
TUGBOAT

Volume 26, Number 1 / 2005

Practical TEX 2005 Conference Proceedings

General Delivery 3 Karl Berry / From the president

3 Barbara Beeton / Editorial comments

Old TUGboat issues go electronic; CTAN anouncement archives;

Another LATEX manual — for word processor users;

Create your own alphabet; Type design exhibition “Letras Latinas”;

The cost of a bad proofreader;

Looking at the same text in different ways: CSS on the web;

Some comments on mathematical typesetting

5 Barbara Beeton / Hyphenation exception log

LATEX 7 Pedro Quaresma / Stacks in TEX

Graphics 10 Denis Roegel / Kissing circles: A French romance in MetaPost

Software & Tools 17 Tristan Miller / Using the RPM package manager for (LA)TEX packages

Practical TEX 2005 29 Conference program, delegates, and sponsors

31 Peter Flom and Tristan Miller / Impressions from PracTEX’05

Keynote 33 Nelson Beebe / The design of TEX and METAFONT: A retrospective

Talks 52 Peter Flom / A LATEX fledgling struggles to take flight

56 Anita Schwartz / The art of LATEX problem solving

59 Klaus Höppner / Strategies for including graphics in LATEX documents

63 Joseph Hogg / Making a booklet

66 Peter Flynn / LATEX on the Web

68 Andrew Mertz and William Slough / Beamer by example

74 Kaveh Bazargan / Batch Commander: A graphical user interface for TEX

81 David Ignat / Word to LATEX for a large, multi-author scientific paper

85 Tristan Miller / Biblet: A portable BIBTEX bibliography style for generating

highly customizable XHTML

97 Abstracts (Allen, Burt, Fehd, Gurari, Janc, Kew, Peter)

News 99 Calendar

TUG Business 104 Institutional members

Advertisements 104 TEX consulting and production services

101 Silmaril Consultants

101 Joe Hogg

101 Carleton Production Centre

102 Personal TEX, Inc.

102 River Valley Technologies

102 Design Science, Inc.

102 The LATEX Companion, 2nd edition, by Frank Mittelbach et al.

103 Steve Peter

103 Cheryl Ponchin Training

103 MacKichan Software, Inc.

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2005 dues for individual members are as follows:
Ordinary members: $75.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org) or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2005 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,

distributed or translated without their permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

Dave Walden∗, Treasurer

Susan DeMeritt∗, Secretary

Barbara Beeton
Lance Carnes
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Gerree Pecht
Steve Peter
Cheryl Ponchin
Sam Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: August 2005]

The Communications of the TEX Users Group

Volume 26, Number 1, 2005
Practical TEX 2005 Conference Proceedings

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Memberships and Subscriptions

2005 dues for individual members are as follows:
Ordinary members: $75.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat
for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org) or see
our web site.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2005 TEX Users Group.
Copyright to individual articles within this publication

remains with their authors, and may not be reproduced,
distributed or translated without their permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,
provided the copyright notice and this permission notice are
preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,
except that the TEX Users Group must approve translations
of this permission notice itself. Lacking such approval, the
original English permission notice must be included.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Karl Berry, President∗

Kaja Christiansen∗, Vice President
Dave Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Lance Carnes
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Arthur Ogawa
Gerree Pecht
Steve Peter
Cheryl Ponchin
Sam Rhoads
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

Addresses

General correspondence,
payments, etc.

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: August 2005]

Practical TEX 2005 Proceedings

Chapel Hill, North Carolina, USA

June 14–17, 2005

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 26, NUMBER 1 • 2005
PORTLAND • OREGON • U.S.A.

TUGboat

This issue (Vol. 26, No. 1) combines regular articles
and other material with the Practical TEX 2005
conference proceedings.

TUGboat is distributed as a benefit of mem-
bership to all TUG members. It is also available
to non-members in printed form through the TUG

store (http://tug.org/store), and online at the
TUGboat web site, http://tug.org/TUGboat. On-
line publication to non-members may be delayed up
to one year after an issue’s print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

Suggestions and proposals for TUGboat articles are
gratefully accepted and processed as received. We
encourage submitting contributions by electronic
mail to TUGboat@tug.org. Alternatively, please
contact the TUG office.

The TUGboat “style files”, for use with either
plain TEX or LATEX, are available from CTAN

and the TUGboat web site above. We also accept
submissions using ConTEXt.

As of this issue, submission of a new manuscript
implies permission to publish the article, if accepted,
on the TUGboat web site, as well as in print. So,
if you have any reservations about posting online,
please notify the editors at the time of submission.
(Background: until now, it has been TUGboat

policy to seek explicit permission for posting online,
but we believe this has become unnecessary, leading
primarily to articles never being posted, as well as
being a time-consuming burden on TUGboat staff.
For several years, no author has refused permission
to post online, so it seems reasonable to now assume
this permission by default.)

TUGboat Editorial Board

Barbara Beeton, Editor-in-Chief

Robin Laakso, Managing Editor

Mimi Burbank, Production Manager

Victor Eijkhout, Associate Editor, Macros

Alan Hoenig, Associate Editor, Fonts

Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team

William Adams, Barbara Beeton, Karl Berry,
Mimi Burbank (Manager), Kaja Christiansen,
Robin Fairbairns, Baden Hughes, Steve Peter,
Michael Sofka, Christina Thiele

Other TUG Publications

TUG is interested in considering additional man-
uscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form.

If you have any such items or know of any
that you would like considered for publication, send
the information to the attention of the Publications
Committee at tug-pub@tug.org.

TUGboat Advertising

For information about advertising rates and options,
write or call the TUG office, or see our web page
http://tug.org/TUGboat/advertising.html.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue should
not be considered complete.

METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.

TUGboat, Volume 26 (2005), No. 1 3

General Delivery

From the President

Karl Berry

For the first time since becoming president in sum-
mer 2003, I am writing this column not for a past
year, but the present year! Which is to say, TUG-

boat is now just about up to date; if things go well,
it will be fully caught up by the end of the year.
A happy state of affairs, for which thanks are due
to Barbara Beeton, Mimi Burbank, Robin Laakso,
the rest of the TUGboat staff, and of course all the
authors.

Also, because this issue is being published on
time, it inaugurates the new policy, as announced
in the last issue and elsewhere, of having TUGboat

articles available online only to members for a year
after publication (after that they will be open to all).
The TUGboat information page (on the back of the
title page) describes the policy in more detail.

In other news so far this year, perhaps the most
visible item is that the TUG CTAN node, http:

//tug.ctan.org, has a new interface and visual de-
sign — check it out. The upgrade was possible be-
cause of new hardware that TUG was able to pro-
vide; so thanks to every member reading this. Also,
many thanks to TUG director Jim Hefferon, who
has maintained the site since 1999, his institution,
St. Michael’s College in Vermont, for supporting
Jim and providing the Internet connection, and of
course the whole CTAN group for their continuing
and amazing efforts.

The other technical news for TUG is that we up-
graded the hardware for the tug.org server; again,
thanks to member support. We expect the new ma-
chine to suffice for several years (just as the last
one did). Ongoing thanks there go to TUG vice-
president and system administrator Kaja Chris-
tiansen and her institution, Århus University in
Denmark, for hosting it.

On the TUG administrative side, we’ve estab-
lished a small working group to focus efforts on re-
versing the decline in TUG membership. The group
is working on several projects, such as increased
publicity for TEX and TUG additional member-
ship categories, and additional benefits. If you have
any suggestions, or would like to help in this ef-
fort, please email tug-membership@tug.org, and
thanks.

One small initiative along those lines is that as
of this year, we increased the number of member-

ships available to institutional members, from seven
to eight, thus providing a small discount. In the
past, memberships were a way for institutions to
“donate” to TUG, but times have changed.

We do have one new institutional member so far
this year, MacKichan Software, Inc. (http://www.
mackichan.com) — thank you! As always, a com-
plete list of institutional members can be found else-
where in this issue, and online at http://tug.org/
instmem.html.

The last item regards Y&Y, a TEX vendor of
long standing, which had early and excellent support
for outline fonts on the Windows platform, among
many other features. As some of you may already
know, the business was regrettably closed in 2003.
We were sorry to lose this significant part of the TEX
community.

However, Blenda Horn, the remaining principal
of the company, has made a remarkably generous
decision: to donate the Y&Y software to the scien-
tific community. Thus, the product can continue,
now as a volunteer effort. To that end, TUG will
make the source files available under a free software
license as soon as is practical.

Thank you, Blenda!

One additional note on this: Y&Y also dis-
tributed two font sets— Michael Spivak’s Math-
Time (full math complement to Times Roman),
and Bigelow & Holmes’ Lucida. These fonts remain
the property of their owners. You can obtain the
MathTime fonts in various configurations through
Personal TEX, Inc. (http://www.pctex.com). For
the Lucida fonts, TUG has negotiated the right to
redistribute them with B&H, and we will make an-
nouncements when they are available.

As always, please don’t hesitate to contact me
or the entire board (board@tug.org) with any issues
or comments. Thanks for your support, and happy
TEXing.

⋄ Karl Berry

president@tug.org

Editorial Comments

Barbara Beeton

Old TUGboat issues go electronic

Thanks to the efforts of Brooks Moses, Robin Laakso
and Karl Berry, the oldest issues of TUGboat are
now posted on the TUG web site in scanned PDF

form. Volumes 1–11 (1980-1990) are almost com-
plete, except for issues 10:3, 10:4 (1989) and 11:4
(1990). A few issues from 1991–1994 are posted as
well.

4 TUGboat, Volume 26 (2005), No. 1

Regular posting of articles when published be-
gan with volume 16 (1995), so all issues after that
should be present. However, owing to the wording of
the copyright statement, for volumes 19–24 (1998–
2003), only articles for which explicit permission has
been received can be posted. Also, there will be a
delay, beginning with this issue, of a year after print-
ing, during which time only TUG members will have
on-line access.

The missing issues will be scanned and posted
as time permits.

If you find any problems with the posted mate-
rial, or have not given permission to post an article
from the “restricted” period, please notify the office
(office@tug.org).

CTAN announcement archives

The archive of ctan-ann mail can be seen and the
contents searched at http://www.mail-archive.

com/ctan-ann@dante.de/. This collection begins
with January 2005; earlier notices have been sum-
marized in previous TUGboat issues in “The Trea-
sure Chest”.

Another LATEX manual — for word processor

users

Users of word processors often seem to have par-
ticular difficulty making the switch to (LA)TEX, no
matter how much they appreciate the better appear-
ance of the output. A manual directed toward such
potential users is available from CTAN. Written by
Guido Gonzato, this manual presents the basics of
preparing input with an editor, concentrating on
structure rather than appearance, use of packages
(including installation on one’s system), and many
other topics. The manual is presented as a PDF file,
with hyperlinks to many packages and tools men-
tioned in the text.

The manual can be found at http://www.ctan.
org/tex-archive/info/latex4wp/.

Create your own alphabet

From the website http://alphabet.tmema.org/:

“The Alphabet Synthesis Machine” is an in-
teractive online artwork which allows one to
create and evolve the possible writing sys-
tems of one’s own imaginary civilizations. The
abstract alphabets produced by the Machine
can be downloaded as PC-format TrueType
fonts, and are entered into a comprehensive
archive of user creations. The products of the
Machine probe the liminal territories between
familiarity and chaos, language and gesture.

The tools found here were created for the project
“art:21”, “art in the twenty-first century” (a project
of PBS), by Golan Levin, with Jonathan Feinberg
and Cassidy Curtis. In addition to the download-
able software, the site contains example alphabets
produced by visitors, an archive of user creations,
and a bibliography of works on the history of writ-
ing, writing systems, and the (Latin) alphabet.

Type design exhibition “Letras Latinas”

The binennial type design exhibition “Latin letters”
can be viewed on line at http://www.tipografica.
com/letraslatinas/. This event takes place simul-
taneously at several venues in Central and South
America. The on-line exhibition includes fonts for
both text and display. Although the text of the site
is in Spanish, no translation is needed to appreci-
ate and enjoy the samples shown. The exhibition
was organized in Buenos Aires, Argentina, by Ti-

pográfica magazine. Font designers can register to
submit their work for the next show via a form on
the web site.

The cost of a bad proofreader

In April, the French government was forced to de-
stroy 162,000 copies of the EU constitution because
the phrase “incoherent text” appeared on a page
by mistake. (This occurred before the French refer-
endum in May.) Proofreaders failed to notice this
phrase in a footnote on a page which contained Ar-
ticle 1/33 of the constitution; it was apparently in-
visible on the screen when the document was read
on line. A corrected version of the full 232-page
text was printed at the cost of 74,000 euros. Who-
ever was responsible for inserting the text was not
known.

The full report can be read at http://news.

bbc.co.uk/2/hi/europe/4421963.stm.
No matter how hard one tries, it seems that

some typos always get through.

Looking at the same text in different ways:

CSS on the web

Re-use or reformatting of the same text is a common
theme in print. Here is a demonstration of what can
be done using CSS to do the same for web pages:
http://www.csszengarden.com/.

Some comments on mathematical

typesetting

This quote, by Gottfried Leibniz, was contributed
by Don Knuth, who found it in the library at the
Institut Mittag-Leffler, near Stockholm.

TUGboat, Volume 26 (2005), No. 1 5

From Leibnizens mathematische Schriften, edited by
C. I. Gerhardt, Erste Abtheilung, Band III (1855),
in a letter from Leibniz to Johann Bernoulli, 15 May
1696:

In notandis calculis ad usum typorum decrevi
pro lineis vinculorum imposterum uti com-
matibus directis atque inversis in vim paren-
thesium: ita non interrumpetur typorum se-
ries nec spatium amittetur, et tamen omnia
(ni fallor) accurate habebuntur. Velim tamen
prius Tuam audire sententiam. Exampli causa,

Tuum

a +
b

c

e −
f

g

, quod quinque typorum lineas

minimum postulat, sic poterit scribi:
‘
a+

‘
b :

c
’ ’

:
‘
e−

‘
f : g

’ ’
: possent tamen inversa com-

mata omitti, scribique a +
’
b : c

’ ’
: e −

’
f :

g
’ ’

quod et facere soleo et communiter suffi-

cere potest. Sed tamen designatio quasi par-
enthetica per commata includentia est abso-
lutior tutiorque interdum; præsertim si pro
commatibus adhibeantur veræ parentheses,
ne commata inversa confundantur cum lit-
tera c, exempli gratia in eoden casu ista stabit
(a + (b : c)) : (e − (f : g)).

Another relevant note comes from Acta Eruditorum

(Leipzig: 1708), 271; here is a translation from the
Latin original, given by Florian Cajori on page 219
of his History of Mathematical Notations:

We hereby issue the reminder that in the fu-
ture we shall use in these Acta the Leibnizian
signs, where, when algebraic matters concern
us, we do not choose the typographically trou-
blesome and unnecessarily repugnant, and that
we avoid ambiguity. Hence we shall prefer
the parenthesis to the characters consisting of
lines drawn above, and in multiplication by
all means simply omit the comma; for exam-
ple, in place of

√
aa + bb we write

√
(aa+ bb)

and for aa + bb × c we take aa + bb, c. Di-
vision we mark with two dots, unless indeed
some peculiar circumstance directs adherence
to the usual practice. Accordingly, we have

a : b =
a

b
. And it is not necessary to de-

note proportion by any special sign. For, if
a is to b as c is to d, we have a : b = c : d.
As regards powers, aa + bb

m

, we designate
them by (aa + bb)m; whence also m

√
aa + bb

becomes = (aa + bb)1:m and
m

√

aa + bb
n

=
(aa + bb)n:m. We do not doubt that all ge-
ometers who read the Acta will recognize the

excellence of the Leibnizian symbols and will
agree with us in this matter.

⋄ Barbara Beeton

American Mathematical Society

201 Charles Street

Providence, RI 02904 USA

bnb@ams.org

Hyphenation Exception Log

Barbara Beeton

This is the periodic update of the list of words that
TEX fails to hyphenate properly. The full list last
appeared in TUGboat 16, no. 1, starting on page 12,
with updates in TUGboat 22, no. 1/2, pages 31–32,
and TUGboat 23, no. 3/4, pages 247–248. This
installment contains only exceptions identified since
the last update.

In the list below, the first column gives results
from TEX’s \showhyphens{...}; entries in the
second column are suitable for inclusion in a
\hyphenation{...} list.

In most instances, inflected forms are not
shown for nouns and verbs; note that all forms must
be specified in a \hyphenation{...} list if they
occur in your document. See the section below,
“Converting this list into a list of hyphenation
exceptions”.

Like the full list, this update has been subdi-
vided into two parts: English words, and names and
non-English words (including transliterations from
Cyrillic and other non-Latin scripts) that occur in
English texts.

Thanks to all who have submitted entries to
the list. Since some suggestions have demonstrated
a lack of familiarity with the rules of the
hyphenation algorithm, here is a short reminder
of the relevant idiosyncrasies. Hyphens will not be
inserted before the number of letters specified by
\lefthyphenmin, nor after the number of letters
specified by \righthyphenmin. For U.S. English,
\lefthyphenmin=2 and \righthyphenmin=3; thus
no word shorter than five letters will be hyphenated.
(For the details, see The TEXbook, page 454.) This
particular rule is violated in some of the words
listed; however, if a word is hyphenated correctly by
TEX except for “missing” hyphens at the beginning
or end, it has not been included here.

Some other permissible hyphens have been
omitted for reasons of style or clarity. While this is
at least partly a matter of personal taste, an author
should think of the reader when deciding whether
or not to permit just one more break-point in some
obscure or confusing word. There really are times
when a bit of rewriting is preferable.

One other warning: Some words can be more
than one part of speech, depending on context, and
have different hyphenations; for example, ‘analyses’
can be either a verb or a plural noun. If such a word
appears in this list, hyphens are shown only for the
portions of the word that would be hyphenated
the same regardless of usage. These words are
marked with a ‘*’; additional hyphenation points, if
needed in your document, should be inserted with
discretionary hyphens.

The reference used to check these hyphenations
is Webster’s Third New International Dictionary,
Unabridged.

Hyphenation for languages

other than English

Patterns now exist for many languages other
than English, including languages using accented
alphabets. CTAN holds an extensive collection of
patterns in tex-archive/language/hyphenation

and its subdirectories.

Converting this list into

a list of hyphenation exceptions

Werner Lemberg has created a script that will
convert this article into a real \hyphenation block
that can be incorporated into a document either
directly or by inputting a file. Many inflected forms
will be included automatically, some evident in the
printed version, but many included silently.

The script, hyphenex.sh, runs under Unix. It
is posted on CTAN, along with its output for the
current set of exceptions, in

tex-archive/info/digests/tugboat/

The List — English words

acronym acro-nym
au-ton-um-ber-ing au-to-num-ber-ing
au-tonomous au-ton-o-mous
boolean bool-ean
buffer buf-fer
chloromethane chloro-meth-ane

core-la-tion(s) co-re-la-tion(s)
core-li-gion-ist(s) co-re-li-gion-ist(s)

core-op-sis co-re-op-sis
core-spon-dent(s) co-re-spon-dent(s)
coworker co-work-er

6 TUGboat, Volume 26 (2005), No. 1

crankcase crank-case
crossover cross-over
cuf-flink(s) cuff-link(s)
cus-tomiz-able cus-tom-iz-a-ble
cus-tomize(s,d) cus-tom-ize(s,d)
dichloromethane di-chloro-meth-ane
ethane eth-ane
flu-o-ro-car-bon fluoro-car-bon
geother-mal geo-ther-mal
grandun-cle grand-uncle
hy-drother-mal hy-dro-ther-mal
keynote key-note
manslaugh-ter man-slaugh-ter
methane meth-ane

ni-tromethane nitro-meth-ane
of-fline off-line
of-fload(s,ed) off-load(s,ed)
palette pal-ette
pipelin-ing pipe-lin-ing
prewrap(ped) pre-wrap(ped)
pro-grammable pro-gram-mable
promi-nent prom-i-nent
promis-cu-ous pro-mis-cu-ous

promis-sory prom-is-sory
promise prom-ise

prowess prow-ess
qu-a-sitriv-ial qua-si-triv-ial
rephrase(s,d) re-phrase(s,d)
rewrap(ped) re-wrap(ped)
subex-pres-sion sub-ex-pres-sion
taffrail taff-rail
tri-ethy-lamine tri-ethyl-amine

vi-sual(ly) vis-ual(-ly)

Names and non-English words

used in English text

AT-Pase ATP-ase
Delaware Del-a-ware
Du-ane Duane
FreeBSD Free-BSD
Hadamard Ha-da-mard
Har-alam-bous Hara-lam-bous
Jack-owski Jac-kow-ski

Ma-cOS Mac-OS
Math-SciNet Math-Sci-Net

NetBSD Net-BSD
OpenBSD Open-BSD
OpenOf-fice Open-Office
PfaEdit Pfa-Edit
Richard Rich-ard
Southall South-all
Tomaszewski To-ma-szew-ski
VMware VM-ware
Werner Wer-ner
WinEdt Win-Edt

⋄ Barbara Beeton

bnb@ams.org

TUGboat, Volume 26 (2005), No. 1 7

Stacks in TEX

Pedro Quaresma

Abstract

There are several situations where we need to “for-
ward reference” something that it is not yet avail-
able. For example, when we say something like “as
we will see in chapter . . . ” and when we make a bib-
liographic citation. Those situations are well treated
in LATEX by the use of auxiliary files.

A different situation arises if we want to have
a LATEX environment where one or more commands
depend on the arguments given to other commands;
that is, the values of the arguments of one command
are taken from the arguments of another. We can
also use an auxiliary file as a way of communication
between commands but that implies that we have
to process the document twice (at least) in order to
complete the environment.

In this paper we describe an implementation of
stacks in TEX as a way to solve the problem just
described. One command puts the information in
the stack, the other command takes the information
from the stack, and with this approach we manage to
establish communication between commands while
processing the document only once.

1 Introduction

In 1990 I was a PhD student in Computer Science
and felt the need of a LATEX style file for producing
diagrams, namely those used in Category Theory [4],
e.g.

A B...

.....
..
..
..
.

f

So, I created a style file whose first version used
the LATEX picture environment as the graphical en-
gine, and in a later version switched to PICTEX be-
cause of its better capabilities. Since the first version
the two main goals of the DCpic [5] package were:

• to have a TEX-only format, in order to have
good portability properties;

• to have a simple notation, a notation close to
the graph notation where we describe a graph
as a set of nodes (objects), and a set of arrows
(morphisms) with each arrow having an initial
and a end node.

So DCpic implements an environment \begindc

...\enddc, with the command \obj(x,y){text} for
the nodes, and the command \mor(x1,y1)(x2,y2)

{text} for the arrows. The diagram pictured above
has the following specification:

\begindc

\obj(1,1){A}

\obj(3,1){B}

\mor(1,1)(3,1){f}

\enddc

The syntax is one of the simplest, if not the
simplest, among packages of this type [2], but it de-
viates from the graph notation because the arrows
specification is done in absolute terms and not in
relative terms, i.e., it does not state the initial and
end node of each arrow, but rather their positions.
Since version 2 we began to look for a specification
syntax that would allow the following specification
for the diagram:

\begindc

\obj(1,1){A}

\obj(3,1){B}

\mor{A}{B}{f}

\enddc

But this implies that the coordinates of objects
A and B must be passed to the \mor command. We
also want to pass the dimensions of the (box) objects
to be able to adjust the arrow length accordingly.

How to do this? I saw two possible solutions:

• the \obj command writes all the information
about its object in an auxiliary file, after which
\mor reads the information from that file.

• the \obj command writes all the information
about its object in an auxiliary structure kept
in memory, after which \mor reads the informa-
tion from that structure.

The first solution seemed to me too complicated
to the problem at hand; it is also inefficient because
for a large diagram we have to open and close the
auxiliary file too many times (or enforce a strict sep-
aration between objects and morphisms). Because
of this we chose the second approach and decided to
implement stacks.

Using stacks the solution is very simple: \obj

pushes the information onto the stack, and \mor

looks for it on the stack and whenever necessary
pops it from the stack.

2 Stacks

To implement stacks we need a structure in which
to place the elements and functions to operate on
the stack. Using the Maude [1, 3] syntax we have:

fmod STACK is

sorts Elem NeStack Stack .

subsorts Elem < NeStack < Stack .

op empty : -> Stack .

op push : Elem Stack -> NeStack .

op pop : NeStack -> Stack .

op top : NeStack -> Elem .

op isempty : Stack -> Bool .

var S : Stack .

8 TUGboat, Volume 26 (2005), No. 1

var E : Elem .

eq pop(push(E,S)) = S .

eq top(push(E,S)) = E .

eq isempty(empty) = true .

eq isempty(push(E,S)) = false .

endfm

That is, we have elements and stacks of ele-
ments; empty gives us the empty stack; push puts
an element on top of the stack; pop deletes the el-
ement on top of the stack; top sees (and does not
delete) the element on top of the stack; and isempty
returns whether the stack is empty or not.

2.1 Stacks in TEX

Not having a predefined type structure in TEX that
can support stacks, we decided to implement stacks
as a macro. We began by defining (initializing) it as
the empty stack, that is, a stack that contains only
a sentinel, the “end-of-stack” element.

\def\emptystack{:}

\let\stack=\emptystack

The elements of the stacks will be other TEX
elements, e.g., we can put \$x\$ on the stack. The
stack is now a structure that may contain almost
anything.

The implementation of the the functions is now
a matter of redefinition of the macro \stack.

The “push” function has one argument only,
the element to be pushed; the result is the stack
with that element on top of it.

\def\push#1{%

\edef\stack{#1.\stack}%

}

(The dot serves as an element separator.)
The “topstack” function has no arguments; the

result is the element that it is on the top of the stack.
We use an auxiliary function and the “expandafter”
command to control the expansion of the arguments.

\def\topaux#1.#2:{#1}

\def\topstack{\expandafter\topaux\stack}

The “pop” function also has no arguments; the
result is the stack without the top element. It is
very similar to \topstack.

\def\popaux#1.#2:{\def\stack{#2:}}

\def\pop{\expandafter\popaux\stack}

To implement the “isempty” predicate we need
to define the appropriate “if”. In DCpic we have
opted for two “ifs”, one to test if the stack is empty,
and the other to test if the stack is not empty.

\newif\ifisempty

\newif\ifnisempty

\def\isempty#1{%

\let\arg=#1\relax

\if:\arg\ \isemptytrue

\else \isemptyfalse\fi}

\def\nisempty#1{%

\let\arg=#1\relax

\if:\arg\ \nisemptyfalse

\else \nisemptytrue\fi}

As you can see, this is a one-stack-at-a-time im-
plementation; we begin by defining the object that
we call \stack and then all the operations are done
on that object. This does not mean that we can only
have one stack in the document. We can create other
stacks by saying, e.g., \let\secondstack=\stack

and later \let\stack=\secondstack, but all the
operations are still done with \stack.

2.2 Using Stacks

The Polish Notation To illustrate the use of
these stacks in TEX, let’s pretend to calculate arith-
metic expressions in Reverse Polish Notation (post-
fix notation). Our example will be this expression:

2 1 + 3 ×
Start by pushing all the elements into the stack:

\push{2}

\push{1}

\push{+}

\push{3}

\push{\times}

After this, the stack has this form:
Stack =×.3.+.1.2.:

Loop until the stack is empty We can con-
struct a cycle that will stop when the stack is empty:

\loop

Pop, \pop \quad Stack=\stack

\nisempty\stack

\ifnisempty

{\endgraf }

\repeat

Using the stack from the previous example:
Stack=×.3.+.1.2.:

Pop, Stack=3.+.1.2.:
Pop, Stack=+.1.2.:
Pop, Stack=1.2.:
Pop, Stack=2.:
Pop, Stack=:

Stacks in the DCpic package The use of stacks
allows a very simple notation for the specification of
our diagrams in LATEX. For example:

TUGboat, Volume 26 (2005), No. 1 9

\begindc{\undigraph}[15]

\obj(1,1){A}[\west]

\obj(3,5){B}

\obj(3,1){C}[\south]

\obj(5,3){D}[\east]

\mor{A}{B}{}

\mor{A}{C}{}

\mor{B}{D}{}

\mor{C}{D}{}

\enddc

gives

•A

•
B

•
C

•D

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

But, if we realize that we misplaced “A” we can
correct that modifying the “A” coordinates only:

\begindc{\undigraph}[15]

\obj(1,3){A}[\west]

... the rest remains the same ...

\enddc

gives

•A

•
B

•
C

•D..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

...

...

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

We can put almost anything in the stack, for
example:

\begindc{\commdiag}[2]

\obj(1,1){Z}

\obj(1,36){\overline{X}}

\obj(36,36){X}

\obj(52,36){Y}

\mor{Z}{\overline{X}}{\overline{h}}%

[\atleft,\dasharrow]

\mor{Z}{X}{h}[\atright,\solidarrow]

\mor{\overline{X}}{X}{e}

\mor(36,37)(52,37)[8,8]{f}

\mor(36,35)(52,35)[8,8]{g}[\atright,%

\solidarrow]

\enddc

gives

Z

X X Y

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

....

h

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.....
.
.
.
.
.
.
.
.
.

.

...........

h

..

.....
..
..
..
.

e
...

.....
..
..
..
.

f
...

.....
..
..
..
.

g

As you can see, the communication between
\obj and \mor does not follow a strict first-in-last-
out discipline; so what we do is to preserve the stack
before a pop operation and recover the value after-
wards. A list structure would be more appropriate
for DCpic, but the simplicity of the stack implemen-
tation justifies, in our view, a little loss of efficiency.

3 Conclusions

Using an auxiliary structure like the stack gives us
the possibility of organizing our TEX programs with
intercommunicating macros. The communication is
established using the global variable \stack.

We decided not to deal with the error situations
(e.g., a pop of the empty stack) in our implemen-
tation of stacks. The \mor command analyzes the
stack to see whether it is empty; if so, then it writes
an error message in the output and tries a naive
error recovery using some default values.

The use of stacks in DCpic allows us to have a
very simple notation for the graphs without a “vis-
ible” burden to the user. We are certain that this
approach will be useful in other situations.

References

[1] Manuel Clavel, Francisco Durán, Steven Eker,
Lincoln Patrick, Narciso Mart́ı-Oliet, Meseguer
José, and Carolyn Talcott. Maude Manual.
Computer Science Laboratory, SRI Interna-
tional, April 2005. Version 2.1.1.

[2] Gabriel Valiente Feruglio. Typesetting commu-
tative diagrams. TUGboat, 15(4):466–484, 1994.

[3] Joseph Goguen and Timothy Winkler. Intro-
ducing OBJ. Technical Report SRI-CSL-88-9,
SRI International, Computer Science Lab, Au-
gust 1988.

[4] Benjamin Pierce. Basic Category Theory for
Computer Scientists. Foundations of Comput-
ing. The MIT Press, London, England, 1998.

[5] Pedro Quaresma. DCpic, commutative diagrams
in a (LA)TEX document. In Proceedings of the
EuroTEX 2001 conference, Rolduc, The Nether-
lands, September 2001.

10 TUGboat, Volume 26 (2005), No. 1

Kissing circles: A French romance

in METAPOST

Denis Roegel

Abstract

When circles meet, they kiss. If three of them kiss,
others can try to join and kiss all of them at once. In
this article, we look at this problem from the META-
POST point of view, and we try to tell circles how
to kiss, no matter their position and size. Recursive
kissing will also be attempted.

1 Introduction

Apollonius of Perga (3rd century BC) was a Greek
geometer, author of, among other things, a treatise
on conical sections. He is credited of having coined
the terms ellipse, parabola and hyberbola. His book
Tangencies, cited by Pappus, defines the tangents
problem as the problem of finding a circle tangent to
three other objects being any combination of points,
lines or circles. Apollonius showed how to solve this
problem with a compass and straightedge, and it is
now known as Apollonius’ problem. When the three
objects are circles, there are in general eight different
solutions (Gisch and Ribando, 2004).

However, when the three circles are externally
tangent to each other, these solutions reduce to only
two non-trivial ones, namely the external and inter-
nal tangent circles, known as outer and inner Soddy
circles (figure 1).

Descartes found a simple analytic solution. The
curvatures e1 = 1/r1, e2 = 1/r2, e3 = 1/r3 of three
circles kissing each other are related to the curvature
e4 of a Soddy circle through the equation

2(e2

1
+ e2

2
+ e2

3
+ e2

4
) = (e1 + e2 + e3 + e4)

2 (1)

In this equation, e1, e2, and e3 being given,
e4 has two solutions. The positive solution corre-
sponds to the inner Soddy circle and the negative
solution to the outer Soddy circle (whose radius is
then −1/e4). The analytic solution can be used to
iterate the construction, but one has to be careful to
avoid overflows. The outer Soddy circle will always
appear at the border, hence a small curvature value,
whereas smaller and smaller circles will be packed
on the border, hence larger and larger values for the
other curvatures. The METAPOST language is not
very well suited to handling very small or very large
values, and a geometric construction with no calcu-
lations is better suited to this problem.

C1 C2

C3

Figure 1: Inner and outer Soddy circles of circles
C1, C2 and C3.

2 David Eppstein’s construction

In 2001, David Eppstein published a new construc-
tion for the inner and outer Soddy circles (Eppstein,
2001). Our purpose will not be to prove that this
construction is indeed correct, but to see how best it
can be implemented, and in particular in the most
general way.

Eppstein’s construction goes as follows. Given
three tangent circles C1, C2 and C3 (figure 2), a tri-
angle connecting their centers is drawn. From each
center, a perpendicular line is dropped to the op-
posite side of the triangle. The intersections be-
tween the perpendiculars and the triangle sides are
marked with discs having small holes. The per-
pendiculars intersect their originating circle at two
points, marked with discs and circles. Now, each
disc can be connected to the tangency point (verti-
cal cross) of the two other circles. This line meets
the first circle at another point than the one with a
disc, and we mark it with a filled square. The three
points with filled squares are the tangency points of
the inner Soddy circle.

The same procedure applied to the circle points
yields the square points which are the points of tan-
gency of the outer Soddy circle.

This construction can be used to find the circles
internally tangent to the outer Soddy circle and cir-
cles C1 and C3 for instance, and the procedure can
be used to build the Apollonian gasket (figure 3).

TUGboat, Volume 26 (2005), No. 1 11

C1 C2

C3

Figure 2: Eppstein’s construction.

C1 C2

C3

Figure 3: An Apollonian gasket of depth 3, with
83 circles.

3 Construction problems and METAPOST

preliminaries

Finding the Soddy circles is rather straightforward,
although special cases arise already at this stage.
But the real problems are met when the construc-
tion is iterated, as the configurations of the circles
change and there are several cases. The main source
of difficulty is the duplicity of the circles. Eppstein’s
construction gives six points, but we must take great
care in grouping these six points into two sets, and
we have to find out which set corresponds to the
circle we want to draw.

We will start by building a number of robust
macros for common tasks. Some of these macros
can easily be reused in other applications.

3.1 Height of a triangle

Our first macro (figure 4) finds the height of a trian-
gle ABC starting at A. The height may not actually
intersect the opposite side of the triangle, hence it is
a good idea to use the whatever construction. Our
macro states that the intersection H is somewhere

on [B, C] and somewhere on [A, D] where D is a

point constructed using
−−→

BC. The macro doesn’t re-
turn the intersection H, but a path going beyond A
and H by at least r, which is a value provided to
the macro.

The idea is that we will use these paths to find
their intersection with the originating circles, hence
they need to be extended by at least the radius of the
circle, and actually a bit more, in order to be sure
that there is an intersection. Two paths, having an
intersection coinciding with the start of one of the
paths, may actually have no intersection for META-
POST due to rounding errors.

3.2 Circles

Circles can be obtained with the fullcircle macro,
and this macro will be used to find intersections.
However, circles are often a problem in that their
intersection with a line is usually not unique, and
if only one intersection is wanted, it is necessary
to ensure that we get the right one. Another re-
lated problem is the discontinuity within a circle.
Although not visible, a circle has a beginning and
an end for METAPOST. It is often a good idea to
avoid the discontinuity, which is a source of prob-
lems.

One convenient way of influencing the inter-
section returned by using the intersectionpoint

function with a circle is to rotate the circle around
its center (figure 5). This may seem of no use, but
actually the intersections are computed in such a

12 TUGboat, Volume 26 (2005), No. 1

A
B

CH

A +
−−→
CB rotated 90

vardef triangle_height(expr A,B,C,r)=

save H,d;

hide(

pair H,d;

H=whatever[B,C]

=whatever[A,A+((B-C) rotated 90)];

d=unitvector(H-A);

)

((A-1.1r*d)--(H+r*d)) % height

enddef;

Figure 4: Finding a triangle height.

way that the parameters of the paths are minimized.
So, if we can make sure that the circle is in a po-
sition such that the intersection with the minimal
parameter is the one we want, we will be rewarded.

We therefore define a macro for a circle of radius
r, centered at c and rotated by an angle a.

3.3 Tangencies

We define a macro for the tangency point between
two circles which are known to be tangent (figure 6).
This macro needs to take care of the case where one
circle is inside the other. This is the case when the
distance between the two centers is smaller than one
of the radii. Then, the circle with the smallest radius
lies within the other. The tangency is obtained by
extending the line connecting the circle centers. For
instance, if Ca lies inside Cb, the tangency point is

Ca + ra ×

−−−→

CaCb

‖
−−−→

CaCb‖
.

3.4 Angle between two lines

The angle between two lines is obtained using angle

and is brought within the interval [0, 180◦[(figure 7).

3.5 Circle-line intersection

Eppstein’s construction makes it necessary to find
an intersection between a line and a circle, other
than a given point. Devising a macro for that pur-
pose which works in all cases is not trivial. One case

A

O

a

def circle(expr c,r,a)=

(fullcircle scaled 2r

rotated a shifted c)

enddef;

Figure 5: A circle rotated by a degrees. A is the
origin and end of the circle path of center O.

that has to be taken into account is the case where
the line is tangent to the circle, and possibly has no
intersection at all with the circle due to rounding
errors.

When writing such a macro (figure 8), we also
have to ensure that it will not fail when the two in-
tersections are too close. Given a point A on the
circle, and another point B, our solution is to first
compute the angle between the radius at A and the

vector
−−→

AB. If this angle is between 89 and 91 de-
grees, we assume that the line (AB) is tangent to the
circle. Even if it is not exactly tangent, the two in-
tersections will be very close and can be confounded.
In that case, we return A.

If not, we find the second intersection by com-
paring the distance to the center of the circle of two
points chosen in opposite directions from A on the

line. If B′ is such that
−−→

AB +
−−→

AB′ =
−→

0 , then the
second intersection is on [A, E], where E is the clos-
est of B and B′ from the center of the circle. We
slightly rotate the circle counterclockwise in order
to avoid A being found by the intersection. In this
way, A corresponds to a very large parameter and
will be avoided in the computation.

3.6 Circle going through three points

The final operation in Eppstein’s construction takes
three points and finds the circle going through these
points (figure 9). We first obtain the center of this
circle as the intersection of two medians. The macro
whatevermedian returns an undefined point on a

TUGboat, Volume 26 (2005), No. 1 13

AB T A B T A BT

def tangency(expr Ca,ra,Cb,rb)=

(if (arclength(Ca--Cb)<rb) % a inside b

or (arclength(Ca--Cb)<ra): % or b inside a

if ra<rb: % a inside b

Ca+ra*unitvector(Ca-Cb)

else: % b inside a

Cb+rb*unitvector(Cb-Ca)

fi

else: circle(Ca,ra,0) intersectionpoint (Ca--Cb)

fi)

enddef;

Figure 6: The three cases of tangencies. Notice that this macro will not fail if the circles have no
intersection due to rounding errors.

−→
VB

−→
VA

110◦

vardef angleof(expr Va,Vb)=

save a;

hide(

a=angle(Vb)-angle(Va);

forever:

if a>=180:a:=a-180;fi;

if a<0:a:=a+180;fi;

exitif ((a<180) and (a>=0));

endfor;

)

a % angle

enddef;

Figure 7: Angle between two lines defined
by vectors

−→
VA and

−→
VB , brought on the interval

[0, 180◦[.

line and is used in the circle_through macro. This
macro defines the center and the radius of the circle.

3.7 Existence of a segment intersection

It will be useful to have a macro telling when two
segments (and not lines) intersect, and when they
do not. An easy way to achieve this is to provide
a boolean version of the intersectionpoint macro
and have it return true instead of the intersection
and false instead of an error message, as follows:

secondarydef p intersectionpoint_b q =

begingroup save x_,y_;

(x_,y_)=p intersectiontimes q;

if x_<0:

false

else: true

fi

endgroup

enddef;

3.8 Innerness and outerness

Next, we define the following macro which will take
four circle centers. Circles B and C are tangent
externally and circle D is internally tangent to both.
A is a circle externally tangent to B and C, but
internally tangent to D. In other words, D is the
outer Soddy circle of A, B and C.

