
Batch Commander: A graphical user interface for TEX

Kaveh Bazargan
River Valley Technologies
kaveh@river-valley.com

1 Introduction

A constant criticism of TEX is that it is not user-
friendly. In today’s computer environment, users
expect to be able to click buttons and choose menus,
and to see a result immediately. Of course we know
that TEX is a mark-up language, and there is no way
that all of TEX’s power can be accessed via menus
and buttons. But with some limitations, it turns out
that a graphical user interface (GUI) can be useful.
In this article I will describe my attempt at such a
GUI, which I have called Batch Commander.

2 Why Batch Commander?

When I first started on this project, I chose a name
with ‘TEX’ in it. Then I realised that the GUI need
not be restricted to TEX, but can be used with other
programs that take text as input and produce graph-
ical output. (The TEX preview is indeed a graphi-
cal output, even though it contains mainly text.) I
have already used the GUI successfully with Povray
(http://www.povray.org), and I believe it can be
used with MetaPost.

Using the Batch Commander with different pro-
grams is simple, given the appropriate setup. When
the main file is chosen from the pop-up menu, the
file extension tells Batch Commander which program
should be used. If the extension is .tex, then it
knows that the config file (we’ll come to this later)
must have a .sty extension, and that the file should
run through TEX. But if it has a .pov extension,
then it will use .inc for the extension of the config
file, and run Povray on the main file.

3 Limitations

Let’s look at the limitations within which we will be
working.

3.1 Use only global controls

Batch Commander will only be used to apply global,
as opposed to local controls. Thus, we will be able
to change parameters such as \baselineskip and
\textwidth, which apply to the whole document,
but we cannot use a command like \emph{}, which
applies to part of the document. So in principle, we
can design a whole class file, but we cannot apply a
style to a particular section of the text.

3.2 Use LATEX

Although the program I will describe can be ap-
plied to any TEX program, e.g. plain TEX or Con-
TEXt, I will only consider a standard LATEX file. We
will use the predictable structure of a LATEX file to
our advantage. We will be able to load packages
and modify the options, and we’ll also be able to
load any TEX command or primitive just after the
\begin{document}.

4 File structure

Let us consider the minimal LATEX file shown in fig-
ure 1(a). There are two areas of ‘global controls’
which affect the output in this file:

1. The packages loaded, and their options;
2. (LA)TEX commands such as \baselineskip...,

which come after the \begin{document}.
Let us make this file simpler by putting all global
controls into another style file. Figure 1(b) shows
this simplification by introducing another file called
river_valley.sty. (The \AtBeginDocument{...}
command ensures that anything enclosed within the
braces is read only after \begin{document}.)

Separating the document file from the ‘control-
ling’ file means that once we have decided on a set
of controls, they can be easily applied to other doc-
uments.

5 The overall concept

Our goal is to have a GUI that allows us to control
of the contents of river_valley.sty interactively,
have the file saved to disk, run the main file through
TEX immediately, and finally show the preview.

The operating system I have used is Macintosh
OS X (Tiger). As far as possible I have tried to keep
the components of the system platform independent,
so that it can be ported easily to other systems.

5.1 Controls

Figure 2 shows the process of typesetting a file us-
ing the controls of a GUI. By ‘controls’ we mean
graphical objects such as buttons and menus which
take the place of editing a text file. This is how the
process works:

• The user makes a change to a control, e.g. types
in a number, or clicks a checkbox;

74 TUGboat, Volume 26 (2005), No. 1 —Proceedings of the Practical TEX 2005 Conference



Batch Commander: A graphical user interface for TEX

\documentclass{article}

\usepackage{river_valley}

\begin{document}

\section{Introduction}

This is the main text....

\end{document}

\usepackage[
            a4paper,
            textwidth=10.0cm,
           ]{geometry}
...
\usepackage[
            pdftex,
            linkcolor=red,
           ]{hyperref}

\AtBeginDocument{
  \baselineskip = 12pt
  \hyphenpenalty = 50
  ...      }

\documentclass{article}

\usepackage[
            a4paper,
            textwidth=10.0cm,
           ]{geometry}
...
\usepackage[
            pdftex,
            linkcolor=red,
           ]{hyperref}

\begin{document}

\baselineskip = 12pt
\hyphenpenalty = 50
...

\section{Introduction}

This is the main text....

\end{document}

(a) (b)

Figure 1: Simplifying the main file by putting all ‘controls’ in an external style file. (a) The original file;
(b) the new main file which reads in an external ‘controlling’ file at run time.

