
Strategies for including graphics in LATEX documents

Klaus Höppner
Nieder-Ramstädter Str. 47
64283 Darmstadt
Germany
klaus.hoeppner@gmx.de

Abstract

This talk presents strategies for including graphics into LATEX documents. It
shows the usage of the standard graphics packages of LATEX as well as an intro-
duction to different graphics formats. Some external tools for converting graphics
formats are discussed.

Overview of graphics formats

In general, there exist two kinds of graphics for-
mats: vector and bitmap graphics. For bitmaps,
there exist different flavors: no compression (which
can make your files truly huge, dependent on reso-
lution and color depth, so I won’t cover them from
here on), compression methods which completely
preserve the image quality while reducing the data
size, and “lossy” compression methods which cause
a consequent reduction in image quality.

So let’s go more into detail:

Vector graphics are set up by drawing or filling
geometrical objects such as lines, Bézier curves,
polygons, circles and so on. The properties of
these objects are stored mathematically. Vector
graphics are in general device independent. It
is easy to scale or rotate them without loss of
quality, since the job of rasterizing them into
actual pixels is done by the printer or printer
driver.

Bitmaps without lossy compression store the
image information as pixels, each pixel of a
given color. In principle, the quality of a bit-
map becomes better with increased resolution

Figure 1: Zoomed view into a sample image as
vector graphics (left) and bitmap (right).

Figure 2: A low
quality JPEG image
showing some artifacts
at the transition
between black and
white.

and color depth (e. g. GIF files use a color depth
of 8 bits, leading to 256 different indexed col-
ors while a bitmap with 24 bit color depth can
have about 16 million colors). Scaling and ro-
tating bitmap images will yield a loss of quality,
and printing bitmaps to a device with a differ-
ent resolution can produce bad results. Fig. 1
shows the difference between a scaled image as
vector and bitmap graphics.

Bitmaps with lossy compression use the fact
that the human eye is fairly good at seeing
small differences in brightness over a relatively
large area, but not so good at distinguishing
the exact strength of a high frequency bright-
ness variation. For this reason, components
in the high frequency region can be reduced,
leading to smaller file sizes. This works well
for photographs that usually contain smooth
transitions in color, but for graphics with a
sharp border, artifacts can occur, as shown in
fig. 2. The most prominent graphics format us-
ing lossy compression is JPEG.

Graphics formats in practice

There exist very many graphics formats, so I will
concentrate on a few of those most often used:
EPS is the encapsulated PostScript format. It is

mostly used for vector graphics but can also
contain bitmaps.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 59

Klaus Höppner

PNG is the portable network graphics format. It
was introduced due to the problem that Unisys
claimed a patent for the compression algorithm
used in GIF format. For this reason, it is of-
ten used nowadays on web pages. PNG is a
bitmap format that supports compression both
with and without loss of image quality.

JPEG is a bitmap format with lossy compression
and is often used for photographs (e. g. most
digital cameras produce JPEG files).

TIFF is a bitmap format sometimes used for high
quality pictures — in part because it supports
the CMYK color space important especially for
commercial printing.
Now the question is: What format shall I use for

what purpose? Though there is no one true answer
to this question, my advice is as follows:

1. For drawings (e. g. technical drawings or data
plots) use vector graphics. It gives you maxi-
mum freedom to manipulate the image when in-
cluding it into a document where you often need
to scale the image to fit into your layout. Addi-
tionally, it is independent of the output device,
and thus you can zoom into the image in your
document viewer without seeing single pixels.

Drawing tools offered by TEX distributions —
notably PSTricks and METAPOST — can usu-
ally produce EPS output natively. Most vec-
tor drawing programs like xfig and Corel Draw
also offer export functionality for producing EPS

output (though sometimes buggy).
2. If you are stuck with bitmaps, use PNG for im-

ages with sharp color transitions, such as black
and white boundaries.

3. For photographs, you can use JPEG in most
cases, since the quality loss by compression is
normally imperceptible when printed. On most
devices, a resolution of 100 to 200 dpi will be
sufficient (remember that screen resolution is
normally about 75 to 100 dpi, and color printers
claim to have high resolutions but dither color
prints, so you will hardly notice the difference
compared to JPEGs with higher resolution).