14 TUGboat, Volume 26 (2005), No. 1

c

B

B′

A
I

c

B

B′

A

I

vardef intersection_circle_line(expr c,r,A,B)=

save a,BP,I,uv;

hide(

pair BP,I,uv;

a=abs(angleof(B-A,A-c)-90);

if a<1: I=A;

else:

BP=A+(A-B);

if arclength(c--B)<arclength(c--BP):

uv=unitvector(A-B);

I=circle(c,r,angle(A-c)+1) intersectionpoint ((B-2.1r*uv)--(1.1[B,A]));

else:

uv=unitvector(A-BP);

I=circle(c,r,angle(A-c)+1) intersectionpoint ((BP-2.1r*uv)--(1.1[BP,A]));

fi;

fi;)

I % point returned

enddef;

Figure 8: Intersection between a line and a circle. The circle, its point A and B are given. We search
the other intersection I. The shortest of cB and cB ′ indicates on which side of the line (BB ′) is I, with
respect to A.

Conversely, given B, C and D, Eppstein’s con-
struction gives two circles, one of them being A. It
turns out that which points lead to which circle de-
pends on the existence of an intersection between
[Ca, Cd] and [Cb, Cc], where Ca, Cb, Cc and Cd are
the circle centers. We call the two possible circles
tangent externally to B and C, but internally to D,
inner when the aforementioned intersection exists
and outer when it doesn’t. This is consistent with
the outer Soddy circle center being such that there
is no intersection for the previous segments.

In practice, of the two circles, the inner one will
be the smaller of the two.

def is_inner(expr Ca,Cb,Cc,Cd)=

((Cb--Cc) intersectionpoint_b (Ca--Cd))

enddef;

3.9 Slope

Given a segment, the slope macro gives its slope
as an angle. This will be a convenient macro when
we need to rotate a circle in order to favor a certain
intersection.

def slope(expr p)=

angle((point 1 of p)-(point 0 of p))

enddef;

4 The main macro

The main macro takes four circle centers, as well as
four radii, and an integer for the recursion depth.
Initially, the first three circles are three tangent cir-
cles for which we find the Soddy circles. The fourth
circle will be non-meaningful and assigned a nega-
tive radius.

TUGboat, Volume 26 (2005), No. 1 15

A

B

C

c

def whatevermedian(expr A,B)=

whatever[.5[A,B],

.5[A,B]+(B-A) rotated 90]

enddef;

def circle_through

(expr A,B,C)(text c)(text r)=

c=whatevermedian(A,B)

=whatevermedian(B,C);

r=arclength(A--c);

draw fullcircle scaled 2r shifted c;

enddef;

Figure 9: Circle going through three points A, B
and C.

Later, when iterating the construction, there
will be two cases. In the first case the three first
circles are tangent externally, and an inner Soddy
circle is to be found. In that case, the fourth circle
is also non-meaningful.

The second case is a border case, where the first
circle is the outer Soddy circle. The second and third
circles are externally tangent, but internally tangent
to the Soddy circle. And then the fourth circle is
another circle externally tangent to the second and
third, and internally tangent to the first. This fourth
circle has already been drawn, but it is necessary to
find out which one is the other circle not yet drawn
at the border.

4.1 Computing the tangencies and triangle

heights

The tangencies and triangle heights are obtained
straightforwardly, given the previous definitions.

vardef tangent_circles

(expr Ca,Cb,Cc,Co,

ra,rb,rc,ro,n)=

save C,T,r,ht,Ihc,Ilc;

pair C[]; % centers

pair T[][]; % tangencies

numeric r[]; % radii

path ht[]; % heights

pair Ihc[][]; % intersections between

% heights and circles

pair Ilc[]; % final intersections

C1=Ca;C2=Cb;C3=Cc;

r1=ra;r2=rb;r3=rc;

T[1][2]=tangency(C1,r1,C2,r2);

T[2][3]=tangency(C2,r2,C3,r3);

T[3][1]=tangency(C3,r3,C1,r1);

ht1=triangle_height(C1,C2,C3,r1);

ht2=triangle_height(C2,C1,C3,r2);

ht3=triangle_height(C3,C1,C2,r3);

In order to simplify certain expressions, we also
define

def next(expr i)=

(if i+1<4:i+1 else: 1 fi)

enddef;

4.2 Diameters and other intersections

The intersections between the heights and the circles
are easy to obtain, but the key to success is to group
them correctly. In our case, we first group the in-
tersections which go towards the feet of the heights,
by slightly rotating the circles clockwise. This gives
the points Ihc[i][1], which are marked with small
circles.

The second group of points is the opposite one
and they are marked with small discs.

Then, the circles and discs are joined to the
opposite tangencies, yielding the squares and filled
squares.

for i:=1 upto 3:

% circle

Ihc[i][1]

=circle(C[i],r[i],slope(ht[i])-5)

intersectionpoint ht[i];

% disc

Ihc[i][2]-C[i]=C[i]-Ihc[i][1];

% square

Ilc[i]=intersection_circle_line(

C[i],r[i],

Ihc[i][1],

T[next(i)][next(next(i))]);

% filled square

Ilc[3+i]=intersection_circle_line(

C[i],r[i],

Ihc[i][2],

T[next(i)][next(next(i))]);

endfor;

4.3 The final step

In the final step (figure 10), we have to distinguish
whether this is the first time the macro is called.
When it is called for the first time (case 1), only the
outer and inner Soddy circles need to be drawn.

16 TUGboat, Volume 26 (2005), No. 1

if firststep: % case 1

firststep:=false;

% outer Soddy

circle_through(Ilc1,Ilc2,Ilc3)

(C4)(r4);

% inner Soddy

circle_through(Ilc4,Ilc5,Ilc6)

(C5)(r5);

% we recurse

if n>0: % border cases

tangent_circles(C4,C1,C2,C3,

r4,r1,r2,r3,n-1);

tangent_circles(C4,C2,C3,C1,

r4,r2,r3,r1,n-1);

tangent_circles(C4,C3,C1,C2,

r4,r3,r1,r2,n-1);

fi;

else:

if ro<0: % case 2

circle_through(Ilc4,Ilc5,Ilc6)

(C5)(r5)

else: % case 3

if is_inner(Co,C2,C3,C1):

circle_through(Ilc1,Ilc2,Ilc3)

(C4)(r4);

else:

circle_through(Ilc4,Ilc5,Ilc6)

(C4)(r4);

fi;

fi;

fi;

% we recurse

if n>0: % case 4

if ro>0: % case 5

tangent_circles(C1,C2,C4,C3,

r1,r2,r4,r3,n-1);

tangent_circles(C1,C3,C4,C2,

r1,r3,r4,r2,n-1);

tangent_circles(C2,C3,C4,origin,

r2,r3,r4,-1,n-1);

else: % case 6

tangent_circles(C1,C2,C5,origin,

r1,r2,r5,-1,n-1);

tangent_circles(C1,C3,C5,origin,

r1,r3,r5,-1,n-1);

tangent_circles(C2,C3,C5,origin,

r2,r3,r5,-1,n-1);

fi;

fi;

Figure 10: The high-level structure of the
recursion.

pair C[]; % centers

numeric r[];

numeric n; % depth

n=7;

C1=origin;

r1=4cm;

r2=3cm;

r3=6cm;

% we find the center C2:

C2-C1=(r1+r2,0);

% there are now two possibilities for C3,

% we keep only one

C3=circle(C1,r1+r3,0)

intersectionpoint circle(C2,r2+r3,0);

draw circle(C1,r1,0);

draw circle(C2,r2,0);

draw circle(C3,r3,0);

firststep:=true;

tangent_circles(C1,C2,C3,origin,

r1,r2,r3,-1,n);

Figure 11: The driver of the construction. Three
initial circles are defined and the general macro is
called.

Once the outer Soddy circle C4 has been ob-
tained, the macro is again called on each border. In
each case, we provide the outer Soddy circle as the
first parameter, then two of the three inner circles,
then the third inner circle. During the next call of
the macro, the “case 3” part will be in effect, and
the new circle to be squeezed between the two inner
circles and the outer Soddy circle is found out using
the innerness criterion mentioned above.

“Case 2” applies when the inner Soddy circle of
three externally tangent circles has to be found.

But no matter what, when “case 4” is reached,
we have found a circle and two new cases apply: ei-
ther we have a border case with the original outer
Soddy circle C1 (case 5), or the circle is the in-
ner Soddy circle of three externally tangent circles
(case 6). Splitting case 5 leads to two new border
cases and one inner case (the usual inner Soddy cir-
cle). Splitting case 6 leads to three new inner cases
(the usual inner Soddy circles). Note that the pa-
rameter origin is irrelevant when the radius is neg-
ative.

The macro is started as shown in figure 11.

5 Conclusion

Our little journey through kissing circles has pre-
sented every detail of the METAPOST construction.
We have followed Eppstein’s construction closely.

TUGboat, Volume 26 (2005), No. 1 17

Figure 12: An Apollonian gasket of depth 7,
with 6563 circles. The total number of circles is
5+3× (3n

−1) where n is the depth. For n = 0, we
have five circles, which are the three base circles
and the two Soddy circles.

The resulting code is simple, but this simplicity was
not achieved right away. It is supported by the ro-
bustness of each macro which tries to be as gen-
eral as possible. The code produced is not tied to
a particular set of circle radii and should work in
all cases, provided METAPOST’s capacities are not
overflowed. We conclude with an Apollonian gasket
of depth 7, built with our code (figure 12).

References

Eppstein, David. “Tangent Spheres and Triangle
Centers”. American Mathematical Monthly 108,
63–66, 2001.

Gisch, David and J. M. Ribando. “Apollonius’ Prob-
lem: A Study of Solutions and Their Connec-
tions”. American Journal of Undergraduate Re-

search 3(1), 15–25, 2004.

⋄ Denis Roegel

LORIA

BP 239

54506 Vandœuvre-lès-Nancy

France

roegel@loria.fr

http://www.loria.fr/~roegel

Using the RPM package manager
for (LA)TEX packages

Tristan Miller

Abstract

RPM is a package management system which pro-
vides a uniform, automated way for users to install,
upgrade, and uninstall programs. Because RPM is
the default software distribution format for many
operating systems (particularly GNU/Linux), users
may find it useful to manage their library of TEX-
related packages using RPM. This article explains
how to produce RPM files for TEX software, either
for personal use or for public distribution. We also
explain how a (LA)TEX user can find, install, and re-
move TEX-related RPM packages.

1 Background

1.1 The evolution of package management
systems

In the first decade or two of personal computing,
most software was distributed on and run directly
from floppy disks. Users lucky enough to have a
hard drive could copy the contents of these floppies
into a directory on their hard disk and run it from
there. When a user wanted to delete the program,
he had to remember which directory he had copied
it to, find it in his file system, and manually delete
it, taking care to first preserve any data files he had
created.

As programs and hard disk capacities grew in
size, software was increasingly distributed on multi-
ple floppy disks or (later) on a CD-ROM. Vendors
would provide tools— usually simple shell scripts—
to automate the process of creating a directory on
the hard drive, copying the contents of each floppy
to it, configuring the installed copy of the program,
and then finally deleting it when the user requested
that it be uninstalled.

These tools grew in sophistication along with
the underlying operating systems (OSes), which by
the 1990s had begun to provide standard hardware
drivers and graphical interface toolkits for third-
party software to use. Now software installation pro-
grams could not merely copy themselves to the hard
drive; they also had to search for the presence and lo-
cation of requisite system and third-party software,
register themselves with the OS so that they too
could be found by other programs, and create icons
for the user in the system menu or desktop. Some
of the better installers would also do sanity checks
such as making sure the user didn’t install two copies

18 TUGboat, Volume 26 (2005), No. 1

of the same software package, or automatically de-
tecting and upgrading older installed versions of the
software. With the advent of dial-up bulletin board
systems and eventually home Internet access, it be-
came important for software to be downloadable in
a single file rather than as dozens or hundreds of
individual files as was the case with physical media.

Because each vendor wrote its own installation
program, users often found themselves confused by
different interfaces and lacking a single tool with
which to install, upgrade, and remove software. To
remedy this, each operating system developed its
own standard software package management tool to
be used by all users and vendors. Software devel-
opers can now distribute their programs in specially
prepared packages containing the source code and/
or binary executables for the software along with
important metadata such as the software’s name,
version number, vendor, and dependencies on other
software. Packages might also include checksums
or cryptographic signatures which the package man-
agement system can use to verify that they were not
corrupted or tampered with during distribution.

Users install and remove these packages using
standard system software, which keeps a database
of all installed packages and makes sure that all de-
pendencies are met— for example, by automatically
fetching prerequisite packages, or warning the user if
he is about to remove a package that other installed
software depends on.

1.2 Package management and TEX

Unfortunately for fans of quality typesetting, TEX
and friends are currently stuck in the Dark Ages of
software package management. Though TEX distri-
butions now mostly conform to the TEX Directory
Structure [8], which specifies standard locations for
the installation of certain types of files, there is cur-
rently no standard package format or associated tool
for installing, upgrading, and removing macro pack-
ages, styles, classes, scripts, fonts, documentation,
and other TEX-related paraphernalia available on
CTAN and elsewhere.

As a result, users who download new packages
must themselves check for prerequisites, manually
process .ins and .dtx files, create the appropri-
ate directories in their texmf tree, copy the files in,
and perform necessary post-installation configura-
tion (such as running texhash). Worse yet, when a
user wishes to uninstall a package, he must manu-
ally remove the files, often from multiple directories.
This usually entails consulting the original package
installation instructions to help remember what got
installed where.

Fortunately, until such time as the TEX commu-
nity develops and settles on its own package manage-
ment standard, users can avail themselves of their
operating system’s native package management sys-
tem for the maintenance of TEX packages.1 In this
article, we describe how to do this using the RPM

Package Manager, a packaging system originally de-
veloped by Red Hat and now in widespread use on
several operating systems.

1.3 RPM versus other package managers

RPM has a number of good features to recommend
itself to TEX package management. Most impor-
tant is its portability —RPM enjoys the status of
being the official package format specified by the
Linux Standard Base [4], meaning that any LSB-
compliant GNU/Linux distribution can handle RPM

packages. Distributions which use RPM by default
include Aurox, Fedora Core, Lycoris, Mandriva (for-
merly Mandrake), PCLinuxOS, PLD, Red Flag, Red
Hat, and SUSE. Distributions which use a different
native package format but which can handle RPM

by virtue of their LSB compliance include Debian,
MEPIS, Slackware, and Ubuntu.

However, RPM is by no means limited to GNU/
Linux operating systems. The RPM tools have been
ported to Mac OS X, Novell Netware, and some com-
mercial Unixes. Because the tools and file format
specifications are released under a free license, it is
possible to reimplement them on virtually any oper-
ating system. In fact, some work has already gone
into porting RPM to Microsoft Windows, with some
rudimentary tools available now.

It bears mention, however, that there are many
alternatives to RPM the user may wish to consider.
At least one TEX distribution, MiKTEX for MS-
Windows, provides its own packaging utility, mpm

[6, §§3.2 and A.9], which has much the same func-
tionality as RPM. However, mpm works only with
the MiKTEX distribution, and moreover is a net-
work tool which fetches packages from some central
repository. As far as the present author is able to
determine, it is not possible for package authors to
create and distribute their own MikTEX packages.

Another alternative is to use your operating
system’s native package management system. In
many cases, this requires purchasing the system’s of-
ficial software development kit (SDK). (In the case

1 In this document “TEX” refers to the entire TEX sys-
tem, including LATEX, METAFONT, BibTEX, and other com-
ponents. Similarly, a “TEX package” here means any set of
related files distributed, installed, and maintained as a unit.
This meaning includes but is not limited to LATEX2ε pack-
ages, which are style files supplementing a document class.

TUGboat, Volume 26 (2005), No. 1 19

of Microsoft Windows, this SDK can be downloaded
for free, though it requires a gigabyte of hard drive
space and comes with a restrictive license.) Another
disadvantage is that the distributed packages are of-
ten bundled as executable files, adding considerable
overhead (possibly several megabytes) to the size of
the package. (Consider that most TEX packages are
only a few kilobytes in size.) Users may also be wary
of running executables for fear of viruses or spyware
which the packager may have deliberately or unwit-
tingly included.

Users of Mac OS X will be pleased to note that
there exists an unofficial package management sys-
tem, i-Installer,2 which enjoys notable popularity
among TEX users on the Mac. The author of this
tool provides i-Installer packages, or i-Packages, for
a number of TEX packages. Furthermore, the i-
Installer distribution includes tools for users to cre-
ate their own i-Packages.

1.4 About this article

This article makes liberal use of illustrative exam-
ples to help the reader understand how to use the
RPM packaging tools. To help distinguish between
various types of computer input and output, we em-
ploy the following typographical conventions:

• When depicting an interactive shell session, any
text set in a teletype font marks that output
by the computer, and bold teletype indicates
text input by the user. At the beginning of
a line, the # character indicates the superuser
(root) shell prompt, while the $ character in-
dicates the shell prompt for a normal user ac-
count.

• Other instances of computer input and output
are rendered in a teletype font. Placeholders
for arguments the user is expected to specify as
appropriate are rendered 〈like_this 〉.

• The actual contents of configuration files cre-
ated by the user are set in small teletype text

surrounded by a box.

In §2, we give a brief overview of the RPM

command-line interface and how it’s used to install,
upgrade, and remove packages. It is aimed at novice
users who simply want to know how to install or re-
move a TEX RPM package they found on the Inter-
net. Readers already familiar with installing RPM

packages may wish to skip this section.
Section 3 describes how you can create RPM

packages for existing TEX packages; this information
is likely to be of greatest interest to package devel-
opers and distributors, but also to advanced TEX

2 http://ii2.sourceforge.net/

gnomovision
︸ ︷︷ ︸

- 1.2
︸︷︷︸

- 273
︸︷︷︸

. i586
︸ ︷︷ ︸

.rpm

package name version release architecture

Figure 1: A sample RPM filename

users who want to avoid the hassle of manual pack-
age management. This section assumes that you
have a basic familiarity with downloading and man-
ually installing TEX packages.

Finally, §4 briefly touches on some advanced
topics for RPM packagers and distributors.

2 RPM basics

2.1 RPM files and where to find them

Software for use with RPM is distributed in files
known as RPM packages, which have the filename
suffix .rpm. In order to distinguish between dif-
ferent versions of a package, a standard file nam-
ing scheme is employed which encodes the package
name, its version and release number, and the com-
puter architecture it is designed to work with. The
syntax is illustrated with an example in Figure 1.

• The package name indicates the name of the
software (or in our case, TEX package) packaged
in the RPM.

• The version is the version of the software to be
installed.

• The release field is used to indicate revisions of
the packaging of that particular version of the
software. For instance, sometimes the person
packaging the software will make an error, such
as leaving out a particular file. Every time the
software is repackaged to fix such an error, its
release number is increased.

• The architecture field indicates the type of com-
puter processor the software is designed to work
with. For most executable programs, this field
will have a value such as i586 (Intel 586), ppc
(PowerPC), or sparc (Sun SPARC). Most TEX
packages, however, do not depend on any par-
ticular computer processor and therefore have
the value noarch in this field.

One important property of an RPM package
which is not typically included in its filename is the
operating system it is designed to work with. Dif-
ferent Unix and GNU/Linux distributions, such as
SUSE and Fedora Core, may have slightly different
conventions regarding how and where programs and
documentation are installed. Therefore it is always
important to install only those RPM packages which
are meant for the OS distribution you are using.

20 TUGboat, Volume 26 (2005), No. 1

(Usually whatever web page or FTP site you find
the RPM on will indicate which distribution it is for.)
This caveat is compounded by the fact that differ-
ent TEX distributions may be available for the same
operating system, and that these distributions may
also have different conventions for how and where
to install files, and may come with different default
packages.

Therefore, when looking for TEX RPMs, you
must ensure not only that they are specific to your
operating system, but also to your TEX distribu-
tion. To help alleviate this problem, we recommend
that packagers and distributors of RPMs prepend
the name of the TEX distribution to the RPM pack-
age name. Thus, for example, an RPM package for
the LATEX package breakurl for use with the teTEX
distribution would have a filename such as
tetex-breakurl-0.04-1.noarch.rpm

However, whether this RPM is meant for SUSE, Red
Hat, or some other GNU/Linux distribution must be
indicated separately.

Most developers writing programs for Unix-like
systems will provide RPM packages of their software
on their official website. Alternatively, there exist
several Internet search engines, such as rpmfind.

net, which index RPM files. Currently TEX packages
are not widely available as RPM packages, though
hopefully this article will go some way towards en-
couraging TEX package developers and distributors
to remedy the situation. In the meantime, a num-
ber of LATEX RPMs for the SUSE distribution of
teTEX have been made available on the present au-
thor’s home page at http://www.nothingisreal.

com/tetex.

2.2 Installing, upgrading, and removing

packages

The main utility for manipulating RPM packages is
named, reasonably enough, rpm, and on Unix-like
systems is usually located in the /bin directory.3

rpm is a command-line utility, and we describe its
use in this section. Though it is not difficult to use,
most operating systems provide a graphical interface
to it, so installing or upgrading a package is often
as simple as clicking on the RPM file in your file
explorer.

To install an RPM package you have obtained,
you issue the following command (substituting the

3 This article will hereinafter assume that the user is work-
ing on a GNU/Linux or Unix system; however, most of what
is presented is easily applicable to other operating systems
which support RPM.

actual filename) while logged in as the superuser
(root):4

rpm --install \

gnomovision-1.2-273.i586.rpm

(For more verbose output and a progress meter, the
--verbose and --hash options can also be speci-
fied.) On the other hand, if you haven’t yet down-
loaded the file but know its location on the Internet,
you can tell rpm to fetch it for you via HTTP or FTP:

rpm --install ftp://ftp.foo.de/\

gnomovision-1.2-273.i586.rpm

rpm will then process the named file, make sure that
all its dependencies are met and that no conflicts
are caused, and install it. Once a TEX RPM is in-
stalled, no further work or setup should be needed;
whatever TEX package it installed should be imme-
diately available to your TEX installation. There
should be no need to manually update TEX’s file-
name database (e. g., texhash).

If a certain RPM package is already installed
on your system and you have downloaded a newer
version, you can upgrade the existing installation as
follows:

rpm --upgrade \

gnomovision-1.2-273.i586.rpm

The --erase option uninstalls an RPM package
you have previously installed. Note that you do not
specify the complete package filename; just the name
of the software is used:

rpm --erase gnomovision

Conveniently, rpm will issue a warning if you try to
remove a package which other installed packages re-
quire. You can then decide to remove those packages
as well or abort the process.

2.3 Getting information on packages

rpm also provides the --query option for listing and
getting information on installed packages. Used by
itself and a package name, this option simply prints
out the version and revision number of the pack-
age if it is installed. Alternatively, --query can be
used with auxiliary options to perform various useful
tasks. For example,

rpm --query --info gnomovision

displays the details of the gnomovision package, in-
cluding its size, packaging date, installation date, as
well as its purpose and functionality. Adding the
--list option will also show a list of each file the

4 To fit the formatting of this journal, we sometimes break
lines in shell command examples by using a backslash (\)
followed by a newline. In practice you can type the commands
on a single line, omitting the backslash and newline.

TUGboat, Volume 26 (2005), No. 1 21

Name : tetex-breakurl Relocations: (not relocateable)

Version : 0.04 Vendor: (none)

Release : 1 Build Date: Wed 06 Jul 2005 04:52:35

Install date: (not installed) Build Host: port-3108.kl.dfki.de

Group : Productivity/Publishing/TeX/Base Source RPM: tetex-breakurl-0.04-1.src.rpm

Size : 131758 License: LPPL

Signature : (none)

Packager : Tristan Miller <Tristan.Miller@dfki.de>

URL : http://www.ctan.org/tex-archive/macros/latex/contrib/breakurl/

Summary : An extension to hyperref for line-breakable urls in DVIs

Description :

This package provides a command much like hyperref’s \url that

typesets a URL using a typewriter-like font. However, if the dvips

driver is being used, the original \url doesn’t allow line breaks in

the middle of the created link: the link comes in one atomic piece.

This package allows such line breaks in the generated links.

Note that this package is intended only for those using the dvips

driver. Users of the pdflatex driver already have this feature.

Distribution: SuSE 9.0 (i586)

/usr/local/share/texmf/doc/latex/breakurl/README

/usr/local/share/texmf/doc/latex/breakurl/breakurl.dvi

/usr/local/share/texmf/doc/latex/breakurl/breakurl.pdf

/usr/local/share/texmf/tex/latex/breakurl/breakurl.sty

Figure 2: Output of rpm --query --info --list --package tetex-breakurl-0.04-1.rpm

package will install. (See Figure 2 for sample out-
put of a more realistic package—our example in the
next section, in fact.) Note that by default, the
--query option searches only the database of in-
stalled packages. To use it on a RPM file you have
downloaded, you must use it in conjunction with the
--package option and the filename.5 For example:

rpm --query --info --package \

gnomovision-1.2-273.i586.rpm

Another useful command with --query is

rpm --query --all

which lists all RPM packages installed on the system.
For most ordinary users, the above commands

are all that is required to effectively use rpm. For ad-
vanced operations, consult the rpm man page, or use
whatever graphical interface your system provides.

3 Creating RPM packages

So, you’re a developer who has created a new TEX
package, or perhaps you’re just an ordinary user who
has downloaded something from CTAN and wants to
package it as an RPM. Before you can begin creating
RPM packages, though, you first need to set up a few
things; these need be done only once.

5 Some pagers and file viewers, such as less, understand
the RPM file format; using them to view RPM files will re-
sult in output similar to that of rpm --query --info --list

--package.

3.1 First-time setup

The program used to create RPM packages is named
rpmbuild. Before you can use it, however, you need
to create a workspace for its use. You can do this
with the following shell command:

$ mkdir -p ˜/rpm/{BUILD,SOURCES,\

SPECS,SRPMS,RPMS/noarch}

It’s OK to specify a directory other than ~/rpm if
you wish.

Next, you need to create in your home direc-
tory a configuration file named .rpmmacros which
provides some default information to be used when
building packages; Listing 1 shows a sample. The
%packager line should specify your name and e-mail
address, formatted as shown, so that people can con-
tact you to report bugs or problems with your pack-
age. The %_topdir line should correspond to the
workspace directory you created previously. (If you
are unsure of the full path to your home directory,
the pwd shell command can tell you what it is.)

%packager Tristan Miller <Tristan.Miller@dfki.de>

%_topdir /home/miller/rpm

Listing 1: A sample ~/.rpmmacros file

22 TUGboat, Volume 26 (2005), No. 1

3.2 Preparing the TEX package source

With the above one-time setup steps complete, you
are now ready to begin building RPM packages. The
first thing to do is to fetch the source to the TEX
package for which you want to create an RPM. If
you are a package developer, we assume you already
have all the files; for those of you creating RPMs
for others’ TEX packages, you will have to download
the files from the author’s web page or from CTAN.
Normally these will be available as a tar.gz or zip
archive.

Let’s assume that we are installing the package
breakurl, which is available at http://ctan.org/
tex-archive/macros/latex/contrib/breakurl.
Follow the “get this entire directory” link, spec-
ify a mirror that supports directory archives, and
download the package into a temporary directory
on your machine, such as /tmp. Then decompress
the archive using unzip or tar as appropriate:

$ cd /tmp

$ tar xzvf breakurl.tar.gz

breakurl/

breakurl/README

breakurl/breakurl.dtx

breakurl/breakurl.ins

breakurl/breakurl.pdf

3.3 Writing the spec file

Next you must prepare a spec file, which is a set
of commands instructing rpmbuild how to compile
the source files and where to install them. spec files
are generally stored in the SPECS subdirectory of the
workspace you created in §3.1, and are composed of
a number of sections, or stanzas:

• the Header stanza, which defines custom macros
and gives basic information about the package;

• the Prep stanza, which unpacks the package and
prepares it for compilation;

• the Build stanza, which provides instructions
for compiling the package;

• the Install stanza, which provides instructions
for installing the package;

• the Files stanza, which lists all the files to be
included in the package distribution;

• the Scripts stanza, which specify programs to
be run before and after installation or uninstal-
lation of the package; and

• the Changelog stanza, which contains a record
of changes made to the RPM package.

In the following subsections we continue with our
breakurl example by building its spec file, named
~/rpm/SPECS/breakurl.spec. We show the various

stanzas as they are being built; the completed spec

file is presented at the end in Listing 9.

3.3.1 The Header stanza

The Header stanza appears, unlabelled, at the be-
ginning of the spec file and typically contains two
kinds of information: macro definitions, and fields
containing important metadata about the package.

Macros. A number of macros are predefined by
your RPM distribution. For example, the macro
%_tmppath is predefined to some temporary direc-
tory in your file system, such as /tmp or /var/

tmp. Other macros are automatically defined by
rpmbuild as it processes the spec file, using in-
formation from the fields you specify. For exam-
ple, rpmbuild assigns to the %name and %version

macros the same values you specify for the Name and
Version fields (see below) so that you can use these
values later on in your spec file.

In addition to these predefined macros, you can
create and use your own custom macros. A macro
definition looks like this:

%define 〈macro_name 〉 〈macro_value 〉

Once a macro has been defined, you can reference it
later with the following syntax:

%{〈macro_name 〉}

It is permissible to use a macro in the definition of
a new macro.6

One useful macro we should define here is the
root of our local TDS tree— that is, where new TEX
packages should be installed on the system [8, §2.3].7

The exact location of this directory varies with both
your OS and TEX distribution, so you will need to
consult the appropriate documentation. The teTEX
distribution on SUSE 9.0, for example, uses /usr/

local/share/texmf, so in that case we would define
a macro as follows:

6 Observant readers will note that what we entered into
our ~/.rpmmacros file in §3.1 were actually macro definitions.

7 Why install to the local tree rather than the main texmf

tree? Consider the case where the TEX distribution includes
version 1.0 of a certain package foo. Say we then produce
an RPM package of version 1.1 of foo which installs to the
main texmf tree rather than the local tree. If the user installs
this RPM and then later decides that version 1.1 is buggy and
removes it, he will be unable to revert to version 1.0 without
reinstalling his TEX distribution. Furthermore, if he does
reinstall his TEX distribution, any other RPM packages that
happened to install themselves in the root texmf tree will
likely be overwritten. Installing new and upgraded versions
of packages in the local tree avoids this problem; new TEX
packages can be installed and removed while preserving older
versions in the root tree. (When two versions of a package
exist, most TEX distributions are configured to prefer the
local-tree version over the root-tree version.)

TUGboat, Volume 26 (2005), No. 1 23

Distribution Group Reference

Fedora Core Applications/Publishing [1, §13.2.2]
Mandriva Publishing [5]
PLD Linux Applications/Publishing/TeX

Red Hat Applications/Publishing [1, §13.2.2]
SUSE Productivity/Publishing/TeX/Base [7, §2.5]
Yellow Dog Applications/Publishing

Table 1: Groups for TEX packages by GNU/Linux distribution

%define texmf /usr/local/share/texmf

Fields. Fields are defined with the following syn-
tax:

〈field_name 〉: 〈field_value 〉

The most commonly specified fields are as follows:

Name The name of the RPM package. As explained
in §2.1, we recommend forming the RPM pack-
age name by combining your TEX distribution
name with the name of the TEX package. For
example, a breakurl RPM for teTEX would be
called tetex-breakurl.

Summary A concise, one-line summary of the TEX
package.

Version The version number of the TEX package.
Normally this will be found in a README file
or in the package’s documentation, though in
some cases you may need to examine the pack-
age source code. Sometimes a package will have
a date but no formal version number; in these
cases you should use the date, in the format
〈YYYYMMDD 〉, as the version number.

Release The release number of the RPM package.
Initially, this should be 1; every time you re-
build the RPM package (say, to fix an error
in the spec file), this number should be incre-
mented. Release numbers are specific to each
version of the TEX package, so whenever you
prepare a spec file for a new version of the same
TEX package, the release number should be re-
set to 1.

License The license under which the TEX package
is released. Normally this information will be
found in a file named README or COPYING, or
in the package documentation. Typically the
value for the License field will be LPPL (LATEX
Project Public License), though some packages
are released other ways, such as under the GNU

Public License (GPL) or as public domain. If the
package is released under a custom or unusual
license with no common abbreviation, then it’s

best to write here something like Other or See
package docs.8

Group The category to which this package belongs.
Different OS distributions have different cate-
gorization schemes, so you will need to consult
your distribution’s documentation. Table 1 lists
the groups where TEX packages go for some
common GNU/Linux distributions.

URL The home page of the TEX package. Normally
this will be the package’s location on CTAN.

Requires Any software or other RPM package re-
quired for this package to work. At a minimum,
this field should contain the name of the TEX
distribution you are using. You can also specify
that a certain minimum (or exact) version of a
package is required — for example:

Requires: tetex >= 2.0.2

You can use as many Requires fields as there
are prerequisites for your package, or you can
use a single Requires field and separate the
values with commas.

Distribution The name and version of the OS dis-
tribution for which this RPM is intended. This
information is used by RPM search engines to
properly categorize your package. It is possible
to build RPMs for a distribution other than the
one you are currently running, though this will
require some knowledge of where it expects the
local TDS tree to be rooted.

Source The source archive used to build the pack-
age. This basically corresponds to the zip or
tar.gz file you downloaded from CTAN. How-
ever, it is generally expected that the source be
archived as a tar.bz2 file and given a standard
name of the form 〈name 〉-〈version 〉.tar.bz2,
where 〈name〉 and 〈version〉 are the name and
version, respectively, of the TEX package.9

8 If you are planning on making your RPM package avail-
able to the public, be sure to first check that the license allows
it. Most free software licenses, including the LPPL and GPL,
permit this, though some other licenses may stipulate that
the software cannot be repackaged or redistributed.

9 This is especially true if you intend to distribute
“source” RPMs as well as binary RPMs— see §3.4.

24 TUGboat, Volume 26 (2005), No. 1

Name: tetex-breakurl

Summary: An extension to hyperref for line-breakable urls in DVIs

Version: 0.04

Release: 1

License: LPPL

Group: Productivity/Publishing/TeX/Base

URL: http://www.ctan.org/tex-archive/macros/latex/contrib/breakurl/

Requires: tetex

Distribution: SuSE 9.0 (i586)

Source: %{name}-%{version}.tar.bz2

BuildRoot: %{_tmppath}/%{name}-%{version}-root

BuildArch: noarch

%define texmf /usr/local/share/texmf

%description

This package provides a command much like hyperref’s \url that

typesets a URL using a typewriter-like font. However, if the dvips

driver is being used, the original \url doesn’t allow line breaks in

the middle of the created link: the link comes in one atomic piece.

This package allows such line breaks in the generated links.

Note that this package is intended only for those using the dvips

driver. Users of the pdflatex driver already have this feature.

Listing 2: The Header stanza for breakurl.spec

Assuming we are working with version 0.04
of breakurl, the contents of this field would be
tetex-breakurl-0.04.tar.bz2. If we want to
use rpmbuild’s pregenerated macros, it would
be %{name}-%{version}.tar.bz2. Since this
file must actually be found by rpmbuild, you
will also have to recompress and rename the
archive from CTAN, and then move it into the
SOURCES subdirectory of your workspace:

$ cd /tmp

$ gunzip breakurl.tar.gz

$ mv breakurl.tar \

tetex-breakurl-0.04.tar

$ bzip2 -9 tetex-breakurl-0.04.tar

$ mv tetex-breakurl-\

0.04.tar.bz2 ˜/rpm/SOURCES

BuildArch The computer architecture the package
is intended to run on. Since most TEX pack-
ages do not contain any binary computer code,
a value of noarch will suffice in most cases.

BuildRoot A temporary directory in which to test
installing the package. Normally this will be
declared as %{ tmppath}/%{name}-%{version}
-root.

%description A detailed description of the TEX
package, possibly several paragraphs in length.
Often this information can be copied from the
package’s README file. (Strictly speaking, the
%description is not a field, since it is followed
by a newline rather than a colon, and is termi-
nated by the beginning of the Prep stanza.)

These fields can be specified in any order, except
that the %description field must come last.

Listing 2 shows a complete Header stanza for
breakurl.spec.

3.3.2 The Prep stanza

The Prep stanza, which always begins with the line

%prep

contains macros and/or shell commands which pre-
pare the package for compilation. For TEX pack-
ages, this typically involves merely unpacking the
source code archive (specified by the Header stanza’s
Source field) into the temporary build directory.

The RPM system provides the macro %setup for
this purpose; it is usually used with the -q (quiet)
option to suppress unwanted output. The %setup

macro assumes that the source archive unpacks into
a directory named 〈name 〉-〈version 〉 (the actual
name and version being retrieved from the Header
stanza) and will cd into it in preparation for the
next stanza. If your tarball unpacks into a differ-
ent directory, then the option -n 〈dirname 〉 can be
used to specify an alternative directory name.

A sample Prep stanza for breakurl.spec ap-
pears in Listing 3. Note that we specify the op-
tion -n breakurl to %setup. That’s because, as we
saw in §3.2, the breakurl tarball we downloaded
from CTAN unpacked into a directory called simply
breakurl.

TUGboat, Volume 26 (2005), No. 1 25

%prep

%setup -q -n breakurl

Listing 3: The Prep stanza for breakurl.spec

3.3.3 The Build stanza

The Build stanza begins as follows:

%build

Following this token you should type whatever shell
commands are necessary to build the TEX package.
For most LATEX packages, this will involve running
latex on any ins and dtx files; it may also involve
running bibtex, makeindex, dvips, and other com-
mands. On the other hand, some LATEX packages
come prebuilt as ready-to-install sty and/or cls

files; in such cases the Build stanza will be empty.
You should consult the package’s build instruc-

tions to find out which commands, if any, you need
to run on which files, and manually try them out
yourself on the temporary copy of the package source
you unpacked in §3.2. This way you can find out,
for example, how many times you need to run latex

before all references are resolved, and thus include
the appropriate number of calls to it in the Build
stanza.

A sample Build stanza for breakurl.spec ap-
pears in Listing 4. Note that the tarball already
contained a PDF version of the package documen-
tation, making our processing of breakurl.dtx to
create the DVI documentation somewhat unneces-
sary. However, let’s assume for illustrative purposes
that we wish to include both PDF and DVI versions
of the documentation in our RPM, thus necessitating
the generation of the latter.

%build

latex breakurl.ins

latex breakurl.dtx

latex breakurl.dtx

Listing 4: The Build stanza for breakurl.spec

3.3.4 The Install stanza

After the Build stanza comes the Install stanza. Its
beginning is denoted by the following token:

%install

Like the Build stanza, the Install stanza consists of
shell commands, though this time the purpose is to
copy the generated files into their correct places in
the TEX directory structure (TDS). However, rather
than installing the files into the system TDS (which
can have disastrous effects if there is an error in

the spec file), we instead simulate or “practice”
installing them into a temporary copy of the file
system. This temporary copy was specified by the
BuildRoot field of the Header stanza, the value of
which can be accessed here with the shell variable
$RPM_BUILD_ROOT.

Another component of the Install stanza is a
small script to remove the contents of the BuildRoot
directory after a build. This script begins with

%clean

and usually consists of the command

rm -rf $RPM_BUILD_ROOT

Many packagers prefer to include a copy of this com-
mand as the first command after %install, just to
make sure the BuildRoot is empty.

A sample Install stanza for breakurl.spec ap-
pears in Listing 5.

%install

rm -rf $RPM_BUILD_ROOT

mkdir -p %{texmf}/tex/latex/breakurl

cp breakurl.sty %{texmf}/tex/latex/breakurl

mkdir -p %{texmf}/doc/latex/breakurl

cp README %{texmf}/doc/latex/breakurl

cp breakurl.dvi %{texmf}/doc/latex/breakurl

cp breakurl.pdf %{texmf}/doc/latex/breakurl

%clean

rm -rf $RPM_BUILD_ROOT

Listing 5: The Install stanza for breakurl.spec

3.3.5 The Files stanza

The Files stanza, which begins with the line

%files

lists all the files and directories to be included in
the RPM package. This is important, as during the
build process a number of temporary files (e. g., aux,
log, bbl) may be created, and rpmbuild needs to
know that these can be safely discarded.

