibliographic entries is by
manual data entry. For most systems, this is best
done with the help of templates. I am not at all
fond of the window-based clients, provided with
most commercial systems, that present little boxes
to be filled in. Their editing capabilities are badly
crippled, and they provide no automated way to
create parts of entries in advance, something that
I routinely do in preparation of entries for journal-
specific bibliographies. The little-boxes clients may
be tolerable for creation of a dozen bibliographic
entries, but they are completely hopeless for the
creation of hundreds of thousands.

3.1 The emacs environment

The “Extensible, Customizable, Self-Documenting
Display Editor”, emacs, [3, 13, 14, 15, 17, 21, 28,
34, 35, 36, 37] provides the finest editing environ-
ment that I know of, far beyond that of any other
editor ever developed and widely deployed. emacs

celebrates its thirtieth birthday in 200615,16,17 and

15 http://www.gnu.org/software/emacs/emacs.html
16 http://en.wikipedia.org/wiki/Emacs
17 http://www.jwz.org/doc/emacs-timeline.html

for most of its users, has changed their lives, mak-
ing computers, document entry, and programming,
more accessible. Its age is a badge of honor, one
that it shares with TEX, two years its junior. My
computer-input capability jumped tenfold when I
adopted emacs more than twenty-five years ago.

What makes emacs different from many other
editors arises from five fundamental design princi-
ples:

• Commonly-used editing commands are bound
to easily-learned keys, but those bindings are
always customizable. Most users retain the
default bindings of the general commands for
copying, deletion, insertion, and movement.
However, key bindings of more specialized edit-
ing commands usually change with the type of
data being edited.

• Time-critical editing tasks and display manage-
ment are carried out by the emacs kernel (orig-
inally written in PDP-10 assembly code, now in
C), but the bulk of editing functionality is han-
dled by interpreted code (originally TECO, now
Lisp). That code can be developed and tested in
an interactive editing session, saved in a library
file, optionally compiled for efficient reuse, and
dynamically loaded into other editing sessions.

• While the emacs kernel remains under control
of a handful of architects, led by Chief Architect
and Head Gnu Richard Stallman, the emacs

community is encouraged, and even expected,
to develop specialized libraries that are freely
shared with others.

The assembly-code file, teco.mid, that forms
the kernel of the original emacs ends with these
comments:

;;; ITS TECO and EMACS should serve as a

;;; lesson to all of what can be achieved

;;; when programmers’ creativity is not

;;; crushed by administrators whose main

;;; concern is stifling humor, stamping out

;;; all possibility of enthusiasm, and

;;; forbidding everything that isn’t

;;; compulsory.

...

;;; You owe your improvements to us in

;;; return for what you see here. If anyone

;;; asks you for a copy, make sure he gets

;;; in touch with the MIT AI Lab so he can

;;; get the latest stuff.

• All commands are accompanied by a short, but
usually entirely sufficient, string of documen-
tation that can be displayed with just a few
keystrokes.

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 93

http://www.gnu.org/software/emacs/emacs.html
http://en.wikipedia.org/wiki/Emacs
http://www.jwz.org/doc/emacs-timeline.html

Nelson H. F. Beebe

• Full documentation is provided in the form of
online text files, extensively cross-referenced,
and linked into a tree or graph structure.

Two keystrokes get you into the emacs info

system for viewing the documentation, and
two dozen single-character commands let you
easily navigate through it. When you leave
it to return to editing, and then subsequently
reenter the info system, you are positioned
exactly where you were when you left it, and
the history of where you’ve been is intact.

The info system contains highly-readable self-
guided tutorials on info and emacs, making
both systems rapidly accessible to new users.
When emacs is built for a windowing system, it
provides a conventional toolbar that makes it
easy for novices to perform basic editing tasks
without any knowledge of key bindings.

The info system was hypertext [11] fifteen
years before the idea was reinvented for the
World-Wide Web, but the idea goes back to
at least Vannevar Bush’s far-sighted article in
1945 [12], and to work at Stanford University
(the home of TEX, and much else) in 1962 by
Douglas Engelbart and Ted Nelson. Engelbart
is credited with the invention of the computer
mouse and windows, and Nelson with coining
the term hypertext.

When emacs was reimplemented in the mid-
1980s for the GNU Project, it got an unlimited undo

capability, which users find enormously liberating.
If you make a mistake, you don’t have to think
about what editing commands to issue in order to
recover: you just press the undo key until things
are right. This facility is a sixth important design
goal, even though it was not part of the original
implementation.

TEX users will see a strong similarity between
the developments of TEX and METAFONT, and the
emacs editor, which is not surprising, since the
Grand Wizard of TEX himself is a diehard emacs

user. The emacs libraries have their analogues in
the packages of the LATEX world.

emacs has superb support for the creation of
BIBTEX data, and I’ve written more than a dozen
related libraries18 to further enhance the editing
provided by the default BIBTEX library. These li-
braries provide more than 350 specialized functions
for editing BIBTEX data.

For example, in an emacs session for a BIBTEX
file, three quick keystrokes, or more awkwardly,
selection of an item from a pull-down menu, gener-

18 http://www.math.utah.edu/pub/emacs/

ates a template like this, with the cursor positioned
before the comma on the first line, ready for data
entry:

@Article{,

author = "",

title = "",

journal = "",

year = "",

OPTvolume = "",

OPTnumber = "",

OPTpages = "",

OPTmonth = "",

OPTnote = "",

acknowledgement = ack-nhfb,

bibdate = "Tue Jun 29 11:54:21 2004",

}

A tab character moves to the next value field, and
two keystrokes remove the OPT prefix, which is
there to remind the typist that BIBTEX considers that
particular field optional.

The acknowledgement and bibdate fields are
my own personal customizations. The latter holds
a revision date that provides critical information
for other software tools, such as bibextract.19 They
can extract entries matching specified patterns, for
example, all those with 2003 and 2004 in the
bibdate value, making it easy to find out what’s
new.

Once the entry is complete, two keystrokes gen-
erate a standard citation label, and when desired,
two more keystrokes save the results in the filesys-
tem.

If further processing of the new BIBTEX entry,
or a block of entries, is required, it takes only two
keystrokes to mark a region, and then two more
to get a prompt for a shell command to run on
that marked data, optionally replacing it with the
command output. I use that capability constantly in
my bibliographic work.

Part of the extended BIBTEX support in emacs

provides commands for commonly-needed BIBTEX-
specific editing activities, such as moving from field
to field, justifying string values, bracing words be-
fore and after the cursor, and supplying TEX accents.

The accent support provided by the BTXACCNT

and LTXACCNT libraries is particularly convenient
and noteworthy. Rather than your having to labo-
riously enter a backslash and a (sometimes) look-
alike punctuation character or mnemonic letter, and
possibly also braces, a single function key pressed
after a character supplies the next accent from a
list known to be valid for that character. Repeated

19 http://www.math.utah.edu/pub/bibextract/

94 TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference

http://www.math.utah.edu/pub/emacs/
http://www.math.utah.edu/pub/bibextract/

A Bibliographer’s Toolbox

presses of the same function key cycle through the
list until the desired accent is located.

For example, after the letter o, repeated accent-
key presses replace it successively by

{\"o} {\’o} {\.o} {\=o} {\H{o}}

{\^o} {\‘o} {\b{o}} {\c{o}} {\d{o}}

{\r{o}} {\t{o}} {\u{o}} {\v{o}} {\~o}

The list is cyclic, so you never bump into its end,
and if you go too far, the emacs undo key backtracks
as far as you need to go.

Once you have found the needed accent, which
you indicate just by pressing any key other than
the accent key, the accent list for that character is
then rotated to place the just-selected accent at the
head of the list. It is likely that the same accent will
be needed again, and a single accent keystroke will
then retrieve it.

If you press the accent key after a letter with
no known accents, emacs beeps and warns No

accented letter match in the message area at the
bottom of the screen.

Because TEX provides many more accents than
any particular language needs, the accent lists, and
thus, the accent-key presses, can be substantially
shortened by selecting a language from a menu of a
score of languages, including Faroese, Gaelic, Latin,
Romaji, and Turkish. Of course, those lists are all
customizable, so support for new ones can be added
in just a few minutes.

For convenience, commonly-required external
tools can be invoked from menus provided by the
BIBTEX-TOOLS library, making it easy to find and run
them without having to remember their sometimes
long descriptive names. The menu with the func-
tions and tools that I use often is shown in Figure 1.

Emacs is available on all popular desktop sys-
tems, although on the commercial ones, you may
have to install it yourself. There is then no need
to learn a new editor each time that you change
platforms.

3.2 Converting Web data to BIBTEX

About the mid-1990s, another source of biblio-
graphic data began to be available: the World-Wide
Web. This takes primarily two forms: document
texts that happen to contain references to other
documents, and Web pages listing the contents of
journal issues and conference proceedings.

The first is completely devoid of markup, and
thus, requires considerable manual work to recon-
struct bibliographic-database entries. All of the
caveats that I raised earlier about errors apply!

The second, while varying from site to site, and
even from month to month at the same site, often

Figure 1: Partial toolbar menu for BIBTEX-TOOLS.

update citation label table

print citation label table

bibcheck

bibparse

check-bbl

check-page-gaps

check-page-range

chkdelim

find-author-page-matches

find-braceable-initial-title-words

find-crossref-year-mismatches

find-duplicate-author-editor

find-duplicate-pages

find-german-titles

find-hyphenated-title-words

find-math-prefixes

find-missing-parbreaks

find-page-matches

find-possessive-title-words

find-superfluous-label-suffixes

...

has enough HTML or XML markup that software can
be written to construct rough BIBTEX entries that can
be further cleaned up with a combination of manual
editing, and many of the tools that are described
elsewhere in this article.

In the best case, this conversion is nearly per-
fect, and fast: shortly after receiving a publication
announcement in e-mail from the publisher or edi-
tor, I can sometimes create, validate, and install in
the archive BIBTEX entries for a new journal issue in
under five minutes. By contrast, manual creation of
entries averages about that amount of time for just
one.

Of course, software for the conversion of Web
data to BIBTEX form is not simple to write, and could
never be justified unless there is an expectation
that multiple Web pages in the same format will be
available for other journals of interest, and into the
future. Fortunately, this has proved to be the case
for some important publishers and databases, so I
have been able to maintain coverage of about 300
journals. Some of them are only updated at long
intervals, such as yearly, but others are updated
as each new issue appears. Coverage is complete
for 115 of these journals; the oldest of them is the
American Mathematical Monthly, which goes back to
1894, and contains over 45,000 extensively-cross-
referenced articles. [The Monthly’s Editor-in-Chief
for many years is a member of my Department.]

The programming language that I have found

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 95

Nelson H. F. Beebe

most suitable for the conversion task is awk [2, 32,
33]. The awk language has a clean and simple
syntax that borrows heavily from a small subset of
the C language, and avoids the kitchen-sink syntax
of certain scripting languages currently in vogue.
Programs in awk are quite often right the first time,
and very clear. Several of the bibliography tools
described in this article are written in awk, and the
books cited above contain numerous examples of
awk programs.

