
150 TUGboat, Volume 25 (2004), No. 2

Software & Tools

PerlTEX: Defining LATEX macros using Perl

Scott Pakin

Abstract

Although writing documents with LATEX is straight-
forward, programming LATEX to automate repetitive
tasks — especially those involving complex string
manipulation— can be quite challenging. Many op-
erations that a novice programmer can express easily
in a general-purpose programming language cannot
be expressed in LATEX by any but the most expe-
rienced LATEX users. PerlTEX attempts to bridge
the worlds of document preparation (LATEX) and
general-purpose programming (Perl) by enabling an
author to define LATEX macros in terms of ordinary
Perl code.

1 Introduction

Although TEX is a Turing machine and can there-
fore express arbitrary computation, the language is
not conducive to programming anything sophisti-
cated. As in an assembly language, arithmetic ex-
pressions are written in terms of register modifica-
tions (e.g., “\advance\myvar by 3”) and relational
expressions involving conjunction and disjunction
are constructed from nested comparison opera-
tions (e.g., “\ifnum\myvar>10 \ifnum\myvar<15”).
Loops are expressed in terms of tail-recursive macro
evaluation. The only forms of string manipulation
are single-token lookahead (\futurelet) and macro
argument templates that either match a pattern or
abort TEX. Finally, there are scalars but no aggre-
gate data types (although these can sometimes be
faked with clever use of macro expansion). While
the LATEX kernel and various packages slightly raise
the level of programming abstraction, the typical
programmer is rapidly frustrated when attempting
to code anything nontrivial.

Perl, in contrast, offers a rich programming en-
vironment with most of the features one expects
from a modern high-level language. However, Perl
has no inherent support for document typesetting.
For short or highly repetitive documents, it is rea-
sonable to write a Perl script that outputs a .tex file
and runs it through latex. However, it is generally
inconvenient to include a full-length article in its en-
tirety within a Perl script just so it can invoke some
simple function which is easier to express in Perl
than in LATEX. Furthermore, a LATEX-generating

\newcount\n

\newcommand{\astsslow}[1]{%

\n=#1

\xdef\asts{}%

\loop\ifnum\n>0 \xdef\asts{\asts*}\advance\n-1

\repeat}

(a) Slow version from The TEXbook

\newcount\n

\newcommand{\astsfast}[1]{%

\n=#1

\begingroup

\aftergroup\edef\aftergroup\asts\aftergroup{%

\loop \ifnum\n>0 \aftergroup*\advance\n-1

\repeat

\aftergroup}\endgroup}

(b) Fast but non-scalable version from The TEXbook

\newcommand{\asts}{}

\perlnewcommand{\astsperl}[1]

{’\renewcommand{\asts}{’ . ’*’ x $_[0] . ’}’}

(c) Fast PerlTEX version

Figure 1: Macro to define \asts as a sequence of N
asterisks

Perl script supports only one-way communication:
Perl can pass information to LATEX but not the other
way around.

In this article, we present PerlTEX, a package
that consists of a Perl script (perltex.pl) and a
LATEX2ε style file (perltex.sty). The user simply
installs perltex.pl in an executable directory and
perltex.sty in a LATEX2ε style-file directory, in-
corporates “\usepackage{perltex}” into any doc-
uments which need PerlTEX’s features, and com-
piles such documents using perltex.pl instead of
the ordinary latex command. Together, perltex.pl
and perltex.sty give the user the ability to define
LATEX macros in terms of Perl code. Once defined,
a PerlTEX macro becomes indistinguishable from
any other LATEX macro. PerlTEX thereby combines
LATEX’s typesetting power with Perl’s programma-
bility.

1.1 A simple example

A PerlTEX macro definition can be as simple as
\perlnewcommand{\hello}{"Hello, world!"}

which is essentially equivalent to:
\newcommand{\hello}{Hello, world!}

TUGboat, Volume 25 (2004), No. 2 151

% Given a list of words, build up a \measurements macro as alternating
% words and word width in points, sorted by order of increasing width.
\perlnewcommand{\splitandmeasure}[1]{

return
"\\edef\\measurements{}%\n" .
join ("",

map "\\setbox0=\\hbox{$_}%\n" .
"\\edef\\measurements{\\measurements\\space $_ \\the\\wd0}%\n",
split " ", $_[0]) .

"\\sortandtabularize{\\measurements}%\n";
}

% Given the \measurements macro produced by \splitandmeasure, output a
% two-column tabular showing each word and its width in points.
\perlnewcommand{\sortandtabularize}[1]{

%word2width = split " ", $_[0];
return

"\\begin{tabular}{|l|r|} \\hline\n" .
" \\multicolumn{1}{|c|}{Word} &\n" .
" \\multicolumn{1}{c|}{Width} \\\\ \\hline\\hline\n" .
join ("",

map (" $_ & $word2width{$_} \\\\ \\hline\n",
sort {$word2width{$a} <=> $word2width{$b}} keys %word2width)) .

"\\end{tabular}\n";
}

Figure 2: A PerlTEX-defined LATEX macro that outputs a table of words sorted by typeset width

(The extra " characters delimit a string constant in
Perl.)