• the system immediately writes out a ‘config’
file, in our case ‘river-valley.sty’;

• the main file is run through TEX,
• the screen preview is shown.

The idea is that the user sees only the controls,
and the final screen preview, not the intermediate
text files, unless he/she expressly wishes to.

6 Programming tools

6.1 The GUI

The GUI needs to be completely flexible, and have
the following facilities:
• Buttons, pop-up menus, and a rich mix of other

interactive features to allow efficient control of
values for parameters, choice of options, etc.

• ability to read and write text files;
• ability to communicate with other programs;
• be easy to program
• be easily portable to different platforms.

I chose the Runtime Revolution product (http:
//www.runrev.com) for the development environ-
ment. Revolution is a successor of Apple’s Hyper-
Card, which was a highly innovative scripting pro-
gram written by Bill Atkinson, but which was ne-
glected by Apple over the years, and effectively died

a slow death. (In my opinion the ‘killing off’ of
HyperCard was one of Apple’s worst decisions.) My
familiarity with HyperCard allowed me a quick start
in Revolution, and it has worked extremely well so
far, with no major drawbacks.

An advantage of Revolution is that it is cross-
platform, so the majority of the work writing the
GUI need not be duplicated for other platforms.

6.2 Communication of Batch Commander
with TEX

After the interactive changes have been made, TEX
needs to be told to run the file and to show the pre-
view. For this stage I used the scripting language
of Revolution, i.e. Transcript, together with a mix-
ture of shell scripts and AppleScript. This is the
main area where each platform would need its own
support.

6.3 TEX implementation

I used pdfTEX exclusively for typesetting the TEX
files. So when a document is typeset, a PDF file is
produced in a single step. One reason for this is that
we want to embed PDF-specific items, and we want
to test that they are recorded correctly. pdfTEX
allows the fastest route to the generation of PDF.

TUGboat, Volume 26 (2005), No. 1 —Proceedings of the Practical TEX 2005 Conference 75



Kaveh Bazargan

\usepackage[
            a4paper,
            textwidth=10.0cm,
           ]{geometry}
...
\usepackage[
            pdftex,
            linkcolor=red,
           ]{hyperref}

\AtBeginDocument{
  \baselineskip = 12pt
  \hyphenpenalty = 50
  ...       }

\documentclass{article}

\usepackage{river_valley}

\begin{document}

\section{Introduction}

This is the main text....

\end{document}

Invi
sible

 to 

user

Figure 2: The process of using a GUI to modify the global parameters of a typeset document.

6.4 TEX preview

I found TeXShop the most convenient way of view-
ing the PDF file, with minimal time delay and screen
flicker. But in order to check hyperlinks, I used
Adobe Acrobat Standard 7.0. A checkbox in Batch
Commander allows this choice.

7 A detailed look at controls

When we examine what controls should look like in
Batch Commander, and what they should look like
in the output, i.e. in the config file, we find that they
can be classified in two ways, according to (1) how
they should look in the GUI, and (2) how they should
appear in the config file. Figure 3 shows some ex-
amples of controls. Let us examine the four controls
shown:

1. The first line shows a control that uses a pop-
up menu to allow a choice between ‘landscape’
and ‘portrait’. We call this type of control
‘choice’. In the config file, it is normally given
as one of the options to a style, i.e. in square
brackets. We will call such an output form
‘option’.

2. The second line allows selection from a list of
colors, and might have the color shown next
to it. This is similar to choice, and we call
it ‘choice color’. The output is not just the
selected item, as in the first line, but has to be

Choice

Choice 

color

Number

Toggle

[portrait]       option

[linkcolor=red]  option w. value

[textwidth=10cm] option w. value

[pdftex]         option

Figure 3: Classification of ‘controls’ according to
selection method, and output form.

given as a key-value pair. We call this output
form ‘option with value’.

3. The third line is very different, in that a value
needs to be entered into a field. There may
also be a unit to append to the value, as in this
case. So the user chooses a value, and selects
the unit too. We can call this type of control
a ‘Number’. The output is as the previous case,
i.e. ‘option with value’. As there is a unit
assigned in this case, this is appended.

4. The fourth line shows yet another type of con-
trol, namely an on/off button. This we call a
‘toggle’. In this case the output form is again
option.

76 TUGboat, Volume 26 (2005), No. 1 —Proceedings of the Practical TEX 2005 Conference



Batch Commander: A graphical user interface for TEX

Figure 4: Attributes of controls.