The LATEX graphics package

Since the introduction of LATEX 2ε, the graphics
bundle is part of the standard package set accom-
panying the LATEX base distribution [1]. It consists
of two style files, graphics.sty and graphicx.sty.
While graphics.sty requires the use of \scalebox
and \rotatebox for scaling or rotating graphics,
the extended style graphicx.sty supports scaling
and rotating using the keyval package, which pro-

vides a convenient interface for specifying parame-
ters. In general, there is no reason not to always use
graphicx.sty.

So the first step is to load the graphicx style
file after the \documentclass statement:
\usepackage{graphicx}

In fact, the TEX compiler doesn’t know any-
thing about graphics, and including them is done
by the DVI driver. So the graphicx package has to
do two things:

1. find the bounding box of the image (this can
be troublesome when you have e. g. an EPS file
created by an application that wrote a wrong
BoundingBox comment — in this case, it can be
helpful to put the \includegraphics command
into an \fbox to find out what graphicx thinks
about the bounding box);

2. produce the appropriate \special for the out-
put driver; thus, the usage of the graphics bun-
dle is driver dependent.
Nowadays, there are two main workflows for

producing documents: using latex to produce a
DVI file and then dvips for converting it to Post-
Script, and using pdflatex to produce a PDF file.
Most modern TEX systems are configured to au-
tomatically check whether you are using latex or
pdflatex and producing dvips \specials in the
first case and the appropriate \pdfimage commands
in the second case. So if you are using one of the
above workflows, you shouldn’t need to specify your
output backend explicitly. If you are using another
backend you have to specify it as an option, e. g.
\usepackage[dvipsone]{graphicx}

(for the Y&Y dvipsone driver), but be aware that
other backends often don’t support scaling or ro-
tating. For example, DVI previewers like xdvi or
windvi try to interpret the dvips specials, but rota-
tions may not be displayed properly in DVI preview.

After the package is loaded, to include an image
simply use:
\includegraphics{sample}

Please notice that no extension for the file was
given. The explanation why will follow later. In
the case of using \includegraphics without op-
tions the image is included at its natural size, as
shown above. When using the graphicx style, you
can scale your image by a factor:

60 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Strategies for including graphics in LATEX documents

\includegraphics[scale=0.5]{sample}
\includegraphics[scale=1.2]{sample}

Another option supports rotating an image:
\includegraphics[angle=30]{sample}
\includegraphics[angle=-10]{sample}

Positive numbers lead to counterclockwise ro-
tation, negative numbers to clockwise rotation. The
origin for the rotation is the lower left corner of the
image, so in the clockwise rotation above the result
has not only a height but also a depth below the
baseline (as shown by the rules).

Images can not only be scaled by a given fac-
tor, you can specify a height and/or width for the
resulting image instead:
\includegraphics[width=2cm]{sample}
\includegraphics[height=1.5cm]{sample}

height gives the height above the baseline. If
your image has a depth, you can use totalheight
instead, i. e. the sum of height and depth will be
scaled to the given length.
\includegraphics[angle=-30,height=1cm]

{sample}
\includegraphics[angle=-30,

totalheight=1cm]{sample}

You can specify both width and height. In
this case your image may be scaled differently in
horizontal and vertical direction, unless you use the
keepaspectratio option:
\includegraphics[width=1.5cm,height=1.5cm]

{sample}
\includegraphics[width=1.5cm,height=1.5cm,

keepaspectratio]{sample}

Source Target Tool

latex+dvips

EPS directly supported
PNG EPS ImageMagick/netpbm
JPEG EPS ImageMagick/netpbm
TIFF EPS ImageMagick/netpbm/tif2eps

pdflatex

PDF directly supported
EPS PDF epstopdf
PNG directly supported
JPEG directly supported
TIFF PNG ImageMagick/netpbm
TIFF PDF tif2eps+epstopdf

Table 1: Conversion of graphics formats supported
by latex+dvips and pdflatex.