To better motivate the use of PerlTEX, con-
sider the first programming challenge in the “Dirty
Tricks” appendix of The TEXbook [3]: construct a
macro that accepts an integer N and defines an-
other macro, \asts, to be a sequence of N asterisks.
Figure 1(a) presents a LATEX wrapper, \astsslow,
for the initial TEXbook solution. Besides rely-
ing on a set of TEX primitives which are unlikely
to be familiar to a LATEX user, the code is slow;
\astsslow{10000} takes over 6 seconds to run on
the author’s 2.8 GHz Xeon-based workstation.

Figure 1(b) presents a LATEX version of the
“fast” solution from The TEXbook. \astsfast is
highly unintuitive; it exploits artifacts of macro ex-
pansion and execution that occur when used in the
context of the TEX \aftergroup primitive. Fur-
thermore, it squanders space on TEX’s input and
save stacks, limiting the number of asterisks to fewer
than 300 when run using the default latex program
that ships with teTEX v1.02.

In contrast to The TEXbook’s solutions, the
PerlTEX solution is fast, scalable, and should
be comparatively easy to understand by anyone

with basic Perl-programming and LATEX macro-
writing skills. Figure 1(c) presents an \astsperl
macro that takes an argument and returns a
\renewcommand string which LATEX subsequently
evaluates. \astsperl{10000} takes less than a sec-
ond to run on the same 2.8 GHz Xeon system as did
the previous macros and uses no TEX primitives,
only ordinary LATEX and Perl commands.

1.2 A more complex example

One of PerlTEX’s capabilities which is not available
with a Perl script that outputs a .tex file is the
ability to pass data bidirectionally between LATEX
and Perl. Suppose, for example, that you wanted to
write a macro that accepts a string of text, splits it
into its constituent space-separated words, and out-
puts a table of those words sorted by their typeset
width. Neither LATEX nor Perl can easily do this on
its own. LATEX can measure word width but cannot
easily split a string into words or sort a list; Perl
cannot easily determine how wide a word will be
when typeset but does have primitives for splitting
and sorting strings.

A PerlTEX macro to do the job, named
\splitandmeasure, is presented in Figure 2. It

152 TUGboat, Volume 25 (2004), No. 2

\edef\measurements{}%

\setbox0=\hbox{How}%

\edef\measurements{\measurements\space How \the\wd0}%

\setbox0=\hbox{now}%

\edef\measurements{\measurements\space now \the\wd0}%

\setbox0=\hbox{brown}%

\edef\measurements{\measurements\space brown \the\wd0}%

\setbox0=\hbox{cow?}%

\edef\measurements{\measurements\space cow? \the\wd0}%

\sortandtabularize{\measurements}%

(a) Result of the call to \splitandmeasure{How
now brown cow?}

How 19.44447pt now 17.50003pt brown 26.97227pt

cow? 21.11113pt

(b) Final contents of \measurements after evaluat-
ing the code in Figure 3(a)

\begin{tabular}{|l|r|} \hline

\multicolumn{1}{|c|}{Word} &

\multicolumn{1}{c|}{Width} \\ \hline\hline

now & 17.50003pt \\ \hline

How & 19.44447pt \\ \hline

cow? & 21.11113pt \\ \hline

brown & 26.97227pt \\ \hline

\end{tabular}

(c) Result of the call to
\sortandtabularize{\measurements}

Word Width

now 17.50003pt

How 19.44447pt

cow? 21.11113pt

brown 26.97227pt

(d) Final typeset table

Figure 3: Overall PerlTEX processing of
\splitandmeasure{How now brown cow?}

accepts a string, splits it into words, and writes
LATEX (or more accurately in this case, TEX) code
which builds up a \measurements macro consist-
ing of alternating words and word widths. This
code is followed by a call to a second PerlTEX
(helper) macro, \sortandtabularize, which ac-
cepts a list of alternating words and word widths
(i.e., \measurements), sorts the list by word width,
and outputs a tabular environment for LATEX to
typeset.

Figure 3 illustrates the step-by-step opera-
tion of \splitandmeasure. Processing begins with
LATEX invoking the \splitandmeasure macro, caus-

ing Perl to output LATEX code which measures each
word (Figure 3(a)). LATEX then evaluates that
code, producing the definition of \measurements
shown in Figure 3(b) followed by an invocation of
\sortandtabularize. Control once again passes to
Perl, which sorts \measurements by word width and
outputs a LATEX tabular environment (Figure 3(c)).
LATEX then evaluates the tabular, producing the
typeset output shown in Figure 3(d).

Macros such as \splitandmeasure which pass
control from LATEX to Perl to LATEX to Perl
and back to LATEX are comparatively easy to im-
plement with PerlTEX — \splitandmeasure con-
sists of a single Perl statement; its helper macro,
\sortandtabularize, consists of only two Perl
statements. However, it would be very difficult
to implement comparable functionality without the
help of PerlTEX.