Importantly, and unlike almost all other current
scripting languages, awk has multiple implementa-
tions, three freely-distributable, and two commer-
cial. Commercial Unix vendors supply snapshots of
up to three of the free versions. This means that
when a bug surfaces, it is a trivial matter to run
your program with a different implementation: if
the bug persists, it’s yours; otherwise, it may be in
the implementation.

awk’s roots go back to 1978 [1], and it was de-
signed by leading researchers in the field of parsing
and compilation of programming languages at the
Unix research group in AT&T Bell Laboratories. The
language received a major overhaul in 1987, and is
well described in a classic small book that appeared
the following year [2].

A file count in my bibliography archive direc-
tories found 283 distinct awk programs ranging in
length from about 10 lines to 12,900 lines. The
arithmetic mean is 480 lines, but the geometric
mean provides a more typical value: 180 lines.
The total collection has nearly 122,000 lines of awk

code. For comparison, TEX and METAFONT are each
about 20,000 lines of prettyprinted Pascal code.

The Web conversion task does not, however,
rely entirely on awk programs. Without exception,
all Web pages are first processed by html-pretty,20

my prettyprinter for HTML that standardizes markup
and layout. This makes it much easier to write the
journal- and publisher-specific awk programs.

Because these programs need occasional revi-
sion to adapt to the often-whimsical changes in
Web-page format at publisher sites, I have not re-
leased them for general use, but there is little need
to, at least before my demise, since they are only
needed at the one site where the conversion to
BIBTEX takes place. However, they can certainly be
made available to people with reasonable requests
and expectations, perhaps for use in converting Web
data for other journals.

There is a great deal of commonality in the
processing of Web pages to create BIBTEX output,

20 http://www.math.utah.edu/pub/sgml/

so for most journals, a single master shell script of
about 500 lines manages the conversion. It contains
a giant case statement with customizations for each
of about 150 journals and journal families, and ends
with a loop over command-line arguments and a
body with a Unix pipeline that looks roughly like
this:

eval $PREHTMLFILTER |

html-pretty |

eval $POSTHTMLPRETTYFILTER |

eval $PREAWKFILTER |

gawk -f $BASENAME.awk \

-v Filename=$f \

-v JOURNAL=$JOURNAL \

-v Journal=$JOURNAL |

gawk -f HTML-entity-to-TeX.awk |

gawk -f iso8859-1-to-TeX.awk |

$POSTAWKFILTER

For readers unfamiliar with Unix pipelines, the
vertical bar is called the pipe operator: it means
that the output from the program on its left is the
input to the one on its right. Pipeline data flows
through memory buffers, rather than through files
in permanent storage media, and all programs in
the pipeline run simultaneously.

The output of this pipeline is trapped in a
temporary file, and then further cleaned up like this:

biblabel $TMPFILE |

citesub -f - $TMPFILE |

bibsort |

biborder |

bibclean $BIBCLEANFLAGS |

$POSTPOSTFILTER |

$COMMENTFILTER

Most of the tools in these pipelines are described
elsewhere in this article. However, these two code
fragments make one thing clear: the Unix small-

is-beautiful philosophy of software design [7, 8, 9,
19, 10, 20] is extremely powerful. Unlike the com-
mercial offerings for bibliographic databases, there
is no megalithic monstrosity that does ‘everything’.
Instead, fifteen separate programs each handle part
of the task. Each does its job well, and each remains
ignorant of what the others do.

3.3 Other external tools

There are several other tools that are worth noting
briefly.

3.3.1 String abbreviations

One of the wise decisions that I made early on was
to use standard abbreviations for journals, publish-
ers, and publisher addresses, like this:

@String{j-QUEUE = "ACM Queue: Tomorrow’s

Computing Today"}

96 TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference

http://www.math.utah.edu/pub/sgml/

A Bibliographer’s Toolbox

@String{pub-GNU-PRESS = "GNU Press"}

@String{pub-GNU-PRESS:adr = "Boston, MA, USA"}

The strings j- and pub- are two of a small
set of prefixes that divide BIBTEX abbreviations into
namespaces, reducing collisions. Others include
inst- for institutions, and org- for organizations.

The string abbreviations serve three important
purposes:

• They supply a unique handle for the resource,
for example, making it easy to find all of the
articles in the database that are published in
ACM Queue.

• They eliminate inconsistencies from use of dif-
fering abbreviations for the same resource.

• They provide a single point of redefinition of
the resource name.

People are often surprised to learn that there
are no ‘official’ abbreviations for journal names:
publishers often disagree. All of my bibliographies
therefore use full journal names in the string def-
initions, but if a user requires abbreviated names,
it is a trivial matter to insert a following alternate
definition.

Two programs, journal.awk and publisher.awk,
filter an input BIBTEX stream, and output a new
stream in which journal, publisher, and address

values that have been found to match any of several
common variations are replaced by the standardized
abbreviations, and the data stream is prefixed by
corresponding @String{...} definitions.

The preferred name for the string abbreviation
is constructed by uppercasing an abbreviation from
a large and reputable source and replacing runs
of nonalphanumerics with hyphens. I prefer the
catalogs of the U.S. Library of Congress and the Uni-

versity of California Melvyl for these sources. Thus,
the journal Biochemistry and Molecular Biology Inter-

national is found to have an abbreviation Biochem.

mol. biol. int., and is therefore given the handle
j-BIOCHEM-MOL-BIOL-INT.

3.3.2 CODEN, DOI, and ISSN data

Once a handle for a journal name in a BIBTEX entry
has been identified by journal.awk, it automatically
supplies values for CODEN and ISSN fields, when
it knows them: it does, for about 2500 journals.
This makes it simple to retrofit those values into all
BIBTEX entries for a particular journal.

Each BIBTEX entry, together with the string ab-
breviations, should be a complete and independent
record of the document citation. It is definitely
not sufficient to record those values just once, in
the comment header of a BIBTEX file, because those

values are lost when people copy entries from one
BIBTEX file into another.

If a publisher chooses a predictable DOI or URL

for a journal article, such as one based on the
ISSN, volume, number, and initial page, it is then
possible to automatically retrofit values for those
fields into each BIBTEX entry for that journal. Sadly,
the practice so far on the part of most publishers
has been to use apparently-random numbers, or
otherwise-unpredictable strings, in forming DOIs.
This is a great shame, and a terrible loss of a
great opportunity to make DOI assignment trivial for
much of the world’s existing and future periodical
literature.

3.3.3 Missing brace protection

One of the more tedious tasks that a bibliographer
must deal with properly is identification and bracing
of proper nouns in titles.

In the Web pages of some publishers, there is
sufficient markup and consistency that the conver-
sion software can automatically supply those braces.

For others, the software has internal lists of
names, like Einstein, Navier-Stokes, and Schrödinger,
that frequently occur in titles, and are known to
always be proper names. The Green example given
earlier is one of the difficult cases where human un-
derstanding of the title is needed before protecting
braces can be properly supplied. The easy cases
are those words with mixed case, such as BiCGS

and McLeod, which are always known to be proper
nouns in need of protection; the conversion soft-
ware braces them automatically. Another clue to a
proper noun is its appearance as a possessive, as in
Another View of Einstein’s Theory.

These steps help to identify most of the proper
nouns in titles, which is a particularly common prac-
tice in some areas of science, but there are always
new names that turn up. For the volumes of biblio-
graphic data that I deal with, visual examination of
entries to find improperly-downcased title words is
not practical.

To help solve that problem, and sharply re-
duce the number of instances of missing protecting
braces, I wrote the check-bbl.awk program, with a
companion shell-script wrapper, check-bbl.sh. The
program searches the formatted bibliography file,
usually BIBTEX’s .bbl output file, but a thoughtless
user might have created such a file by hand as
well, looking for words that occur both in protect-
ing braces, and entirely in lowercase. That way, it
will likely spot an instance of einstein in a physics
bibliography.

To make it much more likely that such errors

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 97

Nelson H. F. Beebe

will be detected, check-bbl.awk keeps an exception
list that it updates on each run, recording protected
names, and in what BIBTEX entry and file they were
found. A typical entry in that list is a line like this:

{Wolfram} Varney:1991:WBM mathematica.bbl

At the time of writing, the exception list for my
archives contains nearly 18,000 entries: that pro-
vides a huge reduction in the number of missed
protecting braces.

3.3.4 Breaking up large BIBTEX files

When BIBTEX files get too big to manage comfort-
ably, or worse, overflow internal tables in TEX or
BIBTEX, they need to be subdivided.

The bibsplit21 tool splits them into parts, sepa-
rating entries into different output files according
to one of several criteria: author, citation label,
citation count, or year range.

I’ve had to do this numerous times with journal-
specific bibliographies as their entry count grows.
Usually, subdivision into decade-specific bibliogra-
phies suffices.

3.3.5 Database searching

For small databases, polished brute-force direct-
search utilities like Unix grep and agrep22,23 are
reasonable solutions to the problem of finding an
entry that you can only remember parts of.

agrep (approximate grep) deserves to be better
known, and more widely used: it is capable of
finding matches with data containing errors, such
as transposition, truncation, or insertion. Here are
some examples:

% echo Knuht | grep Knuth

No output reported: there’s an input typo

% echo Knuht | agrep Knuth

No output: agrep normally works like grep

% echo Knuht | agrep -1 Knuth

Knuht

% echo Knuh | agrep -1 Knuth

Knuh

% echo Knooth | agrep -2 Knuth

Knooth

The numeric options allow matching of strings
with, here one or two, errors. This sort of capability

21 http://www.math.utah.edu/pub/bibsplit/
22 ftp://ftp.cs.arizona.edu/agrep/agrep-2.04.tar.Z

(Unix)
23 http://www.tgries.de/agrep/337/agrep337.zip

(Windows)

is important, because of the database-error problem
discussed earlier.

Another valuable feature of agrep is its ability
to return the complete paragraph where the match
was found. Since I conventionally separate BIBTEX
entries by a blank line, an entry is a paragraph, and
agrep can thus report complete entries.

For large collections, however, direct search is
far too slow, since the entire database corpus must
be read.

One possible solution is provided by glimpse,24

which is free to academic institutions, but requires
a license fee for others. It functions with the help
of a list of all unique words to each of which is
attached a list of 256 buckets, each containing the
names of 1/256 of the files being indexed. That list
is created by glimpseindex, which is run at suitable
intervals, such as nightly. The list is collapsed to
256 bits (32 bytes), and a nonzero bit in the list
means that the word is found in at least one file in
the corresponding bucket. glimpse then uses agrep

to do its searching, but only for the subset of files
known to contain the sought-for word or phrase.

For file collections running into the hundreds
of megabytes, as mine do, even glimpse is not fast
enough.

The solution that I happily use is bibsearch,25

which is a frontend for the mg database [38]. Once
the database index is loaded into memory, lookups
are extremely fast: on our newest servers, bibsearch

lookups take under one millisecond.
Unfortunately, mg has three deficiencies that

prevent its use as a general Web search engine,
something that I’d very much like to offer for my
archives:

• mg lacks subfield searching, so it is impossible
to restrict a search to find entries with Knuth in
the title, but excluding entries where that name
occurs elsewhere. Consequently, bibsearch of-
ten returns more than you really wanted.

• mg always strips suffixes, so a search for hy-

perbola also reports entries containing hyper-

bolic, once again returning more results than
expected.

• mg supports shell escapes, making it quite dif-
ficult to provide search access to your system
without giving away login access.

These are all soluble problems, but I lack the
time to tackle them. Volunteers, anyone?