Please notice that usage of angle and width or
height is sensitive to the order in which the options
are given. Specifying the angle first means that your
image is rotated first and then the rotated image is
scaled to the desired width or height, while specify-
ing a width or height first will first scale the natural
image and rotate it afterwards.

Supported graphics formats

To make things a bit more complicated, latex with
dvips and pdflatex support different graphics for-
mats:

• latex+dvips: EPS

• pdflatex: PDF, PNG, JPEG, MPS

Table 1 shows ways to convert the standard
graphics formats to supported formats. In particu-
lar, converting EPS graphics used with latex+dvips
to PDF for pdflatex workflow is quite easy; just run
the epstopdf Perl script, which uses Ghostscript to
convert EPS to PDF.

This also explains why it is generally best to
give the file names in \includegraphics commands
without extensions. In this case the graphics pack-
age looks for a supported graphics format automat-
ically. So if you have an image both as EPS and
(e. g.) PDF, you can use both the latex+dvips and
pdflatex workflows without changing your source.

One other useful special case: including the out-
put of METAPOST is also easy; although it is tech-
nically an EPS file, it uses only a small set of com-

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 61

Klaus Höppner

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80
Windmühle

Mainzer Str.

7
Haus für

Industriekultur

A Fr
D

�
�

�
��

Figure 3: A map with additional marks produced
with overpic

mands. So pdflatex can support the inclusion of
METAPOST output directly. The only thing you
have to do is to change the file extension of the out-
put file to .mps.

Tools for image conversion

There exist several tools for conversion of graph-
ics formats, both free and commercial. Besides free
GUI-based tools like Gimp on Unix systems there
are two command line tools available for Unix and
Windows: ImageMagick [2] and netpbm [3].

ImageMagick can convert images directly, e. g.
by typing

convert sample.gif sample.png

while netpbm uses the pnm format as intermediate
format:

giftopnm sample.gif | pnmtopng - > sample.png

Another nice tool is tif2eps by Bogus law Jac-
kowski et al. [4] which uses Ghostscript to convert a
TIFF file to EPS, e. g.

gs -- tif2eps.ps sample.tif sample.esp -rh

which produces a RLE compressed and hex encoded
EPSfile. In my experience EPS files produced with
tif2eps are smaller than those produced by Im-
ageMagick. Additionally it supports CMYK TIFF

files smoothly.

Figure 4: Zoomed view: bitmap (left) converted
to vector graphics (right)

Additional tools

There are many other helpful tools. I will mention
two I use quite often.

overpic is a LATEX package written by Rolf Nie-
praschk [5]. It includes an image into a LATEX pic-
ture environment, giving you the opportunity to add
new elements into the image with normal LATEX pic-
ture commands. Fig. 3 shows a map overlaid with
symbols and text at some points. The source code
for this picture looks like
\usepackage[abs]{overpic}

...

\begin{document}

\begin{overpic}[grid,tics=5]{map}

\put(32,74){\includegraphics[scale=.3]

{busstop.mps}}

\put(32,77){\llap{\scriptsize

\colorbox{back}{Windm\"uhle}}}

\put(28,63){\small\textcolor{red}{%

\ding{55}}}

...

\put(17.5,11){\scriptsize\colorbox{back}%

{{\Pisymbol{ftsy}{65} Fr}}}

\put(6.3,13){\colorbox{back}%

{{\Pisymbol{ftsy}{68}}}}

\put(29.8,61.4){\color{blue}\vector(-1,-3){2}}

\put(38.6,63){\color{blue}\vector(1,3){2}}

\end{overpic}

\end{document}

potrace is a tool to convert a pure black and white
bitmap to vector graphics [6]. Fig. 4 shows a sample
bitmap converted to a vector image.

References

[1] CTAN:macros/latex/required/graphics
[2] http://www.imagemagick.org
[3] http://netpbm.sourceforge.net
[4] CTAN:support/pstools/tif2eps
[5] CTAN:macros/latex/contrib/overpic
[6] http://potrace.sourceforge.net

62 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