The rest of this article proceeds as follows. Sec-
tion 2 highlights some of the design decisions that
went into PerlTEX’s implementation. We contrast
those design decisions to the ones made by similar
projects in Section 3. Section 4 describes the mech-
anisms PerlTEX uses to transfer data betwen LATEX
and Perl. Defining Perl macros in LATEX was the
greatest challenge in implementing PerlTEX and re-
quired some fairly sophisticated LATEX trickery. The
solutions that were developed are described in Sec-
tion 5. By comparison, the Perl side of PerlTEX
is comparatively straightforward and is described
briefly in Section 6. Section 7 presents some av-
enues for future enhancements to PerlTEX. Finally,
we draw some conclusions in Section 8.

2 Design decisions

There are multiple ways that PerlTEX could have
been implemented. The following are the primary
alternatives:

• Use the semi-standard “\write18” mechanism
to invoke the perl executable.

• Patch the TEX executable to interface with the
Perl interpreter.

• Implement a Perl interpreter in LATEX.
• Construct macros that enable LATEX to commu-

nicate with an external Perl interpreter.

The final option is the one that was deemed best
for PerlTEX. The “\write18” approach is a secu-
rity risk; enabling it (e.g., using the -shell-escape
command-line option present in some TEX distri-
butions) permits not only PerlTEX but any LATEX
package to execute arbitrary programs on the user’s
system. Patching TEX is inconvenient for the user,
who will need to recompile TEX (plus pdfTEX, ε-

TUGboat, Volume 25 (2004), No. 2 153

TEX, pdf-ε-TEX, Ω, and any other TEX-based sys-
tem for which the user wants to add Perl support)
then re-dump the LATEX2ε format file for each Perl-
enhanced build of TEX. Implementing a Perl inter-
preter in LATEX has the advantage of not requiring a
separate Perl installation. However, a LATEX-based
Perl interpreter, besides being extremely difficult to
implement, would necessarily support only a small
subset of Perl, as much of the language cannot be
expressed in terms of the mechanisms provided by
TEX.

As this article will demonstrate, providing
LATEX-level mechanisms to facilitate communication
between LATEX and an external Perl interpreter en-
ables safe execution of Perl code, ease of installa-
tion, compatibility with any underlying TEX imple-
mentation, and access to every feature of the Perl
language.

3 Related work

PerlTEX is not the first system that attempts to
augment LATEX macro programming with a general-
purpose programming language. However, Perl-
TEX’s approach, as outlined in the previous section,
makes it unique relative to other, similar systems.
Note that many of the following systems support
not only LATEX but other formats as well (e.g., Plain
TEX, ConTEXt, and Texinfo); for the purpose of ex-
position we limit our discussion to LATEX.

After releasing PerlTEX, the author discovered
an existing program written by Alexander Shiba-
kov also called PerlTEX [6]. Unlike the PerlTEX
described in this paper, Shibakov’s version is im-
plemented as a patch to TEX. That is, the user
must recompile TEX (and all its variants) with the
PerlTEX patches and re-dump the desired formats.
The result is that Perl is more integrated into TEX
than is otherwise possible. All code between \perl
and \endperl is executed by Perl. Furthermore,
Shibakov’s PerlTEX also supports two-way commu-
nication between TEX and Perl by enabling code
within a \perl. . . \endperl block to insert char-
acters and control sequences into the TEX input
stream. While Shibakov’s PerlTEX works with any
TEX format— Plain TEX, LATEX, ConTEXt, Texinfo,
etc.— the PerlTEX described in this paper works
only with LATEX. However, this paper’s PerlTEX
has the important advantage of not requiring TEX
recompilation, which is tedious and may not be pos-
sible when using a commercial TEX implementation.

Paraschenko takes a similar approach to Shi-
bakov’s with his sTEXme [4], which uses Scheme
rather than Perl as the TEX extension language.
sTEXme adds a single command to TEX: \stexme,

which works like \input but accepts the name of a
Scheme file rather than a TEX or LATEX file. When
the Scheme interpreter evaluates the given file,
output procedures such as newline and display
write into the TEX input stream. Two new pro-
cedures, pool-string and get-cmd, provide access
to TEX internal state. As with Shibakov’s PerlTEX,
sTEXme’s tight integration with TEX comes at the
cost of having to recompile TEX and re-dump all of
the format files before the extension language can
be used.

TEX2page [7] uses also uses Scheme as a TEX
extension language. However, its design is closer to
that of (this paper’s) PerlTEX than to sTEXme’s.
TEX2page provides an \eval macro which brackets
Scheme code. The document is first compiled using
the ordinary latex executable. As part of that pro-
cess, \eval simply writes its argument to a file. The
user then runs tex2page, which invokes the Scheme
interpreter on the extracted Scheme code and writes
the resulting LATEX code to a file. Finally, the user
re-runs latex and, on this pass, \eval loads the
Scheme-produced LATEX code into the document,
where it is typeset normally. Although TEX2page’s
multi-pass approach supports two-way communica-
tion betwen LATEX and Scheme, it does require an
extra run of tex2page and an extra run of latex for
each nesting level. For large documents or heavily
nested \eval calls, this can be slow and tedious.
PerlTEX, in contrast, requires no more latex runs
than the document would otherwise require.