The main part of the Files stanza is relatively
simple; it simply consists of a list of files and di-
rectories, relative to the BuildRoot directory where
they were temporarily installed in the Install stanza.
Normally one file or directory per line is specified,
though it is permissible to use wildcards. For exam-
ple, the lines

%{texmf}/tex/latex/mypackage/*.sty

%{texmf}/tex/latex/mypackage/*.cls

specify including all the LATEX style and class files
in the directory $RPM BUILD ROOT/%{texmf}/tex/
latex/mypackage.

26 TUGboat, Volume 26 (2005), No. 1

Be careful when specifying a directory name,
because that indicates to rpmbuild that it should
package all files in that directory. If you just want
to indicate that a particular directory but none of
its files should be packaged, precede the name of the
directory with the %dir macro:

%dir %{texmf}/tex/latex/mypackage/tmp

There are other macros you can use before a file-
name to give important information about the file.
The %doc macro indicates that a file is documen-
tation. (Marking this is important because some
users might want to save space by not installing
the package’s documentation. The rpm --install

command has an auxiliary option, --excludedocs,
to suppress installation of documentation.) Alterna-
tively, the %config macro can be used to mark a file
as being a user-modifiable configuration file. When
upgrading a package, rpm will be careful not to over-
write any such file the user may have painstakingly
modified. Here are some examples:

%doc %{texmf}/doc/latex/foo/guide.dvi

%doc %{texmf}/doc/latex/foo/README

%config %{texmf}/tex/latex/foo/foo.cfg

Finally, it is important to set the ownership and
permissions for the files to be installed. This can be
done collectively for all files by issuing the %defattr
macro at the beginning of the Files stanza, which
has this syntax (on two lines only for this presenta-
tion; the actual source must be all on one line):
%defattr(〈file_permissions 〉,〈owner 〉,

〈group 〉,〈directory_permissions 〉)
Both 〈owner〉 and 〈group〉 will normally be root.
You should specify the file and directory permis-
sions in the standard three-digit octal format used
by chmod. For example, one might specify the di-
rectory permissions as 755, which corresponds to
rwxr-xr-x (i. e., everyone can read and execute the
directory, but only its owner can write to it). In-
stead of specifying an octal value, you can use the
hyphen, -, to tell rpmbuild to package the files and
directories with the same permissions it has in the
BuildRoot tree. To override the default permissions
or ownership on a particular file, you can prefix it
with the %attr macro, which uses the same syntax
as %defattr.

A sample Files stanza for breakurl.spec ap-
pears in Listing 6.

3.3.6 The Scripts stanza

Sometimes, certain system commands need to be ex-
ecuted before or after software is installed or unin-
stalled. This is also true of (un)installing packages
on most TEX distributions, usually because TEX has

%files

%defattr(-,root,root,-)

%{texmf}/tex/latex/breakurl/breakurl.sty

%doc %{texmf}/doc/latex/breakurl/README

%doc %{texmf}/doc/latex/breakurl/breakurl.dvi

%doc %{texmf}/doc/latex/breakurl/breakurl.pdf

Listing 6: The Files stanza for breakurl.spec

to update its file index. On teTEX and other TEX
distributions which use the Kpathsea path search-
ing library, for example, the command texhash or
mktexslr must be run whenever a package is in-
stalled or uninstalled. Such commands can be spec-
ified in the Scripts stanza of the spec file.

Unlike most of the previous stanzas, the be-
ginning of the Scripts stanzas is not marked by a
token. Rather, scripts to be executed before instal-
lation, after installation, before uninstallation, and
after uninstallation can be specified following the
%pre, %post, %preun, and %postun tokens, respec-
tively. Listing 7 shows the Script stanza for our
breakurl.spec file.

%post

texhash

%postun

texhash

Listing 7: The Scripts stanza for breakurl.spec

3.3.7 The Changelog stanza

The Changelog stanza is where you should keep a
human-readable log of changes to the spec file. This
stanza begins with the line

%changelog

and contains a chronological list of entries (most re-
cent first) in this format:

* 〈date 〉 〈name 〉 <〈email 〉> 〈version 〉-〈release 〉
- 〈change made 〉
- 〈other change made 〉...

The 〈date〉 field must be in the following format:

Tue Jul 05 2005

Such a date can be produced with the command

$ date +"%a %b %d %Y"

The initial Changelog stanza for breakurl.spec is
illustrated in Listing 8.

TUGboat, Volume 26 (2005), No. 1 27

%changelog

* Mon Jul 04 2005 Tristan Miller \

<Tristan.Miller@dfki.de> 0.04-1

- Initial build.

Listing 8: The Changelog stanza for
breakurl.spec (the \ and line break are for
our presentation only)

3.4 Building the RPM

Now that you’ve written the spec and moved the
source tarball (recompressed with bzip2) into your
~/rpm/SOURCES directory, you are finally ready to
build the RPM. Simply cd into the directory where
breakurl.spec resides (~/rpm/SPECS) and run the
following command (logged into your regular ac-
count—not as root!):

$ rpmbuild -ba breakurl.spec

rpmbuild will first scrutinize the spec file for any
syntax errors and abort with an informative mes-
sage if it finds any. If not, you should see the com-
mands you’ve specified in the Build and Install stan-
zas being executed as if you had typed them your-
self. You’ll probably get several pages of LATEX
output plus various other diagnostic messages from
rpmbuild itself. The resulting RPM package will be
written to the file

~/rpm/RPMS/noarch/tetex-breakurl-0.04-1.rpm

Go ahead and examine the file with less, or with
rpm --query --info --list --package, to make
sure that all the package data is correct and that
all files are set to install in the correct places. (The
data should look similar to what is shown in Fig-
ure 2.) If not, you’ll have to figure out where the
error is, re-edit the spec file, increment its Release
number, and try rebuilding.10

Another file produced by rpmbuild,
~/rpm/SRPMS/tetex-breakurl-0.04-1.src.rpm,

is what is known as a source RPM or SRPM. Unlike
the RPM package, which contains only the precom-
piled, ready-to-install TEX package, the SRPM con-
tains the original source tarball and your spec file.
SRPMs are useful for users who want to modify the
TEX package before it is compiled, or for those who
wish to create a new RPM of the same TEX pack-
age for a different OS or TEX distribution and don’t
want to go to the trouble of creating their own spec

file from scratch.
Note that rpmbuild does not, by default, install

the RPM package; it only creates one. To actually

10 The tool rpmlint (from Mandriva) can assist in debug-
ging RPM files.

install the RPMs you create, you need to invoke the
rpm command as outlined in §2.2.

Once you have created and tested your RPM, it
might be a good idea to save other users the trou-
ble you’ve gone to by publishing it on the web or
on a local FTP server. Eventually it will proba-
bly be spidered by an RPM search engine such as
rpmfind.net so that others can find it. It is also
possible that CTAN may accept submissions of RPM

packages, either now or at some point in the future.

4 Advanced topics

The information presented in this article is suffi-
cient for making basic RPMs for most TEX pack-
ages, though there are many other topics which are
not addressed here. Most importantly, this article
has assumed that the TEX package you are packag-
ing is something like a font or a LATEX package which
contains no executable code. Utilities written in pro-
gramming languages such as Perl, Python, or C, or
those which make use Makefiles or the GNU Auto-
tools must be handled slightly differently; though
the process isn’t necessarily more complicated, there
are too many different cases to cover in an article
of this scope. The reader is therefore referred to
more general-purpose documents on RPM [1, 2, 3]
for dealing with such packages.

Another topic worthy of mention is the use of
cryptographic tools such as PGP and GnuPG to dig-
itally sign and verify RPMs. RPM has built-in sup-
port for this, though because there are many more
applications for digital signatures in the world of
TEXing, we will reserve treatment of it for a future
article on using GnuPG with TEX.

5 Bibliography

[1] Edward C. Bailey. Maximum RPM. Sams, Au-
gust 1997.

[2] Eric Foster-Johnson. Red Hat RPM Guide. Red
Hat Press, March 2003.

[3] Guru Labs. Creating RPMs (student version)
1.0, April 2005.

[4] Linux Standard Base Team. Building Applica-

tions with the Linux Standard Base. Prentice
Hall, October 2004.

[5] Mandriva Linux Development Community.
MandrivaGroups, May 2005. Revision r1.10.

[6] Christian Schenk. MiKTEX 2.4 Manual, Febru-
ary 2004. Revision 2.4.1520.

[7] SUSE Linux AG, Nuremberg. SUSE Package

Conventions, January 2005. Revision 1.0.

28 TUGboat, Volume 26 (2005), No. 1

[8] TUG Working Group on a TEX Directory Struc-
ture. A directory structure for TEX files, June
2004. Version 1.1.

Name: tetex-breakurl

Summary: An extension to hyperref for line-breakable urls in DVIs

Version: 0.04

Release: 2

License: LPPL

Group: Productivity/Publishing/TeX/Base

URL: http://www.ctan.org/tex-archive/macros/latex/contrib/breakurl/

Requires: tetex

Distribution: SuSE 9.0 (i586)

Source: %{name}-%{version}.tar.bz2

BuildRoot: %{_tmppath}/%{name}-%{version}-root

BuildArch: noarch

%define texmf /usr/local/share/texmf

%description

This package provides a command much like hyperref’s \url that

typesets a URL using a typewriter-like font. However, if the dvips

driver is being used, the original \url doesn’t allow line breaks in

the middle of the created link: the link comes in one atomic piece.

This package allows such line breaks in the generated links.

Note that this package is intended only for those using the dvips

driver. Users of the pdflatex driver already have this feature.

%prep

%setup -q -n breakurl

%build

latex breakurl.ins

latex breakurl.dtx

latex breakurl.dtx

%install

rm -rf $RPM_BUILD_ROOT

mkdir -p $RPM_BUILD_ROOT/%{texmf}/tex/latex/breakurl

cp breakurl.sty $RPM_BUILD_ROOT/%{texmf}/tex/latex/breakurl

mkdir -p $RPM_BUILD_ROOT/%{texmf}/doc/latex/breakurl

cp README breakurl.{dvi,pdf} $RPM_BUILD_ROOT/%{texmf}/doc/latex/breakurl

%clean

rm -rf $RPM_BUILD_ROOT

%files

%defattr(-,root,root,-)

%{texmf}/tex/latex/breakurl/breakurl.sty

%doc %{texmf}/doc/latex/breakurl/README

%doc %{texmf}/doc/latex/breakurl/breakurl.dvi

%doc %{texmf}/doc/latex/breakurl/breakurl.pdf

%changelog

* Mon Jul 4 2005 Tristan Miller <psychonaut@nothingisreal.com> 0.04-1

- Initial build.

Listing 9: The complete breakurl.spec file

⋄ Tristan Miller
German Research Center for Artificial Intelligence

(DFKI GmbH)
Postfach 20 80
67608 Kaiserslautern, Germany
Tristan.Miller@dfki.de

http://www.dfki.uni-kl.de/~miller/

Practical TEX 2005

Sponsors

TEX Users Group Duke University Press DANTE e.V.

Addison-Wesley Carleton Production Centre Design Science
MacKichan Software, Inc. Personal TEX, Inc. River Valley Technologies

Thanks to all!

Acknowledgements

Special thanks to all the speakers and teachers, without whom there would be no conference,
and also:

Chapel Hill Visitor’s Bureau, for providing local assistance
Nelson Beebe, for agreeing to be the keynote speaker
Duane Bibby, for the always excellent drawings.
Joseph Hogg, for his extra donations to the raffle
Wendy McKay, for organizing the Mac OS X BOF

Conference committee

Karl Berry Lance Carnes Sue DeMeritt Steve Grathwohl
Robin Laakso Steve Peter Cheryl Ponchin

Participants

David Allen, University of Kentucky
Tim Arnold, SAS

Kapila Attele, Chicago State University
Kaveh Bazargan, River Valley Technologies
Nelson Beebe, University of Utah
Karl Berry, TEX Users Group
John Burt, Brandeis University
Lance Carnes, Personal TEX Inc.
Rialine Cruywagen, Unisa, South Africa
Em Van Deventer, Unisa, South Africa
Trinette Jeanne Evert, Unisa, South Africa
Ronald Fehd, Centers for Disease Control and

Prevention
Frances Felluca, INFORMS

Peter Flom, National Development and Research
Institutes

Peter Flynn, Silmaril Consultants
August Gering, Duke University Press
Steve Grathwohl, Duke University Press & TUG

Eitan Gurari, Ohio State University
Hans Hagen, Pragma ADE & NTG

Joseph Hogg, Los Angeles, CA

Lezlie Holbrook, Oak Ridge National Laboratory
Klaus Höppner, DANTE e.V. & TUG

David Ignat, International Atomic Energy Agency
Calvin Jackson, Caltech
Mirko Janc, INFORMS

Jonathan Kew, SIL International

Richard Koch, University of Oregon
Martha Kummerer, University of Notre Dame
Robin Laakso, TEX Users Group
Jenny Levine, Duke University Press
Barbara Mastrian, Rutgers University
Wendy McKay, Caltech
Marisa Meredith, University of North Carolina
Andrew Mertz, Eastern Illinois University
Tristan Miller, German Research Center for

Artificial Intelligence
Jaime Moore, Pacific Northwest National

Laboratory
Stephen Moye, American Mathematical Society
Liz Pennington, University of North Carolina
Steve Peter, Beech Stave Press & TUG

Cheryl Ponchin, Center for Communications
Research, Princeton, NJ

John Rorem, Duke University Press
Volker R.W. Schaa, DANTE e.V.
Anita Schwartz, University of Delaware
Heidi Sestrich, Carnegie-Mellon University
William Slough, Eastern Illinois University
Alistair Smith, Sunrise Setting Ltd
Terri Spence, Duke University Press
Chris Swanepoel, Unisa, South Africa
Lee Trimble, University of North Carolina
Gary Tucker, Averett University

Practical TEX 2005 — program and information

Tuesday

June 14
courses 9 am–4:30 pm

Peter Flynn Practical TEX on the web
Steve Peter Introduction to ConTEXt
Cheryl Ponchin Beginning and intermediate LATEX

8–9 am registration
10:30 am break
12:30 pm lunch (until 1:30 pm)

3 pm break
5–7 pm registration & reception

Wednesday

June 15
8–9 am registration

9 am Karl Berry, TEX Users Group Welcome
9:15 am Nelson Beebe, University of Utah keynote address: The design of TEX and METAFONT:

A retrospective

10:15 am break
10:30 am Peter Flom, NDRI A true beginner looks at LATEX

11 am Anita Schwartz, University of Delaware The art of LATEX problem solving
11:45 am Kaveh Bazargan, River Valley Tech. A graphical user interface for TEX

12:30 pm lunch

1:30 pm David Ignat, IAEA Word to LATEX for a large, multi-author scientific paper
2 pm Steve Grathwohl, Duke University Press ConTEXt: Better living through setups

2:30 pm Ronald Fehd, CDC Indexing, MakeIndex, and SAS

3 pm break
3:15 pm Jonathan Kew, SIL International An introduction to XeTEX

4 pm Q & A moderator: Lance Carnes
4:30 pm Birds of a Feather (see following page)

Thursday

June 16
9 am Eitan Gurari, Ohio State University MathML via TEX4ht and other tools

9:45 am John Burt, Brandeis University Typesetting critical editions of poetry with poemscol
10:30 am break
10:45 am Joseph Hogg, Los Angeles TEX takes a walk on the green side
11:30 am Klaus Höppner, DANTE e.V. & TUG Strategies for including graphics in LATEX documents

12:30 pm lunch

1:30 pm Tristan Miller, DFKI HA-Prosper: Producing beautiful slides with LATEX
2:15 pm David Allen, University of Kentucky Dynamic presentations using TEXpower and PSTricks

3 pm break
3:15 pm Andrew Mertz & William Slough,

Eastern Illinois University
Beamer by example

4 pm Q & A moderator: Anita Schwartz
4:30 pm TUG members meeting
7:30 pm banquet (see following page)

Friday

June 17
9 am Tristan Miller Biblet: A portable BIBTEX bibliography style for

generating highly customizable XHTML

9:45 am Volker R.W. Schaa, DANTE e.V. XML workflows and the EuroTEX 2005 proceedings
10:30 am break
10:45 am Hans Hagen, Pragma ADE & NTG TEX and XML

11:30 am lunch

12:30 pm Steve Peter TEX font installation and usage
1:30 pm Mirko Janc, INFORMS LATEX and PitStop: Unusual but powerful alliance
2:15 pm Peter Flynn, Silmaril Consultants LATEX and the web

3 pm break
3:15 pm panel: Digital Publishing moderator: Steve Grathwohl; Kaveh Bazargan,

Nelson Beebe, Lance Carnes, Peter Flynn,
Hans Hagen, Mirko Janc

≈ 4 pm end

Impressions from PracTEX’05

Compiled by Peter Flom and Tristan Miller

The recent PracTEX 2005 conference in Chapel Hill,
North Carolina was a great success, thanks to the
presenters, the attendees, and the local organizer,
Steve Grathwohl of Duke University Press.

Below are a few photos and comments from
some of the attendees. More information and pho-
tos are on the conference web pages (http://tug.

org/practicaltex2005).

Cheryl Ponchin, Heidi Sestrich,
Kaveh Bazargan, Chris Swanepoel,
Em Van Deventer, Trinette Jeanne Evert,
Alistair Smith, and Rialine Cruywagen

John Burt (Brandeis University, USA)

What a wonderful conference that was! I found it
incredibly informative, and incredibly fun. The pa-
pers were very exciting to me, particularly those
that brought up aspects of TEX that were new to
me, such as the papers on HA-prosper and Beamer,
the paper on the graphical interface, and the paper
on XeTEX. I enjoyed also the course on ConTEXt
a great deal, and was persuaded by it to give it a
whirl.

One of the best things about the conference was
the social side of it — not just the delicious lunches
and the even more delicious conversations, and the
banquet, but the informal getting-together over din-
ner. I can’t think of a conference I have enjoyed
more!

Ron Fehd (Centers for Disease Control and
Prevention, Atlanta, USA)

I came to PracTEX for the first time in San Fran-
cisco in 2004 and thoroughly enjoyed it. This year
at PracTEX in Chapel Hill, NC, I am pleased to re-

Editor’s note: This article was originally published in The

PracTEX Journal, issue 2005-3, http://tug.org/pracjourn.

port that I got my money’s worth each and every
day. Let me restate that: I would have paid the full
conference fee for the knowledge I gained on any of
the four days!

I have been using SAS (Statistical Analysis Sys-
tem) for almost 20 years and for the past four years
I have been using LATEX to write a book about my
SAS programming expertise. As a result of attend-
ing PracTEX conferences I have learned new tech-
niques that will make this a better book.

Based on my return on investment and contin-
ued use of LATEX: see you next year, for sure.

Peter Flom (National Development and
Research Institutes, New York, USA)

I attended the recent PracTEX conference and had
a great time. I gave a talk, “A LATEX fledgling
struggles to take flight”, which was well-received.
I learned a lot from the LATEX class I took, the pre-
sentations I attended, and from conversations with
various people. Despite my newbie status (I’ve been
using LATEX for all of seven months), and despite the
fact that many of the people had clearly known each
other for years, people could not have been more
welcoming. Several people made deliberate efforts
to include me in conversations and extra-conference
activities. I’m just sorry I had to leave early.

I encourage other beginning users of LATEX to
attend future conferences; it’s a great way to learn
more about the program, to meet a good group of
people, and to put faces to the names.

Lance Carnes and Cheryl Ponchin

Joe Hogg (Los Angeles, USA)

I’ve been using TEX for about a year for booklets, a
couple of leaflets and business correspondence. It’s
been rewarding and many persons who have seen

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 31

Compiled by Peter Flom and Tristan Miller

these documents have liked them. Like many indi-
viduals using TEX, and probably most new users,
I’ve worked alone using TEX resources in print and
at various web sites.

The Practical TEX 2005 conference in Chapel
Hill gave me a better sense of the variety of appli-
cations being created and the expertise of individu-
als using this software. The attendees ranged from
computer scientists to end-users like me, individuals
from private and university presses, academic type-
setters, typesetting-system developers and a nice mix
of electronic publishing practitioners involved with
both web and print venues.

Besides its conviviality, I value the conference
for the new areas it gave me to explore and how what
I’ve learned will change the way I use TEX. Since
returning home, I’ve been looking at ConTEXt and
thinking about how I can integrate XML, the web
and TEX for two projects I’ve wanted to tackle for
months. I’ll also read TUGboat and The PracTEX
Journal with particular interest since I met many
of the authors whose articles appear there. Very
worthwhile conference.

Tristan Miller (German Research Center for
Artificial Intelligence, Germany)

Though I have been using LATEX for a number of
years now, I joined TUG only last November, and
Practical TEX 2005 was the first TEX-related confer-
ence I have ever attended. The thing that impressed
me most about the conference was the sheer diver-
sity of its attendees — there were computer scien-
tists, mathematicians, statisticians, physicists, lin-
guists, publishers, writers, programmers, and even
a volunteer zoo worker! The consequence of this
variety was that we were all pretty much on equal
footing — though some of us had more TEX expe-
rience than others, we all seemed to have our own
unique uses for it and therefore had something new
and valuable to share with the others. I was also de-
lighted to see how friendly and open everyone was
with each other. Even though I was a newcomer and
had never met the other participants before, I was
received warmly and sensed a universal collegiality
that is often lacking at larger academic conferences.
Having been made to feel so welcome and having
learned so much from the other participants, I am
eagerly looking forward to attending the next Prac-
tical TEX and other TUG conferences.

32 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The design of TEX and METAFONT: A retrospective

Nelson H. F. Beebe
University of Utah
Department of Mathematics, 110 LCB
155 S 1400 E RM 233

Salt Lake City, UT 84112-0090
USA
WWW URL: http://www.math.utah.edu/~beebe

Telephone: +1 801 581 5254
FAX: +1 801 581 4148
Internet: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org

Abstract

This article looks back at the design of TEX and METAFONT, and analyzes how
they were affected by architectures, operating systems, programming languages,
and resource limits of the computing world at the time of their creation by
a remarkable programmer and human being, Donald E. Knuth. This paper is
dedicated to him, with deep gratitude for the continued inspiration and learning
that I’ve received from his software, his scientific writing, and our occasional
personal encounters over the last 25+ years.

1 Introduction 33

2 Computers and people 34

3 The DEC PDP-10 34

4 Resource limits 37

5 Choosing a programming language 38

6 Switching programming languages 42

7 Switching languages, again 45

8 TEX’s progeny 46

9 METAFONT’s progeny 46

10 Wrapping up 47

11 Bibliography 47

−− ∗ −−

1 Introduction

More than a quarter century has elapsed since Don-
ald Knuth took his sabbatical year of 1977–78 from
Stanford University to tackle the problem of improv-
ing the quality of computer-based typesetting of his
famous book series, The Art of Computer Program-
ming [53–58, 60, 65–67].

When the first volume appeared in 1968, most
typesetting was still done by the hot-lead process,
and expert human typographers with decades of
experience handled line breaking, page breaking,
and page layout. By the mid 1970s, proprietary
computer-based typesetting systems had entered
the market, and in the view of Donald Knuth, had
seriously degraded quality. When the first page
proofs of part of the second edition of Volume 2

arrived, he was so disappointed that he wrote [68,
p. 5]:

I didn’t know what to do. I had spent 15
years writing those books, but if they were
going to look awful I didn’t want to write
any more. How could I be proud of such a
product?

A few months later, he learned of some new de-
vices that used digital techniques to create letter
images, and the close connection to the 0s and 1s
of computer science led him to think about how
he himself might design systems to place characters
on a page, and draw the individual characters as a
matrix of black and white dots. The sabbatical-year
project produced working prototypes of two soft-
ware programs for that purpose that were described
in the book TEX and METAFONT: New Directions in
Typesetting [59].

The rest is of course history [6] . . . the digital
typesetting project lasted about a decade, produced
several more books [64, 68–73], Ph.D. degrees for
Frank Liang [79, 80], John Hobby [36], Michael
Plass [88], Lynn Ruggles [92], and Ignacio Zabala
Salelles [110], and had spinoffs in the commercial
document-formatting industry and in the first laser
printers. TEX, and the LATEX system built on top of it
[20–22, 76, 77, 83], became the standard markup
and typesetting system in the computer science,
mathematics, and physics communities, and have
been widely used in many other fields.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 33

Nelson H. F. Beebe

The purpose of this article is to look back at
TEX and METAFONT and examine how they were
shaped by the attitudes and computing environment
of the time.

2 Computers and people

Now that computers are widely available through-
out much of the developed world, and when embed-
ded systems are counted, are more numerous than
humans, it is probably difficult for younger people
to imagine a world without computers readily at
hand. Yet not so long ago, this was not the case.

Until the desktop computers of the 1980s, a
‘computer’ usually meant a large expensive box, at
least as long as an automobile, residing in a climate-
controlled machine room with raised flooring, and
fed electricity by power cables as thick as your wrist.
At many universities, these systems had their own
buildings, or at least entire building floors, called
Computer Centers. The hardware usually cost hun-
dreds of thousands to millions of dollars (where
according to the US Consumer Price Index, a million
dollars in 1968 is roughly the same as five million in
2000), and required a full-time professional staff of
managers, systems programmers, and operators.

At most computer installations, the costs were
passed on to users in the form of charges, such as
the US$1500 per hour for CPU time and US$0.50
to open a file that I suffered with as a graduate
student earning US$1.50 per hour. At my site, there
weren’t any disk-storage charges, because it was
forbidden to store files on disk: they had to reside
either on punched cards, or on reels of magnetic
tape. A couple of years ago, I came across a
bill from the early 1980s for a 200MB disk: the
device was the size of a washing machine, and cost
US$15 000. Today, that amount of storage is about
fifty thousand times cheaper, and disk-storage costs
are likely to continue to drop.

I have cited these costs to show that, until desk-
top computers became widespread, it was people
who worked for computers, not the reverse. When
a two-hour run cost as much as your year’s salary,
you had to spend a lot of time thinking about your
programs, instead of just running them to see if they
worked.

When I came to Utah in 1978, the College of
Science that I joined had just purchased a DEC-
SYSTEM 20, a medium-sized timesharing computer
based on the DEC PDP-10 processor, and the De-
partment of Computer Science bought one too
on the same order. Ours ultimately cost about
$750 000, and supplied many of the computing
needs of the College of Science for more than a

dozen years, often supporting 50–100 interactive lo-
gin sessions. Its total physical memory was just over
three megabytes, but we called it three quarters of
a megaword. We started in 1978 with 400MB of
disk storage, and ended in 1990 with 1.8GB for the
entire College. Although computer time was still
a chargeable item, we managed to recover costs
by getting each Department to contribute a yearly
portion of the expenses as a flat fee. The operating
system’s class scheduler guaranteed departmental
users a share of the machine in proportion to their
fraction of the budget. Thus, most individual users
didn’t worry about computer charges.

3 The DEC PDP-10

The PDP-10, first released in 1967, ran at least ten
or eleven different operating systems:

• BBN TENEX,

• Compuserve modified 4S72,

• DEC TOPS-10 (sometimes humorously called
BOTTOMS-10 by TOPS-20 users), and just
called the MONITOR before it was trademarked,

• DEC TOPS-20 (a modified TENEX affection-
ately called TWENEX by some users),

• MIT ITS (Incompatible Timesharing System),

• Carnegie-Mellon University (CMU) modified
TOPS-10,

• On-Line Systems’ OLS-10,

• Stanford WAITS (Westcoast Alternative to
ITS),

• Tymshare AUGUST (a modified TENEX),

• Tymshare TYMCOM-X, and on the smaller
DECSYSTEM 20/20 model, TYMCOM-XX.

Although the operating systems differed, it was usu-
ally possible to move source-code programs among
them with few if any changes, and some binaries
compiled on TOPS-10 in 1975 still run just fine on
TOPS-20 three decades later (see Section 3).

Our machines at Utah both used TOPS-20, but
Donald Knuth’s work on TEX and METAFONT was
done on WAITS. That system was a research op-
erating system, with frequent changes that resulted
in bugs, causing many crashes and much downtime.
Don told me earlier this year that the O/S was aptly
named, since he wrote much of the draft of The
TEXbook while he was waiting in the Computer Cen-
ter for WAITS to come back up. By contrast, apart
from hardware-maintenance sessions in a four-hour
block each week, the Utah TOPS-20 systems were
rarely down.

For about a decade, PDP-10 computers formed
the backbone of the Arpanet, which began with

34 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The design of TEX and METAFONT: A retrospective

just five nodes, at the University of California cam-
puses at Berkeley, Los Angeles, and Santa Barbara,
plus SRI (Stanford Research Institute) and Utah,
and later evolved into the world-wide Internet [24,
p. 48]. PDP-10 machines were adopted by major
computer-science departments, and hosted or con-
tributed to many important developments, includ-
ing at least these:

• Bob Metcalf’s Ethernet [Xerox PARC, Intel, and
DEC];

• Vinton Cerf’s and Robert Kahn’s invention of
the Transmission Control Protocol and the Inter-
net Protocol (TCP/IP);

• the MACSYMA [MIT], REDUCE [Utah] and
MAPLE [Waterloo] symbolic-algebra languages;

• several dialects of LISP, including MACLISP

[MIT] and PSL (Portable Standard Lisp)
[Utah];

• the systems-programming language BLISS

[DEC and CMU];

• the shell-scripting and systems-programming
language PCL (Programmable Command Lan-
guage) [DEC, CMU, and FUNDP] [94];

• Dan Swinehart’s and Bob Sproull’s SAIL (Stan-
ford Artificial Intelligence Language) Algol-
family programming language in which TEX
and METAFONT were first implemented;

• an excellent compiler for PASCAL [Hamburg/
Rutgers/Sandia], the language in which TEX
and METAFONT were next implemented;

• Larry Tesler’s PUB document formatting system
[101] [PUB was written in SAIL, and had a
macro language based on a SAIL subset];

• Brian Reid’s document-formatting and biblio-
graphic system, SCRIBE [89, 90] [CMU], that
heavily influenced the design of LATEX and
BIBTEX [although SAIL co-architect Bob Sproull
was Brian’s thesis advisor, Brian wrote SCRIBE

in the locally-developed BLISS language];

• Richard Stallman’s extensible and customizable
text editor, emacs [MIT];

• Jay Lepreau’s port, pcc20 [Utah], of Steve John-
son’s Portable C Compiler, pcc [Bell Labs];

• Kok Chen’s and Ken Harrenstien’s kcc20 native
C compiler [SRI];

• Ralph Gorin’s spell, one of the first sophisticated
interactive spelling checkers [Stanford];

• Mark Crispin’s mail client, mm, still one of the
best around [Stanford];

• Will Crowther’s adventure, Don Daglow’s base-

ball and dungeon, Walter Bright’s empire, and

University of Utah student Nolan Bushnell’s
pong, all developed on PDP-10s, were some of
the earliest computer games [Bushnell went on
to found Atari, Inc., and computer games are
now a multi-billion-dollar world-wide business
driving the computer-chip industry to ever-
higher performance];

• part of the 1982 DISNEY science-fiction film
TRON was rendered on a PDP-10 clone [cu-
riously, that architecture has a TRON instruc-
tion (Test Right-halfword Ones and skip if Not
masked) with the numeric operation code 666,
leading some to suggest a connection with the
name of the film, or the significance of that
number in the occult];

• Frank da Cruz’s transport- and platform-inde-
pendent interactive and scriptable communica-
tions software kermit [Columbia];

• Gary Kildall’s [105] CP/M, the first commer-
cial operating system for the Intel 8080, was
developed using Intel’s 8080 simulator on the
PDP-10 at the Naval Postgraduate School in
Monterey, California;

• Harvard University student Paul Allen’s Intel
8080 simulator on the PDP-10 was used by
fellow student Bill Gates to develop a BASIC-
language interpreter before Intel hardware was
available to them. [Both had worked on PDP-
10 systems in Seattle and Portland in the late
1960s and early 1970s while they were still
in school. They later founded Microsoft Cor-
poration, and borrowed ideas from a subset
of Kildall’s CP/M for their MS-DOS. While
IBM initially planned to offer both systems on
its personal computer that was introduced in
August 1981, pricing differences soon led to its
dropping CP/M.]

Notably absent from this list is the Bell Labora-
tories project that led to the creation of the UNIX op-
erating system: they wanted to buy or lease a PDP-
10, but couldn’t get the funding [93, Chapter 5].

The PDP-10 and its operating systems is men-
tioned in about 170 of the now nearly 4000 Request
for Comments (RFC) documents that informally de-
fine the protocols and behavior of the Internet.

The PDP-10 had compilers for ALGOL 60, BA-
SIC, BLISS, C, COBOL 74, FORTH, FORTRAN 66,
FORTRAN 77, LISP, PASCAL, SAIL, SIMULA 67, and
SNOBOL, plus three assemblers called MACRO, MI-
DAS, and FAIL (fast one-pass assembler). A lot of
programming was done in assembly code, including
that for most of the operating systems. Indeed, the
abstract of the FAIL manual [108] notes:

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 35

Nelson H. F. Beebe

Although FAIL uses substantially more main
memory than MACRO-10, it assembles typ-
ical programs about five times faster. FAIL
assembles the entire Stanford time-sharing
operating system (two million characters) in
less than four minutes of CPU time on a KA-
10 processor.

The KA-10 was one of the early PDP-10 models, so
such performance was quite impressive. The high-
level BLISS language [9, 10, 109] might have been
preferred for such work, but it was comparatively
expensive to license, and few sites had it. Anyway,
Ralph Gorin’s book on assembly language and sys-
tems programming [23] provided an outstanding
resource for programmers.

Given the complexity of most assembly lan-
guages, it is instructive to look at the short example
in Figure 1 that helps to illustrate why the PDP-10
assembly language was so popular among its users.

MOVE 4, B ; load B into register 4

CAML 4, FOO ; IF (b >= foo) THEN

PUSHJ P, [; BEGIN

HRROI A, [ASCIZ/.LT./] ; message = ".LT.";

SETOM LESS ; less = -1;

AOS (P) ; END (skip around ELSE)

POPJ P,] ; ELSE

PUSHJ P, [; BEGIN

HRROI A, [ASCIZ/.GE./] ; message = ".GE.";

SETZM LESS ; less = 0;

POPJ P,] ; END;

PSOUT ; PRINT message;

Figure 1: MACRO-10 assembly language for the PDP-10

and its high-level pseudo-language equivalent, adapted
from [15].

You can understand the assembly code once you know

the instruction mnemonics: CAML (Compare Accumula-
tor with Memory and skip if Low) handles the conditional,
HRROI (Half word Right to Right, Ones, Immediate)

constructs a 7-bit byte pointer in an 18-bit address space,
SETOM (Set to Ones Memory) stores a negative inte-
ger one, SETZM (Set to Zeros Memory) stores a zero,

AOS (Add One to Self) increments the stack pointer (P),
PUSHJ and POPJ handle stack-based call and return, and
PSOUT is a system call to print a string. Brackets delimit
remote code and data blocks.

The prevalence of instructions that manipulate 18-bit
addresses makes it hard to generalize assembly code for
30-bit extended addressing, but tricks with 18-bit memory

segments alleviated this somewhat.

Document formatting was provided by runoff,
which shared a common ancestor roff with UNIX

troff, and by PUB. Later, SCRIBE became commer-
cially available, but required an annual license fee,
and ran only on the PDP-10, so it too had limited
availability, and I refused to use it for that reason.

The PDP-10 had 36-bit words, with five seven-
bit ASCII characters stored in each word. This
left the low-order (rightmost) bit unused. It was
normally zero, but when set to one, indicated that
the preceding five characters were a line number
that some editors used, and compilers could report
in diagnostics.

Although seven-bit ASCII was the usual PDP-
10 text representation, the hardware instruction
set had general byte-pointer instructions that could
reference bytes of any size from 1 to 36 bits, and the
kcc20 compiler provided easy access to them in C.
For interfacing with 32-bit UNIX and VMS systems,
8-bit bytes were used, with four bits wasted at the
low end of each word.

The PDP-10 filesystems recorded the byte
count and byte size for every file, so in principle,
text-processing software at least could have handled
both 7-bit and 8-bit byte sizes. Indeed, Mark Crispin
proposed that Unicode could be nicely handled in 9-
bit UTF-9 and 18-bit UTF-18 encodings [13]. Alas,
most PDP-10 systems were retired before this gen-
erality could be widely implemented.

One convenient feature of the PDP-10 operat-
ing systems was the ability to define directory search
paths as values of logical names. For example, in
TOPS-20, the command

@define TEXINPUTS: TEXINPUTS:,

ps:<jones.tex.inputs>

would add a user’s personal subdirectory to the
end of the system-wide definition of the search
path. The @ character was the normal prompt
from the EXEC command interpreter. A subsequent
reference to texinputs:myfile.tex was all that it
took to locate the file in the search path.

Since the directory search was handled inside
the operating system, it was trivially available to
all programs, no matter what language they were
written in, unlike other operating systems where
such searching has to be implemented by each
program that requires it. In this respect, and many
others, to paraphrase ACM Turing Award laureate
Tony Hoare’s famous remark about ALGOL 60 [31],
TOPS-20 “was so far ahead of its time that it was
not only an improvement on its predecessors, but
also on nearly all its successors.”

In addition, a manager could readily change
the system-wide definition by a single privileged
command:

$^Edefine TEXINPUTS: ps:<tex.inputs>,

ps:<tex.new>

The new definition was immediately available to all
users, including those who had included the name

36 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The design of TEX and METAFONT: A retrospective

TEXINPUTS: in their own search paths. The $ was
the EXEC prompt when a suitably-privileged user
had enabled management capabilities.

The great convenience of this facility encour-
aged those who ported TEX and METAFONT to pro-
vide something similar. Today, users of the TEX Live
distributions are familiar with the kpathsea library,
which provides an even more powerful, and custom-
izable, mechanism for path searching.

The original PDP-10 instruction set had an 18-
bit address field, giving a memory space of 218

=

262 144 words, or about 1.25MB. Later designs
extended the address space to 30 bits (5GB), but
only 23 were ever implemented in DEC hardware,
giving a practical limit of 40MB. That was still much
more than most customers could afford in 1983
when the PDP-10 product line was terminated, and
VAX VMS became the DEC flagship architecture and
operating system.

The next generation of the PDP-10 was an-
nounced to be about ten to fifteen times faster
than existing models, but early in 1983, rumors
of trouble at DEC had reached the PDP-10 user
community. At the Fall 1983 DECUS (DEC User
Society) Symposium in Las Vegas, Nevada, that I at-
tended, several PDP-10 devotees sported T-shirts
emblazoned with

I don’t care what they say,
36 bits are here to stay!

They were not entirely wrong, as we shall see.
DEC had products based on the KA-10, KI-10,

and KL-10 versions of the PDP-10 processor. Later,
other companies produced competing systems that
ran one or more of the existing operating systems:
Foonly (F1, F2, and F3), Systems Concepts (SC-
40), Xerox PARC (MAXC) [16], and XKL Systems
Corporation (TOAD-1 for Ten On A Desk). Some of
these implemented up to 30 address bits (1GW, or
4.5GB). XKL even made a major porting effort of
GNU and UNIX utilities, and got the X11 WINDOW

SYSTEM running. Ultimately, none enjoyed contin-
ued commercial success.

The PDP-10 lives on among hobbyists, thanks
to Ken Harrenstien’s superb KLH10 simulator [30]
with 23-bit addressing, and the vendor’s generosity
in providing the operating system, compilers, docu-
mentation, and utilities for noncommercial use. On
a fast modern desktop workstation, TOPS-20 runs
several times faster than the original hardware ever
did. It has been fun revisiting this environment that
was such a leap forward from its predecessors, and
I now generally have a TOPS-20 window or two
open on my UNIX workstation. I even carried this
virtual PDP-10 in a laptop to the Practical TEX 2005

conference, and it fits nicely in a memory stick the
size of a pocket knife.

4 Resource limits

The limited memory of the PDP-10 forced many
economizations in the design of TEX and META-
FONT. In order to facilitate possible reimplemen-
tation in other languages, all memory manage-
ment is handled by the programs themselves, and
sizes of internal tables are fixed at compile time.
Table 1 shows the sizes of those tables, then and
now. To further economize, many data structures
were stored compactly with redundant information
elided. For example, while TEX fonts could have
up to 128 characters (later increased to 256), there
are only 16 different widths and heights allowed,
and one of those 16 is required to be zero. Also,
although hundreds of text fonts are allowed, only 16
mathematical families are supported. Ulrik Vieth
has provided a good summary of this topic [103].

Table 1: TEX table sizes on TOPS-20 in 1984 and in

TEX Live on UNIX in 2004, as reported in the trip test.