It may be that a new generation of Web search
engines will provide a solution. While this article

24 http://www.webglimpse.org/
25 http://www.math.utah.edu/pub/bibsearch/

98 TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference

http://www.math.utah.edu/pub/bibsplit/
ftp://ftp.cs.arizona.edu/agrep/agrep-2.04.tar.Z
http://www.tgries.de/agrep/337/agrep337.zip
http://www.webglimpse.org/
http://www.math.utah.edu/pub/bibsearch/

A Bibliographer’s Toolbox

was being written, I learned of the new estraier26

engine that looks promising. It is also possible that
conventional relational databases, such as the com-
mercial DB2, Oracle, or Sybase systems, or the free
postgresql or mysql programs, will have acceptable
performance, but I have not yet found time to ex-
periment with them for BIBTEX data retrieval.

3.4 XML for bibliographic data

In my keynote address at TUG 2003 [6], I discussed
the BIBTEXML project at the Swiss Federal Institute
of Technology (ETH) in Zürich, Switzerland, which
has developed software for conversion between XML

and BIBTEX markup of bibliographic data. At the
time, their Web site was inaccessible. I’m pleased to
report that the project is now back online, but at a
new location.27

Although the syntax of XML is quite different
from that of BIBTEX, both supply a lot of useful
markup. If adequate support tools, analogous to
BIBTEX and the many others described in this article,
can be developed, then XML will be an important
alternative for the representation of bibliographic
data.

One important bibliography project that uses
XML is the Digital Bibliography and Library Project

(DBLP)28 maintained by Michael Ley at Universität
Trier, Germany, with about 500,000 entries in the
field of computer science.

4 Checking bibliographic data

4.1 Spelling

A typical BIBTEX entry in my bibliography archives
has about 750 characters and 20 lines. That is a lot
of opportunity for fumble fingers to introduce typos,
even if the typist is a near-perfect speller.

It is therefore imperative that bibliographic
data be spell checked, preferably by more than one
spelling checker. In my bibliographic work, I now
use three such programs: traditional Unix spell, GNU

ispell, and a new one that I developed for a book
[33] that is in press at the time of writing this
article. Its code is at the book’s Web site.

The spelling checks are applied to the entire
bibliographic file, not just to individual fields. That
way, the extensive comment headers present in
each file are also checked. Each file has its own
exception dictionary to augment the spell checkers’
own dictionaries, because the large numbers of
proper names and technical words include many

26 http://estraier.sourceforge.net/
27 http://bibtexml.sourceforge.net/
28 http://dblp.uni-trier.de/

words that are absent from standard lists.

4.2 Delimiter balance

It takes an extremely careful proofreader to catch
delimiter-balance errors, such as an open paren-
thesis followed by a long block of text without a
matching close parenthesis. Humans can never do
this job reliably, but a computer can. More than
a decade ago, I wrote chkdelim,29 and I apply it
routinely to all updates of the bibliographic data
in my archives. chkdelim has special knowledge of
BIBTEX, Lisp, Scribe, TEX, and Texinfo. It also allows
the user to request that checks for certain delimiters
be suppressed: for example, angle brackets come in
matching pairs in SGML, HTML, and XML, but almost
never in mathematical documents.

4.3 Doubled words

Doubled-word errors (as occurs here: in the

the book) are difficult for humans to spot. My dw

program30 finds them easily. It caught previously-
unreported errors in both the TEXbook and the first
edition of the LATEX User Guide, even though over
100,000 copies of the former had been sold, and
its author offered monetary rewards for the first
reports of errors in the book and its software.

4.4 File validation

While the ability of a bibliographic system to process
the database is an essential check, it may not be
sufficient, because uncited entries might receive
only rudimentary parsing, or be ignored entirely.
Worse, the exact syntax of bibliographic data may
be uncertain, for lack of a formal description.

At TUG 1993, I presented a rigorous grammar
for BIBTEX, and four tools based on it [4, 5]:

• bibparse31

• biblex (included with bibparse)

• bibunlex (included with bibparse)

• bibclean32

The first of these, bibparse, merely confirms that
its input conforms to the grammar: a successful
validation produces no output. I use this as an
initial check of updates to the bibliographic archives
before even attempting to run LATEX and BIBTEX: any
error from bibparse immediately aborts the entire
automated installation process.

29 http://www.math.utah.edu/pub/chkdelim/
30 http://www.math.utah.edu/pub/dw/
31 http://www.math.utah.edu/pub/bibparse/
32 http://www.math.utah.edu/pub/bibclean/

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 99

http://estraier.sourceforge.net/
http://bibtexml.sourceforge.net/
http://dblp.uni-trier.de/
http://www.math.utah.edu/pub/chkdelim/
http://www.math.utah.edu/pub/dw/
http://www.math.utah.edu/pub/bibparse/
http://www.math.utah.edu/pub/bibclean/

Nelson H. F. Beebe

The second, biblex, parses the input and pro-
duces a token stream that is much easier to handle
by other tools.

The third, bibunlex, reassembles a biblex to-
ken stream, possibly after filtering, reconstructing
a valid BIBTEX file.

The fourth, and most powerful, bibclean, has
been of enormous importance in my bibliographic
work. It is based on the same rigorous grammar
as bibparse, but is implemented completely indepen-
dently with a carefully-hand-coded parser, instead
of the machine-generated parser in bibparse. That
way, there are two independent checks on the valid-
ity of the syntax of BIBTEX data.

bibclean normally produces a prettyprinted bib-
liography file in which numerous repairs and checks
have been made on the data. For hundreds of thou-
sands of examples, see the TEX Users Group Bibliog-

raphy Archive33 and the BibNet Project archive.34 On
request, however, bibclean produces the same token
streams as biblex.

4.5 Field-value validation

One of the advantages of data markup is that it
restricts the possible data values. For example,
spreadsheets permit the user to assign a data type,
such as currency, to a column, so that an attempt to
store an alphabetic string there will be rejected. It
may also be possible to specify a range of acceptable
values, such as [$0, $250] for a college student’s
weekly expenses.

bibclean can validate the data for many field
names, and it does so primarily with the help of
user-supplied patterns. The patterns are specially-
designed for use with bibliographic data; they can,
for example, check that a page number is a roman
numeral, an arabic number, or an uppercase letter
followed by a number. bibclean has special internal
support for verifying the check digits in CODEN,
ISBN, and ISSN values, and it also gets startup
initializations that identify the valid ranges of ISBN

values, which expand from year to year.
bibcheck35 is another useful tool. Like lacheck

and the more recent chktex, both of which look for
common typographic-markup errors in LATEX files,
bibcheck applies a number of heuristic checks to
BIBTEX files.

These automated tools help, but they cannot
tell whether a year value of 2003 should really be
2004. To solve problems like that, it is necessary

33 http://www.math.utah.edu/pub/tex/bib/index-table.

html
34 http://www.math.utah.edu/pub/bibnet/
35 http://www.math.utah.edu/pub/bibcheck/

to collect bibliographic data from multiple indepen-
dent sources, and then merge that data, looking for
discrepancies. Except for tiny bibliographies, this is
far too tedious, and much too unreliable, to do by
hand. Instead, a combination of tools provides a
solution:

• bibclean first standardizes the format of the
BIBTEX data, greatly simplifying many other
tools.

• biblabel36 and its companion tool citesub, and
an independent implementation in the emacs

BIBTEX-LABELS37 library, generate standardized
citation labels that are unlikely to conflict with
those of other entries, and importantly, that are
easy for humans to predict as well.

• bibsort38 sorts entries in a bibliography by any
of a half-dozen different criteria.

• biborder39 reorders fields within a BIBTEX entry
into a standard order, making the entries much
easier to read.

• bibjoin40 merges adjacent BIBTEX entries that
appear to describe the same publication, dis-
carding duplicate data, choosing more detailed
values over less detailed ones (e.g., in the au-
thor field, the longer of Donald E. Knuth and
D. E. Knuth), and otherwise leaving the dupli-
cate fields adjacent for manual correction.

• bibdup41 checks for duplicate abbreviations and
entries.

• For interactive location and repair of problems,
the emacs function find-duplicate-label from the
BIBTOOLS library42 finds the next occurrence
of consecutive entries with the same citation
label. The function find-duplicate-key from the
same library finds the next instance of duplicate
adjacent field names in a single BIBTEX entry.

4.6 Typesetting

Because bibliographic database software may do
only cursory interpretation of field values, it is
important to verify that the data can be processed
by the document-formatting system.

This is particularly easy to do with BIBTEX
databases. Each of the BIBTEX files in my archives
is accompanied by a small LATEX wrapper file that

36 http://www.math.utah.edu/pub/biblabel/
37 http://www.math.utah.edu/pub/emacs/
38 http://www.math.utah.edu/pub/bibsort/
39 http://www.math.utah.edu/pub/biborder/
40 http://www.math.utah.edu/pub/bibjoin/
41 http://www.math.utah.edu/pub/bibdup/
42 http://www.math.utah.edu/pub/emacs/

100 TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference

http://www.math.utah.edu/pub/tex/bib/index-table.html
http://www.math.utah.edu/pub/tex/bib/index-table.html
http://www.math.utah.edu/pub/bibnet/
http://www.math.utah.edu/pub/bibcheck/
http://www.math.utah.edu/pub/biblabel/
http://www.math.utah.edu/pub/emacs/
http://www.math.utah.edu/pub/bibsort/
http://www.math.utah.edu/pub/biborder/
http://www.math.utah.edu/pub/bibjoin/
http://www.math.utah.edu/pub/bibdup/
http://www.math.utah.edu/pub/emacs/

A Bibliographer’s Toolbox

in minimal file-independent generic form looks like
this:

\documentclass{article}

\begin{document}

\nocite{*}

\bibliographystyle{unsrt}

\bibliography{\jobname}

\end{document}

The archives include these wrappers, and their out-
put DVI, PostScript, and PDF files, to demonstrate
that there are no show-stopping TEX syntax errors
in the data, at least that which makes it into BIBTEX
output. Errors in ignored fields will not be caught,
but then, those fields are also unlikely to appear in
the published bibliographies, precisely because they
are ignored.

The wrappers that are actually used are some-
what more complex, because they also include a
comprehensive title-word index, allowing readers
who have retrieved only a typeset bibliography to
quickly locate entries of interest. The index is im-
portant, because the average size of the typeset
bibliographies is 125 pages, and they range from 2
to 939 pages.

5 Other platforms

All of the tools described here, and the more than
500 BIBTEX files, have been developed in the fan-
tastic Unix programming environment. A project of
this magnitude would have been infeasible on other
operating systems.

The tools, and their daily invocations, make
extensive use of pipelines, shell scripts, awk pro-
grams, filename pattern matching, and the ability
to run multiple simultaneous processes. Repetitive
tasks are managed by the make utility, the greatest
software tool ever written (emacs comes second in
that list).

Where does this leave potential users who are
stuck with a different operating system? The an-
swer is POSIX (pronounced pahz-icks, as in posi-

tive), a term coined by Richard Stallman for the
IEEE Standard Portable Operating System Interface

[22, 25, 24, 23]. Besides the formal Standard, POSIX

is described in a few books [18, 27, 39]. Because
POSIX is a significant standard, it has been imple-
mented on scores of operating systems,43 including
all of those that you are likely to use. It just may
not come by default with your vendor’s operating-
system distribution.

Apple Macintosh users need only upgrade
to Mac OS X, which is a Unix system derived

43 http://standards.ieee.org/regauth/posix/

from FreeBSD and others, and then drag the
/Applications/Utilities/Terminal icon onto the
toolbar to make a Unix shell readily accessible.