The idea behind PyTEX [1] is to use Python,
not LATEX, as the document’s top-level language.
With PyTEX, the user’s Python code passes strings
to a TEX dæmon [2] to evaluate. PyTEX supports
only one-way communication (i.e., Python to LATEX
but not LATEX to Python). PerlTEX, in contrast,
supports two-way communication, which is neces-
sary when writing code in a general-purpose lan-
guage that requires access to typesetting informa-
tion such as string widths, page counts, or register
contents.

Amrita [5] presents an integration framework
based on re-entrant here documents which supports
communication among a variety of languages such
as Perl, Python, LATEX, Ruby, and POV-Ray. Each
language can generate code to be executed by any
other language. The result of each execution (which
itself may recursively generate code for additional
languages) is code to be executed by the parent lan-
guage. While Amrita is a highly capable system, its
power necessarily introduces an extra level of com-
plexity to the user. Relative to the generality of
Amrita, PerlTEX’s niche is that it enables users to

154 TUGboat, Volume 25 (2004), No. 2

Table 1: Files used for communication between Perl and LATEX

Filename Meaning Purpose

\jobname.topl “to” (Perl) LATEX to Perl communication
also: signal Perl that \jobname.frpl has been read

\jobname.frpl “from” (Perl) Perl to LATEX communication
\jobname.tfpl “to flag” signal Perl that \jobname.topl is ready to be read
\jobname.ffpl “from flag” signal LATEX that \jobname.frpl is ready to be read
\jobname.dfpl “done-with-from-flag flag” signal LATEX that Perl is ready for the next transaction

add a few Perl macros to an existing LATEX docu-
ment with minimal hassle and without having to buy
into a more comprehensive software framework.

4 Communication between LATEX and Perl

PerlTEX has two main components: a Perl
script (perltex.pl) and a LATEX2ε style file
(perltex.sty). PerlTEX is invoked by running the
command perltex.pl, just as one would run latex.
perltex.pl itself is fairly simple; essentially, it in-
stalls a “server” which executes incoming Perl code
and outputs the LATEX result. More information is
provided in Section 6.

perltex.sty provides the \perlnewcommand,
\perlrenewcommand, \perlnewenvironment, and
\perlrenewenvironment macros which are anal-
ogous to their non-perl namesakes but are de-
fined with Perl code instead of LATEX code in the
macro body. When a PerlTEX macro is defined,
perltex.sty instructs perltex.pl to define a cor-
responding Perl subroutine with the given body.
Then, when the macro is invoked, perltex.sty in-
structs perltex.pl to execute the subroutine. A
similar process is performed when defining PerlTEX
environments but involving two behind-the-scenes
macros, one for the “begin” code and one for the
“end” code.

Almost by necessity, communication between
LATEX and Perl is implemented via the filesystem.
TEX provides primitives for creating new files, open-
ing existing files, reading and writing files, and clos-
ing files, but no other mechanisms that can be used
to communicate with entities outside of TEX (ex-
cluding \write18, which has security implications,
as mentioned in Section 2). TEX returns a failure
code when trying to open a nonexistent file; this
condition can safely be tested from within TEX.

The primary challenge in transferring data via
the filesystem is detecting when a file is no longer be-
ing written to. This challenge needs to be addressed
both on the Perl side of the transfer and on the
LATEX side. The solution that PerlTEX takes is to

Time LATEX Perl

?

Write \jobname.topl

Touch \jobname.tfpl → Await \jobname.tfpl

Read \jobname.topl

Write \jobname.frpl

Delete \jobname.tfpl

Delete \jobname.topl

Delete \jobname.dfpl

Await \jobname.ffpl ← Touch \jobname.ffpl

Read \jobname.frpl

Touch \jobname.topl → Await \jobname.topl

Delete \jobname.ffpl

Await \jobname.dfpl ← Touch \jobname.dfpl

Figure 4: LATEX/Perl communication protocol

employ some auxiliary “flag” files that signal when
an associated file is complete. Table 1 describes the
complete set of files used for communication between
Perl and LATEX.

The communication protocol proper, which is
illustrated in Figure 4, is necessarily complex be-
cause it needs to work around two important limi-
tations of the TEX system:

1. TEX lacks a mechanism for deleting files.
2. The latex executable — at least the version

shipped with the teTEX TEX distribution— is
prone to crash when opening a file for input
while an external process is in the midst of
deleting that file. (Recall that testing if a
file exists means opening the file for input and
checking for success.)

If it were not for those limitations, the protocol
would require only one flag file and half as many
steps.

The \jobname.frpl file contains ordinary
LATEX code that simply gets \input into the doc-
ument. \jobname.topl, in contrast, contains not
only Perl code but also some metadata that helps of-
fload some string manipulation from LATEX to Perl.
Consider passing the LATEX string
In C it’s \texttt{printf("Hello!")}.

as an argument to a function declared with
\perlnewcommand. Because the string contains both

TUGboat, Volume 25 (2004), No. 2 155

DEF

〈unique tag〉
〈macro name〉
〈unique tag〉
〈Perl code〉

(a) Define

USE

〈unique tag〉
〈macro name〉
〈unique tag〉
#1

〈unique tag〉
#2

〈unique tag〉
#3

...