Table 1984 2004 Growth

strings 1819 98002 53.9
string characters 9287 1221682 131.5
memory words 3001 1500022 499.8

control sequences 2100 60000 28.6
font info words 20000 1000000 50.0
fonts 75 2000 26.7

hyphen. exceptions 307 1000 3.3
stack positions (i) 200 5000 25.0
stack positions (n) 40 500 12.5

stack positions (p) 60 6000 100.0
stack positions (b) 500 200000 400.0
stack positions (s) 600 40000 66.7

Instead of supporting scores of accented char-
acters, TEX expected to compose them dynamically
from an accent positioned on a base letter. That
in turn meant that words with accented letters
could not be hyphenated automatically, an intolera-
ble situation for many European languages. That
restriction was finally removed in late 1989 [63]
with the release of TEX version 3.0 and METAFONT

version 2.0, when those programs were extended
to fully support 8-bit characters, and provide up
to 256 hyphenation tables to handle multilingual
documents. Examination of source-code difference
listings shows that about 7% of TEX was changed in
this essential upgrade.

The TEX DVI and METAFONT GF and TFM files
were designed to be compact binary files that re-

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 37

Nelson H. F. Beebe

quire special software tools to process. Recall from
p. 34 that disk storage cost around US$100 per MB,
so file compactness mattered! In contrast, in UNIX

troff, the corresponding files are generally simple,
albeit compact and cryptic, text files to facilitate use
of filters in data-processing pipelines. Indeed, the
UNIX approach of small-is-beautiful encouraged the
use of separate tools for typesetting mathematics
[43], pictures [41], and tables [39], each filtering
the troff input stream, instead of the monolithic
approach that TEX uses.

In any computer program, when things go
awry, before the problem can be fixed, it is essen-
tial to know where the failure occurred. The same
applies when a change in program behavior is called
for: you first have to find the code that must be
modified.

In either case, to better understand what is
happening, it is very helpful to have a traceback
of the routine calls that led to the failure or point
of change, and a report of the source-code loca-
tion where every step in the call history is de-
fined. Unfortunately, PDP-10 memory limitations
prevented TEX and METAFONT from recording the
provenance of every built-in operator and run-time
macro, yet every programmer who has written code
for these systems has often asked: where is that
macro defined, and why is it behaving that way?
Although both programs offer several levels of exe-
cution tracing, the output trace is often voluminous
and opaque, and no macro-level debugger exists for
either program.

The need for a record of source-code prove-
nance is particularly felt in the LATEX world, where
it is common for documents to depend on dozens
of complex macro packages collectively containing
many tens of thousands of lines of code, and some-
times redefining macros that other loaded packages
expect to redefine differently for their own pur-
poses. During the course of writing this article, I dis-
covered, tracked down, and fixed three errors in the
underlying LATEX style files for the TEX User Group
conference proceedings. Each time, the repairs took
much longer than should have been necessary, be-
cause I could not find the faulty code quickly.

Finally, error diagnostics and error recovery
reflect past technology and resource limits. Robin
Fairbairns remarked in a May 2005 TEXhax list
posting:

Any TEX-based errors are pretty ghastly. This
is characteristic of the age in which it was
developed, and of the fiendishly feeble ma-
chines we had to play with back then. But
they’re a lot better than the first ALGOL 68

compiler I played with, which had a single
syntax diagnostic “not a program!”

5 Choosing a programming language

When Donald Knuth began to think about the prob-
lem of designing and implementing a typesetting
system and a companion font-creation system, he
was faced with the need to select a programming
language for the task. We have already summarized
what was available on the PDP-10.

COBOL was too horrid to contemplate: imag-
ine writing code in a language with hundreds of
reserved words, and such verbose syntax that a sim-
ple arithmetic operation and assignment c = a*b

becomes

MULTIPLY A BY B GIVING C.

More complex expressions require every subexpres-
sion to be given a name and assigned to.

FORTRAN 66 was the only language with any
hope of portability to many other systems. However,
its omission of recursion, absence of data structures
beyond arrays, lack of memory management, defi-
cient control structures, record-oriented I/O, primi-
tive Hollerith strings (12HHELLO, WORLD) that could
be used only in DATA and FORMAT statements and as
routine arguments, and its restriction to six-char-
acter variable names, made it distinctly unsuitable.
Nevertheless, METAFONT was later translated to
FORTRAN elsewhere for a port to Harris computers
[85].

PASCAL only became available on the PDP-10
in late 1978, more than a year after Don began his
sabbatical year. We shall return to it in Section 6.

BLISS was an expensive commercial product
that was available only on DEC PDP-10, PDP-
11, and later, VAX, computers. Although DEC
subsequently defined COMMON BLISS to be used
across those very different 16-bit, 32-bit, and 36-
bit systems, in practice, BLISS exposed too much of
the underlying architecture, and the compilers were
neither portable [9, 10] nor freely available. Brian
Reid commented [90, p. 106]:

BLISS proved to be an extremely difficult
language in which to get started on such
a project [SCRIBE], since it has utterly no
low-level support for any data types besides
scalar words and stack-allocated vectors.

I began an implementation on the PDP-
10 in September 1976, spending the first
six months building a programming environ-
ment in which the rest of the development
could take place. This programming environ-
ment included runtime and diagnostic sup-

38 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The design of TEX and METAFONT: A retrospective

port for strings, lists, and heap-allocated vec-
tors, as well as an operating-system interface
intended to be portable across machines.

Inside DEC, later absorbed by Compaq and then by
Hewlett-Packard, BLISS was ported to 32-bit and
64-bit ALPHA in the early 1990s, to Intel IA-32 in
1995, and recently, to IA-64 [10], but has remained
largely unknown and unused outside those corpo-
rate environments.

LISP would have been attractive and powerful,
and in retrospect, would have made TEX and META-
FONT far more extensible than they are, because
any part of them could have been rewritten in LISP,
and they would not have needed to have macro
languages at all! Unfortunately, until the advent of
COMMON LISP in 1984 [96, 97], and for some time
after, the LISP world suffered from having about
as many dialects as there were LISP programmers,
making it impossible to select a language flavor that
worked everywhere.

The only viable approach would have been to
write a LISP compiler or interpreter, bringing one
back to the original problem of picking a language
to write that in. The one point in favor of this ap-
proach is that LISP is syntactically the simplest of all
programming languages, so workable interpreters
could be done in a few hundred lines, instead of the
10K to 100K lines that were needed for languages
like PASCAL and FORTRAN. However, we have to
remember that computer use cost a lot of money,
and comparatively few people outside computer-
science departments had the luxury of ignoring the
substantial run-time costs of interpreted languages.
A typesetting system is expected to receive heavy
use, and efficiency and fast turnaround are essen-
tial.

PDP-10 assembly language had been used for
many other programming projects, including the
operating systems and the three assemblers them-
selves. However, Don had worked on several dif-
ferent machines since 1959, and he knew that all
computers eventually get replaced, often by new
ones with radically-different instruction sets, oper-
ating systems, and programming languages. Thus,
this avenue was not attractive either, since he had
to be able to use his typesetting program for all of
his future writing.

There was only one viable choice left, and
that was SAIL. That language was developed at
Stanford, and that is probably one of the reasons
why Don chose it over SIMULA 67, its Norwegian
cousin, despite his own Norwegian heritage; both
languages are descendents of ALGOL 60. SIMULA 67
did however strongly influence Bjarne Stroustrup’s

design of C++ [98, Chapter 1]. Although SAIL
had an offspring, MAINSAIL (Machine Indepen-
dent SAIL), that might have been more attractive,
that language was not born until 1979, two years
after the sabbatical-year project. Figure 2 shows a
small sample of SAIL, taken from the METAFONT

source file mfntrp.sai. A detailed description of
the language can be found in the first good book
on computer graphics [86, Appendix IV], co-written
by one of SAIL’s architects.

internal saf string array fname[0:2]

file name, extension, and directory;

internal simp procedure scanfilename

sets up fname[0:2];

begin integer j,c;

fname[0]_fname[1]_fname[2]_null;

j_0;

while curbuf and chartype[curbuf]=space

do c_lop(curbuf);

loop begin c_chartype[curbuf];

case c of begin

[pnt] j_1;

[lbrack] j_2;

[comma][wxy][rbrack][digit][letter];

else done

end;

fname[j]_fname[j]&lop(curbuf);

end;

end;

Figure 2: Filename scanning in SAIL, formatted as origi-
nally written by Donald Knuth, except for the movement
of comments to separate lines. The square-bracketed

names are symbolic integer constants declared earlier in
the program.

The underscore operator in SAIL source-code
assignments printed as a left arrow in the Stanford
variant of ASCII, but PDP-10 sites elsewhere just
saw it as a plain underscore. However, its use as
the assignment operator meant that it could not
be used as an extended letter to make compound
names more readable, as is now common in many
other programming languages.

The left arrow in the Stanford variant of ASCII
was not the only unusual character. Table 2 shows
graphics assigned to the normally glyphless control
characters. The existence of seven Greek letters in
the control-character region may explain why TEX’s
default text-font layout packs Greek letters into the
first ten slots.

Besides being a high-level language with good
control and data structures, and recursion, SAIL

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 39

Nelson H. F. Beebe

Table 2: The Stanford extended ASCII character set,

with table positions in octal. This table from RFC 698
[84] disagrees in a few slots with a similar table in the
first book about TEX [59, p. 169]. CMU, MIT, and

the University of Southern California also had their own
incompatible modified versions of ASCII.

Although ASCII was first standardized in 1963, got

lowercase letters in 1965, and reached its current form
in 1967, the character set Babel has lasted far too long,
with hundreds of variants of 7-bit and 8-bit sets still in

use around the world. See Mackenzie’s book [81] for
a comprehensive history up to 1980, and the Unicode
Standard [102] for what the future may look like.

000 · 001 ↓ 002 α 003 β

004 ∧ 005 ¬ 006 ǫ 007 π

010 λ 011 γ 012 δ 013
R

014 ± 015 ⊕ 016 ∞ 017 ∇
020 ⊂ 021 ⊃ 022 ∩ 023 ∪
024 ∀ 025 ∃ 026 ⊗ 027 ↔
030 _ 031 → 032 ~ 033 6=
034 ≤ 035 ≥ 036 ≡ 037 ∨

040–135 as in standard ASCII
136 ↑ 137 ←

140–174 as in standard ASCII

175 ♦ 176 } 177 ^

had the advantage of having a good debugger. Sym-
bolic debuggers are common today, sometimes even
with fancy GUI front ends that some users like. In
1977, window systems had mostly not yet made
it out of Xerox PARC, and the few interactive de-
buggers available generally worked at the level of
assembly language. Figure 3 shows a small exam-
ple of a session with the low-level Dynamic Debug-
ging Tool/Technique, ddt, that otherwise would have
been necessary for debugging most programming
languages other than SAIL (ALGOL, COBOL, and
FORTRAN, and later, PASCAL, also had source-level
debuggers).

SAIL had a useful conditional compilation fea-
ture, allowing Don to write the keyword definitions
shown in Figure 4, and inject a bit of humor into the
code.

A scan of the SAIL source code for METAFONT

shows several other instances of how the imple-
mentation language and host computer affected the
METAFONT code:

• 19 buffers for disk files;

• no more than 150 input characters/line;

• initialization handled by a separate program
module to save memory;

• bias of 4 added to case statement index to
avoid illegal negative cases;

@type hello.pas

program hello(output);

begin

writeln(’Hello, world’)

end.

@load hello

PASCAL: HELLO

LINK: Loading

@ddt

DDT

hello$b hello+62$b $g

$1B>>HELLO/ TDZA 0 $x

0/ 0 0/ 0

<SKIP>

HELLO+2/ MOVEM %CCLSW $x

0/ 0 %CCLSW/ 0

HELLO+3/ MOVE %CCLDN $x

0/ 0 %CCLDN/ 0

HELLO+4/ JUMPN HELLO+11 $x

0/ 0 HELLO+11

HELLO+5/ MOVEM 1,%RNNAM $p

OUTPUT : tty:

$2B>>HELLO+62/ JRST .MAIN. $$x

Hello, world

Figure 3: Debugging a PASCAL program with ddt. The at
signs are the default TOPS-20 command prompt. The

dollar signs are the echo of ASCII ESCAPE characters.
Breakpoints ($b) are set at the start of the program, and
just before the call to the runtime-library file initialization.
Execution starts with $g, proceeds after a breakpoint with

$p, steps single instructions with $x, and steps until the
next breakpoint with $$x.

• character raster allocated dynamically to avoid
128K-word limit on core image;

• magic TENEX-dependent code to allocate buf-
fers between the METAFONT code and the
SAIL disk buffers because, as Don wrote in a
comment in the code, there is all this nifty core
sitting up in the high seg . . . that is just begging
to be used.

Another feature of the PDP-10 that strongly
influenced the design of TEX and METAFONT was
the way the loader worked. On most other op-
erating systems, the linker or loader reads object
files, finds the required libraries, patches unresolved
references, and writes an executable image to a disk
file. The PDP-10 loader left the program image in
memory, relegating the job of copying the memory
image to disk to the save command. If the image
was not required again, the user could simply start
the program without saving it. If the program was

40 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The design of TEX and METAFONT: A retrospective

changed to ^P^Q when debugging METAFONT;

define DEBUGONLY = ^Pcomment^Q

...

used when an array is believed to require

no bounds checks;

define saf = ^Psafe^Q

used when SAIL can save time implementing

this procedure;

define simp = ^Psimple^Q

when debugging, belief turns to disbelief;

DEBUGONLY redefine saf = ^P^Q

and simplicity dies too;

DEBUGONLY redefine simp = ^P^Q

Figure 4: SAIL conditional compilation for generating

additional debugging support. The two control characters
displayed as ⊂ and ⊃ at Stanford (octal values 020 and
021 in Table 2).

started, but then interrupted at a quiescent point,
such as waiting for input, the memory image could
be saved to disk.

Since some of the features of TEX and META-
FONT are implemented in their own programming
languages, they each need to read that code on
every execution. For LATEX, the startup code can
amount to tens of thousands of lines. Thus, for
small user input files, the startup actions may be
significantly more costly than the work needed for
the user files. Don therefore divided both programs
into two parts: the first parts, called initex and inimf,
read the startup code and write their internal tables
to a special compact binary file called a format
file. The second parts, called virtex and virmf, can
then read those format files at high speed. If they
are then interrupted when they are ready for user
input, they can be saved to disk as programs that
can later be run with all of this startup processing
already done [72, §1203], [70, §1331]. While this
sounds complex, in practice, it takes just six lines of
user input, shown in Figure 5. This normally only
needs to be done by a system manager when new
versions of the startup files are installed. It is worth
noting that installers of both PDP-10 emacs and
modern GNU emacs do a very similar preparation
of a dumped-memory image to reduce program-
startup cost.

On most other architectures, the two-part split
is preserved, but the virtex and virmf programs
are then wrapped in scripts that act as the tex

and mf programs. On UNIX systems, the script
wrappers are not needed: instead, virtex, tex, and

@initex lplain

*\dump

@virtex &lplain

*^C

@save latex

@rename lplain.fmt texformats:

Figure 5: Creating a preloaded LATEX executable on

TOPS-20.
The initex stage reads lplain.tex and dumps the

precompiled result to lplain.fmt.

The leading ampersand in the virtex stage requests
reading of the binary format file, instead of a normal TEX
text file. The keyboard interrupt suspends the process,
and the next command saves latex.exe.

The final command moves the format file to its stan-
dard location where it can be found should it be needed
again. On TOPS-20, it normally is not read again unless

a user wishes to preload further customizations to create
another executable program.

The procedure for METAFONT is essentially the same;

only the filenames have to be changed.

latex are filesystem links to the same file, and the
name of the program is used internally to determine
what format file needs to be automatically loaded.
Modern systems are fast enough that the extra
economization of preloading the format file into
the executable program is relatively unimportant:
the fastest systems can now typeset the TEXbook at
nearly 1100 pages/sec, compared to several seconds
per page when TEX was first written. In any event,
preloading is difficult to accomplish outside the
PDP-10 world. It can be done portably, but much
less flexibly, if the preloaded tables are written out
as source-code data initializers, and then compiled
into the program, as the GNU bc and dc calculators
do for their library code.

TEX and METAFONT distributions come with
the devious trip and trap torture tests that Don
devised to test whether the programs are behaving
properly. One of the drawbacks of the two-part split
is that these tests are run with initex and inimf re-
spectively, rather than with the separately-compiled
virtex and virmf, which are the programs that users
run as tex and mf. I have encountered at least one
system where the torture tests passed, yet virtex

aborted at run time because of a compiler code-
generation error. Fortunately, the error was elimi-
nated when virtex was recompiled with a different
optimization level.

Although TEX and METAFONT were designed
with great care and attention to detail, and pro-
grammed to give identical line-breaking and page-
breaking decisions on all platforms, it would have

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 41

Nelson H. F. Beebe

been better if their user communities had collab-
orated on development of a much more extensive
test suite, designed with the help of test-coverage
analyzers to ensure that as much of the source code
as possible is exercised. These compiler-based tools
instrument software in such a way that program
execution produces a data file that leads to a report
of the number of times that each line of code is
reached. This identifies the hot spots in the code, but
it also reveals the unused, and therefore, untested
and untrusted, parts of the program.

When I did such an analysis of runs with the
trip and trap tests, I was surprised to find that
just under 49% of all lines of code were executed.
I reported these results to the TEX Live mailing list
on 18 March 2004, in the hope of initiating a
project to use the test-coverage feedback to devise
additional tests that will exercise most of the other
half of the code. It will never be possible to test
all of it: there are more than 50 locations in the
TEX and METAFONT source code where there is a
test for a supposedly-impossible situation, at which
point section 95 of TEX (section 90 in METAFONT)
is invoked to issue a message prefixed with This

can’t happen and terminate execution.

6 Switching programming languages

Donald Knuth initially expected that TEX and META-
FONT would be useful primarily for his own books
and papers, but other people were soon clamor-
ing for access, and many of them did not have a
PDP-10 computer to run those programs on. The
American Mathematical Society was interested in
evaluating TEX and METAFONT for its own exten-
sive mathematical-publishing activities, but it could
make an investment in switching from the pro-
prietary commercial typesetting system that it was
then using only if it could be satisfied with the qual-
ity, the longevity, and the portability of these new
programs.

Researchers at Xerox PARC had translated the
SAIL version of TEX to MESA, but that language ran
only on Xerox workstations, which, while full of
great ideas, were too expensive ever to make any
significant market penetration.

It was clear that keeping TEX and METAFONT

tied to SAIL and the PDP-10 would ultimately
doom them to oblivion. It was also evident that
some of the program-design decisions, and the early
versions of the Computer Modern fonts, did not pro-
duce the high quality that their author demanded of
himself.

A new implementation language, and new pro-
gram designs, were needed, and in 1979–1980,

when Don and Ignacio produced prototype code for
the new design, there was really only one possi-
bility: PASCAL. However, before you rise to this
provocation, why not C instead, since it has become
the lingua franca for writing portable software?

UNIX had reached the 16-bit DEC PDP-11 com-
puters at the University of California at Berkeley in
1974. By 1977, researchers there had it running
on the new 32-bit DEC VAX, but the C language
in which much of UNIX is written was only rarely
available outside that environment. Jay Lepreau’s
pcc20 work was going on in the Computer Science
Department at Utah in 1981–82, but it wasn’t until
about 1983 that TOPS-20 users elsewhere began to
get access to it. Our filesystem archives show my
first major porting attempt of a C-language UNIX

utility to TOPS-20 on 11 February 1983.
PASCAL, a descendant of ALGOL 60 [5], was de-

signed by Niklaus Wirth at ETH in Zürich, Switzer-
land in 1968. His first attempt at writing a com-
piler for it in FORTRAN failed, but he then wrote
a compiler for a subset of PASCAL in that subset,
translated it by hand to assembly language, and was
finally able to bootstrap the compiler by getting it to
compile itself [106].

Urs Ammann later wrote a completely new
compiler [2] in PASCAL for the PASCAL language
on the 60-bit CDC 6600 at ETH, a machine class
that I myself worked extensively and productively
on for nearly four years. That compiler generated
machine code directly, instead of producing assem-
bly code, and ran faster, and produced faster code,
than Wirth’s original bootstrap compiler. Ammann’s
compiler was the parent of several others, including
the one on the PDP-10.

PASCAL is a small language intended for teach-
ing introductory computer-programming skills, and
Wirth’s book with the great title Algorithms + Data
Structures = Programs [107] is a classic that is still
worthy of study. However, PASCAL is not a language
that is suitable for larger projects. A fragment of
the language is shown in Figure 6, and much more
can be seen in the source code for TEX [70] and
METAFONT [72].

PASCAL’s flaws are well chronicled in a famous
article by Brian Kernighan [40, 42]. That paper
was written to record the pain that PASCAL caused
in implementing a moderate-sized, but influential,
programming project [44]. He wrote in his article:

PASCAL, at least in its standard form, is just
plain not suitable for serious programming.
. . . This botch [confusion of size and type]
is the biggest single problem in PASCAL. . . .
I feel that it is a mistake to use PASCAL for

42 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The design of TEX and METAFONT: A retrospective

PROCEDURE Scanfilename;

LABEL 30;

BEGIN

beginname;

WHILE buffer[curinput.locfield] = 32 DO

curinput.locfield := curinput.locfield+1;

WHILE true DO

BEGIN

IF (buffer[curinput.locfield] = 59) OR

(buffer[curinput.locfield] = 37) THEN

GOTO 30;

IF NOT morename(buffer[curinput.locfield])

THEN GOTO 30;

curinput.locfield := curinput.locfield+1;

END;

30:

endname;

END;

Figure 6: Filename scanning in PASCAL, after manual
prettyprinting. The statements beginname and endname

are calls to procedures without arguments. The magic
constants 32, 37, and 59 would normally have been given
symbolic names, but this code is output by the tangle

preprocessor which already replaced those names by their
numeric values. The lack of statements to exit loops and
return from procedures forces programmers to resort to

the infamous goto statements, which are required to have
predeclared numeric labels in PASCAL.

anything much beyond its original target. In
its pure form, PASCAL is a toy language, suit-
able for teaching but not for real program-
ming.

There is also a good survey by Welsh, Sneeringer,
and Hoare [104] of PASCAL’s ambiguities and inse-
curities.

Donald Knuth had co-written a compiler for a
subset of ALGOL 60 two decades earlier [4], and
had written extensively about that language [47–
49, 51, 52, 75]. Moreover, he had developed the
fundamental theory of parsing that is used in com-
pilers [50]. He was therefore acutely aware of
the limitations of PASCAL, and to enhance porta-
bility of TEX and METAFONT, and presciently (see
Section 7), to facilitate future translation to other
languages, sharply restricted his use of features of
that language [70, Part 1].

PASCAL has new() and dispose() functions for
allocating and freeing memory, but implementa-
tions were allowed to ignore the latter, resulting in
continuously-growing memory use. Therefore, as
with the original versions in SAIL, TEX and META-
FONT in PASCAL handle their own memory manage-
ment from large arrays allocated at compile time.

One interesting PASCAL feature is sets, which
are collections of user-definable objects. The op-
erations of set difference, intersection, membership
tests, and union are expected to be fast, since sets
can be internally represented as bit strings. For
the character processing that TEX carries out, it is
very convenient to be able to classify characters
according to their function. TEX assigns each in-
put character a category code, or catcode for short,
that represents these classifications. Regrettably, the
PASCAL language definition permitted implementors
to choose the maximum allowable set size, and
many compilers therefore limited sets to the number
of bits in a single machine word, which could be as
few as 16. This made sets of characters impossible,
even though Wirth and Ammann had used exactly
that feature in their PASCAL compilers for the 60-bit
CDC 6600. The PDP-10 PASCAL compiler limited
sets to 72 elements, fewer than needed for sets of
ASCII characters.

A peculiarity of PASCAL is that it does not
follow the conventional open-process-close model
of file handling. Instead, for input files it combines
the open and read of the first item in a single
action, called the reset statement. Since most
implementations provide standard input and output
files that are processed before the first statement
of the user’s main program is executed, this means
that the program must read the first item from the
user terminal, or input file, before a prompt can
even be issued for that input. While some compilers
provided workarounds for this dreadful deadlock,
not all did, and Don was forced to declare this part
of TEX and METAFONT to be system dependent,
with each implementor having to find a way to deal
with it.

The botch that Brian Kernighan criticized has
to do with the fact that, because PASCAL is strongly
typed, the size of an object is part of its type. If you
declare a variable to hold ten characters, then it is
illegal to assign a string of any other length to it.
If it appears as a routine parameter, then all calls to
that routine must pass an argument string of exactly
the correct length.

Donald Knuth’s solution to this extremely vex-
ing problem for programs like TEX and METAFONT

that mainly deal with streams of input characters
was to not use PASCAL directly, but rather, to dele-
gate the problem of character-string management,
and other tasks, to a preprocessor, called tangle.
This tool, and its companion weave, are fundamen-
tal for the notion of literate programming that he
developed during this work [64, 74, 95].

The input to these literate-programming tools

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 43

Nelson H. F. Beebe

is called a WEB, and a fragment of TEX’s own WEB

code is illustrated in Figure 7. The output of the two
utilities is shown in Figures 8 and 9, and the typeset
output for the programmer is given in Figure 10.

In order to keep a stable source-code base, the
WEB files are never edited directly when the code is
ported to a new platform. Instead, tangle and weave

accept simple change files with input blocks

@x

old code

@y

new code

@z

where the old-code sections must match their order
in the WEB file. For TEX and METAFONT, these
change files are typically of the order of 5% of the
size of the WEB files, and the changes are almost
exclusively in the system-dependent parts of those
programs, and in the handling of command-line and
startup files.

@ The |scan_optional_equals| routine looks

for an optional ‘\.=’ sign preceded by

optional spaces; ‘\.{\\relax}’ is not

ignored here.

@p procedure scan_optional_equals;

begin

@<Get the next non-blank non-call token@>;

if cur_tok<>other_token+"=" then back_input;

end;

Figure 7: Fragment of tex.web corresponding to sec-
tion 405 of TEX: The Program [70, p. 167]. The vertical
bars are a WEB shorthand that requests indexing of the

enclosed text. The prose description begins with the com-
mand @, and the PASCAL code begins with the command
@p. The text @<...> represents a block of code that is

defined elsewhere.

Because PASCAL permits only one source-code
file per program, WEB files are also monolithic. How-
ever, to reduce the size of the typeset program
listing, change files normally include a statement
\let \maybe = \iffalse near the beginning to dis-
able DVI output of unmodified code sections. Hav-
ing a single source file simplified building the pro-
grams on the PDP-10, which didn’t have a UNIX-like
make utility until I wrote one in 1988. Figure 11
shows how initex was built on TOPS-20.

In the early 1980s, few users had terminals ca-
pable of on-screen display of typeset output, so one
of the system-dependent changes that was made in
the PDP-10 implementations of TEX was the gen-
eration of a candidate command for printing the

PROCEDURE SCANOPTIONAL;BEGIN{406:} REPEAT

GETXTOKEN;UNTIL CURCMD<>10{:406};IF CURTOK<>3133

THEN BACKINPUT;END;{:405}{407:}

Figure 8: PASCAL code produced from the WEB fragment in

Figure 7 by tangle. All superfluous spaces are eliminated
on the assumption that humans never need to read the
code, even though that may occasionally be necessary
during development. Without postprocessing by a PASCAL

prettyprinter, such as pform, it is nearly impossible for a
human to make sense of the dense run-together PASCAL

code from a large WEB file, or to set sensible debugger

breakpoints.
To conform to the original definition of PASCAL, and

adapt to limitations of various compilers, all identifiers

are uppercased, stripped of underscores, and truncated to
12 characters, of which the first 7 must be unambiguous.

Notice that the remote code from the @<...> input

fragment has been inserted, and that symbolic constants
have been expanded to their numeric values. The braced
comments indicate sectional cross references, and no

other comments survive in the output PASCAL code.

\M405. The \\{scan_optional_equals}

routine looks for an optional ‘\.=’ sign

preceded by optional spaces; ‘\.{\\relax}’

is not ignored here.

\Y\P\4\&{procedure}\1\

\37\\{scan_optional_equals};\2\6

\&{begin} \37\X406:Get the next non-blank

non-call token\X;\6 \&{if}

$\\{cur_tok}\I\\{other_token}+\.{"="}$

\1\&{then}\5 \\{back_input};\2\6

\&{end};\par \fi

Figure 9: TEX typesetter input produced from the WEB

fragment in Figure 7 by weave.

405. The scan_optional_equals routine looks for an op-
tional ‘=’ sign preceded by optional spaces; ‘\relax’ is not
ignored here.

procedure scan_optional_equals;
begin <Get the next non-blank non-call token 406>;
if cur_tok 6= other_token + "=" then back_input;

end;

Figure 10: Typeset output from TEX for the weave frag-
ment in Figure 9. Notice that the remote code block is

referenced by name, with a trailing section number that
indicates its location in the output listing. Not shown here
is the mini-index that is typeset in a footnote, showing

the locations elsewhere in the program of variables and
procedures mentioned on this output page.

44 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The design of TEX and METAFONT: A retrospective

@tangle

WEBFILE : TeX.web

CHANGEFILE : TeX.tops20-changes

PASCALFILE : TeX.pas

POOL : TeX.pool

@rename TeX.pool TeX:

@set no default compile-switches pas

@load %"ERRORLEVEL:10 -

INITEX/SAVE/RUNAME:INITEX" TeX.pas

@rename iniTeX.exe TeX:

@delete TeX.rel, TeX.pas

@expunge

Figure 11: Building and installing initex on TOPS-20.
A similar procedure handled virtex: only the filenames

change, and in both cases, the procedure was encapsu-
lated in a command file that allowed a one-line command
to do the entire job.

The last command shows a wonderful feature of TOPS-
20: deleted files could be undeleted at any time until they
were expunged from the filesystem.

Comments from 1986 in the command file noted that
on the fastest DEC PDP-10 model, tangle took 102 sec-
onds, and PASCAL compilation, 80 seconds.

When this build was repeated using the KLH10 simu-
lator running on a 2.4GHz AMD64 processor, tangle took
only 5 seconds, and PASCAL only 2.6 seconds.

For comparison with a modern TEX build on GNU/
LINUX, I used the same AMD64 system for a fresh build.
PASCAL generation with tangle took 0.09 seconds, the WEB-

to-C conversion (see Section 7) took 0.08 seconds, and
compilation of the 14 C-code files took 2.24 seconds. The
KLH10 simulator times are clearly outstanding.

The change file on the PDP-10 inserted special com-
piler directives in a leading comment to select extended
addressing. The memory footprint of TEX after typesetting

its own source code is 614 pages of 512 words each, or
just 1.4MB.

On GNU/LINUX on AMD64 with the 2004 TEX Live

release, TEX needs 11MB of memory to typeset itself,
although of course its tables are much larger, as shown
in Table 1.

output. A typical run then looked like the sample
in Figure 12.

Because PASCAL had mainly been used for small
programs, few compilers for that language were
prepared to handle programs as large and complex
as TEX and METAFONT. Their PASCAL source code
produced by tangle amounts to about 20 000 lines
each when prettyprinted. A dozen or so supporting
tools amount to another 20 000 lines of code, the
largest of which is weave.

Ports of TEX and METAFONT to new systems
frequently uncovered compiler bugs or resource
limits that had to be fixed before the programs could

@tex hello.tex

This is TeX, Tops-20 Version 2.991

(preloaded format=plain 5.1.14)

(PS:<BEEBE>HELLO.TEX.1 [1])

Output written on PS:<BEEBE>HELLO.DVI.1

(1 page, 212 bytes).

Transcript written on PS:<BEEBE>HELLO.LST.1.

@TeXspool: PS:<BEEBE>HELLO.DVI.1

Figure 12: A TEX run on TOPS-20. The user typed only
the first command, and in interactive use, TEX provided

the second command, leaving the cursor at the end of
the line, so the user could then type a carriage return
to accept the command, or a Ctl-U or Ctl-C interrupt
character to erase or cancel it.

This feature was implemented via a TOPS-20 system
call that allowed a program to simulate terminal input.
TEX thereby saved humans some keystrokes, and users

could predefine the logical name TeXspool with a suit-
able value to select their preferred DVI translator. This
shortcut is probably infeasible on most other operating

systems.

operate. The 16-bit computers were particularly
challenging because of their limited address space,
and it was a remarkable achievement when Lance
Carnes announced TEX on the HP3000 in 1981
[11], followed not long after by his port to the
IBM PC with the wretched 64KB memory segments
of the Intel 8086 processor. He later founded
a company, Personal TEX, Inc. About the same
time, David Fuchs completed an independent port
to the IBM PC, and that effort was briefly available
commercially. David Kellerman and Barry Smith left
Oregon Software, where they worked on PASCAL

compilers, to found the company Kellerman & Smith
to support TEX in the VAX VMS environment. Barry
later started Blue Sky Research to support TEX on the
Apple MACINTOSH, and David founded Northlake
Software to continue support of TEX on VMS.

7 Switching languages, again

Because of compiler problems, UNIX users suffered
a delay in getting TEX and METAFONT. Pavel Curtis
and Howard Trickey first announced a port in 1983,
and lamented [14]:

Unhappily, the pc [PASCAL] compiler has
more deficiencies than one might wish.

Their project at the University of California, Berke-
ley, took several months, and ultimately, they had
to make several changes and extensions to the UNIX

PASCAL compiler.
In 1986–1987, Pat Monardo, also at Berkeley,

did the UNIX community a great service when he un-
dertook a translation, partly machine assisted, and

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 45

Nelson H. F. Beebe

partly manual, of TEX from PASCAL to C, the result of
which he called COMMON TEX. That work ultimately
led to the WEB2C project to which many people have
contributed, and today, virtually all UNIX installa-
tions, and indeed, the entire TEX Live distribution
for UNIX, Apple MAC OS, and Microsoft WINDOWS,
is based on the completely-automated translation of
the master source files of all TEXware and META-
FONTware from the WEB sources to PASCAL and then
to C.

8 TEX’s progeny

The limitations that stem from the resources and
technologies that were available when TEX was de-
veloped have since been addressed in various ways.
As we showed in Table 1, some of the internal table
sizes are relatively easy to expand, as long as the
host platform has enough addressable memory.

Growing tables whose indexes are limited to
a small number of bits requires deeper changes,
and combined with the addition of a small number
of new primitives, and several useful extensions,
resulted in e-TEX [100]. Its change file is about a
quarter the size of tex.web.

TEX has been extended beyond the limitations
of eight-bit characters in significant projects for
typesetting with the UNICODE character set: OMEGA

(Ω) [87, 99], ALEPH (ℵ) [7], and XeTEX [45, 46].
Each is implemented with change files for the TEX
or e-TEX WEB sources. For OMEGA, the change
files are about as large as tex.web itself, reflecting
modification of about half of TEX, and suggesting
that a new baseline, or a complete rewrite, may be
desirable.

With few exceptions other than GNU groff (a
reimplementation of UNIX troff), TEX’s DVI file for-
mat is not widely known outside the TEX world.
Indeed, commercial vendors usurped the DVI acro-
nym to mean Digital Video Interactive and Digital
Visual Interface. Today, electronic representation
of typeset documents as page images in PDF for-
mat [1] is common. While this format is readily
reachable from TEX with translation from DVI to
POSTSCRIPT to PDF, or directly to PDF, there are
some advantages to being able to access advanced
features of PDF such as hypertext links and trans-
parency from within TEX itself. Hàn Thế Thành’s
pdfTEX [28] is therefore an important extension of
TEX that provides PDF output directly, and allows
fine control of typography with new features like
dynamic font scaling and margin kerning [27, 29].
The change file for pdfTEX is about a third the size
of tex.web.

It is worth noting that yet another program-

ming language has since been used to reimplement
TEX: Karel Skoupý’s work with JAVA [25]. One of
the goals of this project was to remove most of the
interdependence of the internals of TEX to make it
easier to produce TEX-like variants for experiments
with new ideas in typography.

Another interesting project is Achim Blumen-
sath’s ANT: A Typesetting System [8], where the re-
cursive acronym means ANT is not TEX. The first ver-
sion was done in the modern LISP dialect SCHEME,
and the current version is in OCAML. Input is
very similar to TEX markup, and output can be DVI,
POSTSCRIPT, or PDF.

Hong Feng’s NeoTEX is a recent development
in Wuhan, China, of a typesetting system based on
the algorithms of TEX, but completely rewritten in
SCHEME, and outputting PDF. Perhaps this work
will bring TEX back to its origins, allowing it to be
reborn in a truly extensible language.

Although most users view TEX as a document
compiler, Jonathan Fine has shown how, with small
modifications, TEX can be turned into a daemon
[17]: a permanently-running program that re-
sponds to service requests, providing typesetting-
on-demand for other programs. At Apple [3], IBM
[38], Microsoft [82], SIL [12], and elsewhere, ren-
dering of UNICODE strings is being developed as
a common library layer available to all software.
These designers have recognized that typesetting
is indeed a core service, and many programmers
would prefer it to be standardized and made uni-
versally available on all computers.

9 METAFONT’s progeny

Unlike TEX, METAFONT has so far had only one
significant offspring: METAPOST, written by Don’s
doctoral student John Hobby [36], to whom META-
FONT : The Program is dedicated. METAPOST is
derived from METAFONT, and like that program,
is written as a PASCAL WEB. METAPOST normally
produces pictures, although it can also generate
data for outline font files, and it supports direct
output in POSTSCRIPT. METAPOST is described in
its manuals [32–35] and parts of two books [22,
Chapter 3], [37, Chapter 13].

Although METAFONT, METAPOST, and POST-
SCRIPT offer only a two-dimensional drawing model,
the 3DLDF program developed by Laurence Finston
[18] and the FEATPOST program written by Luis
Nobre Gonçalves [19] provide three-dimensional
drawing front ends that use METAPOST at the back
end. Denis Roegel’s 3d.mp package [91] offers a
similar extension using the METAPOST program-
ming language.

46 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The design of TEX and METAFONT: A retrospective

The recent ASYMPTOTE program [26] credits
inspiration from METAPOST, but is a completely
independent package for creating high-quality tech-
nical drawings, with an input language similar to
that of METAPOST.

10 Wrapping up

In this article, I have described how architecture,
operating systems, programming languages, and
resource limits influenced the design of TEX and
METAFONT, and then briefly summarized what has
been done in their descendants to expand their
capabilities. This analysis is in no way intended
to be critical, but instead, to offer a historical
retrospective that is, I believe, helpful to think about
for other widely-used software packages as well.

TEX and METAFONT, and the literate program-
ming system in which they are written, are truly
remarkable projects in software engineering. Their
flexibility, power, reliability, and stability, and their
unfettered availability, have allowed them to be
widely used and relied upon in academia, industry,
and government. Donald Knuth expects to use them
for the rest of his career, and so do many others,
including this author. Don’s willingness to expose
his programs to public scrutiny by publishing them
as books [70, 72, 74], to further admit to errors
in them [61, 62] in order to learn how we might
become better programmers, and then to pay mon-
etary rewards (doubled annually for several years)
for the report of each new bug, are traits too seldom
found in others.

11 Bibliography

[1] Adobe Systems Incorporated. PDF reference:

Adobe portable document format, version 1.3.
Addison-Wesley, Reading, MA, USA, second

edition, 2000. ISBN 0-201-61588-6. URL
http://partners.adobe.com/asn/developer/

acrosdk/DOCS/PDFRef.pdf.

[2] Urs Ammann. On code generation in a PASCAL
compiler. Software—Practice and Experience, 7(3):
391–423, May/June 1977. ISSN 0038-0644.

[3] Apple Computer, Inc. Apple Type Services for
Unicode Imaging [ATSUI]. World-Wide Web
document., 2005. URL http://developer.apple.

com/intl/atsui.html;http://developer.apple.

com/fonts/TTRefMan/RM06/Chap6AATIntro.html.
Apple Type Services for Unicode Imaging (ATSUI)
is a set of services for rendering Unicode-encoded

text.
[4] G. A. Bachelor, J. R. H. Dempster, D. E. Knuth,

and J. Speroni. SMALGOL-61. Communications

of the Association for Computing Machinery, 4(11):
499–502, November 1961. ISSN 0001-0782. URL
http://doi.acm.org/10.1145/366813.366843.

[5] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. Mc-
Carthy, A. J. Perlis, H. Rutishauser, K. Samelson,
B. Vauquois, J. H. Wegstein, A. van Wijngaarden,

and M. Woodger. Revised report on the algo-
rithmic language Algol 60. Communications of

the Association for Computing Machinery, 6(1):1–

17, January 1963. ISSN 0001-0782. URL http:

//doi.acm.org/10.1145/366193.366201. Edited
by Peter Naur. Dedicated to the memory of William

Turanski.