Apple includes a recent version of emacs

in /usr/bin, but it was unfortunately not built
with X Window System support. However, Ap-
ple now makes available an X Window System
package. Once it is installed, you can drag the
/Applications/XDarwin icon onto the toolbar for
ready use.

Work is underway to support both X and the
native window system for emacs on Mac OS X, and
there is a Web page describing the status of that
work.44 Should it become inaccessible, try a Web
search for Emacs 21 for Mac OS X.

Following the instructions on that Web page,
while writing this article, I successfully built and in-
stalled on a recent MacOS 10.3.2 system a working
development-release of emacs for the native win-
dow system using the Apple-supplied /usr/bin/gcc

compiler, which has extensions needed to build soft-
ware that communicates with the operating system.
Those extensions are not in standard gcc distribu-
tions.

For Microsoft Windows users, there are at least
four packages that layer a POSIX or Unix-like envi-
ronment on top of Windows, giving access to all of
the tools described here. Consult the Web pages that
I maintain on these topics for full details.45,46,47 For
an emulation-free native Unix environment, I highly
recommend the outstanding commercial VMware
system described in those Web documents. VMware
makes it possible to run multiple native operating
systems on Intel IA-32 hardware, with either a Win-
dows or a GNU/Linux base operating system. At
my Department, we use VMware to run FreeBSD,
NetBSD, OpenBSD, Plan 9, Solaris x86, and Mi-
crosoft Windows on top of GNU/Linux.

6 Conclusions

This article has surveyed about two dozen software
tools that support the creation and maintenance
of large collections of bibliographic data in BIBTEX
markup. Programs like emacs, bibclean, html-pretty,
and others can be used productively in a Unix or
POSIX environment to tackle projects whose size
would be unthinkable for a single person on other

44 http://members.shaw.ca/akochoi-emacs/stories/

obtaining-and-building.html
45 http://www.math.utah.edu/~beebe/gnu-on-windows.

html
46 http://www.math.utah.edu/~beebe/windows-on-gnu.

html
47 http://www.math.utah.edu/~beebe/unix.html

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 101

http://standards.ieee.org/regauth/posix/
http://members.shaw.ca/akochoi-emacs/stories/obtaining-and-building.html
http://members.shaw.ca/akochoi-emacs/stories/obtaining-and-building.html
http://www.math.utah.edu/~beebe/gnu-on-windows.html
http://www.math.utah.edu/~beebe/gnu-on-windows.html
http://www.math.utah.edu/~beebe/windows-on-gnu.html
http://www.math.utah.edu/~beebe/windows-on-gnu.html
http://www.math.utah.edu/~beebe/unix.html

Nelson H. F. Beebe

operating systems, or lacking most of these tools.
Space has not permitted descriptions of more

than a hundred other specialized tools, but if you
would find them useful, I could probably be encour-
aged to package up more of them on a Web site
for free access and distribution. The many URLs for
bibliographic resources at Utah cited in footnotes in
this article are already conveniently accessible via
links from a master file.48

A carpenter’s toolbox contains large things, like
drills, hammers, and saws, but it also has lots of
small specialized items, such as a 3 mm nail counter-
sink, that are used only occasionally, but do a single
job well that few other tools can manage. I have
no hesitation in drawing an analogy between that
hardware toolbox, and my software Bibliographer’s

Toolbox.

References

[1] Alfred V. Aho, Brian W. Kernighan, and Peter J.
Weinberger. Awk — A pattern scanning and
processing language. Software—Practice and

Experience, 9(4):267–279, April 1979.

[2] Alfred V. Aho, Brian W. Kernighan, and Pe-
ter J. Weinberger. The AWK Programming Lan-

guage. Addison-Wesley, Reading, MA, USA,
1988. ISBN 0-201-07981-X. x + 210 pp. LCCN
QA76.73.A95 A35 1988.

[3] Larry Ayers. GNU Emacs and XEmacs. Prima
Publishing, Roseville, CA, USA, 2001. ISBN
0-7615-2446-0. xxxv + 508 pp. Includes CD-
ROM.

[4] Nelson Beebe. Bibliography prettyprinting
and syntax checking. TUGboat, 14(3):222,
October 1993.

[5] Nelson Beebe. Bibliography prettyprinting and
syntax checking. TUGboat, 14(4):395–419,
December 1993.

[6] Nelson H. F. Beebe. 25 years of TEX and META-
FONT: Looking back and looking forward:
TUG 2003 keynote address. TUGboat, 25(1),
2004. In this volume.

[7] Jon Louis Bentley. Programming Pearls. Addi-
son-Wesley, Reading, MA, USA, 1986. ISBN
0-201-10331-1. viii + 195 pp. LCCN
QA76.6.B453 1986.

[8] Jon Louis Bentley. More Programming Pearls:

Confessions of a Coder. Addison-Wesley, Read-
ing, MA, USA, 1988. ISBN 0-201-11889-0.
viii + 207 pp. LCCN QA76.6.B452 1988.
US$18.75.

48 http://www.math.utah.edu/pub/bibtools.html

[9] Jon Louis Bentley. Programming Pearls

(reprinted with corrections). Addison-Wesley,
Reading, MA, USA, 1989. ISBN 0-201-10331-
1. viii + 195 pp. LCCN QA76.6.B453 1989.

[10] Jon Louis Bentley. Programming Pearls. Ad-
dison-Wesley, Reading, MA, USA, second edi-
tion, 2000. ISBN 0-201-65788-0. xi + 239
pp. LCCN QA76.6.B454 2000. US$24.95. This
differs greatly from the first edition: both are
well worth reading.

[11] B. Brown. The theory of HyperText. WebNet

Journal: Internet Technologies, Applications &

Issues, 2(1):46–51, 1999.

[12] Vannevar Bush. As we may think. The Atlantic

Monthly, 176(1):101–108, July 1945.

[13] Debra Cameron. GNU Emacs Pocket Refer-

ence. O’Reilly & Associates, Inc., 981 Chest-
nut Street, Newton, MA 02164, USA, 1999.
ISBN 1-56592-496-7. iii + 58 pp. LCCN
QA76.76.T49 C348 1998. US$6.95.

[14] Debra Cameron. GNU Emacs — kurz &

gut. O’Reilly & Associates, Inc., 981 Chestnut
Street, Newton, MA 02164, USA, 2000. ISBN
3-89721-211-0. 60 pp. German translation of
[13].

[15] Robert J. Chassell. An Introduction to Program-

ming in Emacs Lisp. GNU Press, Boston, MA,
USA, 2001. ISBN 1-882114-43-4. 320 (est.)
pp. US$30.

[16] Stuart Feldman. A conversation with Brewster
Kahle. ACM Queue: Tomorrow’s Computing

Today, 2(4):24, 26–30, 32–33, June 2004.

[17] Craig A. Finseth. The Craft of Text Editing—

Emacs for the Modern World. Springer Verlag,
Berlin, Germany / Heidelberg, Germany /
London, UK / etc., 1991. ISBN 0-387-97616-
7 (New York), 3-540-97616-7 (Berlin). xii
+ 220 pp. LCCN QA76.76.T49 F56 1991.
Contains extensive discussion of design issues
for text editors, with examples from Emacs.
Appendix B gives sources of numerous Emacs
implementations. Appendix D summarizes the
TECO command set.

[18] Bill Gallmeister. POSIX.4: Programming for the

Real World. O’Reilly & Associates, Inc., 981
Chestnut Street, Newton, MA 02164, USA,
January 1995. ISBN 1-56592-074-0. xviii
+ 548 pp. LCCN QA76.76.O63 G34 1995.
US$29.95.

[19] Mike Gancarz. The UNIX philosophy. Digital
Press, 12 Crosby Drive, Bedford, MA 01730,

102 TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference

http://www.math.utah.edu/pub/bibtools.html

A Bibliographer’s Toolbox

USA, 1995. ISBN 1-55558-123-4. xix + 151
pp. LCCN QA76.76.O63 G365 1995.

[20] Mike Gancarz. Linux and the Unix Philosophy.
Digital Press, 12 Crosby Drive, Bedford, MA
01730, USA, 2003. ISBN 1-55558-273-7. xxvii
+ 220 pp. LCCN QA76.76.O63 G364 2003.
US$34.99.

[21] Bob Glickstein. Writing GNU Emacs Exten-

sions. O’Reilly & Associates, Inc., 981 Chest-
nut Street, Newton, MA 02164, USA, 1997.
ISBN 1-56592-261-1. xviii + 215 pp. LCCN
QA76.76.T49 G56 1997. US$29.95.

[22] IEEE. IEEE Std 1003.1-2001 Standard for

Information Technology — Portable Operating

System Interface (POSIX) Base Definitions, Issue

6. IEEE, New York, NY, USA, 2001. ISBN
1-85912-247-7 (UK), 1-931624-07-0 (US), 0-
7381-3047-8 (print), 0-7381-3010-9 (PDF), 0-
7381-3129-6 (CD-ROM). xliv + 448 pp. Re-
vision of IEEE Std 1003.1-1996 and IEEE Std
1003.2-1992) Open Group Technical Standard
Base Specifications, Issue 6.

[23] IEEE. IEEE Std 1003.1-2001 Standard for

Information Technology — Portable Operating

System Interface (POSIX) Rationale (Informa-

tive). IEEE, New York, NY, USA, 2001. xxxiv +
310 pp. Revision of IEEE Std 1003.1-1996 and
IEEE Std 1003.2-1992) Open Group Technical
Standard Base Specifications, Issue 6.

[24] IEEE. IEEE Std 1003.1-2001 Standard for

Information Technology — Portable Operating

System Interface (POSIX) Shell and Utilities, Is-

sue 6. IEEE, New York, NY, USA, 2001. xxxii
+ 1090 pp. Revision of IEEE Std 1003.1-1996
and IEEE Std 1003.2-1992) Open Group Tech-
nical Standard Base Specifications, Issue 6.

[25] IEEE. IEEE Std 1003.1-2001 Standard for

Information Technology — Portable Operating

System Interface (POSIX) System Interfaces, Is-

sue 6. IEEE, New York, NY, USA, 2001. xxx
+ 1690 pp. Revision of IEEE Std 1003.1-1996
and IEEE Std 1003.2-1992) Open Group Tech-
nical Standard Base Specifications, Issue 6.

[26] Dave Lenckus. Data integrity problem is cre-
ating converts: Several trends cause a switch
to new systems. Technical report, Business
Insurance, December 1997. From the text:
“Mr. Dorn estimates there is an 8% to 20%
error rate in data, spiking as high as 80% in
some cases.”.

[27] Donald A. Lewine. POSIX programmer’s

guide: writing portable UNIX programs with

the POSIX.1 standard. O’Reilly & Associates,

Inc., 981 Chestnut Street, Newton, MA 02164,
USA, 1991. ISBN 0-937175-73-0. xxvii +
607 pp. LCCN QA76.76.O63 L487 1991b.
US$34.95. March 1994 printing with cor-
rections, updates, and December 1991 Ap-
pendix G.

[28] Bil Lewis, Dan LaLiberte, Richard Stallman,
and the GNU Manual Group. GNU Emacs Lisp

Reference Manual, for Emacs Version 21. Free
Software Foundation, 59 Temple Place Suite
330, Boston, MA 02111-1307, USA. Phone:
617-542-5942, 2000. ISBN 1-882114-73-6.
974 pp. Two volumes.