The point to note is that each control can have
different output forms, but the same type on the
GUI. Equally, two controls might have different
forms for selection, but the same output form. We
will see later that this classification is useful in gen-
erating the controls automatically.

Having looked at the type of the control and
the output form, let us look at other attributes of a
control, so that we can define clearly what a control
should look like. Figure 4 shows some attributes
which a control might have. Here is a comprehensive
list of the possible attributes of a control:

7.1 Group

When there are a lot of controls, it is convenient
to group them together logically, so that only a se-
lected number of controls are visible at any time.
So we should make each control be associated with
a particular group.

7.2 Name

Each control has a name. Depending on the output
form, the name may or may not be written to the
config file.

7.3 Description

It is useful to have a short description of each con-
trol, in order to remind the user what the control
does. This might be shown permanently on the GUI,
or might be a tooltip or a pop-up field.

7.4 Selection type

This is what we discussed above. It might, for ex-
ample, be choice, number, or toggle.

7.5 Output form

As discussed above, the output form determines how
the data corresponding to the control is written to
the config file, e.g. option.

7.6 Position

The data from each control is normally written ei-
ther as an option to a style file, within square brack-
ets, or in an \AtBeginDocument{...} command.
So the value given to position is either package or
begindoc.

7.7 Unit

A control may or may not have a unit associated
with it.

7.8 Minimum and maximum values

These apply in the case of number controls, where a
value needs to be chosen from a range of numbers.

7.9 Choices

If the selection type is choice, then the list of pos-
sible choices must be specified.

7.10 Default value

This is the default, either of a numerical value, or
from a list of choices. If the user does not interact
with the controls, this is the value written.

7.11 Increment

For numerical values, this is the increment between
successive values offered to the user as choices.

7.12 Decimals

This determines how many decimal units are dis-
played for numerical values of a particular control.

8 General anatomy of the GUI

Figure 5 shows the main overall control area of Batch
Commander. The controls for a specific style file ap-
pear below this area. By looking at these overall
controls, we can get a feel for the functionality of
the GUI.

The top left pop-up button selects the main
LATEX file which is to be typeset (figure 6). This
file will be opened, and all current settings will be
applied to it. If a file is not in the list of available
.tex files, then by choosing New..., the file and its
path will be added to the list.

TUGboat, Volume 26 (2005), No. 1 —Proceedings of the Practical TEX 2005 Conference 77



Kaveh Bazargan

Figure 5: Main anatomy of Batch Commander.

Figure 6: Choosing the main LATEX file.

The top right button determines whether any
changes made should be applied immediately to the
config file (river_valley.sty), or only after the
user clicks the run button (figure 7). (On slower sys-
tems, the Delayed option is best.) With Immediate
selected, as soon as any control is clicked, a new con-
fig file is written, and the LATEX file is run to show
the preview. The style management button is used
to make style files available to the user (figure 8).

When a style file is available, it is included in
the list of checkboxes just below it. Whether it is
‘loaded’, i.e. included in the config file, depends on
whether the checkbox is ticked (figure 9). Further-
more, the style file will be written out in the order
that they appear in the GUI, i.e. controls.sty first,
and geometry.sty last. There is an intuitive mech-
anism to reorder the styles, by simply dragging them
on the screen.

If the Friendly mode button is not checked,
then each control for a style will have the actual
name of the control shown, i.e. the name that will
be written to the config file, and holding the mouse
over this name shows the ‘description’, i.e. a short
explanation of what the control does. Checking the
Friendly mode button reverses this mode. See fig-
ures 10 and 11. This is simply a user preference
which does not affect the functionality of the GUI.

Figure 7: Immediate or delayed application of
changes.

Figure 8: Managing style files available to the
user.

Figure 9: Four style files are available to the user.
The three that are checked will be written to the
config file, together with their options.

Figure 10: Normal mode.

Figure 11: Friendly mode.

78 TUGboat, Volume 26 (2005), No. 1 —Proceedings of the Practical TEX 2005 Conference



Batch Commander: A graphical user interface for TEX

Figure 12: A data file for geometry.sty. The set of controls to be included can be easily modified.

Figure 13: The controls generated using
geometry.data shown in figure 12. Notice that
only the ‘geometry’ group is checked and visible.

The Use Acrobat button, when checked, shows
the typeset preview using Adobe Acrobat Reader.
Otherwise TeXShop is used for preview.

9 Generating the style controls

The underlying idea is that each style file has an
associated set of controls. So we want it to be easy
to create a set of controls when a style file is ‘loaded’.