[6] Nelson H. F. Beebe. 25 years of TEX and

METAFONT: Looking back and looking forward:
TUG 2003 keynote address. TUGboat, 25(1):
7–30, 2004. URL http://www.math.utah.edu/

~beebe/talks/tug2003/. Due to a journal pro-
duction error, this article did not appear in the
TUG 2003 proceedings volume, even though it was

ready months in advance.

[7] Giuseppe Bilotta. Aleph extended TEX. World-
Wide Web document and software, December
2004. URL http://ctan.tug.org/tex-archive/

help/Catalogue/entries/aleph.html.

[8] Achim Blumensath. ANT: A typesetting system.

World-Wide Web document and software, Octo-
ber 2004. URL http://www-mgi.informatik.

rwth-aachen.de/~blume/Download.html.

[9] Ronald F. Brender. Generation of BLISSes. IEEE

Transactions on Software Engineering, SE-6(6):

553–563, November 1980. ISSN 0098-5589.
Based on Carnegie-Mellon University Computer
Science Report CMU-CS-79-125 May 1979.

[10] Ronald F. Brender. The BLISS programming lan-

guage: a history. Software—Practice and Experi-

ence, 32(10):955–981, August 2002. ISSN 0038-
0644. DOI http://dx.doi.org/10.1002/spe.470.

[11] Lance Carnes. TEX for the HP3000. TUGboat, 2(3):
25–26, November 1981. ISSN 0896-3207.

[12] Sharon Correll. Graphite. World-Wide Web docu-

ment and software, November 2004. URL http://

scripts.sil.org/RenderingGraphite. Graphite
is a project under development within SIL’s Non-

Roman Script Initiative and Language Software
Development groups to provide rendering capabil-
ities for complex non-Roman writing systems.

[13] M. Crispin. RFC 4042: UTF-9 and UTF-18
efficient transformation formats of Unicode,

April 2005. URL ftp://ftp.internic.net/rfc/

rfc4042.txt,ftp://ftp.math.utah.edu/pub/

rfc/rfc4042.txt.

[14] Pavel Curtis and Howard Trickey. Porting TEX

to VAX/UNIX. TUGboat, 4(1):18–20, April 1983.
ISSN 0896-3207.

[15] Frank da Cruz and Christine Gianone. The
DECSYSTEM-20 at Columbia University (1977–
1988). Technical report, The Kermit Project,

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 47

Nelson H. F. Beebe

Columbia University, New York, NY, USA, De-
cember 1988. URL http://www.columbia.edu/

kermit/dec20.html.

[16] Edward R. Fiala. MAXC systems. Com-

puter, 11(5):57–67, May 1978. ISSN 0018-

9162. URL http://research.microsoft.com/

~lampson/Systems.html#maxc.

[17] Jonathan Fine. Instant Preview and the TEX dae-
mon. TUGboat, 22(4):292–298, December 2001.
ISSN 0896-3207.

[18] Laurence D. Finston. 3DLDF user and reference

manual: 3-dimensional drawing with METAPOST

output, 2004. URL http://dante.ctan.org/

CTAN/graphics/3DLDF/3DLDF.pdf. Manual edition
1.1.5.1 for 3DLDF version 1.1.5.1 January 2004.

[19] Luis Nobre Gonçalves. FEATPOST and a re-
view of 3D METAPOST packages. In Aposto-
los Syropoulos, Karl Berry, Yannis Haralambous,

Baden Hughes, Steven Peter, and John Plaice, ed-
itors, TEX, XML, and Digital Typography: Inter-

national Conference on TEX, XML, and Digital Ty-

pography, held jointly with the 25th Annual Meet-

ing of the TeX Users Group, TUG 2004, Xanthi,

Greece, August 30–September 3, 2004: Proceed-

ings, volume 3130 of Lecture Notes in Computer

Science, pages 112–124, Berlin, Germany / Heidel-
berg, Germany / London, UK / etc., 2004. Spring-

er-Verlag. ISBN 3-540-22801-2. DOI 10.1007/

b99374. URL http://link.springer-ny.com/

link/service/series/0558/tocs/t3130.htm.

[20] Michel Goossens, Frank Mittelbach, and Alexander
Samarin. The LATEX Companion. Tools and Tech-

niques for Computer Typesetting. Addison-Wesley,
Reading, MA, USA, 1994. ISBN 0-201-54199-8.

[21] Michel Goossens and Sebastian Rahtz. The LATEX

Web companion: integrating TEX, HTML, and XML.
Tools and Techniques for Computer Typesetting.
Addison-Wesley Longman, Harlow, Essex CM20

2JE, England, 1999. ISBN 0-201-43311-7. With
Eitan M. Gurari, Ross Moore, and Robert S. Sutor.

[22] Michel Goossens, Sebastian Rahtz, and Frank Mit-
telbach. The LATEX Graphics Companion: Illustrating

Documents with TEX and PostScript. Tools and Tech-

niques for Computer Typesetting. Addison-Wesley,
Reading, MA, USA, 1997. ISBN 0-201-85469-4.

[23] Ralph E. Gorin. Introduction to DECSYSTEM-20

Assembly Language Programming. Digital Press,
12 Crosby Drive, Bedford, MA 01730, USA, 1981.

ISBN 0-932376-12-6.

[24] Katie Hafner and Matthew Lyon. Where wizards

stay up late: the origins of the Internet. Simon and
Schuster, New York, NY, USA, 1996. ISBN 0-684-
81201-0.

[25] Hans Hagen. The status quo of the NTS project.
TUGboat, 22(1/2):58–66, March 2001. ISSN
0896-3207.

[26] Andy Hammerlindl, John Bowman, and Tom
Prince. ASYMPTOTE: a script-based vector graphics

language. Faculty of Science, University of Al-
berta, Edmonton, AB, Canada, 2004. URL http:

//asymptote.sourceforge.net/. ASYMPTOTE is

a powerful script-based vector graphics language
for technical drawing, inspired by METAPOST but
with an improved C++-like syntax. ASYMPTOTE

provides for figures the same high-quality level of
typesetting that LATEX does for scientific text.

[27] Hàn Thế Thành. Margin kerning and font ex-

pansion with pdfTEX. TUGboat, 22(3):146–148,
September 2001. ISSN 0896-3207.

[28] Hàn Thế Thành and Sebastian Rahtz. The pdfTEX

user manual. TUGboat, 18(4):249–254, December
1997. ISSN 0896-3207.

[29] Hàn Thế Thành. Improving TEX’s typeset layout.
TUGboat, 19(3):284–288, September 1998. ISSN

0896-3207.

[30] Ken Harrenstien. KLH10 PDP-10 emulator. World-
Wide Web document and software, 2001. URL

http://klh10.trailing-edge.com/. This is a
highly-portable simulator that allows TOPS-20 to
run on most modern Unix workstations.

[31] C. A. R. Hoare. Hints on programming lan-

guage design. In Conference record of ACM

Symposium on Principles of Programming Lan-

guages: papers presented at the symposium, Boston,

Massachusetts, October 1–3, 1973, pages iv +
242, New York, NY 10036, USA, 1973. ACM
Press. URL ftp://db.stanford.edu/pub/cstr/

reports/cs/tr/73/403/CS-TR-73-403.pdf. Key-
note address. Also available as Stanford University
Computer Science Department Report CS-TR-73-

403 1973.

[32] John D. Hobby. Introduction to METAPOST.
In Jǐrí Zlatuška, editor, EuroTEX 92: Proceed-

ings of the 7th European TEX Conference, pages

21–36, Brno, Czechoslovakia, September 1992.
Masarykova Universita. ISBN 80-210-0480-0. In-
vited talk.

[33] John D. Hobby. Drawing Graphs with METAPOST.
AT&T Bell Laboratories, Murray Hill, NJ, USA,
1995. URL http://ctan.tug.org/tex-archive/

macros/latex/contrib/pdfslide/mpgraph.pdf.

[34] John D. Hobby. The METAPOST System, De-
cember 1997. URL file:///texlive-2004-11/

texmf-dist/doc/metapost/base/mpintro.pdf.

[35] John D. Hobby. A User’s Manual for META-

POST, 2004. URL file:///texlive-2004-11/

texmf-dist/doc/metapost/base/mpman.pdf.

[36] John Douglas Hobby. Digitized Brush Trajecto-

ries. Ph.D. dissertation, Department of Com-
puter Science, Stanford University, Stanford, CA,
USA, June 1986. URL http://wwwlib.umi.com/

dissertations/fullcit/8602484. Also published
as report STAN-CS-1070 (1985).

[37] Alan Hoenig. TEX Unbound: LATEX and TEX Strategies

for Fonts, Graphics, & More. Oxford University

48 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The design of TEX and METAFONT: A retrospective

Press, Walton Street, Oxford OX2 6DP, UK, 1998.
ISBN 0-19-509686-X (paperback), 0-19-509685-
1 (hardcover). URL http://www.oup-usa.org/

gcdocs/gc_0195096851.html.

[38] IBM Corporation. International Component for

Unicode (ICU). World-Wide Web document.,
2005. URL http://www-306.ibm.com/software/

globalization/icu/index.jsp. ICU is a ma-
ture, widely used set of C/C++ and Java libraries

for Unicode support, software internationalization
and globalization (i18n and g11n).

[39] B. W. Kernighan and M. E. Lesk. UNIX docu-
ment preparation. In J. Nievergelt, G. Coray, J.-
D. Nicoud, and A. C. Shaw, editors, Document

Preparation Systems: A Collection of Survey Arti-

cles, pages 1–20. Elsevier North-Holland, Inc., New
York, NY, USA, 1982. ISBN 0-444-86493-8.

[40] Brian W. Kernighan. Why Pascal is not my favorite
programming language. Computer Science Report

100, AT&T Bell Laboratories, Murray Hill, NJ, USA,
July 1981. URL http://cm.bell-labs.com/cm/

cs/cstr/100.ps.gz. Published in [42].

[41] Brian W. Kernighan. PIC: A language for typeset-
ting graphics. Software—Practice and Experience,
12(1):1–21, January 1982. ISSN 0038-0644.

[42] Brian W. Kernighan. Why Pascal is not my fa-
vorite programming language. In Alan R. Feuer

and Narain Gehani, editors, Comparing and as-

sessing programming languages: Ada, C, and Pas-

cal, Prentice-Hall software series, pages 170–186.

Prentice-Hall, Englewood Cliffs, NJ, USA, 1984.
ISBN 0-13-154840-9 (paperback), 0-13-154857-3
(hardcover). See also [40].

[43] Brian W. Kernighan and Lorinda L. Cherry. A sys-
tem for typesetting mathematics. Communications

of the Association for Computing Machinery, 18(3):
151–156, March 1975. ISSN 0001-0782.

[44] Brian W. Kernighan and P. J. Plauger. Software

Tools in Pascal. Addison-Wesley, Reading, MA, USA,
1981. ISBN 0-201-10342-7.

[45] Jonathan Kew. The XeTEX typesetting system.
World-Wide Web document., March 2004. URL
http://scripts.sil.org/xetex.

[46] Jonathan Kew. The multilingual lion: TEX learns to
speak Unicode. In Twenty-seventh Internationaliza-

tion and Unicode Conference (IUC27). Unicode, Cul-

tural Diversity, and Multilingual Computing, April

6–8, 2005, Berlin, Germany, pages n+1–n+17,

San Jose, CA, USA, 2005. The Unicode Consor-
tium.

[47] D. E. Knuth, L. L. Bumgarner, D. E. Hamilton,

P. Z. Ingerman, M. P. Lietzke, J. N. Merner, and
D. T. Ross. A proposal for input-output conven-
tions in ALGOL 60. Communications of the Associa-

tion for Computing Machinery, 7(5):273–283, May
1964. ISSN 0001-0782. URL http://doi.acm.

org/10.1145/364099.364222. Russian translation

by M. I. Ageev in Sovremennoe Programmirovanie
1 (Moscow: Soviet Radio, 1966), 73–107.

[48] Donald E. Knuth. Man or boy? Algol Bulletin (Am-

sterdam: Mathematisch Centrum), 17:7, January
1964. ISSN 0084-6198.

[49] Donald E. Knuth. Man or boy? Algol Bulletin

(Amsterdam: Mathematisch Centrum), 19(7):8–9,
January 1965. ISSN 0084-6198.

[50] Donald E. Knuth. On the translation of languages

from left to right. Information and Control, 8
(6):607–639, December 1965. ISSN 0019-9958.
Reprinted in [78].

[51] Donald E. Knuth. Teaching ALGOL 60. Algol

Bulletin (Amsterdam: Mathematisch Centrum), 19:
4–6, January 1965. ISSN 0084-6198.

[52] Donald E. Knuth. The remaining trouble spots
in ALGOL 60. Communications of the Association

for Computing Machinery, 10(10):611–618, Octo-
ber 1967. ISSN 0001-0782. URL http://doi.

acm.org/10.1145/363717.363743. Reprinted in E.
Horowitz, Programming Languages: A Grand Tour
(Computer Science Press, 1982), 61–68.

[53] Donald E. Knuth. Fundamental Algorithms, vol-

ume 1 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, 1968. ISBN 0-
201-03803-X. Second printing, revised, July 1969.

[54] Donald E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming. Addi-
son-Wesley, Reading, MA, USA, 1969. ISBN 0-201-

03802-1.

[55] Donald E. Knuth. Seminumerical Algorithms, vol-
ume 2 of The Art of Computer Programming. Ad-

dison-Wesley, Reading, MA, USA, 1971. ISBN 0-
201-03802-1. Second printing, revised, November
1971.

[56] Donald E. Knuth. Fundamental Algorithms, vol-
ume 1 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, second edition,

1973. ISBN 0-201-03809-9. Second printing, re-
vised, February 1975.

[57] Donald E. Knuth. Sorting and Searching, volume 3

of The Art of Computer Programming. Addison-
Wesley, Reading, MA, USA, 1973. ISBN 0-201-
03803-X.

[58] Donald E. Knuth. Sorting and Searching, volume 3
of The Art of Computer Programming. Addison-
Wesley, Reading, MA, USA, March 1975. ISBN 0-

201-03803-X. Second printing, revised.

[59] Donald E. Knuth. TEX and METAFONT —New

Directions in Typesetting. Digital Press, 12 Crosby

Drive, Bedford, MA 01730, USA, 1979. ISBN 0-
932376-02-9.

[60] Donald E. Knuth. Seminumerical Algorithms, vol-

ume 2 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, second edition,
1981. ISBN 0-201-03822-6.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 49

Nelson H. F. Beebe

[61] Donald E. Knuth. The errors of TEX. Technical
Report STAN-CS-88-1223, Stanford University, De-
partment of Computer Science, September 1988.

See [62].

[62] Donald E. Knuth. The errors of TEX. Soft-

ware—Practice and Experience, 19(7):607–685,
July 1989. ISSN 0038-0644. This is an updated
version of [61]. Reprinted with additions and cor-

rections in [64, pp. 243–339].

[63] Donald E. Knuth. The new versions of TEX and
METAFONT. TUGboat, 10(3):325–328, November
1989. ISSN 0896-3207.

[64] Donald E. Knuth. Literate Programming. CSLI Lec-

ture Notes Number 27. Stanford University Center
for the Study of Language and Information, Stan-
ford, CA, USA, 1992. ISBN 0-937073-80-6 (paper),

0-937073-81-4 (cloth).

[65] Donald E. Knuth. Fundamental Algorithms, vol-

ume 1 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, third edition,
1997. ISBN 0-201-89683-4.

[66] Donald E. Knuth. Seminumerical Algorithms, vol-

ume 2 of The Art of Computer Programming. Ad-
dison-Wesley, Reading, MA, USA, third edition,
1997. ISBN 0-201-89684-2.

[67] Donald E. Knuth. Sorting and Searching, volume 3
of The Art of Computer Programming. Addison-

Wesley, Reading, MA, USA, second edition, 1998.
ISBN 0-201-89685-0.

[68] Donald E. Knuth. Digital Typography. CSLI Publi-
cations, Stanford, CA, USA, 1999. ISBN 1-57586-

011-2 (cloth), 1-57586-010-4 (paperback).

[69] Donald E. Knuth. The TEXbook, volume A of Com-

puters and Typesetting. Addison-Wesley, Reading,
MA, USA, 1986. ISBN 0-201-13447-0.

[70] Donald E. Knuth. TEX: The Program, volume B
of Computers and Typesetting. Addison-Wesley,

Reading, MA, USA, 1986. ISBN 0-201-13437-3.

[71] Donald E. Knuth. The METAFONT book, volume C
of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986. ISBN 0-201-13445-4.

[72] Donald E. Knuth. METAFONT : The Program,

volume D of Computers and Typesetting. Addison-
Wesley, Reading, MA, USA, 1986. ISBN 0-201-
13438-1.

[73] Donald E. Knuth. Computer Modern Typefaces,
volume E of Computers and Typesetting. Addison-

Wesley, Reading, MA, USA, 1986. ISBN 0-201-
13446-2.

[74] Donald E. Knuth and Silvio Levy. The CWEB System

of Structured Documentation, Version 3.0. Addison-

Wesley, Reading, MA, USA, 1993. ISBN 0-201-
57569-8.

[75] Donald E. Knuth and Jack N. Merner. ALGOL 60
confidential. Communications of the Association for

Computing Machinery, 4(6):268–272, June 1961.

ISSN 0001-0782. URL http://doi.acm.org/10.

1145/366573.366599.
[76] Leslie Lamport. LATEX—A Document Preparation

System—User’s Guide and Reference Manual. Ad-
dison-Wesley, Reading, MA, USA, 1985. ISBN 0-
201-15790-X.

[77] Leslie Lamport. LATEX: A Document Preparation

System: User’s Guide and Reference Manual. Ad-
dison-Wesley, Reading, MA, USA, second edition,

1994. ISBN 0-201-52983-1.
[78] Phillip Laplante, editor. Great papers in computer

science. IEEE Computer Society Press, 1109 Spring

Street, Suite 300, Silver Spring, MD 20910, USA,
1996. ISBN 0-314-06365-X (paperback), 0-7803-
1112-4 (hardcover). URL http://bit.csc.lsu.

edu/~chen/GreatPapers.html.

[79] Franklin Mark Liang. Word hy-phen-a-tion by
com-pu-ter. Technical Report STAN-CS-83-977,
Stanford University, Stanford, CA, USA, August

1983. URL http://www.tug.org/docs/liang/.
[80] Franklin Mark Liang. Word Hy-phen-a-tion by

Com-pu-ter. Ph.D. dissertation, Computer Science

Department, Stanford University, Stanford, CA,
USA, March 1984. URL http://wwwlib.umi.

com/dissertations/fullcit/8329742;http:

//www.tug.org/docs/liang/.
[81] Charles E. Mackenzie. Coded Character Sets: His-

tory and Development. The Systems Programming

Series. Addison-Wesley, Reading, MA, USA, 1980.
ISBN 0-201-14460-3.

[82] Microsoft Corporation. Unicode and character

sets. World-Wide Web document., 2005. URL
http://msdn.microsoft.com/library/en-us/

intl/unicode_6bqr.asp.

[83] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, Chris Rowley, Christine
Detig, and Joachim Schrod. The LATEX Companion.

Tools and Techniques for Computer Typesetting.
Addison-Wesley, Reading, MA, USA, second edi-
tion, 2004. ISBN 0-201-36299-6.

[84] T. Mock. RFC 698: Telnet extended ASCII option,
July 1975. URL ftp://ftp.internic.net/rfc/

rfc698.txt,ftp://ftp.math.utah.edu/pub/

rfc/rfc698.txt. Status: PROPOSED STANDARD.
Not online.

[85] Sao Khai Mong. A Fortran version of METAFONT.

TUGboat, 3(2):25–25, October 1982. ISSN 0896-
3207.

[86] William M. Newman and Robert F. Sproull. Prin-

ciples of Interactive Computer Graphics. McGraw-
Hill Computer Science Series, Editors: Richard W.
Hamming and Edward A. Feigenbaum. McGraw-
Hill, New York, NY, USA, 1973. ISBN 0-07-046337-

9.
[87] John Plaice and Yannis Haralambous. The latest

developments in Ω. TUGboat, 17(2):181–183,

June 1996. ISSN 0896-3207.
[88] Michael F. Plass. Optimal pagination techniques

for automatic typesetting systems. Ph.D.

50 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The design of TEX and METAFONT: A retrospective

dissertation, Computer Science Department,
Stanford University, Stanford, CA, USA, 1981.
URL http://wwwlib.umi.com/dissertations/

fullcit/8124134.

[89] Brian K. Reid. A high-level approach to computer
document formatting. In Conference record of the

seventh annual ACM Symposium on Principles of

Programming Languages. Las Vegas, Nevada, Jan-

uary 28–30, 1980, pages 24–31, New York, NY

10036, USA, 1980. ACM Press. ISBN 0-89791-011-
7. ACM order no. 549800.

[90] Brian Keith Reid. Scribe: a document specifica-

tion language and its compiler. Ph.D. disserta-
tion, Department of Computer Science, Carnegie

Mellon University, Pittsburgh, PA, USA, De-
cember 1980. URL http://wwwlib.umi.com/

dissertations/fullcit/8114634. Also issued as

Report CMU-CS-81-100.

[91] Denis Roegel. Creating 3D animations with
METAPOST. TUGboat, 18(4):274–283, December

1997. ISSN 0896-3207. URL http://ctan.tug.

org/tex-archive/graphics/metapost/contrib/

macros/3d/doc/paper1997corrected.pdf.

[92] Lynn Elizabeth Ruggles. Paragon, an interactive,

extensible, environment for typeface design. Ph.D.

dissertation, University of Massachusetts Amherst,
Amherst, MA, USA, 1987. URL http://wwwlib.

umi.com/dissertations/fullcit/8805968.

[93] Peter H. Salus. A quarter century of UNIX. Addison-
Wesley, Reading, MA, USA, 1994. ISBN 0-201-
54777-5.

[94] Ray Scott and Michel E. Debar. TOPS-20 extended
Programmable Command Language user’s guide

and reference manual. Technical report, Carnegie
Mellon University Computation Center and FNDP
Computing Centre, Pittsburgh, PA, USA and Na-

mur, Belgium, January 1983. URL http://www.

math.utah.edu/~bowman/pcl.txt.

[95] E. Wayne Sewell. Weaving a Program: Literate

Programming in WEB. Van Nostrand Reinhold, New
York, NY, USA, 1989. ISBN 0-442-31946-0.

[96] Guy L. Steele Jr. Common Lisp—The Language. Dig-
ital Press, 12 Crosby Drive, Bedford, MA 01730,
USA, 1984. ISBN 0-932376-41-X.

[97] Guy L. Steele Jr. Common Lisp—The Language. Dig-
ital Press, 12 Crosby Drive, Bedford, MA 01730,
USA, second edition, 1990. ISBN 1-55558-041-

6 (paperback), 1-55558-042-4 (hardcover), 0-13-
152414-3 (Prentice-Hall). See also [96].

[98] Bjarne Stroustrup. The Design and Evolution of

C++. Addison-Wesley, Reading, MA, USA, 1994.
ISBN 0-201-54330-3.

[99] Apostolos Syropoulos, Antonis Tsolomitis, and
Nick Sofroniou. Digital typography using LATEX.
Springer-Verlag, Berlin, Germany / Heidelberg,

Germany / London, UK / etc., 2003. ISBN 0-387-
95217-9.

[100] Phil Taylor. ε-TEX V2: a peek into the future.
TUGboat, 18(4):239–242, December 1997. ISSN

0896-3207.

[101] Larry Tesler. PUB: The document compiler. Stan-

ford AI Project Operating Note 70, Department
of Computer Science, Stanford University, Stan-
ford, CA, USA, September 1972. URL http://www.

nomodes.com/pub_manual.html.

[102] The Unicode Consortium. The Unicode Standard,

Version 4.0. Addison-Wesley, Reading, MA, USA,
2003. ISBN 0-321-18578-1. URL http://www.

unicode.org/versions/Unicode4.0.0/. Includes
CD-ROM.

[103] Ulrik Vieth. Math typesetting in TEX: The good, the
bad, the ugly. World-Wide Web document, Septem-

ber 2001. URL http://www.ntg.nl/eurotex/

vieth.pdf. Lecture slides for EuroTEX 2001 Con-
ference, Kerkrade, The Netherlands.

[104] J. Welsh, W. J. Sneeringer, and C. A. R. Hoare.
Ambiguities and insecurities in Pascal. Software—

Practice and Experience, 7(6):685–696, November/
December 1977. ISSN 0038-0644.

[105] John Wharton. Gary Kildall, industry pioneer,
dead at 52. created first microcomputer languages,

disk operating systems. Microprocessor Report, 8
(10):1–2, August 1994. ISSN 0899-9341. URL
http://www.ece.umd.edu/courses/enee759m.

S2002/papers/wharton1994-kildall.pdf;http:

//en.wikipedia.org/wiki/Gary_Kildall.
This obituary nicely describes the very many

accomplishments of this industry pioneer.

[106] Niklaus Wirth. The design of a PASCAL compiler.
Software—Practice and Experience, 1(4):309–333,
October/December 1971. ISSN 0038-0644.

[107] Niklaus Wirth. Algorithms + Data Structures = Pro-

grams. Prentice-Hall Series in Automatic Compu-

tation. Prentice-Hall, Englewood Cliffs, NJ, USA,
1976. ISBN 0-13-022418-9.

[108] F. H. G. Wright II and R. E. Gorin. FAIL. Computer
Science Department, Stanford University, Stan-

ford, CA, USA, May 1974. Stanford Artificial Intel-
ligence Laboratory Memo AIM-226 and Computer
Science Department Report STAN-CS-74-407.

[109] W. A. (William A.) Wulf, D. B. Russell, and A. N.

Habermann. BLISS: A language for systems pro-
gramming. Communications of the Association for

Computing Machinery, 14(12):780–790, December

1971. ISSN 0001-0782. URL http://doi.acm.

org/10.1145/362919.362936.

[110] Ignacio Andres Zabala Salelles. Interfacing with

graphics objects. PhD thesis, Department of Com-
puter Science, Stanford University, Stanford, CA,

USA, December 1982. URL http://wwwlib.umi.

com/dissertations/fullcit/8314505.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 51

A LATEX fledgling struggles to take flight

Peter L. Flom
National Development and Research Institutes, Inc.
71 West 23rd St., 8th floor
New York, NY 10010

A little about this article

I work as a statistical consultant and data analyst at
a nonprofit research company. I also work as an in-
dependent statistical consultant, mostly to graduate
students in the social and behavioral sciences. I’ve
done almost no computer programming. (I did have
one course in computer programming, but it was so
long ago that we used punch cards and waited a day
or more for our programs to run on the mainframe
that took up most of the basement; I also write some
very simple programs in R.)

When I read the first issue of The PracTEX
Journal, I was thrilled. Finally, someone was writing
a journal for beginners. So, I wrote a very enthusi-
astic ‘Thank you’ to the editor (Lance Carnes), and
he wrote back, thanking me for the feedback, and
asking me to write an article. I said OK. And here
it is.

I’m writing with two groups in mind: Begin-
ners, and people who write for beginners. I’d like
to offer both groups some perspective from some-
one who is just a little way along the path. I’d like
to let the true beginners know that it is possible to
learn LATEX; after only a few months of intermittent
use, I can do a lot — I have written entire articles
in LATEX, some of them with quite complicated or-
ganizational structure and with fairly intimidating
formulas; I’ve also started doing some presentations
in LATEX, using the Beamer package. If I can do it,
you can too. I’d like to give the teachers the per-
spective of a recent beginner, so that their efforts
can have maximum reward; when I consider that so
many people contribute to LATEX, often without any
monetary reward, I imagine that those people would
like to have their efforts help as many people as pos-
sible to use LATEX easily and well. This article is in
three sections:

1. Introduction
2. Some suggestions for teaching beginners
3. Some hints for beginners

Work on this project was supported by NIDA grant P30
DA11041; I’d like to thank the editor and the reviewers for
their helpful comments and encouragement.

Editor’s note: This article was originally published in The

PracTEX Journal, issue 2005-2, http://tug.org/pracjourn.

I hope, however, that both teachers and learners will
read all the sections — the division of material is not
rigid.

How I started using LATEX

Long ago, I used Nota Bene. This was a very nice
word processing program, designed for use by schol-
ars. But no one I knew used it, so . . . I then became
a dissatisfied user of Microsoft Word for years. But
it came with my computer, everyone else used it,
journal editors liked it, so, I used it. Then, at the
recommendation of a friend and colleague, I started
using WinEdt to write R files (R is a language and
environment for statistical computing and graphics).
It’s great for that purpose, but I noticed that it kept
mentioning LATEX. I looked into it a little, but it
looked really hard, so I didn’t do much.

Then, I saw on the R-help list that someone
was writing a book on R for beginners. I asked if he
wanted some help from a beginner. He said he did;
but the files were in LATEX. He expressed amazement
that I didn’t use it. But it looked really hard, so I
didn’t do much.

Then I wrote a grant proposal that included
a lot of formulas. A consultant on the grant did
not have Word on his machine. He recommended
LATEX; but my co-investigator wanted Word files.
So, I started looking more into LATEX, and into pro-
grams to convert Word into LATEX and vice versa.
The deadline was looming, so I wrote that grant in
Word (using Math Edit), and wrote files out as rtf
files, which my consultant could read. Still, some
formulas didn’t print right; or printed differently on
different computers; it was a mess. So, I resolved
to learn LATEX. I’ve been using it more and more
over the last 6 months or so, and now really prefer
it to Word, for virtually everything. Maybe after
reading another issue of this journal, I’ll prefer it
for absolutely everything.

Some suggestions for teaching beginners

Ease of use

LATEX looks hard. When I first saw a .tex file, I
wondered how anyone could ever learn to write such

52 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

A LATEX fledgling struggles to take flight

stuff. There are reasons for this: LATEX was (natu-
rally) written and extended by computer scientists
(Donald Knuth for TEX, Leslie Lamport for LATEX,
and many others), and that’s probably why it looks
like a programming language.1 When you are really
expert at something, it’s hard to remember what it
was like to not be expert; when you are really tal-
ented at something, it’s hard to empathize with the
less talented — this is not to criticize the people who
write for beginners, it’s just the way people are.

Well, I am neither experienced nor talented at
programming, so I can empathize; even moderately
complex LATEX files look indecipherable to true be-
ginners (at least, they did to me). Part of this is
due to how people are first exposed to LATEX. The
first .tex file I saw was one which was going to be a
book on a statistical programming language. I think
that many people who start using LATEX do so be-
cause of the limitations of Word or Word Perfect, or
some other program. Thus, the first things we want
to write are complicated files. Also, for the peo-
ple who write documentation, it’s easy to get into
tricky stuff quickly, and this makes sense — there’s
not much point in having pages and pages of very
simple documents.

One way of making the learning curve a little
less steep is to provide annotated programs. An-
other might be to provide more exercises and treat
an introductory book more as a text.

So, if you’re writing for true beginners, empha-
size ease of use. And, as LATEX becomes used by
more people who are not and never were program-
mers, try to remember that we don’t think the way
you think. If you’re a programmer who doesn’t like
statistics, maybe thinking about how you would like
to learn statistics would help in how people like me
like to learn things like LATEX.

Distributions

Everything I see on LATEX mentions several (or more
than several) different distributions. This just con-
fused the heck out of me. Is there a difference? (I
still don’t know.) Is one better than the other? (I
still don’t know.) Some are free, some are commer-
cial — what advantages do the commercial programs
have? (They must have some or the companies
would go out of business.) I’ve heard about LyX,
which is a WYSIWYG version of LATEX — this seems
nice, but what are the drawbacks? I wound up us-
ing TEX Live, more or less by chance. Now I use
proTEXt, because that’s what I got sent as a mem-

1 Reviewers pointed out that most all document markup
languages developed in the pre-GUI (graphical user interface)
era looked like this.

ber of the TEX Users Group (TUG). It would be
good if some documentation could list the various
distributions and what their strengths are, or state
that there are no real differences.

Writing in LATEX is not like writing in Word

In Word (and probably in other word processors)
when you don’t get what you want, it’s often be-
cause the program is illogical. It does some things
automatically, some (most?) of which make no sense.
In LATEX, though, when you don’t get what you want
it’s often because you messed up. When I started
writing things that were a little complex, I often
got errors. This still happens. At first, this really
annoyed me. It almost made me stop using LATEX.

Then I realized I should look on this more like
a programming problem: Debugging is often nec-
essary, and this doesn’t mean you’re stupid. I got
this from the minimal programming I’ve done in R,
but others who have never done any programming
at all may not get this attitude, and I didn’t see it
in any of what I’ve read. Programmers may be so
used to this way of thinking that they don’t think
to mention it.

Adding packages

I find this very confusing.2 I’ve read various help
files on how to do this; I’m sure they’re all correct,
I know they’re all written by experts. It seems to
me, as a nonprogrammer, that they contradict each
other. I know they really don’t, because then they
wouldn’t all work. So, it must be that I am even
more confused than I thought, which is saying some-
thing. I don’t fully understand why this has to be
so hard (as I said, I am no programmer).

The other free software I use a lot is R, which
also runs on lots of platforms, and also has lots of ad-
ditional packages written by lots of different people,
but there, when you add a package, it does all the
background work for you; you just find the package
you want, click on it, and you’re done. If it can’t
be made easy, then I would strongly urge recom-
mending that beginners install everything — all the
available packages — at once. Disk space is cheap,
writing the files takes a while, but it only needs to be
done once. That’s what I wound up doing (by unin-
stalling all the files, and then reinstalling everything
I could get all at once) and this worked perfectly.

To a large extent, these problems have been
solved by proTEXt, which automates a lot of this.
But, as far as I know, it is only for Windows, and

2 According to one reviewer, this may not be as difficult
as I think it is — there are, apparently, tools for doing this
that I am unaware of; I am just writing about what I know.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 53

Peter L. Flom

thus LATEX users using other systems may still have
the type of question outlined above.

Annotated programs

All the books and other material on learning LATEX
include numerous examples of LATEX files, which is
good. One of the best ways of learning is by exam-
ple. But one way to make these examples even more
useful would be to include extensive annotations, ei-
ther in the margins, in footnotes, or in text imme-
diately below the program. What I have in mind
is something like the way many editions of Shake-
speare have notes explaining terms and references
that are unfamiliar. The first few times a command
is used, it would be useful to include a note. Kopka
and Daly [3] do a nice job of this in their “Sam-
ple LATEX file” on pages 16–19; I’d like to see more
examples like this.

Debugging and error messages

Whenever I do anything complicated in LATEX (and
sometimes when I do something simple) I get er-
rors. The messages accompanying these are some-
times helpful, but often rather obscure, at least to
non-programmers such as myself. It would be great
to have a source that explains some of these error
messages in ordinary English. It would also be great
to have some reference on debugging.3

Some hints for beginners

LATEX has to be learned

Word is designed not to be learned. It’s supposed
to function right out of the box (whether it does
or not is another matter); if you are used to Word,
then you may think that you should be able to use
LATEX right out of the box. Well, maybe some people
can. I couldn’t. On the other hand, as you learn
LATEX, you get more and more control over how your
document looks.

Some resources

There are a lot of free resources available for LATEX
(see the CTAN website). A lot of these are wonder-
ful, and some are intended for beginners. I know
some people find these resources to be enough for
them to use LATEX very well. Personally, I like books.
I keep three close at hand: Math into LATEX [2] is
on my desk, and Guide to LATEX [3], and The LATEX
Companion [4] are on my bookshelf. I like books (as
opposed to web-based material) in general because:

3 I have since found that Kopka and Daly [3] do include
a list of some error messages in an appendix.

1. they have extensive tables of contents and in-
dexes;

2. they are already bound and thus easy to flip
through;

3. I am just old-fashioned enough to like being
able to page through a book, and keep it open
on my desk while I work on something complex.

I like the three books mentioned above for dif-
ferent things. The LATEX Companion [4] is a great
book, but not for beginners. It’s intimidating. It’s
too big. It assumes knowledge. I think it should be
the 3rd or 4th book a LATEX user buys; it’s a great
reference, but it still kind of intimidates me.

Kopka and Daly’s Guide to LATEX [3] is the best
introduction to LATEX that I’ve seen. The book I use
most now is George Grätzer’s Math into LATEX [2]
(it’s open on my desk as I write this, I just looked up
how to type the author’s accented name). I use this
all the time, partly because one of the main reasons
I started using LATEX was to typeset some complex
mathematical formulas. All three of these books are
very well organized and comprehensible, given their
depth. Your taste in particular books may vary. Try
out a few. Even if you buy a bunch of books before
finding one or two you really like, it’s not that much
money (after all, the software is free).

Another resource I find very helpful is the gen-
eral mailing list for TEX users, texhax@tug.org; for
more information, see http://tug.org/mailman/

listinfo/texhax.

Figure out what you need to know, and

when you need to know it

LATEX is huge. It does all kinds of things, plus a
lot that I am sure I am unaware of. What you
need from it depends on what kind of work you do.
For instance, I need to do a lot with tables, equa-
tions, bibliographies and imported graphics; I had to
learn these first. But I don’t have as much need to
make my own drawings — I’ll wait. Learning about
some different fonts would be fun, but not urgent
(for me — this may be very urgent for you). I will
probably never learn to typeset Sanskrit or musical
notation. But just figuring out what is available can
be a challenge.

One thing to do, after you can write basic doc-
uments, is to browse through various sources, in-
cluding books and the CTAN website; Jim Hefferon
wrote a good introduction to the website in the first
issue of The PracTEX Journal [1]. Try to follow the
discussions on the mailing list. TPJ is very helpful;
and then there’s TUGboat, which also contains more
advanced material (sometimes, I don’t even under-
stand the titles!).

54 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

A LATEX fledgling struggles to take flight

Run files often

Run your file through LATEX a lot. Each time you do
something even a little interesting, where you have
any doubt at all about whether what you are doing
will work correctly, typeset the file. If you’ve only
made one or a few changes since you last ran the file,
then it will be easier to find your error. In the editor
I use (WinEdt) you can also typeset a small part of
your document (hit ctrl+shift+c). This saves a lot
of time.

On a related note, make backups often, and
give them names you will understand and remem-
ber later. In particular, if you’ve gotten something
complicated to work reasonably well, but still want
to tweak it a little, save the file that works before
you forget how you got it to work. (For me, this hap-
pens most often with complex, multiline equations
and with tables that have complicated structures.)

Look at examples

All the books I listed have lots of examples. Try
to figure out how they work and how they could be
changed. Fool around; see what happens.

Make a default preamble

As you learn more LATEX, you will (probably) find
that there are certain packages that you always want
loaded. It’s hard (at least for me) to remember
which ones I want, so I made a default file;4 as of
March 6, 2005, it looked like this:

\documentclass{article}

\usepackage{graphicx}

\usepackage{amsmath, amssymb, latexsym, amsthm}

\usepackage{exscale, mathrsfs}

\usepackage{caption2, float, chapterbib, natbib}

\usepackage[section]{placeins}

\usepackage{fancyhdr}

\usepackage{geometry}

\usepackage[symbol, perpage]{footmisc}

\theoremstyle{plain}

\newtheorem{theorem}{Theorem}

\theoremstyle{definition}

\newtheorem{definition}{Definition}

\begin{document}

\title{Put title here}

\author{Peter L. Flom}

\maketitle

Sample text

\bibliographystyle{amsplain}

\bibliography{file name}

\end{document}

4 One of the reviewers commented that it would be better
to make a .sty file; I, however, do not know how to do this.

Summary

As I get more and more used to LATEX, I find it more
and more useful. I am gradually using it for more
and more documents. For me, the best things about
using LATEX, as opposed to Word, are

1. LATEX directs my attention to things that need
attention. It takes care of section formatting,
typography, and so on; but it forces my atten-
tion to things like complicated mathematical
formulas and complex tables.

2. The ability to typeset complex mathematical
equations and know they will appear correctly
on other people’s computers and on printout.

3. The naturalness of section formatting (that is,
with \section and related commands)

4. The ease of cross-referencing to different sec-
tions of a document (using \label and \ref).

5. The helpfulness of the LATEX community in find-
ing solutions.

The biggest barriers to using LATEX are

1. Working with co-authors and editors who insist
on Word files.

2. Formatting complex tables.

3. Learning to use my editor (WinEdt) more effi-
ciently.

4. Remembering that getting an error message is
not the computer telling me that I am stupid
(careless, ignorant, forgetful . . . but not stupid).