[29] Paul Marks. Way back when: Interview with
Brewster Kahle. New Scientist, 176(2370):46–
48, November 2002.

[30] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris Rowley, Chris-
tine Detig, and Joachim Schrod. The LATEX

Companion. Tools and Techniques for Com-
puter Typesetting. Addison-Wesley, Reading,
MA, USA, second edition, 2004. ISBN 0-201-
36299-6. xxvii + 1090 pp. LCCN Z253.4.L38
G66 2004. US$59.99, CAN$86.99.

[31] Office of Program Policy Analysis and Gov-
ernment Accountability. License plate seizure
program’s error rate still high; program should
be abolished. OPPAGA Program Review 00-
25, Florida State Legislature, Tallahassee, FL,
USA, December 2000. 4 pp. From the abstract:
“A department study conducted in October
2000 determined that the error rate for seized
license plates was 34.8%.”.

[32] Arnold Robbins. Effective AWK Program-

ming. O’Reilly & Associates, Inc., 981 Chestnut
Street, Newton, MA 02164, USA, third edi-
tion, 2001. ISBN 0-596-00070-7. xxiv + 421
pp. LCCN QA76.73.A95 R63 2001. US$39.95.

[33] Arnold Robbins and Nelson H. F. Beebe. Learn-

ing Shell Scripting. O’Reilly & Associates,
Inc., 981 Chestnut Street, Newton, MA 02164,
USA, 2004. ca. 512 pp.

[34] Dominique Rodriguez. L’essentiel de LATEX et

GNU-Emacs: manuel de réalisation de docu-

ments scientifiques, CD-ROM TEXlive’4 GNU-

Emacs 20.5 pour Windows, exercices corrigés.
Informatiques. Série Réseaux et télécoms.
Dunod, Paris, France, 2000. ISBN 2-10-
004814-7. xv + 352 pp. Includes CD-ROM.

[35] Michael A. Schoonover, John S. Bowie, and
William R. (William Robert) Arnold. GNU

Emacs: UNIX text editing and programming.
Hewlett-Packard Press series. Addison-Wesley,

TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference 103

Nelson H. F. Beebe

Reading, MA, USA, 1992. ISBN 0-201-56345-
2. xxvii + 609 pp. LCCN QA76.76.T49 S36.

[36] Richard M. Stallman. EMACS: The extensible,
customizable, self-documenting display edi-
tor. In Interactive Programming Environments,
pages 300–325. McGraw-Hill, New York, NY,
USA, 1984. ISBN 0-07-003885-6. LCCN
QA76.6.I5251 1984. US$34.95.

[37] Richard M. Stallman. GNU Emacs Manual.
GNU Press, Boston, MA, USA, fifteenth edi-
tion, 2002. ISBN 1-882114-85-X. 644 (est.)
pp. US$45.00.

[38] Ian H. Witten, Alistair Moffat, and Timothy C.
Bell. Managing Gigabytes: Compressing and

Indexing Documents and Images. Morgan Kauf-
mann Publishers, Los Altos, CA 94022, USA,
second edition, 1999. ISBN 1-55860-570-3.
xxxi + 519 pp. LCCN TA1637.W58 1994.
US$54.95.

[39] Fred Zlotnick. The POSIX.1 standard: a

programmer’s guide. Benjamin/Cummings
Pub. Co., Redwood City, CA, USA, 1991.
ISBN 0-8053-9605-5. xi + 379 pp. LCCN
QA76.76.063 Z57 1991.

104 TUGboat, Volume 25 (2004), No. 1 — Proceedings of the Practical TEX 2004 Conference

TUGboat, Volume 25 (2004), No. 1 105

Reports

Editor’s note: The following short reports are re-
printed from MAPS 31 by permission of the authors
and editors. They are included in this issue of TUG-

boat simply for the sake of timeliness; they were not
presented at the Practical TEX conference.

MetaPost developments

Taco Hoekwater

The MetaPost system by John Hobby implements
a picture-drawing language very much like that of
MetaFont except that it outputs Encapsulated Post-
Script files instead of run-length-encoded bitmaps.
MetaPost is a powerful language for producing fig-
ures for documents to be printed on PostScript print-
ers, either directly or embedded in TEX documents.
It includes facilities for directly integrating TEX text
and mathematics with the graphics.

The version number of the MetaPost executable
is still well below the 1.0 mark (0.641 is current),
but not much has happened in recent years. This
situation is far from satisfactory, especially since a
fairly large number of bugs are known to exist at
this date, but John Hobby simply could not find the
time to solve these bugs, let alone handle feature
requests.

Resulting from a renewed community interest
in MetaPost, last summer a small group of people
have made a proposal to Hobby for the creation of
a special development group that would take care of
the development of MetaPost from then on. Luckily,
he agreed, on the condition that he will only allow
tested code to be inserted into the MetaPost distri-
bution. Among the currently active group are the
following people:

• Karl Berry

• Giuseppe Bilotta

• Hans Hagen

• Taco Hoekwater

• Bogus lav Jackowski

Karl Berry has created a home page on the TUG

server for MetaPost:

• http://www.tug.org/metapost

He also created a mailing list for discussions and
questions. Details can be found at:

• http://www.tug.org/mailman/listinfo/

metapost

Taco Hoekwater has set up a project at Sarovar that
hosts a source repository as well as a bug / feature
request tracker:

• http://www.sarovar.org/projects/

metapost

The MetaPost manuals (mpman, mpgraph, and
mpintro) have recently been released under a BSD-
ish license, with John Hobby’s blessing. Dylan Thur-
ston at Debian converted the sources to LATEX, and
in the future they will become a standard part of
the distribution.

As of today, the known errors in the documen-
tation have been removed, and a number of bugs
have already been fixed in the repository. More bugs
will be fixed in the near future, and the group hopes
that a new bugfix release will be available around
EuroTEX 2005.

⋄ Taco Hoekwater

taco@elvenkind.com

TUGboat, olume (2004), No.

The ℵ (Aleph) project

Giuseppe Bilotta

Abstract

A brief introduction to the ℵ project, a TEX exten-
sion providing most Ω and ε-TEX features.

The path

TEX was created by Donald E. Knuth more than
20 years ago. Initially, it was supposed to serve
one main purpose (providing a high-quality typeset-
ting workbench for Knuth’s books), but was general-
purpose and powerful enough to be quickly adopted
as a more or less standard environment in the sci-
entific community, thanks to its capability to easily
typeset complex formulas.

Usage of TEX outside the scientific/technical
domain has always been confined to niche applica-
tions, partly due to the absence of high-level formats
like LATEX that are geared more towards nontechni-
cal writing, and partly because TEX, in its original
design, had very limited support for languages other
than English.

Efforts to push the limits of TEX have been
made, in at least three different directions, by dif-
ferent teams. This led to the creation of multiple,
sometimes incompatible extensions of the original
engine; we have for example

• pdfTEX, which gives TEX the capability to pro-
duce output directly in PDF form, and intro-
duces micro-typesetting capabilities;

106 TUGboat, Volume 25 (2004), No. 1

• ε-TEX, based on prior extensions of TEX which
added right-to-left typesetting capabilities,
which strives to remove some of the structural
limitations of TEX while maintaining maximum
compatibility;

• Ω (Omega), an effort to bring the TEX world
to up-to-date standards and push it towards a
multicultural world.

As mentioned before, not all these extensions are
compatible with each other; specifically, while
pdfTEX and ε-TEX can be merged in a single pro-
gram, the changes in Ω are so extensive that they
put the program in a rather isolated position.

While hopes and desires for a unified TEX ex-
tension have always been present, they have not
been pressing because the most common format
(LATEX) did not make use of ε-TEX extensions, and
other formats that did take advantage of those ex-
tensions (like ConTEXt) didn’t have enough market
to be of interest to Ω users. Things started to change
recently, as the LATEX team found the original TEX
more and more restrictive, and ConTEXt started
spreading, its power and flexibility appealing to
users outside the domain of Latin scripts.

Birth of a new branch

The Ω project started with the best of intentions
and reached some outstanding results; for example:

• 16-bit registers allow Ω to typeset documents
too complex to be handled by TEX (or even ε-
TEX);

• Ω introduces the concept of ΩTP (Ω Translation
Process), a way to transcode texts, therefore al-
lowing the input of text in any script in any en-
coding, in a font independent way and without
the use of active characters; for example, one
can write in Greek or Arabic using a plain En-
glish keyboard: ΩTPs take care of translating
Latin characters (or sequences thereof) into the
appropriate Arabic or Greek characters;

• Ω can typeset text in many directions; ε-TEX
provided some support for right-to-left typeset-
ting, but Ω brings this capability to any com-
bination of direction (left to right, right to left,
top to bottom, bottom to top), easily combin-
ing these layouts in the same page.

But Ω presents some characteristics that can make
its adoption a difficult choice with an uncertain fu-
ture. These are the characteristics of an experimen-
tal project with a very broad (maybe too broad)
final destination, a moving target where stability is
only a secondary if not even tertiary target. While
this experimental nature of the project is not intrisi-

cally negative (on the contrary, it guarantees that
the project has enough dynamism to project itself
into the future; in fact, it has been what brought
Ω to its current status) it does hinder a widespread
adoption of the tool for production use.

We therefore have a program, Ω, that has a lot
of potential, and that needs to continue to develop;
but this potential has to be somewhat harnessed to
make the results available in production use con-
texts. Therefore, we chose to take the Ω code base
and use it to start a new project, called ℵ (Aleph),1

which could provide the power of Ω in an “afford-
able” manner.

Four main goals were set:

• it had to be stable;

• it had to be fast;

• it had to be powerful;

• it had to be readily available.

Meeting goals

Stability and speed When the ℵ project was
started in late 2002, there were two publicly avail-
able versions of Ω which could be called “current”:
version 1.15 and version 1.23 (which I would call
the “old” and “new” version respectively).

The reason why the old one was not taken off
the distributions when the new one was published
is that the new one suffered from “excessive bloat”
which rendered it essentially unusable: processing
even a simple document with the new version could
take from five to ten times longer than processing
it in the old version, memory consumption during
the processing was at least twice as much, and the
resulting DVI was enormous. These shortcomings of
the new version were a result of the introduction of
a very powerful enhancement, with interesting po-
tential but that needed to be greatly refined before
it could become of common usage.

Because of this, most Ω people kept using the
old version, which was almost as fast as TEX (al-
though obviously not as slim). This version, on
the other hand, had some extremely serious bugs
which caused it to crash whenever overfull boxes
were present.

Finding which version to choose to base ℵ on
was not easy. Indeed, the first release of ℵ (at the
time called ε-Ω, Release Candidate 0), which was
just a proof of concept that ε-TEX could be merged
with Ω, was available both in a 1.15-based version
and in a 1.23-based version, although the officially
supported one was the former, therefore with an

1 The project was originally named ε-Ω, since it provided

both ε-TEX and Ω features.

TUGboat, Volume 25 (2004), No. 1 107

implied preference for speed over stability, on the
assumption that fixing bugs would have been eas-
ier than solving the speed/bloat problem. This has
later proved to be indeed the best choice.

Power The immediate outcome of the third goal
was that ℵ should have provided both ε-TEX and
Ω features; since of course Ω already provides some
of the extensions provided by ε-TEX, we could limit
ourselves to the programming enhancement (extra
marks, protected macros, \scantokens, etc.).