#〈last〉

(b) Invoke

Figure 5: Data written to \jobname.topl to define
or invoke a Perl subroutine

single and double quote characters, every occur-
rence of at least one type of quote will need to be
backslash-escaped for Perl. Rather than do this on
the LATEX side, perltex.sty sends the string as-
is to perltex.pl, which automatically quotes the
string while reading it from \jobname.topl. The
implication is that perltex.sty cannot pass raw
Perl code to perltex.pl to evaluate.

Hence, \jobname.topl needs contain some
metadata telling perltex.pl what to do with the
rest of \jobname.topl’s contents. This metadata
is of one of two types. When \perlnewcommand
or any of the other PerlTEX macros is invoked,
perltex.sty sends perltex.pl the information
shown in Figure 5(a). Then, when a macro de-
fined by one of PerlTEX’s \perl. . . macros is called,
perltex.sty sends perltex.pl the information
shown in Figure 5(b). In Figure 5, 〈unique tag〉
refers to a sequence of 20 letters that perltex.pl
generates randomly at initialization time and passes
to perltex.sty via the latex command line. The
〈unique tag〉 is used as a separator, so perltex.pl
knows where one piece of information ends and the
next one begins. 〈macro name〉 is the name of the
macro to be defined or used. perltex.pl defines a
Perl subroutine named 〈macro name〉 but with the
leading backslash replaced with “latex ”. The sub-
routine body contains 〈Perl code〉 verbatim. When
a PerlTEX-defined macro is invoked, perltex.sty
passes perltex.pl the name of the macro plus all
of the arguments as expanded LATEX code.

Figures 6 and 7 present a more concrete ex-
pression of a LATEX/Perl file transfer. Figure 6(a)
shows the contents of the \jobname.topl file that
LATEX writes as part of the \perlnewcommand in-
vocation presented previously in Figure 1(c); Fig-
ure 6(b) shows the contents of the \jobname.frpl

DEF
TKOUVLRCDIVSVSIZVHFI
\astsperl
TKOUVLRCDIVSVSIZVHFI
’\renewcommand{\asts}{’ . ’*’ x $_[0] . ’}’

(a) Macro definition (\jobname.topl)

\endinput

(b) Result of macro definition (\jobname.frpl)

Figure 6: LATEX/Perl communication associated
with the code in Figure 1(c)

USE
TKOUVLRCDIVSVSIZVHFI
\astsperl
TKOUVLRCDIVSVSIZVHFI
10

(a) Macro invocation (\jobname.topl)

\renewcommand{\asts}{**********}\endinput

(b) Result of macro invocation (\jobname.frpl)

Figure 7: LATEX/Perl communication associated
with an invocation of “\asts{10}”

file that Perl writes in response. Figure 7(a) shows
the contents of the \jobname.topl file that LATEX
writes while executing “\astsperl{10}” and Fig-
ure 7(b) shows the \jobname.frpl file that Perl
writes in response to that.

Expansion is a tricky issue in PerlTEX’s design
and, in fact, is handled differently in PerlTEX v1.1
than in earlier versions of PerlTEX. The challenge is
that Perl cannot evaluate LATEX code; it requires all
subroutine parameters to be ASCII strings. Consider
this invocation of some PerlTEX macro \mymacro:

\mymacro{Hello from Perl\noexpand\TeX!}

How should \mymacro’s argument be passed to Perl?
(1) Unexpanded, as

Hello from Perl\noexpand\TeX!

or (2) partly expanded, as

Hello from Perl\TeX!

or (3) fully expanded, as

Hello from PerlT\kern -.1667em\lower .5ex
\hbox {E}\kern -.125emX\@!

?

156 TUGboat, Volume 25 (2004), No. 2

The first alternative makes PerlTEX macros be-
have differently from LATEX macros, which gener-
ally execute their arguments. The other two al-
ternatives lead to unexpected behavior in cases like
\mymacro{\def\foo{world}Hello, \foo!}, which
cause latex to abort with an Undefined control
sequence error as it tries to expand the not-yet-
defined \foo control word which immediately fol-
lows the non-expandable \def control word. Exe-
cution is not an option because an invocation like
\mymacro{\mbox{Oops}} would need to pass a box
to Perl, which cannot practically be done.

PerlTEX’s approach (as of version 1.1) is to par-
tially expand macro arguments but with \protect
mapped to \noexpand and with \begin and \end
marked as non-expandable. In this approach, ro-
bust macros (such as many of the ones provided
by LATEX) are not expanded while fragile macros
(such as many of the ones defined by a user) are
expanded. For example, the following sequence will
write “LATEX is nice” to the typeset output, which
is a fairly intuitive result:

\newcommand{\adjective}{nice}
\perlnewcommand{\identity}[1]{$_[0]}
\identity{\LaTeX{} is \adjective.}

5 Defining Perl macros from LATEX

From a LATEX programming perspective, there are
two primary challenges that need to be over-
come in order to implement \perlnewcommand,
\perlrenewcommand, \perlnewenvironment, and
\perlrenewenvironment:

1. How can syntactically incorrect LATEX code be
stored and manipulated?

2. How can a LATEX macro iterate over a variable
number of macro arguments?

A solution to the former question is required be-
cause \perlnewcommand, etc. need to write Perl code
to a file. Syntactically correct Perl code is unlikely
also to be syntactically correct LATEX code. For
example, Perl associative arrays are prefixed with
the LATEX comment character, “%”; Perl scalars are
prefixed with “$”, which introduces math mode in
LATEX; and Perl uses “\” to escape special characters
in strings and create variable references while LATEX
expects a valid control sequence to follow. The dif-
ficulty, therefore, is in enabling a LATEX macro to
manipulate one of its arguments while neither ex-
panding nor evaluating it.