I look forward to learning more, and to becom-
ing more expert, and to finding ways to spread my
LATEX wings. Certainly writing this article helped
me do so, I hope reading it helped you, as well.

References

[1] Jim Hefferon. CTAN for starters. The PracTEX
Journal, 1, 2005. http://tug.org/pracjourn/

2005-1/hefferon.

[2] George Grätzer. Math into LATEX. Birkhäuser,
New York, third edition, 2000.

[3] Helmut Kopka and Patrick W. Daly. Guide to
LATEX. Addison Wesley, Boston, fourth edition,
2004.

[4] Frank Mittelbach and Michel Goossens. The
LATEX Companion. Addison Wesley, Boston, sec-
ond edition, 2004.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 55

The art of LATEX problem solving

Anita Z. Schwartz
University of Delaware
002A Smith Hall
Newark, DE 19716
Internet: anita@udel.edu

Abstract

Have you ever been stuck using LATEX? What does this really mean to you?
“Stuck” may be anywhere from solving some esoteric error message while
LATEXing to trying to find a solution to a specific, not so obvious, formatting
issue. There is a huge TEX community with a plethora of information where
many problems have been solved by a highly knowledgeable group of volunteers.
This article will attempt to lead you in the right direction to make the most out
of the resources available during your LATEX adventure. I will attempt to explain
common errors and provide solutions with LATEX and variations such as pdfLATEX.

Introduction

Back in September 1992, I was invited to present
a paper about supporting TEX and LATEX at Euro-
TEX’92 in Prague, Czechoslovakia. At that time, I
had only been working at the University of
Delaware for five years. Now thirteen years later,
I have been supporting the TEX and LATEX commu-
nity for a total of eighteen years. I use the term com-
munity, because I have helped many TEX and LATEX
users around the world, not just at the University of
Delaware. In the article, The Key to Successful Sup-
port: Knowing Your TEX and LATEX Users, I wrote

. . . Shortly after getting involved, I real-
ized that this was not going to be a short-term
project, but one that would last forever. What
I mean by this is that from week to week,
I would learn a new macro or style file, new
previewer, new printer driver, new utility, new
user and kept wondering how I was possibly
going to stay above water and good support
in such a changing environment.

These statements have proven to be so true.
The foundation I laid eighteen years ago has paid off.
TEX and LATEX users at the University of Delaware
have transitioned and transformed into (mostly)
LATEX 2ε users over the years, as have I also, as the
primary support person on campus. The training
once offered several times every semester has dwin-
dled to one customized class per year or as new tech-
nology emerges. The basic documentation provided
over the years has been updated with samples and
pointers to books and resources online. The two
guidelines:

• don’t reinvent the wheel, and

• email or call before getting too frustrated

have been my primary philosophy and strategy en-
abling users to connect with the best tools making
it easier to master the art of LATEX problem solving
and truly appreciate LATEX’s beauty as a powerful
tool. Of course, like all art, it is subject to inter-
pretation, so each user will have a different level of
tolerance and appreciation of their final product or
artwork.

Oiling the squeaky wheel

For me, training and support relies heavily on others
to solve common problems. I have built a support
network within the University of Delaware commu-
nity encouraging users to share their experiences and
examples. It has been the only way I have remained
sane all these years supporting TEX and LATEX. In
the article LATEX/TEX User: A Typist, or Typeset-
ter?, I mentioned several important points to re-
member when using macros created by others

1. Having the macros does not mean that the user
does not have to pay attention to the original
specifications or guidelines. It is important that
the user check the document for correctness.
Macros are developed with the intention of be-
ing correct, but errors do happen.

2. Users need to be reminded that the macros have
been defined to meet certain specifications, and
as a result the macros should not be changed.
I hear complaints such as, “I don’t like the way
the document looks.” The point is that it does
not matter how they think it should look, and

56 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

The art of LATEX problem solving

altering the macros means the document no
longer conforms to the specifications.

3. There needs to be good documentation on how
to use the macros. References on which macros
fulfill which specifications are important.

4. Examples should be provided whenever possi-
ble. Example documents of the input and out-
put are easy ways of showing the organization
of the document, how to use the macros, and
what they will produce.

Resources

Interestingly enough, while technology for accessing
network resources has changed over the years, such
as your favorite flavor of search engines, most of our
past resources are still available and relevant today
in their new and improved forums such as the TEX
user groups, CTAN, (LA)TEX newsgroups and FAQs.
I must admit that www.tug.org and Google have
become my best friends for connecting users with
available network resources.

In addition, there have been many new books
over the years and many have been updated to make
them even more useful. Although more and more
local versions of “Getting Started with LATEX” or
“How do I do XXX in LATEX” are showing up all
over the web, I believe the best working environment
for users requires a set of TEX and/or LATEX books
on hand.

A collection or complete system of tools is a
must when using LATEX. It will make your LATEX ex-
perience so much easier and more enjoyable. Many
users find this very task overwhelming and confus-
ing, because there are multiple choices just to get
started. Some are free and some are not; what
should you use? The answer to this question de-
pends on your computer operating system and your
comfort level with computers in general. Again,
www.tug.org provides a wealth of information about
both free implementations and commercial/share-
ware TEX systems, with links to the www.ams.org

web page about commercial TEX-related sofware.

Common gotchas

Using a complex software package like (LA)TEX gets
easier with experience and time. There is a steep
learning curve, especially if you are interested in try-
ing to solve errors or debug your LATEX documents.
If you always take an example or template and don’t
deviate from it, then you are good to go.

While this is a very important part of learning
LATEX, it won’t necessarily help you if you need to
make any changes. The art of LATEX problem solv-
ing is understanding where to begin when you run

into an error with LATEX. Below are some common
gotchas that might getcha during your LATEX adven-
tures.

• Preamble errors

• Missing or incorrect placement of }

• Blank lines or other spacing issues in math mode

• Forgetting about special characters, like $, %,
& and quotation marks

• Protecting in moving arguments

• Misspelled environment or macro names

• Incorrect use of options or improper structure
for an environment or macro

• Incorrect reference for numbering

• Mismatching braces, environments, “whatever”

• Changing size and style in text and math

• Figures and Tables

• Graphics

The largest numbers of complaints I receive are
about the “meaningless error messages” in LATEX.
However, it is probably better to describe the error
messages as meaningful to experts. Of course this
doesn’t help a beginner and to most this is by far
what makes debugging LATEX so difficult. However,
the art of debugging LATEX is the ability to divide
and conquer around the error to see if you can pro-
duce a more meaningful error message or not get an
error at all.

In my experience, most errors occur as a result
of a missing or misplaced end environment or }. In
addition, most users have a working document and
then make changes which introduce an error. My
suggestions are to always keep one revision behind or
eliminate parts of the changes made and try to see if
you can get back to a working document. Once you
have a working document again, you can gradually
add back changes so each small change will allow
you to determine what may have caused the error in
the first place.

Conclusion

Every user has a different learning style, but every
user must be willing to learn LATEX, if they plan
to succeed and feel comfortable with it. Be on the
lookout for updates for all your resources and keep
up with the technology. Don’t get intimidated and
don’t exceed your tolerance threshold of frustration
before getting help. Doing so will allow you to tran-
sition and transform into a LATEX problem solving
art lover.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 57

Anita Z. Schwartz

References

[1] Goossens, M., S. Rahtz and F. Mittelbach. The
LATEX Graphics Companion. Addison-Wesley,
1997.

[2] Grätzer, George. Math Into LATEX, Third Edi-
tion. Birkhäuser and Springer, 2004.

[3] Hoover, Anita Z. LATEX/TEX User: A Typ-
ist, or Typesetter, TUGboat 12(3/4), Decem-
ber 1991, pp. 397-400.

[4] Hoover, Anita Z. The Key to Successful Sup-
port: Knowing Your TEX and LATEX Users,
Proceedings of the 7th European TEX Confer-
ence, September 1992, pp. 71-85.

[5] Information Technology: User Services. The
LATEX UDThesis Format. University of Dela-
ware, Newark, June 1990.

[6] Information Technology: User Services. The
TEX UDThesis Format. University of Delaware,
Newark, June 1990.

[7] Knuth, Donald E. The TEXbook. Computers
and Typesetting, Vol. A. Addison-Wesley, 1986.

[8] Kopka, H., and Patrick Daly. Guide to LATEX,
Fourth Edition. Addison-Wesley, 2004.

[9] Lamport, Leslie. LATEX: A Document Prepa-
ration System, 2nd Edition. Addison-Wesley,
1994.

[10] Mittelbach, F., and M. Goossens with J.
Braams, D. Carlisle and C. Rowley. The LATEX
Companion, Second Edition. Addison-Wesley,
2004.

58 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Strategies for including graphics in LATEX documents

Klaus Höppner
Nieder-Ramstädter Str. 47
64283 Darmstadt
Germany
klaus.hoeppner@gmx.de

Abstract

This talk presents strategies for including graphics into LATEX documents. It
shows the usage of the standard graphics packages of LATEX as well as an intro-
duction to different graphics formats. Some external tools for converting graphics
formats are discussed.

Overview of graphics formats

In general, there exist two kinds of graphics for-
mats: vector and bitmap graphics. For bitmaps,
there exist different flavors: no compression (which
can make your files truly huge, dependent on reso-
lution and color depth, so I won’t cover them from
here on), compression methods which completely
preserve the image quality while reducing the data
size, and “lossy” compression methods which cause
a consequent reduction in image quality.

So let’s go more into detail:

Vector graphics are set up by drawing or filling
geometrical objects such as lines, Bézier curves,
polygons, circles and so on. The properties of
these objects are stored mathematically. Vector
graphics are in general device independent. It
is easy to scale or rotate them without loss of
quality, since the job of rasterizing them into
actual pixels is done by the printer or printer
driver.

Bitmaps without lossy compression store the
image information as pixels, each pixel of a
given color. In principle, the quality of a bit-
map becomes better with increased resolution

Figure 1: Zoomed view into a sample image as
vector graphics (left) and bitmap (right).

Figure 2: A low
quality JPEG image
showing some artifacts
at the transition
between black and
white.

and color depth (e. g. GIF files use a color depth
of 8 bits, leading to 256 different indexed col-
ors while a bitmap with 24 bit color depth can
have about 16 million colors). Scaling and ro-
tating bitmap images will yield a loss of quality,
and printing bitmaps to a device with a differ-
ent resolution can produce bad results. Fig. 1
shows the difference between a scaled image as
vector and bitmap graphics.

Bitmaps with lossy compression use the fact
that the human eye is fairly good at seeing
small differences in brightness over a relatively
large area, but not so good at distinguishing
the exact strength of a high frequency bright-
ness variation. For this reason, components
in the high frequency region can be reduced,
leading to smaller file sizes. This works well
for photographs that usually contain smooth
transitions in color, but for graphics with a
sharp border, artifacts can occur, as shown in
fig. 2. The most prominent graphics format us-
ing lossy compression is JPEG.

Graphics formats in practice

There exist very many graphics formats, so I will
concentrate on a few of those most often used:

EPS is the encapsulated PostScript format. It is
mostly used for vector graphics but can also
contain bitmaps.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 59

Klaus Höppner

PNG is the portable network graphics format. It
was introduced due to the problem that Unisys
claimed a patent for the compression algorithm
used in GIF format. For this reason, it is of-
ten used nowadays on web pages. PNG is a
bitmap format that supports compression both
with and without loss of image quality.

JPEG is a bitmap format with lossy compression
and is often used for photographs (e. g. most
digital cameras produce JPEG files).

TIFF is a bitmap format sometimes used for high
quality pictures — in part because it supports
the CMYK color space important especially for
commercial printing.

Now the question is: What format shall I use for
what purpose? Though there is no one true answer
to this question, my advice is as follows:

1. For drawings (e. g. technical drawings or data
plots) use vector graphics. It gives you maxi-
mum freedom to manipulate the image when in-
cluding it into a document where you often need
to scale the image to fit into your layout. Addi-
tionally, it is independent of the output device,
and thus you can zoom into the image in your
document viewer without seeing single pixels.

Drawing tools offered by TEX distributions —
notably PSTricks and METAPOST — can usu-
ally produce EPS output natively. Most vec-
tor drawing programs like xfig and Corel Draw
also offer export functionality for producing EPS

output (though sometimes buggy).

2. If you are stuck with bitmaps, use PNG for im-
ages with sharp color transitions, such as black
and white boundaries.

3. For photographs, you can use JPEG in most
cases, since the quality loss by compression is
normally imperceptible when printed. On most
devices, a resolution of 100 to 200 dpi will be
sufficient (remember that screen resolution is
normally about 75 to 100 dpi, and color printers
claim to have high resolutions but dither color
prints, so you will hardly notice the difference
compared to JPEGs with higher resolution).

The LATEX graphics package

Since the introduction of LATEX 2ε, the graphics

bundle is part of the standard package set accom-
panying the LATEX base distribution [1]. It consists
of two style files, graphics.sty and graphicx.sty.
While graphics.sty requires the use of \scalebox

and \rotatebox for scaling or rotating graphics,
the extended style graphicx.sty supports scaling
and rotating using the keyval package, which pro-

vides a convenient interface for specifying parame-
ters. In general, there is no reason not to always use
graphicx.sty.

So the first step is to load the graphicx style
file after the \documentclass statement:

\usepackage{graphicx}

In fact, the TEX compiler doesn’t know any-
thing about graphics, and including them is done
by the DVI driver. So the graphicx package has to
do two things:

1. find the bounding box of the image (this can
be troublesome when you have e. g. an EPS file
created by an application that wrote a wrong
BoundingBox comment — in this case, it can be
helpful to put the \includegraphics command
into an \fbox to find out what graphicx thinks
about the bounding box);

2. produce the appropriate \special for the out-
put driver; thus, the usage of the graphics bun-
dle is driver dependent.

Nowadays, there are two main workflows for
producing documents: using latex to produce a
DVI file and then dvips for converting it to Post-
Script, and using pdflatex to produce a PDF file.
Most modern TEX systems are configured to au-
tomatically check whether you are using latex or
pdflatex and producing dvips \specials in the
first case and the appropriate \pdfimage commands
in the second case. So if you are using one of the
above workflows, you shouldn’t need to specify your
output backend explicitly. If you are using another
backend you have to specify it as an option, e. g.

\usepackage[dvipsone]{graphicx}

(for the Y&Y dvipsone driver), but be aware that
other backends often don’t support scaling or ro-
tating. For example, DVI previewers like xdvi or
windvi try to interpret the dvips specials, but rota-
tions may not be displayed properly in DVI preview.

After the package is loaded, to include an image
simply use:

\includegraphics{sample}

Please notice that no extension for the file was
given. The explanation why will follow later. In
the case of using \includegraphics without op-
tions the image is included at its natural size, as
shown above. When using the graphicx style, you
can scale your image by a factor:

60 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Strategies for including graphics in LATEX documents

\includegraphics[scale=0.5]{sample}

\includegraphics[scale=1.2]{sample}

Another option supports rotating an image:

\includegraphics[angle=30]{sample}

\includegraphics[angle=-10]{sample}

Positive numbers lead to counterclockwise ro-
tation, negative numbers to clockwise rotation. The
origin for the rotation is the lower left corner of the
image, so in the clockwise rotation above the result
has not only a height but also a depth below the
baseline (as shown by the rules).

Images can not only be scaled by a given fac-
tor, you can specify a height and/or width for the
resulting image instead:

\includegraphics[width=2cm]{sample}

\includegraphics[height=1.5cm]{sample}

height gives the height above the baseline. If
your image has a depth, you can use totalheight

instead, i. e. the sum of height and depth will be
scaled to the given length.

\includegraphics[angle=-30,height=1cm]

{sample}

\includegraphics[angle=-30,

totalheight=1cm]{sample}

You can specify both width and height. In
this case your image may be scaled differently in
horizontal and vertical direction, unless you use the
keepaspectratio option:

\includegraphics[width=1.5cm,height=1.5cm]

{sample}

\includegraphics[width=1.5cm,height=1.5cm,

keepaspectratio]{sample}

Source Target Tool

latex+dvips

EPS directly supported
PNG EPS ImageMagick/netpbm
JPEG EPS ImageMagick/netpbm
TIFF EPS ImageMagick/netpbm/tif2eps

pdflatex

PDF directly supported
EPS PDF epstopdf

PNG directly supported
JPEG directly supported
TIFF PNG ImageMagick/netpbm
TIFF PDF tif2eps+epstopdf

Table 1: Conversion of graphics formats supported
by latex+dvips and pdflatex.

Please notice that usage of angle and width or
height is sensitive to the order in which the options
are given. Specifying the angle first means that your
image is rotated first and then the rotated image is
scaled to the desired width or height, while specify-
ing a width or height first will first scale the natural
image and rotate it afterwards.

Supported graphics formats

To make things a bit more complicated, latex with
dvips and pdflatex support different graphics for-
mats:

• latex+dvips: EPS

• pdflatex: PDF, PNG, JPEG, MPS

Table 1 shows ways to convert the standard
graphics formats to supported formats. In particu-
lar, converting EPS graphics used with latex+dvips

to PDF for pdflatex workflow is quite easy; just run
the epstopdf Perl script, which uses Ghostscript to
convert EPS to PDF.

This also explains why it is generally best to
give the file names in \includegraphics commands
without extensions. In this case the graphics pack-
age looks for a supported graphics format automat-
ically. So if you have an image both as EPS and
(e. g.) PDF, you can use both the latex+dvips and
pdflatex workflows without changing your source.

One other useful special case: including the out-
put of METAPOST is also easy; although it is tech-
nically an EPS file, it uses only a small set of com-

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 61

Klaus Höppner

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80
Windmühle

Mainzer Str.

✗
Haus für

Industriekultur

A Fr
D

✂
✂✌

✂
✂✍

Figure 3: A map with additional marks produced
with overpic

mands. So pdflatex can support the inclusion of
METAPOST output directly. The only thing you
have to do is to change the file extension of the out-
put file to .mps.

Tools for image conversion

There exist several tools for conversion of graph-
ics formats, both free and commercial. Besides free
GUI-based tools like Gimp on Unix systems there
are two command line tools available for Unix and
Windows: ImageMagick [2] and netpbm [3].

ImageMagick can convert images directly, e. g.
by typing

convert sample.gif sample.png

while netpbm uses the pnm format as intermediate
format:

giftopnm sample.gif | pnmtopng - > sample.png

Another nice tool is tif2eps by Bogus law Jac-
kowski et al. [4] which uses Ghostscript to convert a
TIFF file to EPS, e. g.

gs -- tif2eps.ps sample.tif sample.esp -rh

which produces a RLE compressed and hex encoded
EPSfile. In my experience EPS files produced with
tif2eps are smaller than those produced by Im-
ageMagick. Additionally it supports CMYK TIFF

files smoothly.

Figure 4: Zoomed view: bitmap (left) converted
to vector graphics (right)

Additional tools

There are many other helpful tools. I will mention
two I use quite often.

overpic is a LATEX package written by Rolf Nie-
praschk [5]. It includes an image into a LATEX pic-
ture environment, giving you the opportunity to add
new elements into the image with normal LATEX pic-
ture commands. Fig. 3 shows a map overlaid with
symbols and text at some points. The source code
for this picture looks like

\usepackage[abs]{overpic}

...

\begin{document}

\begin{overpic}[grid,tics=5]{map}

\put(32,74){\includegraphics[scale=.3]

{busstop.mps}}

\put(32,77){\llap{\scriptsize

\colorbox{back}{Windm\"uhle}}}

\put(28,63){\small\textcolor{red}{%

\ding{55}}}

...

\put(17.5,11){\scriptsize\colorbox{back}%

{{\Pisymbol{ftsy}{65} Fr}}}

\put(6.3,13){\colorbox{back}%

{{\Pisymbol{ftsy}{68}}}}

\put(29.8,61.4){\color{blue}\vector(-1,-3){2}}

\put(38.6,63){\color{blue}\vector(1,3){2}}

\end{overpic}

\end{document}

potrace is a tool to convert a pure black and white
bitmap to vector graphics [6]. Fig. 4 shows a sample
bitmap converted to a vector image.

References

[1] CTAN:macros/latex/required/graphics

[2] http://www.imagemagick.org

[3] http://netpbm.sourceforge.net

[4] CTAN:support/pstools/tif2eps

[5] CTAN:macros/latex/contrib/overpic

[6] http://potrace.sourceforge.net

62 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Making a booklet

Joe Hogg
Los Angeles, CA
Joseph.Hogg@bigfoot.com

Background

In May 2004, I became a docent at the Los Angeles
Zoo and Botanical Gardens and joined the Docent
Botany Committee. The Zoo has a valuable collec-
tion of plants distributed throughout the Zoo, and
two Botany Committee members had written a self-
guided tour of this collection. One of the authors
created botanical illustrations that she wanted to
include in the tour booklet. The draft of the book-
let was in a Microsoft Word file and the drawings
were in the artist’s notebook.

Feasibility

I decided to use TEX to typeset the booklet since
I knew TEX could produce a high-quality product.
I purchased a copy of Kopka and Daley’s Guide to
LATEX [1], and used the fpTEX software from the
book’s enclosed CD to typeset the botanical tour
booklet and several other projects.

We outlined the project’s timetable and bud-
get, getting preliminary estimates of printing costs
from four printers for initial runs of 500, 1,000 and
2,000 copies. We estimated that the booklet would
be no longer than 40 pages and, based on unit costs
for each run level, decided that 1,000 copies gave us
the right balance between unit cost and the number
of copies we thought might sell. Burbank Print-
ing Center, with whom we worked, recommended
printing the body of the booklet in black and white
and reserving color for the cover in order to keep
costs down. To further manage costs, I agreed to
typeset and deliver the booklet as a pdf file. The
printer agreed to perform the imposition step since
he wanted the flexibility to choose the paper size for
his offset press. The plate would be created directly
from the imposed pdf file. The binding would be
saddle stitched using metal staples.

The budget guidelines translated directly into
design guidelines which, if followed, would allow us
to have an economically feasible project. It was im-
portant to have these guidelines at the beginning
because many times during the editing and type-
setting steps, we considered changes to the booklet
that, if adopted, could easily have made the project

uneconomic. What we learned at this step helped
keep us on course.

First steps

With a preliminary estimate of costs and an notion
of how the final product might look, I started the
typesetting process. I saved the Word file as plain
text and opened it in the WinEdt editor I licensed
for this project. I scanned the botanical illustrations
and selected twenty-two for the booklet, with the
goal of placing one or two illustrations per page next
to the text discussing those plants.

While this article presents the typesetting steps
as a sequential process, the actual process included
many discussions of style and a great deal of editing
and experimenting with TEX and various packages.
The level of team effort was high and all of us were
committed to the project’s success.

Page layout

Our conversation with the printer indicated that a
page size of 8.5 inches high and 6.5 inches wide might
be economical for the printer and work for the text
and graphics. The draft text had several short chap-
ters, some no more than one or two pages of this
size. A text block five inches wide gave comfortable
left and right margins of 0.75 inches. I wanted the
graphics to be less than half the width of the text
block and placed on either the right or left side of
the page with text wrapping around the graphics. I
decided to make all drawings 1.75 inches wide with
light gray backgrounds to create a mat effect. This
set off the pen and ink drawings from the text while
balancing the color weight between text and graph-
ics.

I used the report document class for the book-
let since I needed a separate title page and chapter
headings. I thought I might use section headings,
but did not in the final draft. The text was straight-
forward and the chapters short. There was no need
for running headers or footers. A simple page num-
ber in the middle of the footer was enough. After a
few tests with various fonts, we decided on 10 point
Computer Modern for the body text.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 63

Joe Hogg

The graphics were placed on the page using the
picins package. This package has many options for
fine-tuning the placement of the graphic and gener-
ally worked well. Nevertheless, picins seems to force
more than a normal amount of space between para-
graphs. I’ll discuss a work-around for this in the
section on final tuning.

All chapters but the last described plants in a
particular geographic area of the Zoo. These geo-
graphical areas are identified by the names of con-
tinents since animals and plants from those areas of
the world are displayed in these areas of the Zoo.
The last chapter contained a bloom calendar and
was organized in a list environment.

I tried to have all chapters start on the right
page of a spread. Occasionally, I would need to in-
sert a blank page, for which I used the nextpage

package.
At this stage, the body of the booklet was

largely done and contained twenty-four pages.

Navigation

We used both botanical names and common names
for plants throughout the text, and there were vari-
ous categories and concepts we wanted readers to
find easily. The index was developed using the
makeidx package. In addition to indexing the names
of plants, we added categories such as: food for
(e.g., koalas); food, source of (e.g., chocolate); an-
cient plants (e.g., cycads); commercial plants (e.g.,
carob tree); and California native plants (e.g., Cali-
fornia lilac). The final index was five pages long.

There are twenty-two botanical drawings in the
body plus a map of the Zoo. TEX provides the ca-
pability for a List of Figures, but we thought that
was overkill for such a short work. Nevertheless, we
wanted the reader to be able to see the list of il-
lustrations and find one of particular interest. The
solution was to integrate the Table of Contents and
the List of Figures using the tocbibind package. Fig-
ures are numbered consecutively, but fall under the
appropriate chapter headings in the Table of Con-
tents.

Every chapter and figure has its own text or
caption. To avoid the repetition of the words “Chap-
ter” and “Figure” in the Table of Contents and text,
I suppressed the chapter numbering and only in-
cluded the number of the figure and the name of the
plant illustrated in the figure caption. Chapter num-
bers and numbering of the top level of the list envi-
ronment of the bloom calendar were suppressed us-
ing the \setcounter{secnumdepth}{-2}} setting.

The default figure captions were altered using
features of the caption package:

\usepackage[font={small,it},labelsep=period]

{caption}

\DeclareCaptionLabelFormat{numOnly}{#2}

\captionsetup{labelformat=empty}

These commands set the illustrations’ titles in a
small, italic font. An illustration’s number is sep-
arated from the illustration’s title by a period.

Front and back matter

The first few pages of the booklet included Wel-
come, Remembrance, and Acknowledgments pages
plus the Table of Contents. The Index and a map
of the Zoo followed the text. The map was created
in GIMP and printed inside the back cover. I edited
the Table of Contents file to remove the page number
for the inside of the back cover and substituted the
phrase, “Inside Back Cover.” Also, column breaks
in the Index did not always occur where I wanted
them to. I inserted the \newpage command to ad-
just this. After these changes, I ran pdflatex one
time to get a correct Table of Contents and Index.

Cover

I created the cover in Macromedia Fireworks using
botanical drawings for the front and back outside
cover pages. All graphics in the booklet were saved
in portable network graphics (png) file format. In-
cluding the cover pages, we managed to keep the
booklet length to forty pages.

Final tuning

To add visual interest to the first page of each chap-
ter, I added a relevant quotation at the top of the
page using the quotchap package and a dropped cap-
ital letter, using the lettrine package, at the start of
the chapter text. Readers have enjoyed the quota-
tions.

In a few instances, TEX failed to correctly hy-
phenate some of the botanical names. This was easy
to fix by manually adding the correct hyphenation to
a list processed with the \hyphenation command in
the preamble. A few other instances required minor
editing to let TEX correctly break a line.

I mentioned above that the picins package seems
to add more space than normal between the para-
graph in which it is used and the previous para-
graph. I tried to correct this by fiddling with the
parameters in the package, but was unsuccessful.
I ended up with a brute-force solution: between
the paragraphs affected, I simply added a com-
mand \vspace{-0.375\baselineskip}. That re-
duced the excess spacing to approximate a normal
break.

64 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Making a booklet

Comments

Using the report document class made typesetting
the booklet easier than custom designing all features
of the page layout. Nevertheless, I often felt I would
have benefited from the advice of a professional book
designer.

A Botanical Tour of the Los Angeles Zoo and
Botanical Gardens was published November 2004
and Zoo docents are using it as a manual to add
botanical comments to their public tours. The book-
let is on sale at the Zoo’s gift shops.

Let it be bourne in mind how in-

finitely complex and close-fitting

are the mutual relations of all or-

ganic beings to each other and to

their physical conditions of life.

Charles Darwin Welcome

I
n March 2002, the Zoo received accreditation from the American Asso-

ciation of Museums for both its animal and plant collections. In recognition of

this honor, the City of Los Angeles changed its name to the Los Angeles Zoo and

Botanical Gardens. We are proud of our gardens and eager to share them with

all the Zoo’s visitors. This guide highlights many of the noteworthy plants you can

see while strolling through the Zoo. Viewing plants and animals together will show

you the diversity of life that exists in a whole and healthy ecosystem. We hope you

will see the Zoo with fresh eyes and take away a more memorable experience for

having seen this diversity.

1. Clivia Flower – Africa

The Zoo is divided into areas named for conti-

nents which display animals and plants native to

these continents. Animal enclosures are placed on

circular walkways or loops with plants gracing these

paths and enclosures. Australia, North America,

Africa, Asia and South America make up the geo-

graphical loops. There are also areas for Aquatics

with water-dwelling animals; the Aviary; Treetops

Terrace, a picnic and meeting area; and the Rep-

tile House. Major walkways link all of these areas

together.

In addition to trees and shrubs identified in this

tour, we have included in the second half of this booklet a calendar listing those

plants likely to be in bloom at various times of the year. We hope this tour will

delight and inform you today as well as encourage you to return often to see the

Zoo in bloom.

i

References

[1] Helmut Kopka and Patrick Daly. Guide to
LATEX. Tools and Techniques for Computer
Typesetting. Addison-Wesley, Boston, MA,
USA, 4th edition, 2004. ISBN 0-201-17385-6.

I think that I shall never see

A billboard lovely as a tree,

Perhaps, unless the billboards fall,

I’ll never see a tree at all.

Ogden Nash Contents &

Illustrations

Welcome i

1 Clivia Flower – Africa . i

Remembrance ii

Acknowledgments iii

Zoo Entrance Area 1

2 Cycad – Sago Palm . 1

Facts About Desert Plants 2

3 Cacti and Aloe . 2

Baja and Rose Gardens 3

4 Rock Fig Leaf – Baja California . 3

Aquatics 4

5 Carob Tree Leaf and Pods . 4

Australia 5

6 Queensland Lacebark . 5

7 Kurrajong . 6

8 Grevillea Flower . 6

9 Pink Ironbark Eucalyptus . 7

North America 8

10 Mahonia Flower . 8

11 Flannel Bush . 9

v

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 65

LATEX on the Web

Peter Flynn
Electronic Publishing Unit, University College, Cork, Ireland
pflynn@ucc.ie

http://imbolc.ucc.ie/~pflynn

Abstract

This paper presents some techniques for use when authoring in LATEX which can
be used to minimize the conversion problems where a document is to be converted
to HTML for serving to the Web, while continuing to produce the quality of
typesetting for PostScript/PDF that users have become accustomed to.

The Web as the new mode of publishing

Between TEX users, distributing source documents
via the Internet (whether Web, email, or other facil-
ity) is easy because the types of files are known (e.g.
.tex, .bib) and they are easily reprocessed. It is
also relatively easy to make the final-quality type-
set output available to others as single files using
PostScript or PDF.

However, PostScript files can be huge, espe-
cially if they contain bitmap graphics, and they re-
quire a reader which few outside the graphic arts
field have installed (although it’s simple to do and
freely available). PDF browsers are readily avail-
able, and many of them implement simple HTML-
style hyperlinking for cross-references and URIs, but
they have had other limitations, including font in-
stability, the lack of inward addressability, and some
typographic alignment problems.

Large or complex documents benefit from being
split into chunks for serving, and from being served
faster than PostScript or PDF by using HTML or
XML and CSS. But HTML editors are notorious for
their lack of structural, typographic, and document
management facilities — which LATEX users are ac-
customed to having at their disposal. For all the
hype, XML editors have failed miserably to live up
to or exceed these expectations.

Conversion from LATEX to HTML is widely avail-
able, but unavoidably suffers from the inherent mis-
match between feature-sets, and from the inherent
reprogrammability of LATEX. Authoring in XML,
with conversion both to HTML/CSS and to PDF-
via-LATEX is one option, but has its own drawbacks
in the learning curve and the early quality of some
software.

Between consenting TEX users . . .

For TEX files, the file format is known and expected,
and the software to handle it already exists and is in-

stalled. TEX files are small by comparison with other
systems, and can be transferred by HTTP, FTP,
email, etc., without licensing or copyright issues,
and there are no known security problems (viruses,
worms, etc.).

In fact, it’s not necessarily so easy. The user’s
browser, client, or operating system may not know
what to do with the file types, even if a TEX sys-
tem is installed. The sender’s server or operating
system may not know what to do with the file types
either, and may serve them with inappropriate or
misleading labels, i.e., MIME Content-Types.1

To be sure the files can be used properly, we
need to know what ancillary files are needed, and
whether non-default fonts need to be sent as well.
Even where the user’s system recognises the file
types, what do you do actually want to do with
.tex files when you click on them in a browser or
FTP client window? Display them? Edit them?
Process them? Save them? Rename them to some-
thing else?

Serving non-source files

For many applications it is sufficient to serve the
output, rather than the source. While it is possible
to serve DVI files, it’s unusual because there can
be problems if there is any use of fonts outside the
default set supplied with a standard installation of
TEX or LATEX, and there can also be problems with
the inclusion of images, which need to be provided
separately. It will almost certainly be self-defeating
if the objective is co-operative editing.

PDF For final-format documents, it’s important to
remember that most users nowadays have never seen
or heard of a PostScript file: as explained earlier,

1 There was a proposal some years ago to register .tex etc
as known media types, but we are still using application/

x-latex. TUG needs to do something about this or someone
else will register them as something else.

66 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

LATEX on the Web

PDF is ubiquitous, there is a choice of viewers, it
has become the de facto standard, and it provides
for hyperlinks.

Against it count the poor handling of bitmap
fonts in some Adobe readers, and the problems ex-
perienced with the feature for shrinking or expand-
ing the page-image to fit the paper. This is proba-
bly the cause of most grief: if you have carefully set
LATEX to produce an exact text width and height,
with margins to fit your size of paper, it can be sur-
prising to get email back from a user complaining
either that it doesn’t print properly, or that the di-
mensions are not what you claim they are. In these
cases they have almost certainly allowed Acrobat
Reader to scale the page up or down for their local
paper size.

HTML To take full advantage of the Web today
means serving HTML (or, increasingly, XHTML, the
more rigorous XML version of HTML). From a LATEX
source this means using a conversion program, of
which there are several available: the two most com-
mon are LATEX2HTML and TEX4ht.

However, many browsers still lack rendering
ability and font control. The use of home-brew
macros will often defeat convertability by making it
virtually impossible for a converter to figure out how
the output is to appear. Generally, the converters
do an excellent job, but they cannot be 100% error-
free. Differences between browsers can cause user
community problems if not everyone uses the exact
same version and build (usually only achievable in
tightly-controlled corporate environments). But the
fundamental reason for differences in rendering is
simply the feature-set mismatch between TEX and
HTML: they are intended to perform different tasks,
so it is perhaps unreasonable to expect them to be
completely congruent.

XML The long-term solution to many of these
problems may be to author in XML and convert
to HTML for interactive browsing and to LATEX or
ConTEXt for generating PDF.

XML has the advantages that it is very con-
trollable, conversion is robust, it is a de facto stan-
dard, and that open source solutions are available
throughout the process.

Against it stand a steep learning curve for
authors unused to structured document markup
(LATEX users have a head start here), the poor qual-
ity of much XML editing software, and the need for
the additional steps to get to HTML or PDF.

Overall, the fact that an XML document can be
reused much more successfully than a LATEX docu-

ment tends to indicate that this is the direction for
authoring, provided the problems with editors can
be overcome.

Making more use of your LATEX

For successful conversion to HTML there are some
key steps you can take:

• Keep your source code neat;

• Make it predictable and recognizable;

• Use white-space above and below all stand-
alone control sequences;

• De-abbreviate any home-brew shortcut macros
before conversion;

• Re-use equivalent LATEX environment and com-
mand names rather than inventing your own;

• Above all be consistent.

An example of this put into practice might be
something like this:

\section{Making more use of your \LaTeX}

For successful conversion ...

\begin{itemize}

\item Keep your source code neat;

\item Make it predictable and recognizable;

...

\item Above all, \emph{be consistent}.

\end{itemize}

Seen and heard . . .

During the course of the Practical TEX conference, a
number of people had been discussing these topics,
and I noted down a few of the opinions:

• Author in HTML and make images for formulae;

• Author in XML and use XMLTEX;

• Author in Word using named styles, convert to
XML with DynaTag, then to LATEX;

• Author in Word and use the inbuilt ‘Save As. . .
XML’, then convert to LATEX;

• Author in AbiWord and ‘Save As. . . ’ both
LATEX and XML;

• Write a version of LATEX that outputs HTML

(after all, it works for PDF. . .).

As always, there is an infinity of solutions to
choose from, and getting your own document onto
the Web may involve pieces from more than one of
the pathways I have described.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 67

Beamer by example

Andrew Mertz, William Slough
Department of Mathematics and Computer Science
Eastern Illinois University
Charleston, IL 61920
cfaem@eiu.edu, cfwas@eiu.edu

Abstract

There are a variety of LATEX classes which can be used to produce “overhead
slides” for presentations. One of these, beamer, provides flexible and powerful en-
vironments which can be used to create slides and PDF-based documents suitable
for presentations. Although the class is extensively documented, first-time users
may prefer learning about this class using a collection of graduated examples.
The examples presented here cover a wide spectrum of use, from the simplest
static slides to those with dynamic effects.

Introduction

LATEX users in search of a way to produce “overhead
slides” for use with an LCD projector have many
choices today — perhaps too many! For example,
Michael Wiedmann has a web site [6] that lists 12
different tools, all LATEX-based, capable of producing
PDF output.

For first-time users, it can be difficult to de-
cide which of these many approaches best matches
their needs. In our experience, we have found the
beamer class [5] to be easy to use, flexible, and well
documented.

The user’s guide for beamer is, of course, the ul-
timate authority for its use. However, at 203 pages,
a potential user might be frightened off before hav-
ing a chance to experience its capabilities. Our in-
tention here is to provide a sampling of beamer’s
capabilities by displaying a variety of examples.

A first example

A beamer document consists of a sequence of frames.
In the simplest case, all of a frame’s content is dis-
played at once. A frame of this type is the electronic
equivalent of an overhead transparency.

Figure 1 gives a complete example of a beamer

presentation, stored in a file named talk.tex. In
the preamble, familiar LATEX commands appear.
The body of the document specifies a title page is
to appear, followed by two frames. Each frame en-
vironment specifies the desired frame title and the
contents to appear on that frame.

Processing the talk.tex source with pdfLATEX
yields talk.pdf, a PDF file suitable for presenta-
tions. Figure 2 shows the resulting output.

\documentclass{beamer}

\title{A Tiny Example}

\author{Andrew Mertz and William Slough}

\date{June 15, 2005}

\begin{document}

\maketitle

\begin{frame}

\frametitle{First Slide}

Contents of the first slide

\end{frame}

\begin{frame}

\frametitle{Second Slide}

Contents of the second slide

\end{frame}

\end{document}

Figure 1: Contents of our initial talk.tex.

Using this simple example as a template, a new-
comer to beamer can produce a wide variety of pre-
sentations — in effect by learning about just one new
environment, the frame.

Frame content

A frame can be subdivided into the following basic
components, many of which are optional:

• Head line and foot line

• Left and right sidebars

• Navigation bars

• Logo

68 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Beamer by example

A Tiny Example

Andrew Mertz and William Slough

June 15, 2005

First Slide

Contents of the first slide

Second Slide

Contents of the second slide

Figure 2: The three output frames of talk.pdf.

\begin{frame}

\frametitle{Practical \TeX\ 2005 Events}

\begin{center}

\begin{tabular}{|r|l|l|}\hline

8-9 am & Registration & \\

9 am & Karl Berry & Opening \\

9:15 am & Nelson Beebe & Keynote address \\

10:15 am & Break & \\

10:30 am & Peter Flom & A True Beginner Looks at \LaTeX \\

... etc ...

\end{tabular}

\end{center}

\end{frame}

Practical TEX 2005 Events

8-9 am Registration

9 am Karl Berry Opening

9:15 am Nelson Beebe Keynote address

10:15 am Break

10:30 am Peter Flom A True Beginner Looks at LATEX

11 am Anita Schwartz The Art of LATEX Problem Solving

11:45 am Steve Peter Introduction to memoir

12:30 pm Lunch

Practical TEX 2005

Figure 3: Source and output for a frame with a centered table.

• Frame title

• Background

• Content

In our examples, we use relatively few of these com-
ponents, choosing to emphasize the content over the
more decorative elements which are possible. Our
first example does include a navigation bar located
at the lower right hand corner of the frame, which
is present by default.