Availability This was probably the most impor-
tant goal, since it would have been the one that
“made the difference” with, e.g., Ω 2: ℵ had to
be available in a usable status as quickly as pos-
sible; this led, among other things, to the choice of
stripping from the Ω base the code that dealt with
SGML and XML, since it conflicted with the code
that implemented the \middle primitive in ε-TEX.
Priorities led to this decision.

History of releases

The first version of ε-Ω was released in Decem-
ber 2002; while the “official” version merged ε-TEX
on Ω 1.15, a parallel release based on Ω 1.23 was
also made available. That version was no more sta-
ble than any of its components, and had an extra
few bugs that crept in during the adaptation of the
ε-TEX change files to the Ω structure. In particular,
it had all the bugs present in Ω 1.15, which made
it scarcely usable due to the major problem with
overfull boxes.

The second step was trying to fix the most
outstanding bugs coming from the Ω 1.15 code-
base. This led to the first version of ε-Ω testable in
production-use environments, Release Candidate 1,
around June 2003. This was the version presented
at TUG 2004.

Subsequent versions finally officially switched to
the ℵ name; the last public release (Release Candi-
date 2) also fixed some other significant bugs and
started introducing some minor new features (the
most important being the \boxdir primitive to re-
trieve/change the direction of a box, a feature back-
ported from Ω 1.23).

Status

ℵ is actively developed on the TEX Live repository.
A mailing list for discussions concerning the present
and future of the project, including both the core
program itself and any ancillary tool, is available
(aleph@ntg.nl).

Development, as always, is focused mainly on

the discovering (and fixing) of bugs, but discussions
on possible future features are welcome. Currently,
issues and bugs in ΩTPs and their interaction with
certain ε-TEX features (namely protected macros
and the \scantokens primitive) are the most promi-
nent targets.

Progress

The main focus of ℵ will always be stability. This
means, among other things, that each new release
is supposed to be at least as stable as the previous
one. A test suite analogous to the trip test for
TEX is being discussed. Indeed, trip proved itself
a trusted friend in the discovery and resolution of
the most notable bugs coming from the Ω 1.15 code
base, which dealt with overfull boxes and leaders.

Given the stability of ℵ, it is important to re-
mark that this does not imply a static, frozen behav-
ior (à la TEX); on the contrary, ℵ should be consid-
ered a foundation on which to build: experimental
projects to test the implementation of new features
and ideas are welcome, provided they are developed
separately; once they reach enough stability to be
available for production uses, they might be candi-
dates for introduction in future versions of ℵ.

Acknowledgements

I wish to thank

• Donald Ervin Knuth, for providing us all with
TEX

• John Plaice and Yannis Haralambous, for giv-
ing us Ω

• Peter Breitenlohner and the NTS team, for giv-
ing us ε-TEX

• Idris S Hamid, Alan Hoenig and Hans Hagen
for pushing me into attempting the merge and
supporting me for all this long time

• all the distribution maintainers for their con-
stant feedback, help and support, with partic-
ular thanks to Christian Schenk and Fabrice
Popineau for their essential help in getting me
started with the coding

• everybody in the TEX world for making it the
great community it is

⋄ Giuseppe Bilotta

Dipartimento di Matematica e

Informatica

Università di Catania

viale A. Doria, 6

95125 Catania, Italy

gip.bilotta@iol.it

108 TUGboat, Volume 25 (2004), No. 1

The TEX Live 2004 collection

Hans Hagen

Abstract

The past and future of the TEX Live Collection is
described.

Introduction

It must have been in the second half of the eighties
that I obtained a copy of The TEXbook. It con-
tained what appeared to me as fascinating magic.
Then our company purchased MicroTEX, the soft-
ware program ready to run on a personal computer.
It came with a DVI viewer and a printer driver for
a matrix printer. From there we moved on to a
big pcTEX, Y&Y’s dvipsone, BlueSky’s outline
fonts, now all history.

A few years later we learned of the Dutch speak-
ing TEX User Group NTG and, because we had run
into some limitations of TEX —too small a hash—
we tried emTEX, which later became part of 4TEX.
4TEX was one of the first TEX distributions on CD-

ROM, an integrated set of the most popular pro-
grams available in the TEX world. We depended on
the yearly updates of 4TEX and later TEX Live, of
which version 8 was released in 2003, until today.

Beginning with version 8 TEX Live has become
the TEX Collection. It combines an out-of-the-
box TEX system and the complete CTAN repository
(Comprehensive TEX Archive Network: a snapshot
of almost all that is available for TEX users). TEX

systems started on floppy disks but soon filled CD-

ROM’s and now DVD’s. An archive of a couple of
hundred files grew into tens of thousands.

tree directories files bytes

texmf 3,750 45,000 626 M
texmf-extra 115 1,500 66 M
bin 16 2,500 250 M
source 380 6,900 104 M

If the CTAN archive is included we have a grand total
of 138,000 (unzipped even 420,000) files, organized
in 10,000 directories, totaling 5,906,870,829 bytes,
or about 6 GB.

With version 8 the organizers realized that
comprehensive began to become incomprehensible.
Even though the TDS, the TEX Directory Struc-
ture, had brought some order in grouping files they

were still faced with the fact that old TEX systems
had been replaced with new systems in a continuous
process to adapt to changing operating systems, im-
proved text editors and more sophisticated and gen-
erally available viewers and printers. Fundamental
changes appeared necessary and are implemented in
the TEX Collection 2004. This paper will focus on
some of the most important of these changes.

The engine

Donald Knuth’s TEX was the ground breaking pro-
gram that could typeset and be a programming lan-
guage at the same time. TEX as a typesetting en-
gine has been adapted to handle larger size mem-
ory, extended with features, translated into oth-
er programming languages, like C, and with the
coming of PDF, the Portable Document Format, is
now capable of producing PDF output directly with
pdfeTEX. The most important change in the 2004
release is that pdfeTEX has become the main TEX

engine. pdfeTEX incorporates all ‘accepted’ exten-
sions with proven reliability, produces DVI output
by default, PDF when commanded, and ε-TEX is in
there once explicitly enabled. To trigger PDF out-
put ConTEXt users just add as the first line in their
text files:

% output=pdftex

ConTEXt is a monolithic and coherent package
of macro definitions that use the programming abili-
ties of almost any TEX to accomplish a large variety
of easy to use special typesetting functions.

Other macro packages have often been associ-
ated with a specific TEX binary. In practice this
leads to several combinations of so-called format files
holding the macro definitions and binaries.

For plain TEX the system call (on the command
line) and the engine are the same.

system call format engine

tex plain.fmt tex

etex etex.efmt etex

pdftex pdftex.fmt pdftex

pdfetex pdfetex.efmt pdfetex

For LATEX the system call matches not the engine
but the format name. Here the command that starts
TEX and loads a format is just a shortcut to calling
the engine with a specific format.

TUGboat, Volume 25 (2004), No. 1 109

system call format engine

latex latex.fmt tex

pdflatex pdflatex.fmt pdftex

For ConTEXt each format is named after the user
interface language, the language of commands, mes-
sages, keywords, and so forth. This must not be
confused with the language of the document text to
be typeset. Each interface can handle all document
languages.

system call format engine interface

cont-cz cont-cz.efmt pdfetex czech
cont-de cont-de.efmt pdfetex german
cont-en cont-en.efmt pdfetex english
cont-it cont-it.efmt pdfetex italian
cont-nl cont-nl.efmt pdfetex dutch
cont-ro cont-ro.efmt pdfetex romanian

Normally, however, these names are not typed di-
rectly; rather, ConTEXt is launched by TEXexec,
a Perl script that automates many annoying user
tasks.

So, what is the importance of the change to
pdfeTEX in the 2004 Collection? Very little for the
user, the system calls are unchanged! For TEX Live
system maintenance, however, the change means
that the various different TEX binaries can be re-
moved and replaced by a single TEX engine that
combines them all: pdfeTEX. Extensions like ε-

TEX, pdfTEX, mlTEX and encTEX are no longer
needed as separate entities. Plain TEX, however,
still has the original engine, at least this year. Also,
the .efmt extension has been dropped; all format
file are now .fmt.

system call format engine

tex plain.fmt tex

etex etex.fmt pdfetex

pdftex pdftex.fmt pdfetex

pdfetex pdfetex.fmt pdfetex

latex latex.fmt pdfetex

pdflatex pdflatex.fmt pdfetex

Because of the growing dependency on this en-
gine pdfeTEX has rigourous quality assurance and
DANTE, NTG, and TUG have decided to financial-
ly support its primary author Hàn Thé̂ Thành to
extend and improve the program.

A change such as this is not trivial since it must

be certain that existing documents can be processed
without change, and macro packages must still be-
lieve that the correct binary is available. Macro
packages may use undocumented features and nasty
tricks to determine what engine is present. Current-
ly pdfTEX is extended to take care of this problem.
The configuration file has gone, more extensive map
file handling has been implemented, and extensions
are being separated to allow for experimental ver-
sions (xpdfeTEX).

pdfeTEX, although quite universally useful,
still lacks some features such as Unicode awareness.
TEX engine development, therefore, must contin-
ue. Those on the ConTEXt mailing list may know
Giuseppe Bilotta as an enthusiastic user and advo-
cate of TEX. In 2003 Giuseppe published ǫ-Omega,
an extended version of TEX that uses Unicode na-
tively. His initiative evolved into the Aleph project
which aims at merging ε-TEX with Omega. This is
because some ConTEXt users wanted to use Omega
features. LATEX is also moving towards ε-TEX, en-
hancing the importance of the Aleph initiative.

Those who have become dependent on Omega
may get attracted by Aleph’s image: stable realware
thus giving it a good chance to become the default
engine under the Omega based formats on TEX Live.
Producing PDF output directly is not a feature but
the dvipdfmx converter can produce the same rich
PDF output as pdfeTEX does for ConTEXt users.

Latin Modern

What more is new on the TEX Live 2004? First of
all, the Latin Modern fonts. This project was funded
by user groups. The fonts are extended versions of
Computer Modern, with additional characters cov-
ering all western languages. Latin Modern will re-
place the textual part of Computer Modern Roman.
For instance, cmr10, aer10, plr10, csr10 as well as
in the near future vnr10 will be replaced by lmr10.
This change is downwards compatible. It removes
a lot of nearly duplicate files from TEX Live. If all
works out well, users will not notice the font change.
Of course, the original cmr10 will still be present.

Currently extra instances are made with a few
more glyphs, more kerning pairs. Visual improve-
ments are made based on suggestions by Donald
Knuth in his errata documents.

Font files

A more drastic change is that some files have
changed places in the TDS tree. Until now the en-

110 TUGboat, Volume 25 (2004), No. 1

coding (enc) and the fontmap (map) files were locat-
ed under the dvips and pdfTEX paths:

texmf/dvips

texmf/dvips/config

texmf/dvips/config/whatever

texmf/pdftex

texmf/pdftex/config

texmf/pdftex/config/whatever

The configuration file texmf.cnf informs ap-
plications about where to find these encoding and
fontmap files. A changed texmf.cnf assures that
most applications and users will not encounter prob-
lems. The new locations are:

texmf/fonts/enc/whatever

texmf/fonts/map/dvips/whatever

texmf/fonts/map/pdftex/whatever

texmf/fonts/lig/whatever

Note the new ligature path. It is used by for in-
stance afmtopl. Some changes are already reflected
in the current TEX Live version but probably go
unnoticed because both old and new locations are
supported.