A solution to the latter question, how to
iterate over macro arguments, is required be-
cause each macro argument must be passed to

Perl (via the \jobname.topl file). Just as with
\newcommand, a macro defined by \perlnewcommand
accepts a user-defined number of arguments
(e.g., \perlnewcommand{\mymac}[5]{. . . }). How-
ever, TEX requires that macro arguments be refer-
enced by a literal number (e.g., “#3”); variable ar-
gument numbers (e.g., “#\argnum”) result in a TEX
error. The challenge is to construct a loop that it-
erates over a variable number of arguments, writing
each argument to a file, yet does not use a variable
to reference any arguments.

5.1 Storing non-LATEX code

The final argument to \perlnewcommand is a block
of Perl code which will almost certainly cause errors
if evaluated by LATEX. Storing this Perl code in a
macro is similar to outputting non-LATEX code using
the \verb macro. The difference is that \verb does
not need to store its argument.

The solution taken by perltex.sty works as
follows. First, \perlnewcommand is defined to
read one fewer argument than actually needed;
the Perl code is considered the first piece of
text following \perlnewcommand’s argument list.
\perlnewcommand’s last action is to begin a new
variable scope with \begingroup and, within that
scope, set the TEX category codes for all characters
to “other” (i.e., 12) to prevent “%”, “$”, “\”, and
so forth from being treated specially. The only ex-
ceptions are that “{” and “}” retain their original
meanings so that TEX brace-counting will indicate
when the Perl code has ended. Also, the end-of-line
character is made significant because it has meaning
within a Perl string.

The next task involves figuring out how to store
the Perl code following \perlnewcommand and then
reset all of the category codes back to their prior
values. The trick that perltex.sty relies upon is
the TEX \afterassignment primitive, which speci-
fies a command to execute after the next assignment
takes place. The following are the last two lines of
\perlnewcommand’s implementation:

\afterassignment\plmac@havecode
\global\plmac@perlcode

In other words, the \plmac@havecode macro
should be executed after the next assignment. Then,
\perlnewcommand ends with an assignment to the
global token register \plmac@perlcode. The right-
hand side of the assignment is the block of Perl
code, which is already within a pair of curly braces,
as required by a token-register assignment. After
the assignment takes place, control automatically
transfers to the \plmac@havecode macro. Before

TUGboat, Volume 25 (2004), No. 2 157

changing category codes, \perlnewcommand began
a new scope with \begingroup; \plmac@havecode
resets the category codes by executing the match-
ing \endgroup. The result is that the Perl code is
stored unevaluated in the \plmac@perlcode token
register, as desired, and LATEX can continue compil-
ing the user’s document.

\def\plmac@havecode{%
...

\let\plmac@hash=\relax

\plmac@argnum=\@ne

\loop

\ifnum\plmac@numargs<\plmac@argnum

\else

\edef\plmac@body{%

\plmac@body

\plmac@sep\plmac@tag\plmac@sep

\plmac@hash\plmac@hash

\number\plmac@argnum}%

\advance\plmac@argnum by \@ne

\repeat

\let\plmac@hash=##%
...

}

Figure 8: perltex.sty code that iterates over
macro arguments

5.2 Iterating over macro arguments

One limitation of TEX’s macro-processing facility is
that macro arguments must be referred to by a lit-
eral argument number. Hence, “#2” is acceptable
but \newcommand*{\whicharg}{2} followed inside
a macro definition by “#\whicharg” results in an
“Illegal parameter number” error. Even worse,
the error occurs at macro-definition time; even if a
macro containing “#\whicharg” is never invoked it
will still cause TEX to report an error and abort.

Fortunately, the aforementioned limitation is
not insurmountable but it does require a bit of trick-
ery. The solution is to replace “#” with a control
sequence that is let-bound to \relax. TEX does not
expand such control sequences. After the macro is
defined, the control sequence can then be let-bound
to #, making it work as desired.

There are two caveats to this approach. First,
can be used only within a macro definition; hence,
the macro definition must itself be within a macro
definition in order for the let-binding to succeed.
Second, when the macro is executed, # must be
followed by a literal argument number. The let-
binding trickery merely delays the literal-number

check from definition time to execution time —but
this is sufficient for the purpose of accessing a
variable-numbered macro argument. Careful use of
\edef and \noexpand can then make it possible to
iterate over macro arguments, as desired.

Figure 8 presents an excerpt of code from
perltex.sty which constructs a \plmac@body
macro that references in turn each argument
from 1 up to \plmac@numargs. In this code,
\plmac@hash is the placeholder for the # character
and \plmac@argnum is the argument number, which
varies from 1 to \plmac@numargs. In each iteration
of the loop, \plmac@body is redefined as the con-
catenation of its old value, a carriage-return charac-
ter (\plmac@sep), a unique tag as described in Sec-
tion 4, another carriage-return character, and “##”
(doubled because the \edef is nested within another
macro) followed immediately by the argument num-
ber. Only at the end of the loop, after \plmac@body
has its final contents, is \plmac@hash set to an ac-
tual # character (written as “##” because it occurs
within the definition of \plmac@havecode).