As far as frame content is concerned, most of
the LATEX environments and commands work within
beamer documents in the expected ways. So, for ex-
ample, enumerated and itemized lists, mathematics,
and tables can all be expressed in ways familiar to
LATEX users. The only thing different is that these
commands must appear within beamer’s frame envi-
ronment. To illustrate, Figure 3 shows how a table
can be centered on a frame, along with its corre-
sponding output.

One special case is worth noting, however. If
verbatim text is to appear within a frame, the frame
must be marked as fragile. This is accomplished as
follows:

\begin{frame}[fragile]

% ... frame contents ...

\end{frame}

To include graphics within a frame, facilities
of the graphicx package may be used. Several points
are worth noting related to graphics. To begin with,
beamer automatically loads the graphicx package, so
no explicit \usepackage statement is needed. For
properly sizing graphics within a frame, it helps to
know that beamer formats its output to a size of
128 millimeters by 96 millimeters, or 5.04 inches by
3.78 inches. The native graphics formats supported
by pdfLATEX are JPEG, PNG, PDF, and MetaPost
output.

Figure 4 illustrates how the graphics file named
p2005.png can be placed within a frame.

Frames with color

Emphasis in presentations may be obtained by
changes in color, in addition to the more traditional
font changes. Since beamer automatically loads the
xcolor package [2], colors can be specified using the
syntax of xcolor. In particular, the “named” color
model can be combined with a percentage using the
xcolor ! specifier. For example,

{\color{BlueViolet!30} A B C}

will typeset the text “A B C” using the BlueViolet

color, at 30% intensity.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 69

Andrew Mertz, William Slough

\begin{frame}

\frametitle{Practical \TeX\ 2005 Logo}

\begin{center}

\includegraphics[height=3.25in]{p2005}

\end{center}

\end{frame}

Practical TEX 2005 Logo

Practical TEX 2005

Figure 4: Source and output for a frame with included graphics.

\begin{frame}

\frametitle{Practical \TeX\ 2005 Events}

\begin{center}

\rowcolors{1}{\RoyalBlue!20}{\RoyalBlue!5}

\begin{tabular}{|r|l|l|}\hline

8-9 am & Registration & \\

... etc ...

\end{tabular}

\end{center}

\end{frame}

Practical TEX 2005 Events

8-9 am Registration

9 am Karl Berry Opening

9:15 am Nelson Beebe Keynote address

10:15 am Break

10:30 am Peter Flom A True Beginner Looks at LATEX

11 am Anita Schwartz The Art of LATEX Problem Solving

11:45 am Steve Peter Introduction to memoir

12:30 pm Lunch

Practical TEX 2005

Figure 5: Source and output for a frame containing a table with alternating colors.

A particularly effective use of color can be ap-
plied to a tabular environment, via the rowcolors

command from xcolor. In this command, a starting
row number and two colors are specified. These two
colors are used to alternately shade the rows of a
table, beginning with the given row. For example,

\rowcolors{1}{RoyalBlue!20}

{RoyalBlue!5}

requests two shades of RoyalBlue are to be applied
to a table, beginning with its first row. This com-
mand should immediately precede the tabular en-
vironment, as shown in Figure 5.

To use color specifications like these within a
beamer document, some additional options must
be given within the documentclass. Ordinarily,
these color capabilities would be obtained with an
appropriate \usepackage command. However, as
mentioned earlier, beamer automatically loads xcolor

(among others), thus making the usual command,
\usepackage{xcolor}, both unnecessary and ille-
gal. What this means is that options we wish to
specify for these packages must be given in a differ-
ent way. This is the reason for the beamer options.
For example,

\documentclass[xcolor=pdftex,dvipsnames,

table]{beamer}

specifies three different options to be used with
the xcolor package. The first option, pdftex, pro-
vides information about the correct color driver to
use. The option dvipsnames allows a set of prede-
fined color names, such as RoyalBlue, to be used.
(These named colors are sometimes referred to as
the “Crayola” colors.) Finally, the table option
informs xcolor that the colortbl package needs to
be loaded. It is this last option that defines the
\rowcolors command used in Figure 5.

Frames with two columns

Since frames have a landscape orientation, it can
be helpful to be able to subdivide a frame into two
columns. The columns environment of beamer is
designed to meet this need.

Figure 6 provides an example of how a frame
can be subdivided into two columns. The columns

environment allows an alignment option which spec-
ifies whether columns are to be aligned along their
top line, bottom line, or centered. In this example,
the c option causes the two columns to be aligned
along their vertical centers. Within the columns en-
vironment two columns appear, as specified with the
two \column commands.

70 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Beamer by example

\begin{frame}

\frametitle{Two Column Output}

\begin{columns}[c]

\column{1.5in}

Practical \TeX\ 2005\\

Practical \TeX\ 2005\\

Practical \TeX\ 2005

\column{1.5in}

\framebox{\includegraphics[width=1.5in]{p2005}}

\end{columns}

\end{frame}

Two Column Output

Practical TEX 2005

Practical TEX 2005

Practical TEX 2005

Practical TEX 2005

Figure 6: Source and output for a double-column frame.

Frames with overlays

Up to this point, the frames we have considered con-
sisted of a single overlay. When the frame is dis-
played, everything on that frame appears at once.

Alternatively, a frame can consist of a sequence
of overlays, which can be used to support incremen-
tal display. Overlays can be used to “hold back”
information during a presentation or to produce cer-
tain kinds of animated effects.

As a matter of taste, some people feel that a
single overlay is preferable, since information is not
hidden from the audience. However, we feel that
there are situations where multiple overlays are ap-
propriate, especially when used judiciously.

The beamer class provides numerous ways to
specify frames with multiple overlays. We illustrate
three techniques:

• Using the \pause command

• Using overlay specifications

• Including multiple graphics files

Using the \pause command is a simple way to
produce overlays. All text from the beginning of
the frame to the place where a \pause command
appears is formatted and placed into an overlay. In
this way, the example in Figure 7 creates a frame
with three overlays. When the resulting PDF file is
viewed, the three lines of output are incrementally
revealed. The command

\setbeamercovered{dynamic}

is in effect, so overlays not yet revealed will faintly
appear. This allows the speaker to focus on the cur-
rent overlay, yet not entirely hide information from
the audience.

Our second example of incremental display in-
volves overlay specifications. In beamer, every over-
lay within a frame is assigned a number, starting

\begin{frame}

\frametitle{Overlays with {\tt pause}}

\setbeamercovered{dynamic}

Practical \TeX\ 2005\\ \pause

Practical \TeX\ 2005\\ \pause

Practical \TeX\ 2005

\end{frame}

Figure 7: Specifying multiple overlays with
pause.

with one, reflecting the order in which they are dis-
played.

Figure 8 illustrates how a game of tic-tac-toe
can be displayed. In this example, there are ten
overlays — one for the grid, and one for each succes-
sive play in the game. The syntax

\onslide<m->{text}

indicates that the specified text is to appear on every
overlay from m onwards.

Initially, only the grid should appear, so no X
or O appears on the first overlay. In this example,
the first play is an X in the upper right-hand corner,
so this X appears on overlay 2 and every successive
overlay. O counters by playing in the center, so this
O appears on overlay 3 and every successive overlay.
The rest of the example follows in a similar way. In
this situation, we do want to hide from view overlays
not yet revealed, so the command

\setbeamercovered{invisible}

is appropriate.
For our third example of incremental effects,

we use the facilities of the package xmpmulti and a
drawing tool which supports multiple layers. We use
xfig, but many other choices are possible.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 71

Andrew Mertz, William Slough

\begin{frame}

\frametitle{Tic-Tac-Toe via {\tt tabular}}

\setbeamercovered{invisible}

{\Huge

\begin{center}

\begin{tabular}{c|c|c}

\onslide<9->{O} & \onslide<8->{X} & \onslide<2->{X} \\ \hline

\onslide<6->{X} & \onslide<3->{O} & \onslide<5->{O} \\ \hline

\onslide<10->{X} & \onslide<7->{O} & \onslide<4->{X}

\end{tabular}

\end{center}

}

\end{frame}
Figure 8: Using overlay specifications.

\begin{frame}

\frametitle{Tic-Tac-Toe via Graphics Files}

\setbeamercovered{invisible}

\begin{center}

\multiinclude[format=pdf,width=3in]{game}

\end{center}

\end{frame}

Figure 9: Specifying multiple overlays with
graphics files. The files to be included are named
game-0.pdf, game-1.pdf, . . ., game-9.pdf.

Revisiting the game of tic-tac-toe, a grid can
be drawn on layer 0, followed by the first move on
layer 1, the second move on layer 2, and so forth. Af-
ter all layers of the drawing are complete, each layer
is exported to a PDF file with a suffix which matches
the layer number. For example, layer 0 is exported
to game-0.pdf, layer 1 is exported to game-1.pdf

and so forth. The \multiinclude command of the
xmpmulti package, illustrated in Figure 9, causes the
graphics files to appear as overlays.

It is worth noting that beamer overlays are num-
bered beginning with 1, but xmpmulti considers the
first overlay to begin with 0.

Ornamental aspects

It is possible to “dress up” beamer presentations in
a variety of ways. For example, one could use the
Microsoft Comic Sans font, which can be made avail-
able with the comicsans package [4]. Once this font
has been established within the TEX system, adding
the following two lines to the preamble of the beamer

document will make it the default font:

\usepackage{comicsans}

\renewcommand{\sfdefault}{comic}

Βεαmερ βψ Εξαmπλε

Ανδρεω Μερτζ
Wιλλιαm Σλουγη

Ματηεmατιχσ ανδ Χοmπυτερ Σχιενχε Dεπαρτmεντ
Εαστερν Ιλλινοισ Υνιϖερσιτψ

ϑυνε 15, 2005

Πραχτιχαλ ΤΕΞ 2005

Figure 10: Title frame composed with the
Microsoft Comic Sans font.

Figure 10 shows a resulting frame.
Another possibility is to choose from among

the many different beamer themes. As an example,
adding the following lines to the preamble of our
beamer presentation gives the title frame shown in
Figure 11.

\usepackage{beamerthemesplit}

\usetheme{Berkeley}

\usecolortheme{dolphin}

In addition to the visual appeal of themes, ad-
ditional navigation tools are incorporated in the
frames based on the LATEX sections and subsections
present in the beamer presentation.

Producing N-up output

It is often desirable to produce a printed document
which mirrors the content of the beamer presenta-
tion. There are two steps needed to accomplish this;
first, create an overlay-free version of the presenta-
tion, and second, produce an N-up version of the
presentation.

72 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Beamer by example

Beamer by

Example

Andrew

Mertz

William

Slough Beamer by Example

Andrew Mertz

William Slough

Mathematics and Computer Science Department

Eastern Illinois University

June 15, 2005

Practical TEX 2005

Figure 11: Title frame composed with the
Berkeley theme.

Removing overlays from a beamer presentation
is easily done within the preamble, by adding the
handout option:

\documentclass[handout,

xcolor=pdftex,dvipsnames,

table]{beamer}

Processing a beamer document with this option
causes all overlays for a given frame to be collapsed
into a single frame.

Once overlays have been removed, putting mul-
tiple frames onto a single sheet of paper is a separate
problem related to PDF files. The pdfpages package
[3], for example, solves this problem. For an auto-
mated approach based on the same package, pdfjam

[1], a Unix shell script, can be used.

Conclusion

The contribution of many individuals in the LATEX
community have made it possible to produce over-
head slides using typesetting standards of the high-
est quality. We are especially indebted to the work
of Till Tantau and the other package designers cited
earlier.

References

[1] David Firth. PDFjam. http://www2.

warwick.ac.uk/fac/sci/statistics/staff/

academic/firth/software/pdfjam.

[2] Uwe Kern. Extending LATEX’s color facilities:
The xcolor package. http://www.ctan.org/

tex-archive/macros/latex/contrib/xcolor.

[3] Andreas Matthias. The pdfpages package.
http://www.ctan.org/tex-archive/macros/

latex/contrib/pdfpages/.

[4] Scott Pakin. The comicsans package.
http://www.ctan.org/tex-archive/macros/

latex/contrib/comicsans.

[5] Till Tantau. User’s Guide to the Beamer

Class, Version 3.01. http://latex-beamer.

sourceforge.net.

[6] Michael Wiedmann. Tools for Creating Screen
or Online Presentations. http://www.miwie.

org/presentations/presentations.html.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 73

Batch Commander: A graphical user interface for TEX

Kaveh Bazargan
River Valley Technologies
kaveh@river-valley.com

1 Introduction

A constant criticism of TEX is that it is not user-
friendly. In today’s computer environment, users
expect to be able to click buttons and choose menus,
and to see a result immediately. Of course we know
that TEX is a mark-up language, and there is no way
that all of TEX’s power can be accessed via menus
and buttons. But with some limitations, it turns out
that a graphical user interface (GUI) can be useful.
In this article I will describe my attempt at such a
GUI, which I have called Batch Commander.

2 Why Batch Commander?

When I first started on this project, I chose a name
with ‘TEX’ in it. Then I realised that the GUI need
not be restricted to TEX, but can be used with other
programs that take text as input and produce graph-
ical output. (The TEX preview is indeed a graphi-
cal output, even though it contains mainly text.) I
have already used the GUI successfully with Povray
(http://www.povray.org), and I believe it can be
used with MetaPost.

Using the Batch Commander with different pro-
grams is simple, given the appropriate setup. When
the main file is chosen from the pop-up menu, the
file extension tells Batch Commander which program
should be used. If the extension is .tex, then it
knows that the config file (we’ll come to this later)
must have a .sty extension, and that the file should
run through TEX. But if it has a .pov extension,
then it will use .inc for the extension of the config
file, and run Povray on the main file.

3 Limitations

Let’s look at the limitations within which we will be
working.

3.1 Use only global controls

Batch Commander will only be used to apply global,
as opposed to local controls. Thus, we will be able
to change parameters such as \baselineskip and
\textwidth, which apply to the whole document,
but we cannot use a command like \emph{}, which
applies to part of the document. So in principle, we
can design a whole class file, but we cannot apply a
style to a particular section of the text.

3.2 Use LATEX

Although the program I will describe can be ap-
plied to any TEX program, e.g. plain TEX or Con-
TEXt, I will only consider a standard LATEX file. We
will use the predictable structure of a LATEX file to
our advantage. We will be able to load packages
and modify the options, and we’ll also be able to
load any TEX command or primitive just after the
\begin{document}.

4 File structure

Let us consider the minimal LATEX file shown in fig-
ure 1(a). There are two areas of ‘global controls’
which affect the output in this file:

1. The packages loaded, and their options;

2. (LA)TEX commands such as \baselineskip...,
which come after the \begin{document}.

Let us make this file simpler by putting all global
controls into another style file. Figure 1(b) shows
this simplification by introducing another file called
river_valley.sty. (The \AtBeginDocument{...}

command ensures that anything enclosed within the
braces is read only after \begin{document}.)

Separating the document file from the ‘control-
ling’ file means that once we have decided on a set
of controls, they can be easily applied to other doc-
uments.

5 The overall concept

Our goal is to have a GUI that allows us to control
of the contents of river_valley.sty interactively,
have the file saved to disk, run the main file through
TEX immediately, and finally show the preview.

The operating system I have used is Macintosh
OS X (Tiger). As far as possible I have tried to keep
the components of the system platform independent,
so that it can be ported easily to other systems.

5.1 Controls

Figure 2 shows the process of typesetting a file us-
ing the controls of a GUI. By ‘controls’ we mean
graphical objects such as buttons and menus which
take the place of editing a text file. This is how the
process works:

• The user makes a change to a control, e.g. types
in a number, or clicks a checkbox;

74 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Batch Commander: A graphical user interface for TEX

\documentclass{article}

\usepackage{river_valley}

\begin{document}

\section{Introduction}

This is the main text....

\end{document}

\usepackage[

 a4paper,

 textwidth=10.0cm,

]{geometry}

...

\usepackage[

 pdftex,

 linkcolor=red,

]{hyperref}

\AtBeginDocument{

! ! \baselineskip = 12pt

! ! \hyphenpenalty = 50

! ! ...!! ! }

\documentclass{article}

\usepackage[

 a4paper,

 textwidth=10.0cm,

]{geometry}

...

\usepackage[

 pdftex,

 linkcolor=red,

]{hyperref}

\begin{document}

\baselineskip = 12pt

\hyphenpenalty = 50

...

\section{Introduction}

This is the main text....

\end{document}

(a) (b)

Figure 1: Simplifying the main file by putting all ‘controls’ in an external style file. (a) The original file;
(b) the new main file which reads in an external ‘controlling’ file at run time.

• the system immediately writes out a ‘config’
file, in our case ‘river-valley.sty’;

• the main file is run through TEX,

• the screen preview is shown.

The idea is that the user sees only the controls,
and the final screen preview, not the intermediate
text files, unless he/she expressly wishes to.

6 Programming tools

6.1 The GUI

The GUI needs to be completely flexible, and have
the following facilities:

• Buttons, pop-up menus, and a rich mix of other
interactive features to allow efficient control of
values for parameters, choice of options, etc.

• ability to read and write text files;

• ability to communicate with other programs;

• be easy to program

• be easily portable to different platforms.

I chose the Runtime Revolution product (http:

//www.runrev.com) for the development environ-
ment. Revolution is a successor of Apple’s Hyper-
Card, which was a highly innovative scripting pro-
gram written by Bill Atkinson, but which was ne-
glected by Apple over the years, and effectively died

a slow death. (In my opinion the ‘killing off’ of
HyperCard was one of Apple’s worst decisions.) My
familiarity with HyperCard allowed me a quick start
in Revolution, and it has worked extremely well so
far, with no major drawbacks.

An advantage of Revolution is that it is cross-
platform, so the majority of the work writing the
GUI need not be duplicated for other platforms.

6.2 Communication of Batch Commander

with TEX

After the interactive changes have been made, TEX
needs to be told to run the file and to show the pre-
view. For this stage I used the scripting language
of Revolution, i.e. Transcript, together with a mix-
ture of shell scripts and AppleScript. This is the
main area where each platform would need its own
support.

6.3 TEX implementation

I used pdfTEX exclusively for typesetting the TEX
files. So when a document is typeset, a PDF file is
produced in a single step. One reason for this is that
we want to embed PDF-specific items, and we want
to test that they are recorded correctly. pdfTEX
allows the fastest route to the generation of PDF.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 75

Batch Commander: A graphical user interface for TEX

Figure 4: Attributes of controls.

The point to note is that each control can have
different output forms, but the same type on the
GUI. Equally, two controls might have different
forms for selection, but the same output form. We
will see later that this classification is useful in gen-
erating the controls automatically.

Having looked at the type of the control and
the output form, let us look at other attributes of a
control, so that we can define clearly what a control
should look like. Figure 4 shows some attributes
which a control might have. Here is a comprehensive
list of the possible attributes of a control:

7.1 Group

When there are a lot of controls, it is convenient
to group them together logically, so that only a se-
lected number of controls are visible at any time.
So we should make each control be associated with
a particular group.

7.2 Name

Each control has a name. Depending on the output
form, the name may or may not be written to the
config file.

7.3 Description

It is useful to have a short description of each con-
trol, in order to remind the user what the control
does. This might be shown permanently on the GUI,
or might be a tooltip or a pop-up field.

7.4 Selection type

This is what we discussed above. It might, for ex-
ample, be choice, number, or toggle.

7.5 Output form

As discussed above, the output form determines how
the data corresponding to the control is written to
the config file, e.g. option.

7.6 Position

The data from each control is normally written ei-
ther as an option to a style file, within square brack-
ets, or in an \AtBeginDocument{...} command.
So the value given to position is either package or
begindoc.

7.7 Unit

A control may or may not have a unit associated
with it.

7.8 Minimum and maximum values

These apply in the case of number controls, where a
value needs to be chosen from a range of numbers.

7.9 Choices

If the selection type is choice, then the list of pos-
sible choices must be specified.

7.10 Default value

This is the default, either of a numerical value, or
from a list of choices. If the user does not interact
with the controls, this is the value written.

7.11 Increment

For numerical values, this is the increment between
successive values offered to the user as choices.

7.12 Decimals

This determines how many decimal units are dis-
played for numerical values of a particular control.

8 General anatomy of the GUI

Figure 5 shows the main overall control area of Batch

Commander. The controls for a specific style file ap-
pear below this area. By looking at these overall
controls, we can get a feel for the functionality of
the GUI.

The top left pop-up button selects the main
LATEX file which is to be typeset (figure 6). This
file will be opened, and all current settings will be
applied to it. If a file is not in the list of available
.tex files, then by choosing New..., the file and its
path will be added to the list.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 77

Kaveh Bazargan

Figure 5: Main anatomy of Batch Commander.

Figure 6: Choosing the main LATEX file.

The top right button determines whether any
changes made should be applied immediately to the
config file (river_valley.sty), or only after the
user clicks the run button (figure 7). (On slower sys-
tems, the Delayed option is best.) With Immediate

selected, as soon as any control is clicked, a new con-
fig file is written, and the LATEX file is run to show
the preview. The style management button is used
to make style files available to the user (figure 8).

When a style file is available, it is included in
the list of checkboxes just below it. Whether it is
‘loaded’, i.e. included in the config file, depends on
whether the checkbox is ticked (figure 9). Further-
more, the style file will be written out in the order
that they appear in the GUI, i.e. controls.sty first,
and geometry.sty last. There is an intuitive mech-
anism to reorder the styles, by simply dragging them
on the screen.

If the Friendly mode button is not checked,
then each control for a style will have the actual
name of the control shown, i.e. the name that will
be written to the config file, and holding the mouse
over this name shows the ‘description’, i.e. a short
explanation of what the control does. Checking the
Friendly mode button reverses this mode. See fig-
ures 10 and 11. This is simply a user preference
which does not affect the functionality of the GUI.

Figure 7: Immediate or delayed application of
changes.

Figure 8: Managing style files available to the
user.

Figure 9: Four style files are available to the user.
The three that are checked will be written to the
config file, together with their options.

Figure 10: Normal mode.

Figure 11: Friendly mode.

78 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Batch Commander: A graphical user interface for TEX

Figure 12: A data file for geometry.sty. The set of controls to be included can be easily modified.

Figure 13: The controls generated using
geometry.data shown in figure 12. Notice that
only the ‘geometry’ group is checked and visible.

The Use Acrobat button, when checked, shows
the typeset preview using Adobe Acrobat Reader.
Otherwise TeXShop is used for preview.

9 Generating the style controls

The underlying idea is that each style file has an
associated set of controls. So we want it to be easy
to create a set of controls when a style file is ‘loaded’.

The method I have used is to create a .data

file which has all the information about the control.
This file is read by Batch Commander when a style
file is loaded, and the controls are created immedi-
ately. The data file is simply a tab-delimited text
file which contains a list of the controls, with all the
attributes discussed above.

Figure 12 shows an example data file; in this
case, the file is geometry.data, containing the con-
trol data for geometry.sty. It is important to note
that the .data file is not definitive for each style
file, and is ‘designed’ by the person who writes it.
In this case I decided that the six entries under the
the_name column were the controls I needed for my
purposes. Another user might require a different set
of controls.

Figure 14: As figure 13, but with both ‘geometry’
and ‘Page’ groups shown

9.1 The data file

The way the data file is read in and interpreted can
be best understood by examining figure 12, and the
resulting GUI pages shown in figures 13 and 14. (To
retain a reasonable text size, some of the items have
been truncated, but it should be obvious what they
are.) Here are some features of the data file:

• The first column is reserved for the group name.
All rows between a group name and the first
occurrence of ‘======’ are considered to be in
that group. By grouping controls together, we
can show only those groups we are interested in
at one time.

• Apart from the first column, which denotes the
grouping, all other columns can be written in
any order. The system reads the title of the
column in the first row, and thereafter assigns
the correct attribute to each control.

• A single dash in a cell denotes ‘not applicable’.
For example a toggle control cannot have min-
imum and maximum values. There must be no
empty columns.

• If a description is more than one word, then
it must be enclosed in double quotation marks.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 79

Kaveh Bazargan

Figure 15: Choosing a different style file
(controls.sty), and revealing a new set of style
controls.

The data file needs to be written manually, but
only once for each style file.

10 Using the controls

The controls have been designed to be used intu-
itively and quickly. Pop-up menus in choice-type
controls, for instance, are set using the mouse, while
number-type controls can be set in a variety of ways:
(1) direct input from the keyboard; (2) up and down
arrows for increasing and decreasing the value; and
(3) choosing a value from a small pop-up box. In
cases (2) and (3), the change is determined by the
increment value set in the data file.

The controls for each style file are shown on a
separate page, or ‘card’, as each record is called in
Revolution. By selecting the required style file from
a pop-up menu on the left, the card corresponding
to that style is shown. The main controls at the top
remain, but the relevant style controls now appear
below them, as can be seen in figure 15.

11 Writing the config file

When Batch Commander writes out the config file,
it goes through each card (i.e. style file) in turn,
gathers the data from the controls on that card, and
then appends the data to the config file, to obtain
a file as shown in figure 1(b). Figure 16 shows a
typical config file. If Immediate is switched on, then
as soon as any control is modified, the whole process
of writing out the config file is redone, and the main
file is run through TEX, in our case using TeXShop.

%-------------------- controls --------------------
\usepackage[
]{controls}

\AtBeginDocument{
 \hyphenpenalty=50 %
 \exhyphenpenalty=50 %

 ...

 \delimitershortfall=5pt %
 }

%-------------------- hyperref --------------------
\usepackage[
 pdftex, %
 a4paper, %

 ...

 filebordercolor=blue, %
]{hyperref}

%-------------------- geometry --------------------
\usepackage[
 portrait, %
 a4paper, %
 textheight=20.0cm, %
 textwidth=10.0cm, %
]{geometry}

Figure 16: A typical config file.

This works quite well, and does not seem to slow
down the interactive facility. If the user manipulates
the controls before the end of the cycle of writing
the file and running TEX, then the cycle is silently
abandoned and restarted.

12 Status of Batch Commander

At the time of writing, the program is at an ‘alpha’
stage. When set up, it works well and with very
fast feedback, but it needs work in several areas, in
particular:

• Improving its general stability and reliability

• Some support for undoing actions

• Ability to read data from a config file and set
controls according to it

• Support for flexible file management, directory
structures, etc.

• Porting to different platforms, for which I will
need the help of others.

• Improving the structure of the date file, in par-
ticular obviating the need for the ‘======’, and
allowing empty columns without a dash.

13 Availability

The program will be made available free of charge,
although the license has not been finalized yet. If
you would like to use the program, please mail the
author.

80 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Word to LATEX for a large, multi-author scientific paper

D. W. Ignat
P. O. Box 1380
Middlebury, VT 05753 USA
ignat at mailaps dot org

Abstract

Multiple authors from diverse locations submitted to a scientific journal a man-
uscript of a large review article in many sections, each formatted in MS Word.
Journal policy for reviews, which attract no page charges, required a translation to
LATEX, including the transformation of section-based references to a non-repetitive
article-based list. Saving Word files in RTF format and using rtf2latex2e ac-
complished the basic translation, and then a perl program was used to get the
references into acceptable condition. This approach to conversion succeeded and
may be useful to others.

Introduction

Twelve authors from five countries and ten research
institutions proposed to the Nuclear Fusion journal
(NF) of the International Atomic Energy Agency
(IAEA) in Vienna, Austria, a review paper with six
sections plus a glossary. This unusually large man-
uscript had some hundred thousand words and a
thousand references. The sections had different lead
authors, so that the references of each section were
independent of those in other sections, while often
repetitive among sections.

The IAEA gave review papers the privilege
of waived publication charges ($150/page), but re-
quired authors to ease the publisher’s costs by sub-
mitting manuscripts of reviews in LATEX, the jour-
nal’s typesetting system. Therefore, a considerable
financial incentive appeared for finding a somewhat
automated transformation of all the Word sources
into a unified LATEX source.

I was the editor of IAEA’s NF from mid-1996
to mid-2002 with primary responsibility for the ref-
ereeing system and the development of the journal.
Previous experience in Unix and and LATEX for my
own research brought an unofficial role as adviser to
the IAEA production office on shell scripts, LATEX,
regular expressions, perl, and web mounting.

Since the paper appeared valuable from the
point of view of journal development, and at the
same time a challenge in computer processing, I be-
came particularly interested, and encouraged the au-
thors to find ways to satisfy the IAEA requirement:
a LATEX manuscript to better support refereeing and
eventual publication.

In the end, the paper in question [1] was pub-
lished in NF and was very well received by the re-
search community, at great credit to the co-authors
and also good for NF.

When the recent call for papers at PracTEX
came in, it occurred to me that the story might be
interesting for this audience.

Translation from Word to LATEX

At the time of submission (mid-1999) the IAEA and
NF had investigated with a consultant conversions
from Word to LATEX, but had not found a satisfac-
tory solution. One of the twelve authors suggested
rtf2latex2e by Ujwal Setlur Sathyam (now Ujwal
Setlur) and Scott Prahl, following the Word-native
RTF (Rich Text Format) writer.

Here is Microsoft’s description of RTF from
msdn.microsoft.com:

“The Rich Text Format (RTF) Specification pro-
vides a format for text and graphics interchange
that can be used with different output devices, op-
erating environments, and operating systems. RTF

uses the ANSI, PC-8, Macintosh, or IBM PC char-
acter set to control the representation and format-
ting of a document, both on the screen and in print.
With the RTF Specification, documents created un-
der different operating systems and with different
software applications can be transferred between
those operating systems and applications.”

rtf2latex2e uses the RTF reader by Paul
DuBois and converts RTF files to LATEX 2ε. Some
features are: detects text style (bold, italic, etc.);
reads embedded figures; reads tables; converts em-
bedded MathType; converts most Greek and math
symbols; reads footnotes; translates hyperlinks. It

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 81

D. W. Ignat

should compile on any platform that supports a C
compiler. Versions for Macintosh, Unix-type sys-
tems, and Windows are available. The distribution,
issued under the terms of the GNU General Public
License as published by the Free Software Founda-
tion, comes with example .rtf files.

The current, and final, version of rtf2latex2e

can be found on the Comprehensive TEX Archive
Network, http://www.ctan.org/tex-archive/

support/rtf2latex2e and at sourceforge.net.
The result of translation gave the expected

\documentclass{article}

\begin{document}

\section*{1. INTRODUCTION}

and looked good regarding mathematics and tables,
but left all citations as footnotes with the expected
chaos with repeated references. A typical reference
(of the thousands) appeared many times with differ-
ent chapter-based numbers.

The footnotes were rendered, for example, as
[1.\footnote{[1.] Author, A., Some Journ-

al \textbf{36} (1997) 123.}] in section 1, but
in generally the same way in section 2, except that
the “[1.” became “[2.”.

One task is to transform the \footnote style
that survives after the Word-RTF-LATEX transforma-
tion into the normal \cite{...}-\bibitem{...}
representation of references. More complicated is
to detect as identical those references to the same
work presented with slight differences; and to de-
tect as distinct those references that are actually
different but “look” similar.

The goal was a unique citation in the
body, such as \cite{AuthorA36p123}, and a
corresponding entry in the bibliography, such
as \bibitem{AuthorA36p123} Author, A., Some

Journal, {\bf 36} (1997) 123.

The power of perl (Practical Extraction and
Reporting Language) and its version of “regular ex-
pressions” made order from chaos, and produced
material suitable for refereeing, and, eventually,
publication.

Basic regular expressions

A “regular expression” (regex for short) is a gen-
eralized string for matching patterns, and possibly
replacing whatever is found found with something
else. The programs grep (Global Regular Expres-
sion Print), sed (Stream EDitor), and the text editor
emacs, all of which are part of Unix-like systems, in-
corporate regex-es. (The tools mentioned above had
versions workable under Windows 95, but comments

on the capability of later Windows and Macintosh
systems are outside the scope of this document.)

For a flavor of the regex world:
/s/Old/New/g : Old → New globally (g)
/s/^Old/New/ : Old → New at line start (^)
/s/(...)Old/NEW\1/ : xyxOld → NEWxyz

In the last example, the string Old is sought,
but only if it preceded on its line by 3 characters,
which are to be remembered by the parentheses ()

with the label \1. Then, Old is to be replaced by
NEW but followed by the 3 characters just found (here
called xyz).

These examples only suggest the full power of
searching and replacing available, in particular with
perl.

A short summary of regex usage is in Linux in
a Nutshell [2], and an excellent introduction is in
the Wikipedia [3]. For an advanced treatment, see
Mastering Regular Expressions [4]. The GNU Emacs
Manual [5] explains using regex-es in editing.

The prime documentation of perl is the
“Camel book” now in its third edition [6]. The NF
Office happened to rely mostly on the “Llama book”
[7] and the pocket-size Desktop Reference by Johan
Vromans [8].

Manipulating the references

The lead author of Ref. 1, Gianfranco Federici, con-
tacted a colleague, Andreas Schott, about the chal-
lenge of rationalizing the references. Schott pro-
duced a perl script foot2cite.pl which accom-
plished the task.

A few years previously the NF Office had devel-
oped a collection of bash [9] shell and perl scripts
to produce print masters and files for mounting PDF

and HTML [10] articles on the IAEA web server. The
LATEX source of individual articles led to tables of
contents and indexes of authors and subjects from
individual article source files with the help of native
LATEX markup plus additional markup commands
of the local style file. From that experience1 it ap-
peared interesting to develop an IAEA-local program
which could be the base of solutions that might be
needed in the future. Some features of the resulting
ref_manip.pl are described in the following.

The idea is to use the “hash” facility in perl.
Here, a hash is a 1-dimensional array in which the
index and the value of the index are both character
strings. The 1-to-1 hash num2cite connected the
Word-original reference number, such as “1.101,”

1 The utility of combining LATEX with scripting languages
has been explored recently in TUGboat; see for example
William M. Richter, “TEX and Scripting Languages”, TUG-

boat, Vol. 25, No. 1, p. 71 (2004).

82 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Word to LATEX for a large, multi-author scientific paper

to a string designed to be unique (except in patho-
logical circumstances) such as “AuthorA36p123.”
For diagnostic purposes the 1-to-1-or-more hash
cite2nums connected the (uniquely created) \cite

and \bibitem string such as “AuthorA36p123” to
the (multiple, in general) original reference numbers
such as “1.101”; “2.45”.

The multiple LATEX section files produced by
rtf2latex2e are scanned in sequence for a footnote.
If footnote-style text of the nature author-journal-
volume-page is found, then an identifier string is
made of the first author’s last name, first initial, vol-
ume number, page number (AuthorA36p123). The
text of the reference is entered in a holder for the bib-
liography under \bibitem{AuthorA36p123}, while
the footnote is replaced by \cite{AuthorA36p123}.
Next, the two hashes receive the appropriate en-
tries — such as “1.101” and “AuthorA36p12” —
with the help of a counter in the perl script. That
counter should not become out of synchronization
with the footnote numbers given in the paper unless
there is is a mistake in the original text.

The references not citing journal articles are de-
tected by the absence of a bolding of an alphanu-
meric volume number in a footnote. In that case,
the cite/bibitem identifier is formed from the first
twenty alpha-numeric characters in the citation, ex-
cluding all white space. Again, the text of the ref-
erence goes to the bibliography as a \bibitem.

If the footnote is to a previously used number,
such as [1.101] or [2.202], then the num2cite

hash is used to enter the citation with the \cite

format, without adding anything to the bibliogra-
phy.

In the script as developed, pre-processing of the
raw section files does, for example, the following:

• takes out explicit section numbering

• makes all citations (recall, they are of the
\footnote type) begin in column one as
\CITE[...] and occupy one entire (sometimes
very long) line

• makes the bolded volume numbers into a par-
ticular form that will not confuse later searches
for a right brace closing the footnote.

That pre-processing is no doubt a sign of igno-
rance of the full power of perl, and no doubt extends
the execution time. However, execution time is not
a practical issue, but being able to construct the
script in small pieces that do small, easily testable,
things was very much an issue in the environment
of the NF editorial and production offices.

The final pass changes \CITE[...] into
\cite{...}, writes the \bibitem{...} entries,

and, optionally, saves the hashes num2cite and
cite2nums for diagnostics.

There are vulnerabilities. A simple one, which
could be programmed around, is that the original
footnotes cannot contain inside them the charac-
ters [] or, other than for volume bolding, {}. A
more difficult vulnerability, practically speaking in-
evitable, is that truly identical references have to be
presented in pretty much the same way. There is
probably no automated way to defend against ty-
pographical errors in the names, volume or page
numbers. (The potential vulnerability to different
amounts of white space had a simple defense.) How-
ever, an off-line sort of all the \cite and \bibitem

texts would have a good chance of revealing a prob-
lem.

The result

The processing into LATEX of the first draft man-
uscript created one format completely common to
all contributing institutions and authors. With that
common form, adjustments in response to the con-
cerns of the NF editorial office and referees became
easier, as did changes originating with the paper’s
authors as the review developed. Even so, the refer-
eeing process was extensive, which is not uncommon
for articles appearing in NF, and particularly arti-
cles of such a length.

Independent of what the authors of Ref. 1 feel
about their article and the process of publishing it,
the publishing journal and its home organization
have interests.

The Institute for Scientific Information (ISI)
keeps track of an “Impact Factor” (IF) for thousands
of journals [11]. The IF is (at least approximately)
the number of citations to a journal divided by the
number of articles in the period studied. Nature and
Science have IFs in the 20–30 range. The very pres-
tigious Physical Review Letters has an IF around 6,
and the Physical Review, (series A, B, C, D, and
E) is typically between 2 and 3. Journals covering
plasma physics and nuclear fusion range from 0.5 to
3 or so, and NF is consistently the highest in the
group. In the six years ending in 2003 NF was be-
tween 2.2 and 3.4.

According to Google’s newly introduced
“Scholar” service, articles from all journals covered
referenced Ref. 1 23 times, which is unusually high
for the sub-field of science and engineering covered
by NF. (The time frame was not apparent from the
information at Google.)

Records available at the IAEA show that for
Ref. 1 there were 162 downloads in 2003, placing
it number 7 in the top 10 downloads for that year;

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 83

D. W. Ignat

and that the citation rate is roughly double the next
most cited article, and far above the average rate.

The numbers quoted above suggest that the re-
search community received Ref. 1 unusually well,
making it a fine credit to each of the authors and
to their institutions. The numbers also say that the
article had significant positive influence on the IF of
NF, and therefore a positive influence on the contin-
ued success of NF. In other words, the appearance
of this article was very good for its authors as well
as the IAEA and NF.

Remembering that publication in NF, and at
low cost to submitters, required a LATEX manuscript,
one can wonder if all the good news would have hap-
pened without rtf2latex2e and perl. My specu-
lation:

1. the research paper would have come out, if at
all, later than it did,

2. it would not have appeared in NF,

3. the authors would not have gotten quite the
recognition they did,

4. the IAEA and its journal would have a lower IF

for the relevant period.

Acknowledgments

Co-author of rtf2latex2e, Ujwal S. Setlur, assisted
the co-authors of Ref. 1 during the preparation of a
manuscript that the IAEA would accept. As men-
tioned previously, Andreas Schott, a computer pro-
fessional experienced in perl, produced the script
that the co-authors actually used.

LATEX production and web-posting at the IAEA

owed particular thanks to M. Bergamini-Rödler,
N. Douchev, H. Giller, P. Gillingwater, F. Hannak,
I. Kurtev, A. Primes, N. Robertson, M. Sherwin,
J. Weil, and, for the LATEX-to-HTML translations,
I. Hutchinson, author of tth [10]. The management
support of R. Kelleher and D. McLaughlin was indis-
pensable, particularly as NF production processes
grew to depend heavily on the tools of Unix shell
scripts, perl, native and locally developed LATEX
markup.

In January 2002, the Institute of Physics Pub-
lishing (IoPP) of Bristol, UK, assumed responsibility

for production (again, based on LATEX) while the
IAEA editorial office, located in Vienna, Austria,
continued to manage content. The Federici paper
[1] is now mounted on the web by the IoPP. The
present editor of NF is F.C. Schüller of The Nether-
lands.

David Walden contributed helpful comments on
a preliminary draft of this paper.

References

[1] G. Federici, C. H. Skinner, J. N. Brooks, J. P.
Coad, C. Grisolia, A. A. Haasz, A. Hassanein,
V. Philipps, C. S. Pitcher, J. Roth, W. R.
Wampler, D. G. Whyte, “Plasma-material in-
teractions in current tokamaks and their im-
plications for next step fusion reactors,” Nucl.
Fusion 41, No. 12R (2001), 1967-2137.