If you install your own fonts you need to relo-
cate your map files. Font metrics remain in their
usual place and encoding files are seldom made by
users. Instead of relocating another option is to
adapt the texmf.cnf file, but this would compli-
cate future updating. It is better to not touch this
file.

Scripts

ConTEXt includes some Perl scripts taking care of
sorting indexes, managing multiple runs and other
chores. Initially, the number of scripts was small and
they ended up in a dedicated ConTEXt directory.

Since then other macro packages also come with
Perl scripts and ConTEXt added Ruby scripts lead-
ing to these paths:

texmf/context/perltk

texmf/context/ruby

TEX Live uses stubs in the binary path to
launch such scripts. The stubs use kpsewhich to
locate the main script file. For reasons of consisten-
cy, maintainance and robust locating, scripts now
have their own root path; for ConTEXt, it is:

texmf/scripts/context/perl

texmf/scripts/context/ruby

Companion files that do not fit in this directory
structure remain where they are located presently.
In practice users will not notice the changes because
the stubs take care of things. Future versions of
kpsewhich will provide more robust and convenient
ways to locate such script files.

Beware: if you write your own scripts you
should realize that calls to kpsewhich have to be
adapted, for instance:

kpsewhich -progname=context

-format="other text files" texexec.pl

is now:

kpsewhich -progname=context

-format="texmfscripts" texexec.pl

A rather safe way to access files in the texmf

tree is to use texmfstart (a Ruby script). This
command is described in the manual at the Pragma
web site. For now, here are two examples:

texmfstart texexec --pdf yourfile

texmfstart --direct scite kpse:texmf.cnf

More

AFM files will no longer be distributed in their com-
pressed form (gzip). Engine dependent TEX source
files end up in specific paths. Most common users
will not notice because users of engine dependent
sources have their own way of structuring the direc-
tory tree.

The kpse file searching library and tools get a
few more features. A future TEX Live will have a
completely rewritten version of this library, one that
opens some windows to the future such as automatic
updating, remote processing, and fetching resources
from zip archives.

Production

Getting TEX Live ready requires an enormous ef-
fort. Only a few macro collections are submitted in
the right structure. Consequently, much scripting
takes place to get the files where they belong in the
tree. Interdependencies are not always made clear
and maintainers of packages come and go. When the
structure changes files need to be relocated. Bugs

TUGboat, Volume 25 (2004), No. 1 111

in binaries need to be solved. New features have to
be tested first. Documentation needs to be updat-
ed. Frequently new CD-ROM images are construct-
ed and tested, on all platforms. Thus the TEX Live
mailing list is a busy one. Last year we even had a
show-stopper. At press time it was discovered that
8-bit file output no longer worked.

Finally, the Collection has to be produced. The
2003 Collection was the first to be distributed on
DVD. Even after TEX Live and CTAN were put on
the DVD plenty of space was available, so extras
were added (in the texmf-extra area) and the next
release will provide even more. The DVD is one of
the first dual layer data DVD’s. This meant pro-
ducing special split ISO-images and proofing of the
first DVD: the presses were actually stopped after
the first copy for testing!

In 2003 and 2004 DANTE invited those involved
in this monster performance to their main annual
meeting, altogether some 15 contributors from all
over the world. They discussed the present and the
future of such distributions. I leave the reporting

of that discussion to the chairman. Happy users
of TEX Live, however, should recognize with grat-
itude that getting this job done is far from trivial
and effortless. We all should treasure those who are
making TEX Live happen year after year. You can
find their names on the cover of the DVD and in the
documentation.

Summary

When TEX Live 2004 shows up in your postbox, up-
date and things will work as usual. If you have your
own fonts installed, however, you need to relocate
your personal mapfiles to .../fonts/map, and run
mktexlsr to update your files database. Also, if
your scripts use kpsewhich, check them.

⋄ Hans Hagen
Pragma ADE, The Netherlands
pragma@wxs.nl

2004–2005

Oct 30 –
Apr 17

“Belles Lettres: The Art of Typography”,
exhibition at the San Francisco Museum
of Modern Art. For information, visit
http://www.sfmoma.org/exhibitions/.

2005

Jan 3 – 7 Rare Book School, University
of Virginia, January Sessions
in New York City. Two one-week
courses: The printed book in the West
since 1800, and Book illustration
processes to 1890. For information, visit
http://www.virginia.edu/oldbooks.

Jan 12 –
Feb 17

Hans Schmoller: the Penguin Years.
An exhibition at the St. Bride
Printing Library, London, England.
For information, visit http://

www.stbride.org/events.html.

Jan 18 –
Feb 25

In Flight: A traveling juried exhibition
of books by members of the Guild
of Book Workers. Scripps College,
Claremont, California. Sites and
dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Feb 23 – 25 Seybold Seminars, New
York. For information, visit
http://www.seybold365.com/2005/.

EuroTEX 2005
Abbaye des Prémontrés (Pont-à-Mousson,
France).

Mar 7 – 11 The 15th Annual Meeting of the

European TEX Users, and the 22
2
2
2
−∞

anniversary of both DANTE and
GUTenberg, “Let’s TEX Together”.
For information, visit http://

www.gutenberg.eu.org/eurotex2005/.

112 TUGboat, Volume 25 (2004), No. 1

Calendar

Mar 10 –
Apr 22

In Flight: A traveling juried exhibition of
books by members of the Guild of
Book Workers. Rochester Institute of
Technology, Rochester, New York.
Sites and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Apr 6 – 8 27th Internationalization and Unicode
Conference, “Unicode, Cultural Diversity,
and Multilingual Computing”. Berlin,
Germany. For information, visit
http://www.unicode.org/iuc/iuc27/.

Apr 14 – 16 TYPO.GRAPHIC.BEIRUT

2005 Conference, Lebanese
American University, Beirut,
Lebanon. For information visit
http://www.atypi.org/ and look for the
entry under “News from members”.

Apr 25 – 28 Book History Workshop,
Institute d’histoire du livre,
Lyon, France. For information, visit
http://ihl.enssib.fr/.

Apr 26 Harry Carter, man of type: lecture
by Martyn Thomas at the St. Bride
Printing Library, London, England.
For information, visit http://

www.stbride.org/events.html.

Apr 30 –
May 3

BachoTEX 2005, 13th annual meeting of
the Polish TEX Users’ Group (GUST),
“The Art of TEX Programming”,
Bachotek, Brodnica Lake District,
Poland. For information, visit http://

www.gust.org.pl/BachoTeX/2005/.

May 10 –
Jul 17

In Flight: A traveling juried exhibition
of books by members of the Guild
of Book Workers. University
of Texas, Austin, Texas. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

May 11 –
Jun 16

From chisel to pen: inscriptional
letterforms from early Christian Wales.
An exhibition at the St. Bride
Printing Library, London, England.
For information, visit http://

www.stbride.org/events.html.

Status as of 17 March 2005

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.

May 22 – 27 Book History at A&M: The Fourth
Annual Texas A&M Workshop on the
History of Books and Printing. Texas
A&M University, College Station,
Texas. For information, visit
http://lib-oldweb.tamu.edu/cushing/

bookhistory/2005.html.

May 24 – 27 XTech Conference, “XML, the Web and
Beyond”, Amsterdam RAI Centre,
Netherlands. For information, visit
http://www.xtech-conference.org/.

May 25 – 28 CIDE.8, Conférence Internationale
sur le Document Electronique,
“Multilingualism”, Beirut,
Lebanon. For information, visit
http://www.certic.unicaen.fr/cide8/.

Jun 1 – 3 Society for Scholarly Publishing,

27th annual meeting, “Expanding the
World of Scholarly Publishing”, Boston,
Massachusetts. For information, visit
http://www.sspnet.org.

Jun 6 – 9 Seybold Seminars, Amsterdam.
For information, visit
http://www.seybold365.com/2005/.

Jun 6 –
Jul 29

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on topics
concerning typography, bookbinding,
calligraphy, printing, electronic texts,
and more. For information, visit
http://www.virginia.edu/oldbooks.

Practical TEX 2005
Friday Center for Continuing Education,
Chapel Hill, North Carolina.

Jun 14 – 17 Workshops and presentations
on LATEX, TEX, ConTEXt, and
more. For information, visit
http://www.tug.org/practicaltex2005/.

Jun 15 – 18 ALLC/ACH-2005, Joint International
Conference of the Association for
Computers and the Humanities, and
Association for Literary and Linguistic
Computing, “The International
Conference on Humanities Computing
and Digital Scholarship”, University
of Victoria, British Columbia.
For information, visit
http://web.uvic.ca/hrd/achallc2005/

or the organization web site at
http://www.ach.org.

Jun 20 – 23 Seybold Seminars Amsterdam 2005,
Netherlands. For information, visit
http://www.seybold365.com/2005/.

Jun 24 – 26 NTG 35th meeting, Terschelling,
Netherlands. For information, visit
http://www.ntg.nl/bijeen/bijeen35.html.

TUGboat, Volume 25 (2004), No. 1 113

Jul 14 – 17 SHARP Conference (Society for the
History of Authorship, Reading and
Publishing), “Navigating Texts and
Contexts”. Dalhousie University,
Halifax, Canada. For information,
visit http://sharpweb.org/ or
http://www.dal.ca/~sharp05/.

Jul 20 – 24 TypeCon2005, Type Directors Club,
New York City. For information, visit
http://www.tdc.org/news/\webbreak

2004typecon2005.html.

Jul 31 –
Aug 4

SIGGRAPH 2005, Los Angeles,
California. For information, visit
http://www.siggraph.org/s2005/.

Aug 1 – 5 Extreme Markup Languages 2005,
Montréal, Québec. For information, visit
http://www.extrememarkup.com/extreme/.

TUG 2005
Wuhan, China.

Aug 23 – 25 The 26th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2005/.

Sep 7 –
Oct 6

The Graven Image Press: Lettercutting
and visual metaphor in the work of
Stan Greer. An exhibition at the
St. Bride Printing Library, London,
England. For information, visit http://

www.stbride.org/events.html.

Sep 11 – 14 Seybold Seminars, Chicago.
For information, visit
http://www.seybold365.com/2005/.

Sep 15 – 18 Association Typographique Internationale
(ATypI) annual conference, Helsinki,
Finland. For information, visit
http://www.atypi.org/.

Sep 22 – 23 American Printing History Association
conference, “[r]Evolution in Print: New
Work in Printing History & Practice”,
Mills College, Oakland, California.
For information, visit http://www.

printinghistory.org/htm/conference/.

Oct 10 – 12 Fourth Annual St. Bride Conference,
“Temporary Type”, London, England.
For information, visit http://

www.stbride.org/conference.html.

Nov 2 – 4 ACM Symposium on Document
Engineering, Bristol, UK.
For information, visit
http://www.documentengineering.org/.

Nov 29 –
Dec 2

Seybold Seminars, San Francisco.
For information, visit
http://www.seybold365.com/2005/.

TUG 2005

International Typesetting Conference

Announcement and Call for Papers

TUG 2005 will be held in Wuhan, China from August 23–25,
2005. CTUG (Chinese TEX User Group) has committed to
undertake the conference affairs.

Wuhan is close to the birthplace of Taoism and the Three
Gorges Reservoir. China is also the birthplace of typography
in ancient times, and is simply a very interesting place to go.