6 Processing Perl code

While perltex.sty contains rather complex LATEX
code, perltex.pl contains fairly straightforward
Perl code. perltex.pl’s basic structure is as fol-
lows:

1. Parse the command line.
2. Create a secure sandbox in which to execute

Perl code coming from the document.
3. Spawn a latex process, passing it a variety of

macro definitions in addition to the name of
the user’s LATEX source file.

4. Repeatedly poll for new Perl code to execute,
execute that code in the secure sandbox, and
return the (LATEX) result.

perltex.pl uses the Safe and Opcode mod-
ules to create a secure sandbox in which to execute
code. The idea behind a sandbox is that it lim-
its the types of code that can be executed. Code
deemed too dangerous to run (e.g., an attempt to
delete a file or to kill a running process) produces
a run-time error. Sandboxing the code passed from
LATEX to perltex.pl enables users to build a Perl-
TEX document created by a third party without
having to worry about it containing malicious or
otherwise destructive Perl code. The default set
of sandbox permissions is Opcode’s “:browse” per-
missions, which enable the core Perl language fea-
tures such as arrays, loops, variable assignment, and
function definitions, but forbid creating and open-
ing files, spawning child processes, communicating

158 TUGboat, Volume 25 (2004), No. 2

with other processes, and performing most other in-
put/output functions. A command-line option se-
lectively enables individual functions or groups of
functions. (Another command-line option disables
sandboxing altogether, although this is not gener-
ally recommended.)

After spawning latex (alternatively, pdflatex,
elatex, vlatex, or any other LATEX compiler),
perltex.pl makes that the foreground process,
leaving itself in the background. Doing so makes
it possible for latex to run interactively (e.g., when
encountering an error), which it could not do as eas-
ily as a background process.

Finally, perltex.pl enters a loop in which it
polls the filesystem for incoming Perl code, executes
the code, and returns the (LATEX) result via the
filesystem. The LATEX/Perl communication proto-
col is as described in Section 4. The loop terminates
when the latex process exits.

7 Future work

Although PerlTEX performs its tasks reliably, there
are a variety of avenues for future expansion
and enhancement, mostly suggested by PerlTEX
users. First, while PerlTEX’s \perlnewcommand,
\perlrenewcommand, \perlnewenvironment, and
\perlrenewenvironment macros provide a faith-
ful Perl analogue to LATEX’s command- and
environment-defining macros, a useful addition
would be a way to execute Perl code directly. Such a
feature would be useful when writing Perl code that
is executed only once, such as program initialization
or generation of a particularly unique list, table, or
equation.

The performance of the PerlTEX implementa-
tion could be improved. Although filesystem-based
communication between LATEX and Perl is portable,
file activity— especially over a remote filesystem —
can be a performance bottleneck when compiling
PerlTEX-intensive documents.

One alternative to using the filesystem is to
communicate using standard input and standard
output. There are two challenges in implement-
ing this approach. First, TEX lacks a mechanism
to explicitly flush standard output. Depending on
how latex is implemented, a deadlock can result if
LATEX sends a command to Perl and blocks waiting
for the result while Perl never sees the command
because the standard-output buffers have not been
flushed. Second, maintaining support for user in-
teraction (e.g., to diagnose error conditions) may be
complicated if PerlTEX needs to compete with the
user for control over standard input and standard
output.

A second alternative to filesystem-based com-
munication is to use named pipes, an internal
operating-system data structure for interprocess
communication. A problem with named pipes is
that they are not as portable as files; not every op-
erating system supports named pipes or implements
them in the file namespace (i.e., they might be ac-
cessed via a different interface, making them inac-
cessible to TEX). In addition, while Perl can cre-
ate named pipes, TEX cannot. This restriction may
limit their usefulness in the context of PerlTEX.

Finally, a meaningful follow-on to PerlTEX
would be an 〈anything〉TEX system. Most of
PerlTEX’s magic is in the extension-language-
independent perltex.sty file. The Perl-specific
perltex.pl file performs only simple file and string
manipulation and should easily be portable to any
other programming language. Users could then
write LATEX macros in the language (or languages)
with which they are most comfortable.

8 Conclusions

As this article has demonstrated, PerlTEX takes a
practical, portable approach to augmenting TEX’s
typesetting finesse with Perl’s power in string ma-
nipulation and general-purpose programming. The
importance of PerlTEX’s design —a Perl “server”
that accepts Perl input and produces LATEX out-
put — is that it enables two-way communication be-
tween LATEX and Perl. As Section 1.2 demonstrated,
LATEX can invoke a Perl subroutine which can pro-
duce LATEX code that itself invokes a Perl subroutine
which outputs some final LATEX code. Support for
this dynamic usage model is a clear advantage of
PerlTEX over a custom Perl script which generates
a static LATEX document. By exploiting Perl’s sand-
boxing features, users can compile PerlTEX docu-
ments written by others without fear of their system
being harmed by malicious Perl code.