The method I have used is to create a .data
file which has all the information about the control.
This file is read by Batch Commander when a style
file is loaded, and the controls are created immedi-
ately. The data file is simply a tab-delimited text
file which contains a list of the controls, with all the
attributes discussed above.

Figure 12 shows an example data file; in this
case, the file is geometry.data, containing the con-
trol data for geometry.sty. It is important to note
that the .data file is not definitive for each style
file, and is ‘designed’ by the person who writes it.
In this case I decided that the six entries under the
the_name column were the controls I needed for my
purposes. Another user might require a different set
of controls.

Figure 14: As figure 13, but with both ‘geometry’
and ‘Page’ groups shown

9.1 The data file

The way the data file is read in and interpreted can
be best understood by examining figure 12, and the
resulting GUI pages shown in figures 13 and 14. (To
retain a reasonable text size, some of the items have
been truncated, but it should be obvious what they
are.) Here are some features of the data file:

• The first column is reserved for the group name.
All rows between a group name and the first
occurrence of ‘======’ are considered to be in
that group. By grouping controls together, we
can show only those groups we are interested in
at one time.

• Apart from the first column, which denotes the
grouping, all other columns can be written in
any order. The system reads the title of the
column in the first row, and thereafter assigns
the correct attribute to each control.

• A single dash in a cell denotes ‘not applicable’.
For example a toggle control cannot have min-
imum and maximum values. There must be no
empty columns.

• If a description is more than one word, then
it must be enclosed in double quotation marks.

TUGboat, Volume 26 (2005), No. 1 —Proceedings of the Practical TEX 2005 Conference 79



Kaveh Bazargan

Figure 15: Choosing a different style file
(controls.sty), and revealing a new set of style
controls.

The data file needs to be written manually, but
only once for each style file.

10 Using the controls

The controls have been designed to be used intu-
itively and quickly. Pop-up menus in choice-type
controls, for instance, are set using the mouse, while
number-type controls can be set in a variety of ways:
(1) direct input from the keyboard; (2) up and down
arrows for increasing and decreasing the value; and
(3) choosing a value from a small pop-up box. In
cases (2) and (3), the change is determined by the
increment value set in the data file.

The controls for each style file are shown on a
separate page, or ‘card’, as each record is called in
Revolution. By selecting the required style file from
a pop-up menu on the left, the card corresponding
to that style is shown. The main controls at the top
remain, but the relevant style controls now appear
below them, as can be seen in figure 15.

11 Writing the config file

When Batch Commander writes out the config file,
it goes through each card (i.e. style file) in turn,
gathers the data from the controls on that card, and
then appends the data to the config file, to obtain
a file as shown in figure 1(b). Figure 16 shows a
typical config file. If Immediate is switched on, then
as soon as any control is modified, the whole process
of writing out the config file is redone, and the main
file is run through TEX, in our case using TeXShop.

Page 1 of 1river_valley.sty
Saved: Thursday, July 21, 2005 22:15:36

%-------------------- controls --------------------
\usepackage[
           ]{controls}

\AtBeginDocument{
                 \hyphenpenalty=50               %
                 \exhyphenpenalty=50             %
               
                 ...
               
               \delimitershortfall=5pt         %
                }

%-------------------- hyperref --------------------
\usepackage[
            pdftex,                              %
            a4paper,                             %
            
            ...
            
            filebordercolor=blue,                %
           ]{hyperref}

%-------------------- geometry --------------------
\usepackage[
            portrait,                            %
            a4paper,                             %
            textheight=20.0cm,                   %
            textwidth=10.0cm,                    %
           ]{geometry}

Figure 16: A typical config file.

This works quite well, and does not seem to slow
down the interactive facility. If the user manipulates
the controls before the end of the cycle of writing
the file and running TEX, then the cycle is silently
abandoned and restarted.

12 Status of Batch Commander

At the time of writing, the program is at an ‘alpha’
stage. When set up, it works well and with very
fast feedback, but it needs work in several areas, in
particular:

• Improving its general stability and reliability
• Some support for undoing actions
• Ability to read data from a config file and set

controls according to it
• Support for flexible file management, directory

structures, etc.
• Porting to different platforms, for which I will

need the help of others.
• Improving the structure of the date file, in par-

ticular obviating the need for the ‘======’, and
allowing empty columns without a dash.

13 Availability

The program will be made available free of charge,
although the license has not been finalized yet. If
you would like to use the program, please mail the
author.

80 TUGboat, Volume 26 (2005), No. 1 —Proceedings of the Practical TEX 2005 Conference