For more information, see the conference web page at
http://tug.org/tug2005, or email tug2005@tug.org.

Call for papers

Please submit a title and abstract for papers or presentations
by April 1, 2005, via email to tug2005@tug.org. Any
TEX-related topic will be considered.

Conference fees

The conference fees and deadlines for members of any TEX
user group (in US dollars):

Early registration May 20, 2005 $100
Normal registration July 1, 2005 $220
Late registration August 1, 2005 $380

In all cases, non-user group members add $20.

Conference bursary

Some financial assistance is available. The application dead-
line is March 25, 2005. Please see http://tug.org/bursary

for details.

Hope to see you there!

The LATEX Companion has long been

the essential resource for anyone using

LATEX to create high-quality printed

documents. This completely updated

edition brings you all the latest informa-

tion about LATEX and the vast range of

add-on packages now available—over

200 are covered. Like its predecessor,

The LATEX Companion, Second Edition

is an indispensable reference for anyone

wishing to use LATEX productively.

For more information, visit:

www.awprofessional.com/

titles/0201362996

Frank Mittelbach and Michel Goossens

with Johannes Braams,

David Carlisle, and Chris Rowley

ISBN: 0-201-36299-6

Available at fine bookstores everywhere.

The LATEX
Companion

Second Edition

The LATEX
Companion

Second Edition

Promoting the use
of TEX throughout

the world.

mailing address:

P.O. Box 2311

Portland, OR 97208-2311 USA

shipping address:

1466 NWNaito PKWY, Suite 3141

Portland, OR 97209-2820 USA

phone: +1 503-223-9994

fax: +1 503-223-3960

email: office@tug.org

web: http://www.tug.org

President Karl Berry

Vice-President Kaja Christiansen

Treasurer Samuel Rhoads

Secretary Susan DeMeritt

Executive Director Robin Laakso

2005 TEX Users Group Membership Form
TUG membership rates are listed below. Please check the appropriate boxes and
mail the completed form with payment (in US dollars) to the mailing address at
left. If paying by credit/debit card, you may alternatively fax the form to the
number at left or join online at http://tug.org/join.html. The web page also
provides more information than we have room for here.

Status (check one) New member Renewing member
Rate Amount

Early bird membership for 2005
After May 31, dues are $75.

$65

Special membership for 2005
You may join at this special rate ($45 after May 31) if you are a
senior (62+), student, new graduate, or from a country with a
modest economy. Please circle accordingly.
See http://tug.org/join.html for more information.

$35

Subscription for 2005 (non-voting) $85

Institutional membership for 2005
Includes up to eight individual memberships.

$500

Send me CTAN 2005 on CD (shipped on DVD to everyone) n/a
If instead of TEX Live 2005 with your membership, you
want the 2004 software delivered right away, check here.

n/a

Last year’s materials (in addition to 2005)

TUGboat volume for 2004 (3 issues) $20
TEX Collection 2004

2 CD’s & 1 DVD with proTEXt, TEX Live, CTAN.

$20

CTAN 2004 CD-ROMs $15

Voluntary donations

General TUG contribution
Bursary Fund contribution

Financial assistance for attending the TUG Annual Meeting.

TEX Development Fund contribution
Financial assistance for technical projects.

Total $

Tax deduction: $30 of the early bird membership fee is deductible, at least in the US.

Multi-year orders: To join for more than one year at this year’s rate, just multiply.

Payment (check one) Payment enclosed Visa/MasterCard/AmEx

Account Number: Exp. date:

Signature:

Privacy: TUG uses your personal information only to send products, publications, notices, and (for voting members)
official ballots. TUG does not sell or otherwise provide its membership list to anyone.

Electronic notices will generally reach you much earlier than printed ones. However, you may choose not to receive
any email from TUG, if you prefer.

Do not send me any TUG notices via email.

Name

Department

Institution

Address

City State/Province

Postal code Country

Email address

Phone Fax

Position Affiliation

Institutional

Members

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia,
Roma, Italy

Center for Computing Science,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario Canada

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

KTH Royal Institute of
Technology, Stockholm, Sweden

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Uppsala University,
Uppsala, Sweden

Vanderbilt University,
Nashville, Tennessee

Ogawa, Arthur

40453 Cherokee Oaks Drive
Three Rivers, CA 93271-9743
(209) 561-4585
Email: arthur ogawa@teleport.com

Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and LATEX2ε document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in LATEX, TEX, SGML,
PostScript, Java, and C++. Database and corporate
publishing. Extensive references.

Veytsman, Boris

2239 Double Eagle Ct.

Reston, VA 20191
(703) 860-0013

Email: boris@lk.net

I provide training, consulting, software design and

implementation for Unix, Perl, SQL, TEX, and LATEX. I
have authored several popular packages for LATEX and
latex2html. I have contributed to several web-based
projects for generating and typesetting reports.

For more information please visit my web page:
http://users.lk.net/~borisv.

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know to be
false, but we cannot check out any of the information; we
are transmitting it to you as it was given to us and do not
promise it is correct. Also, this is not an endorsement of
the people listed here. We provide this list to enable you to
contact service providers and decide for yourself whether to
hire one.

The TUG office mentions the consultants listed here to
people seeking TEX workers. If you’d like to be included, or
place a larger ad in TUGboat, please contact the office or
see our web pages:

TEX Users Group

1466 NW Naito Parkway, Suite 3141
Portland, OR 97208-2311, U.S.A.

Phone: +1 503 223-9994
Fax: +1 503 223-3960

Email: office@tug.org

Web: http://tug.org/consultants.html

http://tug.org/TUGboat/advertising.html

116 TUGboat, Volume 25 (2004), No. 1

I Inquire about EASY TABLE at:

 www.authorkhanhha.com/EZ
 301-523-4242

 EASY

 TABLE KHANH HA

 A TEX Table Macro Package

◊ ◊ ◊

• Dynamic table setting by template control

• Multiple mixed column spanners, subspanners, and row spanners

• Easy routines to split table footnotes and break extremely long tables

• Partial hrules, floating hrules anywhere, any length on exact baselineskip

• Automatic decimal alignment, or any special character, in irregular tables

• End columns with \et command anywhere and all vrules are automatically drawn

• Old article: http://tug.org/TUGboat/Articles/tb11-2/tb28ha.pdf

• Version10.04, far superior to the original 1989 version, is now available.

This TEX table

macro package

rivals the best

of the

commercial

typesetting

systems.

Cost? $49.95

Here at River Valley Technologies we

work with clients such as Elsevier and the IOP,

dramatically improving the way they produce their

mathematical publications. Our culture of innovation

has created a completely automated workflow from

LaTeX to MathML and back, removing the need for

human intervention in the conversion process.

For heavy mathematical typesetting, ours is the most effective,

proven system available anywhere in the world. Learn more about

it from Dr. Kaveh Bazargan by emailing kaveh@river-valley.com.

A better way

RIVER VALLEY
T E C H N O L O G I E S

Π Π

Carleton Production Centre

HUMANITIES TYPESETTING

Specialising in Linguistics
Since 1991

613-823-3630 • 15 Wiltshire Circle

Nepean, Ont., Canada • K2J 4K9

∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐

Do you need on-site training for LATEX?

Contact Cheryl Ponchin at

cponchin@comcast.net

Training will be customized for your company needs.

Any level, from Beginning to Advanced.

The TEX Users Group gratefully acknowledges Apple Computer’s generous contributions,

especially to the Pra�ical TEX 2004 and TUG 2003 Conferences.

�ank y�.

The Apple Store in San Francisco is located at One Stockton Street, San Francisco, CA 94108

�This was typeset with the TEX variant XƎTEX created by Jonathan Kew using the Apple System fonts

H T by Jonathan Hoefler, Z by Hermann Zapf and S by Matthew Carter.&

http://www.apple.com/retail/sanfrancisco http://scripts.sil.org/xetex

1

2

1 2

Practical TEX 2005

Workshops and Presentations:

LATEX, TEX, ConTEXt,
and more

June 14–17, 2005

Friday Center for Continuing Education

Chapel Hill, North Carolina, USA

http://tug.org/practicaltex2005
conferences@tug.org

Keynote address: Nelson Beebe, University of Utah

Who should attend?

Mathematicians ❃ University & corporate (LA)TEX documentation staff ❃

Students ❃ Publishing company production staff ❃ Scientists ❃ Researchers

. . . and anyone who uses or is considering using the LATEX and TEX

technical documentation system.

Further information

This four-day conference focuses on practical techniques for document production
using LATEX, TEX, ConTEXt, MetaPost, and friends. It includes one day of classes
and tutorials, followed by three days of presentations and workshops.

Conference attendees will enjoy an opening night reception and an (optional)
banquet one evening. Coffee and lunch will be served each day of the meeting.
Located in historic Chapel Hill, North Carolina.

Conference fee, hotel, and other information is available on the web site.

Pre-conference classes

On the first day, June 14, courses will be offered focusing on specific areas:
Intermediate LATEX, Introduction to ConTEXt, and TEX on the Web.

Call for papers: If you’d like to make a presentation, on any TEX-related
topic, please email us by March 1, 2005.

Registration forms and hotel reservation information are on the web site.
Early bird discount for registrations before March 31, 2005.

Sponsorship: If you’d like to promote your TEX products and services, or
otherwise support the conference, see the web site for donation, sponsorship,
advertising options. We are very grateful to Duke University for major support.

Hope to see you there! Sponsored by the TEX Users Group.

	Summary
	Foreword
	Introduction
	Some historical highlights
	What we've accomplished
	Books and journals
	Software archives
	Document archives
	Bibliography archives

	What did TeX do right?
	Open software
	Typesetting kernel
	Extensible typesetting language
	Device-independent output
	Font independence
	Open font specification
	Boxes, glue, and penalties
	Compact markup for common cases
	Nonsignificant spaces
	Identical results on all systems
	Dimension independence
	Dynamic loading of files
	Redefinition of character meaning
	No system call
	Last definition holds
	92 special command
	Stability and reliability
	Illustrations by Duane Bibby

	What did TeX do wrong?
	No rigorous grammar
	Macro, not programming, language
	Too much hard coded
	Too many fixed-size objects
	Too many global variables
	Too little tracing
	Name collision
	Inadequate I/O
	Character set limits
	No input filters
	No color state
	No graphics
	One page at a time
	Multicolumn deficiency
	Not general enough for all writing directions
	No DVI output pipe
	No sandbox
	Uncaught arithmetic overflow
	32-bit precision too limiting
	No floating-point arithmetic
	No conventional arithmetic expressions
	No word and line boundary markers
	No paper size
	No absolute page positioning
	No grid typesetting
	No comments in DVI files
	No rotated material

	What did Metafont do right?
	Open software
	Font-design kernel
	Programming language
	`Meta' fonts
	Shaped pens
	Open font formats

	What did Metafont do wrong?
	Bitmap output premature
	Pen shapes
	Curve representations
	Inadequate I/O
	Font sizes
	Inflexible character numbering
	Not adopted by font designers

	Future directions
	XML directions
	Unicode directions

	Summary
	Introduction
	The problem(s)
	Data errors
	Markup features
	Markup deficiencies

	Creating bibliographic data
	The emacs environment
	Converting Web data to BibTeX
	Other external tools
	XML for bibliographic data

	Checking bibliographic data
	Spelling
	Delimiter balance
	Doubled words
	File validation
	Field-value validation
	Typesetting

	Other platforms
	Conclusions