A key design decision in PerlTEX’s implemen-
tation was to keep the perl and latex programs
largely decoupled. The advantage of decoupling
the two programs is that PerlTEX remains com-
patible with every underlying TEX variant —TEX,
pdfTEX, ε-TEX, pdf-ε-TEX, Ω, etc. — and does not
require the user to recompile the base TEX exe-
cutable or re-dump a LATEX2ε format. The disad-
vantages are that Perl cannot directly access TEX’s
internals and that TEX can communicate with exter-
nal applications only via the filesystem (not count-
ing the security-risk-prone \write18 mechanism or
by revoking user control over standard input and
standard output). This article has presented a
filesystem-based communication protocol that en-

TUGboat, Volume 25 (2004), No. 2 159

ables LATEX and Perl to communicate even though
the two systems are asymmetric in terms of the types
of file operations each supports. Even though TEX
cannot, for example, delete a file, the protocol en-
sures correct behavior, including in the presence of
mutually recursive LATEX and Perl routines such as
those utilized in Section 1.2.

Finally, this paper presented solutions to two
challenging LATEX puzzles: how to store and manip-
ulate syntactically incorrect LATEX code; and, how
to iterate over a variable number of macro argu-
ments. The former problem is solved using a token-
register assignment at the end of a macro call with
\afterassignment used to transfer control to a con-
tinuation macro. The latter problem is solved using
a control sequence bound to \relax while defining a
macro but bound to # afterwards. Neither of those
techniques is specific to PerlTEX; advanced LATEX
users can readily employ them in their own macros.

In summary, PerlTEX combines Perl’s fortes of
string manipulation, regular-expression processing,
and general programmability with LATEX’s typeset-
ting capabilities. A few lines of PerlTEX can easily
replace their much longer, more complex equivalent
coded in ordinary LATEX. PerlTEX thereby makes
sophisticated LATEX macro programming more ac-
cessible to the novice and more convenient for the
advanced user.

The PerlTEX distribution is available for
download from CTAN at http://www.ctan.org/
tex-archive/macros/latex/contrib/perltex/.

9 Acknowledgments

The author would like to thank all of the people
who have provided feedback, suggestions, and bug
reports for PerlTEX including Andrei Alexandrescu,
José Pedro Oliveira, Fernando P. Schapachnik, Ivo
Welch, James Quirk, Michele Dondi, Hans Fredrik
Nordhaug, and everyone else who helped make Perl-
TEX a success. Also, thanks to James Quirk for
critiquing the PerlTEX examples originally used in
this paper’s Introduction section.

References

[1] Jonathan Fine. PyTEX: Python plus TEX.
http://www.pytex.org/.

[2] Jonathan Fine. TEX as a callable function. In
Proceedings of the 13th European and 10th Polish
TEX Conference (EuroBachoTEX 2002), pages
26–35, Bachotek, Poland, April 29–May 3,
2002. Available from http://www.pytex.org/
doc/euro2002.pdf.

[3] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1986. ISBN 0-201-13447-0.

[4] Oleg Paraschenko. sTEXme: TEX + Scheme.
http://stexme.sourceforge.net/.

[5] James J. Quirk. Programming dynamic LATEX
documents. In Proceedings of the 24th Annual
Meeting and Conference of the TEX Users Group
(TUG 2003), Waikoloa, Hawai‘i, July 20–25,
2003. Slides available from http://www.tug.
org/tug2003/bulletin/highlights/slides/
2 Monday/4 Quirk/4 quirk.pdf.

[6] Alexander Shibakov. PerlTEX—a fusion
of Perl and TEX via Web2C. http:
//www.math.tntech.edu/alex/.

[7] Dorai Sitaram. TEX2page. http://www.ccs.
neu.edu/home/dorai/tex2page/.

� Scott Pakin
4975 S. Sol
Los Alamos, NM 87544-3794, USA
scott+tb@pakin.org

http://www.pakin.org/~scott

http://www.ctan.org/tex-archive/macros/latex/contrib/perltex/
http://www.ctan.org/tex-archive/macros/latex/contrib/perltex/
http://www.pytex.org/
http://www.pytex.org/doc/euro2002.pdf
http://www.pytex.org/doc/euro2002.pdf
http://stexme.sourceforge.net/
http://www.tug.org/tug2003/bulletin/highlights/slides/2_Monday/4_Quirk/4_quirk.pdf
http://www.tug.org/tug2003/bulletin/highlights/slides/2_Monday/4_Quirk/4_quirk.pdf
http://www.tug.org/tug2003/bulletin/highlights/slides/2_Monday/4_Quirk/4_quirk.pdf
http://www.math.tntech.edu/alex/
http://www.math.tntech.edu/alex/
http://www.ccs.neu.edu/home/dorai/tex2page/
http://www.ccs.neu.edu/home/dorai/tex2page/

	Introduction
	A simple example
	A more complex example

	Design decisions
	Related work
	Communication between LaTeX and Perl
	Defining Perl macros from LaTeX
	Storing non-LaTeX code
	Iterating over macro arguments

	Processing Perl code
	Future work
	Conclusions
	Acknowledgments