[2] Jessica Perry Hekman, Linux in a Nutshell,
O’Reilly and Associates, Inc., 1997.

[3] Wikipedia, the Free Encyclopedia, http://en.

wikipedia.org/wiki/Regular expression.

[4] Jeffrey E. F. Friedl, Mastering Regular Expres-
sions, O’Reilly and Associates, Inc., 1997.

[5] The GNU Emacs Manual, 14th edition for
version 21.3, Free Software Foundation, 2004.
Online at http://www.gnu.org/software/

emacs/manual.

[6] Larry Wall, Tom Christiansen, Jon Orwant,
Programming Perl (Third Edition), O’Reilly
and Associates, Inc., 2000.

[7] Randal L. Schwartz and Tom Christiansen,
Learning Perl, O’Reilly and Associates, Inc.,
1997.

[8] Johan Vromans, Perl 5 Desktop Reference,
O’Reilly and Associates, Inc., 1996.

[9] Cameron Newham and Bill Rosenblatt, Learn-
ing the bash Shell, O’Reilly and Associates,
Inc., 1995.

[10] Ian H. Hutchinson, “TtH: a TEX to HTML

translator”, http://hutchinson.belmont.

ma.us/tth/manual.

[11] See http://www.isinet.com.

84 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Biblet: A portable BibTEX bibliography style for generating

highly customizable XHTML

Tristan Miller
German Research Center for Artificial Intelligence (DFKI GmbH)
Postfach 20 80
67608 Kaiserslautern, Germany
Tristan.Miller@dfki.de

http://www.dfki.uni-kl.de/~miller/

Abstract

We present Biblet, a set of BibTEX bibliography styles (bst) which generate
XHTML from BibTEX databases. Unlike other BibTEX to XML/HTML convert-
ers, Biblet is written entirely in the native BibTEX style language and therefore
works “out of the box” on any system that runs BibTEX. Features include au-
tomatic conversion of LATEX symbols to HTML or Unicode entities; customizable
graphical hyperlinks to PostScript, PDF, DVI, LATEX, and HTML resources; sup-
port for nonstandard but common fields such as day, isbn, and abstract; hide-
able text blocks; and output of the original BibTEX entry for sharing citations.
Biblet’s highly structured XHTML output means that bibliography appearance
to can be drastically altered simply by specifying a Cascading Style Sheet (CSS),
or easily postprocessed with third-party XML, HTML, or text processing tools.

We compare and contrast Biblet to other common converters, describe basic
usage of Biblet, give examples of how to produce custom-formatted bibliographies,
and provide a basic overview of the implementation details for those wishing to
modify the style files.

Introduction

In today’s world of ubiquitous Internet access, it
is becoming increasingly expected that every re-
searcher, graduate student, professor, and other aca-
demic have a personal web page listing one’s con-
tact information, qualifications, teaching schedule,
ongoing and completed research projects, and pub-
lications. Normally such pages are maintained by
the academic himself, and thanks to the extensive
formatting capabilities of HTML [65], XHTML [81],
and CSS [8, 47], authors can easily give their home
pages a unique personal style.

Despite these tools, creating and maintaining
an online list of publications has traditionally been
a troublesome process. Authors must manually en-
ter their bibliography data using the appropriate
HTML1 and CSS markup to ensure that the list’s
formatting matches the rest of the website. Since
many authors already maintain a database of their
publications in a format like BibTEX [57], this ap-
proach entails maintaining two separate bibliogra-
phies which can easily get out of sync.

1 Hereinafter, unless otherwise noted, we use the term
‘HTML’ to refer to HTML and XHTML collectively.

Furthermore, if the author at some point de-
cides to change the style in which the bibliography
is displayed, CSS can help only so much. By altering
the list’s style sheet, one can change the style of book
titles from italicized to bold, or suppress the display
of abstracts and annotations. However, CSS cannot
make changes such as abbreviating author or jour-
nal names, switching the order of volume and issue
numbers, or changing the sort order of publications
from author to year. To make such changes, the au-
thor must tediously edit the individual list entries
in the HTML file.

One solution to these problems is to use some
tool to automatically convert the author’s exist-
ing BibTEX database to HTML, possibly employ-
ing some intermediate format such as LATEX [44] or
XML [9]. Then only one publication database need
be maintained; the author can rerun the conversion
whenever the BibTEX database is updated or when-
ever he wishes to effect a fundamental change in
formatting, such as sort order.

In this paper, we present Biblet, one such tool
for converting BibTEX databases to HTML web
pages. We compare and contrast its features and

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 85

Tristan Miller

capabilities to those of similar software, and discuss
its limitations and the limitations of the underlying
BibTEX format.

Background

Using BibTEX BibTEX [56–58] is a bibliography
program originally designed to work with Leslie
Lamport’s LATEX [44] document preparation system.
To use it, the author creates a database of publica-
tions he wants to reference in a BibTEX database
file with the filename extension .bib. The contents
of this file are a series of records in a format similar
to the following:

@ARTICLE{m05toc,

author = {Tristan Miller},

title = {The Tyranny of Copyright},

journal = {Imagine},

year = {2005},

month = may,

volume = {4},

number = {1},

pages = {1,8-11},

issn = {1710-5994},

}

The @ARTICLE token specifies the type of publica-
tion, which in turn determines the available fields.
Other common publication types include @MANUAL,
@PROCEEDINGS, and @BOOK. The text m05toc is the
database key used to refer to the publication in
LATEX citation commands and elsewhere in the bib

database. The remainder of the record consists of
a comma-delimited list of field-value pairs, where
the values can be either predefined macros (such as
may in the above example) or strings delimited with
curly braces or quotation marks.

To use a BibTEX database called imagine.bib

with a LATEX document foo.tex, the author must
write the following commands at the place in the
document where the bibliography2 is to appear:

\bibliographystyle{modern}

\bibliography{imagine}

The first command tells the system how to format
the bibliography and the second command tells it
which database to use. To cite documents from the
database, the LATEX \cite command is used:

... in my article~\cite{m05toc} ...

Note that the argument to \cite is the database
key of the publication to be referenced. LATEX might
typeset the above example as follows:

. . . in my article [1] . . .

2 In this article we use the terms “bibliography” and “ref-
erence list” interchangeably.

At the end of the document in a separate section, the
full bibliographic details of every publication cited
appear, possibly as follows:

[1] Tristan Miller. The tyranny of copy-
right. Imagine, 4(1):1,8–11, May 2005.
ISSN 1710-5994.

The exact formatting of this reference list depends
on the argument to \bibliographystyle.

In order to properly typeset the citations and
references, the author must invoke the LATEX and
BibTEX programs a number of times. Exactly what
goes on behind the scenes is illustrated in Figure 1.
(In this diagram, files furnished by the user are in-
dicated by light rounded boxes, while computer-
generated files are indicated by dark rounded boxes.)
First, LATEX is run on the LATEX document foo.tex,
which produces an incomplete typeset version of
the document, foo.dvi, and an auxiliary data file,
foo.aux. This auxiliary file contains information for
use by BibTEX — namely, the bibliography style, the
bibliography database filename, and which publica-
tions from said database to include in the reference
list. The contents of the aux file in our example
might look as follows:

\relax

\citation{m05toc}

\bibstyle{modern}

\bibdata{imagine}

Next, BibTEX is invoked on foo.aux. Seeing
the \bibstyle and \bibdate commands, BibTEX
searches for and opens the files imagine.bib and
modern.bst. The bst file is actually a program
which specifies how to convert a BibTEX bibliogra-
phy — in this case, imagine.bib — into LATEX code.
BibTEX scans imagine.bib until it encounters the
m05toc entry, applies to it the transformation rules
specified in modern.bst, and writes the output in
a new file named foo.bbl. This bbl file contains
LATEX code which, depending on the bibliography
style, may contain something like the following:

\begin{thebibliography}{1}

\bibitem{m05toc}

Tristan Miller.

\newblock The tyranny of copyright.

\newblock {\em Imagine}, 4(1):1,8--11,

May 2005.

\newblock ISSN 1710-5994.

\end{thebibliography}

When LATEX is next run on foo.tex, it inserts the
contents of foo.bbl at the exact position where the
\bibliography command occurs, producing a new
version of foo.dvi which includes the list of refer-
ences. Typically, LATEX must be run once more to re-
solve references, the \bibitem and \cite commands

86 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Biblet: A portable BibTEX bibliography style for generating highly customizable XHTML

.dvi .dvi

.ps

.aux

.bib .bst

.bbl

.tex

LATEX BibTEX LATEX

dvips

Figure 1: BibTEX workflow

being analogous to the \label and \ref commands
used to create other types of cross-references [44,
§4.2]. The resulting DVI file is the final typeset ver-
sion of the document; it can then be converted to a
ps file for printing on a PostScript printer, or to a
PDF for distribution on the Internet.

Previous work Because BibTEX outputs LATEX
command sequences, authors wishing to create an
online list of publications typically have three op-
tions. The simplest but least convenient to the
casual web page visitor is to simply post the bib

database itself on one’s website, either by linking to
the file directly or by embedding it as preformatted
text in an HTML page. The former case can cause
problems for some web browsers which correctly rec-
ognize the database as a file with the MIME media
type text/x-bibtex [20, 21] but do not know how
to display it for the user. The second case is guaran-
teed to allow users to view the database from within
their web browsers, albeit only in the crude original
format.

The second option is to create a skeleton LATEX
document citing the desired publications, run a
LATEX-to-HTML converter on it, and then extract
the resulting bibliography for use on another web
page. Programs implementing this approach include
Nikos Drakos and Ross Moore’s LATEX2HTML [16,
24, 26], Eitan Gurari’s TEX4ht [25, 31, 59], Luc
Maranget’s HEVEA [50, 51, 77], and over a dozen

lesser-known applications [2, 7, 10–12, 22, 28, 36,
53–55, 62, 69–73, 79, 80, 86]. These programs have
the advantage that any existing BibTEX bibliogra-
phy style can be used.

The third option is to use a program which di-
rectly converts the BibTEX database to HTML (or
to XML, which is easy to convert to HTML). While
there are several such utilities available [4, 17, 23,
27, 29, 32, 33, 35, 42, 43, 48, 60, 61, 66, 68, 74, 75,
82, 85], none of them seems to be as well-known or
widely used as their LATEX-to-HTML counterparts.
Indeed, most of them have no presence on CTAN

and some of them even share the same name.
There are a number of criteria to consider when

evaluating software implementing these latter two
approaches:

License Many people expect their software to be
free in the sense that they may freely mod-
ify and redistribute the program for any pur-
pose [76]. The ability to modify the program
necessarily implies that human-readable source
code is provided. Most of the software cited
above is available under a permissive license
such as the GNU General Public License [19] or
the LATEX Project Public License (LPPL) [45],
though some packages impose restrictions on
commercial use or redistribution, and others
have restrictive proprietary licenses and do not
include source code.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 87

Tristan Miller

Portability Part of BibTEX’s popularity springs
from its availability on a wide variety of com-
puting platforms. To be useful for BibTEX
users as a whole, any conversion tool should
be available for a large subset of these plat-
forms and should be installable with minimal ef-
fort. Most existing converters are implemented
in widely available scripting languages such
as Awk [67], Perl [83], or Python [49], or in
portable compiled languages such as C [39].
Some, like bibtex2html [17], are implemented
in relatively esoteric languages for which com-
pilers are not widely available.

Standards compliance In order to be displayed
and indexed properly and consistently by all
web browsers and other Internet applications,
the HTML output by a converter should con-
form to the official W3C hypertext standards [5,
63–65, 81]. The HTML produced by some con-
verters is not syntactically valid, or conforms to
an obsolete standard.

Symbols BibTEX bibliographies often use some
LATEX markup for special characters such as
accented letters and typographical symbols.
A good converter should transform these into
their Unicode/ISO 10646 [41, 78] or HTML [65,
§24] equivalents. Unfortunately, even the most
common and actively maintained converters of-
ten fail spectacularly in this regard, particularly
with regard to basic punctuation such as quo-
tation marks and dashes.

Math Handling embedded math mode is a prob-
lem, since HTML and Unicode alone are not suf-
ficient to display most mathematical constructs.
Some converters transform LATEX math markup
into MathML [3], though the latter is not yet
widely supported by web browsers. Most (per-
haps forgivably) ignore this problem and sim-
ply output the original LATEX code, though oth-
ers resort to questionable solutions such as pro-
ducing bitmap images (which do not scale with
the surrounding text) or using deprecated, non-
portable hacks [18].

Custom LATEX macros Some bibliographies use
custom LATEX macros, defined in the BibTEX
@PREAMBLE or in a separate LATEX document.
The wisdom of employing such macros is ques-
tionable, though in some cases they are the only
way to get around BibTEX’s inherent limita-
tions.3 Unfortunately, LATEX is notoriously dif-
ficult to parse by anything except LATEX itself,

3 An example of this is the oft-used \noopsort kludge to
force proper sorting of non-English names [57, pp. 4–5].

so most converters offer no or partial solutions
to this problem.

Hyperlinks The principal advantage of HTML is
that it allows the inclusion of links to other doc-
uments. In the case of online bibliographies, it
would be useful if each entry included a link
to the document itself (for example, as a Post-
Script or PDF file) where available. Some con-
verters cooperate with packages such as url and
hyperref, or with bibliography styles such as
natbib which support url, ps, and pdf fields.
Others simply have no support for hyperlinks.

Anchors HTML also allows links to certain points,
called anchors, within documents. Since users
may wish to link to individual entries in their
publication list from other web pages, it would
be useful if the converter would associate a
unique anchor with each bibliography entry.
Few existing converters implement this feature.

Styling Perhaps most importantly, the converter’s
output should be adjustable by the user. The
converter should allow at least as much varia-
tion in reference formatting as BibTEX itself,
but should ideally output its HTML in such a
way that the appearance can be further cus-
tomized via CSS. In this manner the online bib-
liography can be made an integral part of the
author’s web page rather than a generic-looking
computer-generated list.

Introducing Biblet

Though the existing converters we examined typi-
cally excelled in some of the above-mentioned cri-
teria, none of them provided good support across
the board. This lack of a combination of good fea-
tures in existing software was the primary impetus
for the development of a new tool, Biblet.4 Biblet
sports the following features:

• It is freely available and redistributable under
the terms of the LPPL.

• It outputs valid XHTML 1.0, making its pages
viewable by any conforming web browser and
facilitating postprocessing by XML applications.

• It makes use of an extensive LATEX-to-Unicode
translation table, ensuring proper display of
most typographical symbols.

• It has extensive support for internal anchors
and external hyperlinks.

• Virtually every element of a bibliography entry
is encapsulated in its own named HTML tag,
allowing for extensive styling with CSS.

4 According to the Oxford English Dictionary, “biblet” is
an archaic word of uncertain origin and meaning, though it
is thought to refer to a small library.

88 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Biblet: A portable BibTEX bibliography style for generating highly customizable XHTML

.bib .bst

web
browser

.css

BibTEX .bbl .html.aux
rename

Figure 2: Biblet workflow

<!❉❖❈❚❨P❊ ❤t♠❧ PUBLIC '-//W3C//DTD XHTML 1.0 Strict//EN'

'http://www.w3.org/❚❘/xhtml1/DTD/xhtml1-strict.dtd'>

<❤t♠❧ ①♠❧♥s='http://www.w3.org/1999/xhtml' xml:❧❛♥❣='en' ❧❛♥❣='en'>

<❤❡❛❞><t✐t❧❡>My publications</t✐t❧❡></❤❡❛❞>

<❜♦❞②>

<❤✶>My publications</❤✶>

<❞✐✈ ❝❧❛ss='bib-bibliography'>

<❤✷ ❝❧❛ss='bib-year' ✐❞='year-2005'>2005</❤✷>

<✉❧>

<❧✐ ❝❧❛ss='bib-bibitem' ✐❞='❝✐t❡-m05toc'>

<❞✐✈ ❝❧❛ss='bib-article'>

<♣>

<s♣❛♥ ❝❧❛ss='bib-author'>Tristan Miller.</s♣❛♥>

<s♣❛♥ ❝❧❛ss='bib-t✐t❧❡'>The tyranny of copyright.</s♣❛♥>

<❡♠>Imagine</❡♠>, 4(1):1,8–11, May 2005.

ISSN 1710-5994.

</♣>

...

</❤t♠❧>

Listing 1: Sample output of Biblet (abridged)

Significantly, Biblet is written entirely in the BibTEX
stack language [56], making it portable to any sys-
tem that can run BibTEX itself. It is, in effect,
simply another bibliography style (bst) file, just
like the standard plain, abbrv, and alpha styles.
The difference is that while the latter output LATEX
code, the Biblet produces HTML.

The basic Biblet workflow is illustrated in Fig-
ure 2. Note that, unlike in the regular BibTEX work-
flow of Figure 1, there is no tex file as input; rather,
the user creates the aux file directly. In this file,
the user issues a \citation{〈key 〉} command for
each bibliography item, or \citation{*} to include
all items. This is followed by a \bibstyle com-
mand indicating which Biblet bst style to use and a
\bibdata command indicating which bib database

to process. A sample aux file for use with Biblet
might look as follows:

\citation{m05toc}

\bibstyle{blplain}

\bibdata{imagine}

The user runs BibTEX on this aux file as usual. The
resulting bbl file, however, is actually an HTML doc-
ument. It can be renamed and opened in any web
browser or HTML editor.

Listing 1 shows the abridged contents of the bbl

file produced in the above example, and Figure 3
shows how this file appears when opened in a web
browser.

Sprucing things up The reader will note from
Listing 1 that Biblet has enclosed most of the im-
portant parts of the bibliography in their own HTML

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 89

Tristan Miller

Figure 3: Biblet output as viewed by the Mozilla
web browser

elements. This makes it easy to alter the appear-
ance of the list by applying CSS styles. For example,
say we wish all entries of type @ARTICLE to be dis-
played with a pink background, author names to be
printed in bold type, journal names to be underlined
instead of italicized, and article titles to be enclosed
in quotation marks. Rather than manually editing
the HTML file produced by Biblet, or even the bst

file which generates the HTML, we simply write a
file mystyle.css as follows:

.bib-article {

background-color: pink;

}

.bib-author {

font-weight: bold;

}

.bib-article em {

font-style: normal;

text-decoration: underline;

}

.bib-title:before {

content: "\201C";

}

.bib-title:after {

content: "\201D";

}

(In this example, 201C and 201D are the hexadeci-
mal values for left and right double quotation marks
in Unicode.) To apply this style to our HTML file,
we insert the following line into the <head> element:

<link href='mystyle.css' type='text/css'

rel='stylesheet' />

When the browser view is refreshed, the new for-
matting styles take effect, as shown in Figure 4.

Because Biblet is aimed at producing online
document catalogues, it recognizes a number of spe-
cial fields in bib databases. Among these are ps,
pdf, dvi, html, tex, and txt, whose values contain
URLs [6] referencing respectively PostScript, PDF,

Figure 4: Biblet output with CSS styling

DVI, HTML, (LA)TEX, and plain-text versions of the
publication. Biblet converts these fields to textual
or graphical hyperlinks within the bibliography en-
try. Other common fields such as abstract, isbn,
and issn are also supported.

It is also possible for a Biblet bst style to out-
put arbitrary HTML at the beginning and end of a
bibliography, as well as within and in between en-
tries. In fact, the default bst files distributed with
Biblet produce far more extensive HTML than is ac-
tually shown in Listing 1. For example, styles which
provide icon hyperlinks to online versions of the doc-
ument will typically include a legend explaining the
purpose of each icon. Other styles allow the option
of outputting the original bib entry for researchers
to copy and paste into their own BibTEX bibliogra-
phies, plus JavaScript [37] code allowing the user
to toggle the display of the BibTEX entry and/or
abstracts.

Biblet comes with several predefined CSS styles
and icon sets for use with the publication lists it
generates. Figure 5 gives a sampling of the available
styles; note also the formatting of legends, abstracts,
hyperlinks, original BibTEX data, and toggles.

Implementation

As mentioned previously, Biblet is implemented as
a BibTEX style (bst) in the nameless BibTEX stack
language. The idea for this approach came through
the observation that the bst styles were solely re-
sponsible for the producing the content of the bbl

files; that is, the BibTEX program itself did not write
anything to these files unless directly instructed to
do so by the bst style. The initial steps in the de-
velopment of Biblet therefore involved going through
Patashnik’s original plain.bst style and replacing
all the LATEX markup it outputted with analogous
HTML markup. Thus, {\em ...} was changed to
..., the thebibliography environment

90 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Biblet: A portable BibTEX bibliography style for generating highly customizable XHTML

(a) (b)

(c) (d)

Figure 5: A gallery of four Biblet bibliographies: (a) uses the “Traditional” style with the “Nuvola” icon
set; (b) uses the “Boxy” style with the “Noia Warm” icon set; (c) uses the “Fruity Typewriter” style with
the “Slick” icon set; and (d) uses the “Amethyst” style with the “Nuvola” icon set. All examples were
typeset with the blplain.bst BibTEX style; only the CSS styles and icon sets were altered.

to ... tags, and so on.
These simple substitutions resulted in a bbl file

containing the bibliography as an HTML list ()
which, while not a complete HTML document itself,
could be cut and pasted into an existing web page.
To make the bbl file stand on its own as a web page,
it was necessary to modify the Biblet bst so it out-
putted some additional HTML markup at the begin-
ning and end of the file. We also added some more
HTML code to the bibliography entries themselves,
wrapping parts of them in various named containers
so that the user could later customize their appear-
ance with CSS.

The next step was to add some custom sort-
ing routines typical of those seen on hand-crafted

author publication lists. Most academics sort their
publications by year or by publication type (book
chapter, article in journal, article in conference pro-
ceedings, etc.). Besides the actual sorting code, it
was necessary to output HTML headers marking a
change in the value of a sort key.

Finally, we had to write the code to convert
any LATEX symbols contained in the BibTEX bibli-
ography itself to Unicode or HTML entities. This
was the most difficult and time-consuming of all
the development tasks. The bst language is ex-
tremely crude, having been designed principally for
ease of implementation on the computers of 1988;
features that programmers take for granted in mod-
ern general-purpose programming languages, such

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 91

Tristan Miller

edit

uniq trans.bst

ent.xml latex2unicode.xsl

trans.bst trans.bstsplit trans

xsltproc

Figure 6: XML to bst

<char pos="127">

<entity name="para" set="iso-8879-num">

<desc>=pilcrow (paragraph sign)</desc>

</entity>

<entity name="para" set="html4-lat1">

<desc>pilcrow sign = paragraph sign</desc>

</entity>

<unicode value="00B6">

<desc>PILCROW SIGN</desc>

</unicode>

<latex>

<seq>\P</seq>

<seq req="textcomp">\textparagraph</seq>

<seq req="textcomp">\textpilcrow</seq>

</latex>

<plain value="B6" set="iso-8859-1" glyph="¶"/>

</char>

Figure 7: Sample entry from ent.xml

as function arguments, arrays, local variables, string
manipulation, and dynamic memory allocation are
poorly supported or even completely absent. The
features of Biblet previously discussed were accom-
plished with relative ease as they made use of the
bst language’s built-in output and sorting routines.
For the symbol conversion task, however, what ap-
peared to be a simple search-and-replace routine
ended up being a programmer’s nightmare.

For one thing, the language’s string operations
are limited to concatenating two strings, return-
ing the first n characters of a string, and returning
the string length, though the latter treats strings
containing special characters idiosyncratically and
cannot be used directly for our purposes. It was
therefore necessary to code our own string-length
(string.length) and find-replace (find.replace)
routines.

Because the bst language also does not support
arrays, it was not possible to simply enter a static
translation table pairing LATEX symbols with HTML

entities, and then have some loop iterate over the ta-
ble cells, calling find.replace. Instead, each sym-
bol mapping had to be entered as a separate function
call. This gave rise to another problem: function
definitions are statically limited to 100 tokens. Since
it takes three tokens to do a find-and-replace (one
for the search string, one for the replacement text,
and one for the call to find.replace, a maximum of
33 substitutions can be performed in one function.
Since we needed to make over 500 symbol substitu-
tions, we had to split the code over sixteen separate
functions, and add a seventeenth function whose
purpose was simply to call the others in sequence.

Rather than tediously coding all this by hand,
we wrote a number of support programs to generate
the code. Their operation is illustrated in Figure 6.
For the LATEX-to-HTML mappings we used Vidar
Bronken Gundersen and Rune Mathisen’s compre-
hensive database [30, 52] which they have kindly
made available for any purpose. The database,
which is distributed as an XML file named ent.xml,
has entries for every SGML character [38, 40], giv-
ing data such as its name, Unicode value, and,
where known, LATEX macro(s). A sample entry from
ent.xml is shown in Figure 7. We used an XSL

transformation (XSLT) [13] to convert the informa-
tion in this database to a sequence of find.replace

calls in a new file, trans.bst. The XSLT will opt
to convert symbols to named HTML entities when
possible; otherwise it will output numbered hexadec-
imal entities. Here are a few lines from trans.bst:

"\textparagraph" "¶" find.replace

"\textpilcrow" "¶" find.replace

"\checkmark" "✓" find.replace

For a number of reasons, the trans.bst file
output by the XSLT is not directly usable. First,
as mentioned before, it needs to be split up into
functions of no more than 33 lines each. Second,
ent.xml is sometimes a little too pedantic for our

92 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Biblet: A portable BibTEX bibliography style for generating highly customizable XHTML

purposes, including some glyphs (e. g., the ‘fi’ and
‘fl’ ligatures) which we would rather not convert to
HTML entities. It is also missing some other glyphs
and common LATEX macros we would indeed like to
convert — examples include the TEX logo (\TeX) and
the breakable slash (\slash). To remedy these last
two problems we must edit trans.bst by hand; the
first can then be rectified by a short shell script,
trans bst, which wraps consecutive sets of 33 lines
in their own bst function definitions. The output
of this script can then be inserted into a Biblet bst

style.

Unresolved issues Biblet’s approach to building
online publication lists is certainly entirely portable,
though it does have its drawbacks, most of which
stem from the limitations of BibTEX itself.

The first and most apparent problem is Biblet’s
execution speed — using the interpreted bst lan-
guage to perform extensive string manipulation.
With LATEX-to-HTML symbol conversion enabled,
running Biblet on a bib file with only a few dozen
publications can take several minutes even on a
reasonably fast (1.4 GHz) machine. By sacrificing
portability, this problem could be solved by writing
the symbol conversion routine in an interpreted text-
processing language such as Sed [15] or Perl [83],
or as a compiled lexical analyzer using Lex and
C [39, 46].

A second problem — actually a class of related
problems — is Biblet’s extensibility. The root of this
problem is that there is no way to pass to BibTEX
any information besides the bst and bib files to use.
Thus there is no way to specify the title of the HTML

document produced by Biblet; likewise the user can-
not tell Biblet to include a link back to his home
page at the end of the bibliography. To effect such
changes, the user must either edit the HTML output
by Biblet, or edit the bst styles himself — either is
a potentially daunting task for someone not familiar
with HTML or the bst language.

The rigid syntax of bib files also poses a prob-
lem for Biblet’s extensibility. While users and style
developers are free to create new publication types
and fields, some applications require an extra level
of specification that BibTEX simply does not sup-
port. An example of such an application is found in
Biblet’s hyperlink fields. Our pdf field, for example,
specifies the URL of a PDF file; Biblet might convert
the value of this field into an HTML hyperlink as fol-
lows:

<a href="〈url 〉"
type="application/pdf"

title="〈title 〉">...

The value of the type attribute, a MIME content
type [20, 21], tells the browser what kind of file to
expect when the user follows the link, in case such
information is not provided by the server hosting the
PDF file. Thus, when processing html and ps fields,
Biblet substitutes the appropriate MIME type — in
this case, text/html or application/postscript.

However, this mapping of fields to MIME types
must be hard-coded in the Biblet bst. Should a
user wish to provide a link to some other kind of file
type — say, a Rich Text File (RTF) — he will have to
edit the bst source. A better solution would be for
BibTEX databases to support paramaterized fields
so that users could specify unusual MIME types for
document links in the bib file itself. For example,
if a user wanted to provide links to an HTML, an
RTF, and a sound recording version of an article, he
could specify the URLs as follows:

@ARTICLE{m05toc,

title = {The Tyranny of Copyright},

...

url[type="text/html"] = {http://...},

url[type="text/rtf"] = {http://...},

url[type="audio/mp4"] = {http://...},

}

There are some extensions to and replacements
for BibTEX which go some way towards solving these
extensibility issues [14, 34, 84], though none of them
are yet popular or stable enough to wholly supplant
BibTEX. Patashnik himself has been planning to
extend the “official” version of BibTEX to allow for
better communication between BibTEX and its en-
vironment [58], so it is possible that Biblet’s extensi-
bility problems may one day be solved without hav-
ing to compromise its portability.

Development status and availability

At the time of this writing, Biblet is under ac-
tive development, and while the interface is not
yet stable, the program is nevertheless very us-
able. A preliminary version of Biblet is available for
download at the project’s web page, http://www.

nothingisreal.com/biblet/. Apart from this ar-
ticle, no formal documentation is yet available. By
publication time a beta version of a complete Biblet
package, including several bst and CSS styles and a
user’s guide, may be available on CTAN.

Bibliography

[1] Tristan Miller. The tyranny of copyright. Imagine,
4(1):1, 8–11, May 2005. ISSN 1710-5994.

[2] Romeo Anghelache. Hermes — A semantic XML+
MathML+Unicode E-publishing/Self-archiving Tool

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 93

Tristan Miller

for LATEX-authored Scientific Articles, July 2005.
URL http://hermes.aei.mpg.de/.

[3] Ron Ausbrooks, Stephen Buswell, David Carlisle,
Stéphane Dalmas, Stan Devitt, Angel Diaz, Max
Froumentin, Roger Hunter, Patrick Ion, Michael
Kohlhase, Robert Miner, Nico Poppelier, Bruce
Smith, Neil Soiffer, Robert Sutor, and Stephen
Watt. Mathematical Markup Language (MathML)
version 2.0 (second edition). W3C recommendation,
W3C, October 2003. URL http://www.w3.org/TR/

2003/REC-MathML2-20031021/.

[4] Michael Auth. The BIBTEX-XML-HTML Bibliog-
raphy Project, February 2004. URL http://www.

authopilot.com/xml/.

[5] Tim Berners-Lee and Dan Connolly. HyperText
Markup Language specification — 2.0. Request
for Comments 1866, Network Working Group,
November 1995. URL ftp://ftp.rfc-editor.

org/in-notes/rfc1866.txt.

[6] Tim Berners-Lee, L. Masinter, and M. McCahill.
Uniform resource locators (URL). Request for
Comments 1738, Network Working Group, De-
cember 1994. URL ftp://ftp.rfc-editor.org/

in-notes/rfc1738.txt.

[7] Rik Blok. bbl2html.awk v1.3, December 2000. URL
http://www.zoology.ubc.ca/~rikblok/scripts/

bbl2html.awk.

[8] Bert Bos, Tantek Çelik, Ian Hickson, and
H̊akon Wium Lie. Cascading style sheets, level 2
revision 1: CSS 2.1 specification. W3C working
draft, W3C, June 2005. URL http://www.w3.org/

TR/2005/WD-CSS21-20050613.

[9] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen,
Eve Maler, and François Yergeau. Extensible
markup language (XML) 1.0 (third edition). W3C
recommendation, W3C, February 2004. URL http:

//www.w3.org/TR/2004/REC-xml-20040204.

[10] Sergey Brin. HtmlTEX Home Page. URL http:

//www-db.stanford.edu/~sergey/htmltex/.

[11] Otfried Cheong. Hyperlatex Manual, July
2005. URL http://hyperlatex.sourceforge.

net/html/hyperlatex.html.

[12] Eric Chopin. LATEX4Web 1.2 Manual. URL
http://perso.wanadoo.fr/eric.chopin/latex/

latex subset.htm.

[13] James Clark. XSL transformations (XSLT).
W3C recommendation, W3C, November
1999. URL http://www.w3.org/TR/1999/

REC-xslt-19991116.

[14] Fabien Dagnat, Ronan Keryell, Laura Barrero
Sastre, Emmanuel Donin de Rosière, and Nico-
las Torneri. BibTEX++: Toward higher-order
BibTEXing. TUGboat, 24(3):472–489, 2003. Pro-
ceedings of EuroTEX 2003.

[15] Dale Dougherty and Arnold Robbins. sed and awk.
O’Reilly, second edition, February 1997. ISBN 1-
56592-225-5.

[16] Nikos Drakos and Ross Moore. The LATEX2HTML
Translator, March 1999.

[17] Jean-Christophe Filliâtre and Claude Marché.
BIBTEX2HTML — A translator of BIBTEX bibli-
ographies into HTML, February 1999. URL http:

//www.lri.fr/~filliatr/bibtex2html/.

[18] Alan J. Flavell. Using FONT FACE to
extend repertoire?, April 2005. URL
http://ppewww.ph.gla.ac.uk/~flavell/

charset/fontface-harmful.html.

[19] Free Software Foundation. GNU General Public
License. In Joshua Gay, editor, Free Software Free
Society: Selected Essays of Richard M. Stallman,
pages 195–202. GNU Press, Boston, first edition,
2002. ISBN 1-882114-98-1.

[20] N. Freed and N. Borenstein. Multipurpose Inter-
net Mail Extensions (MIME) part one: Format
of Internet message bodies. Request for Com-
ments 2045, Network Working Group, Novem-
ber 1996. URL ftp://ftp.rfc-editor.org/

in-notes/rfc2045.txt.

[21] N. Freed and N. Borenstein. Multipurpose In-
ternet Mail Extensions (MIME) part two: Me-
dia types. Request for Comments 2046, Network
Working Group, November 1996. URL ftp://ftp.

rfc-editor.org/in-notes/rfc2046.txt.

[22] Documentation of Tralics. The French National
Institute for Research in Computer Science and
Computing, 2003. URL http://www-sop.inria.

fr/miaou/Jose.Grimm/tralics/doc-start.html.

[23] Stéphane Galland. Documentation of Bib2HTML,
3.0 edition, January 2005. URL http://www.

arakhne.org/bib2html/doc/.

[24] Michel Goossens, Sebastian Rahtz, Eitan M. Gu-
rari, Ross Moore, and Robert S. Sutor. The
LATEX Web Companion: Integrating TEX, HTML,
and XML, chapter “The LATEX2HTML translator”,
pages 83–154. Addison-Wesley Series on Tools and
Techniques for Computer Typesetting. Addison-
Wesley, June 1999. ISBN 0-2014-3311-7.

[25] Michel Goossens, Sebastian Rahtz, Eitan M. Gu-
rari, Ross Moore, and Robert S. Sutor. The LATEX
Web Companion: Integrating TEX, HTML, and
XML, chapter “Translating LATEX to HTML using
TEX4ht”, pages 155–194. Addison-Wesley Series on
Tools and Techniques for Computer Typesetting.
Addison-Wesley, June 1999. ISBN 0-201-43311-7.

[26] Michel Goossens and Janne Saarela. From LATEX to
HTML and back. TUGboat, 16(2):174–214, 1995.

[27] Norman Gray. Bibhtml Documentation, September
2000. URL http://www.astro.gla.ac.uk/users/

norman/distrib/bibhtml.html.

[28] José Grimm. Tralics, a LATEX to XML translator.
TUGboat, 24(3):377–388, 2003. Proceedings of Eu-
roTEX 2003.

[29] Vidar Bronken Gundersen and Zeger W. Hendrikse.
BIBTEXML Documentation, May 2005. URL http:

//bibtexml.sourceforge.net/details.html.

94 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Biblet: A portable BibTEX bibliography style for generating highly customizable XHTML

[30] Vidar Bronken Gundersen and Rune Mathisen.
ISO Character Entities and their LATEX Equivalents,
January 2001. URL http://www.bitjungle.com/

~isoent/isoent-ref.pdf.

[31] Eitan M. Gurari. TEX4ht: LATEX and TEX for
Hypertext, February 2005. URL http://www.cse.

ohio-state.edu/~gurari/TeX4ht/.

[32] Felix Hauser and Philip Schaffhauser. Database-
driven XML-enabled bibliography management
system. Diploma thesis, Computer Engi-
neering and Networks Laboratory, Swiss Fed-
eral Institute of Technology Zurich, March
2003. URL http://dret.net/netdret/docs/

da-ws2002-hauser-schaffhauser.pdf.

[33] Johannes Henkel. How to Compile and
Use bib2xml, October 2002. URL http:

//www-plan.cs.colorado.edu/henkel/stuff/

bib2xml/README-OR-DIE.

[34] Jean-Michel Hufflen. MlBibTEX: Beyond LATEX. In
Karl Berry, Baden Hughes, and Steve Peter, edi-
tors, Preprints for the 2004 Annual Meeting, pages
77–84, Portland, OR, USA, April 2004. TEX Users
Group.

[35] David Hull. bib2html. URL http://pertsserver.

cs.uiuc.edu/~hull/bib2html/.

[36] Ian Hutchinson. TTH: a “TEX to HTML” trans-
lator, 3.40 edition. URL http://hutchinson.

belmont.ma.us/tth/manual/.

[37] ECMA International. ECMA-262: ECMAScript
Language Specification. ECMA International,
Geneva, Switzerland, third edition, December
1999. URL http://www.ecma-international.

org/publications/standards/Ecma-262.htm.

[38] International Organization for Standardization.
ISO 8879:1986: Information processing — Text and
office systems — Standard Generalized Markup Lan-
guage (SGML), chapter D. International Organiza-
tion for Standardization, Geneva, Switzerland, Au-
gust 1986.

[39] International Organization for Standardization.
ISO/IEC 9899:1990: Programming languages —
C. International Organization for Standardization,
Geneva, Switzerland, 1990.

[40] International Organization for Standardization.
ISO/IEC TR 9573-13:1991: Information technol-
ogy — SGML support facilities — Techniques for us-
ing SGML — Part 13: Public entity sets for mathe-
matics and science. International Organization for
Standardization, Geneva, Switzerland, 1991.

[41] International Organization for Standardization.
ISO/IEC 10646:2003: Universal Multiple-Octet
Coded Character Set (UCS). International Orga-
nization for Standardization, Geneva, Switzerland,
December 2003.

[42] David Kotz. bib2html, January 2003. URL
http://www.cs.dartmouth.edu/~dfk/bib2html/

bib2html.html.

[43] Marco Kuhlmann. BIBTEXML, January 2004.
URL http://www.ps.uni-sb.de/~kuhlmann/

bibtexml/.

[44] Leslie Lamport. LATEX: A Document Prepara-
tion System: User’s Guide and Reference Manual.
Addison-Wesley, second edition, 1994. ISBN 0-201-
52983-1.

[45] LATEX3 Project. The LATEX Project Public License,
version 1.3a, October 2004. URL http://www.

latex-project.org/lppl/lppl-1-3a.html.

[46] John Levine, Tony Mason, and Doug Brown. lex

and yacc. O’Reilly, second edition, October 1992.
ISBN 1-56592-000-7.

[47] H̊akon Wium Lie and Bert Bos. Cascading style
sheets, level 1. W3C recommendation, W3C, Jan-
uary 1999. URL http://www.w3.org/TR/1999/

REC-CSS1-19990111.

[48] Brenno Lurati and Luca Previtali. BIBTEXML.
Diploma thesis, Computer Engineering and
Networks Laboratory, Swiss Federal Insti-
tute of Technology Zurich, March 2001.
URL http://dret.net/netdret/docs/

da-ws2000-lurati-previtali.pdf.

[49] Mark Lutz. Programming Python: Object-Oriented
Scripting. O’Reilly, second edition, March 2001.
ISBN 0-596-00085-5.

[50] Luc Maranget. HEVEA, un traducteur de LATEX
vers HTML en Caml. URL ftp://ftp.inria.fr/

INRIA/moscova/maranget/hevea.ps.gz.

[51] Luc Maranget. HEVEA User Documentation — Ver-
sion 1.08, May 2005. URL http://pauillac.

inria.fr/~maranget/hevea/doc/.

[52] Rune Mathisen and Vidar Bronken Gundersen.
SGML/XML Character Entity Reference, August
2000. URL http://www.bitjungle.com/~isoent/.

[53] MicroPress. The MicroPress TEXpider. URL http:

//www.micropress-inc.com/webb/wbstart.htm.

[54] Bruce R. Miller. LATEXML: A LATEX to XML Con-
verter; Preview Version 0.3.0. URL http://dlmf.

nist.gov/LaTeXML/LaTeXML.html.

[55] David Mosberger. The dlh Manual, September
1996. URL http://www.mostang.com/~davidm/

dlh.html.

[56] Oren Patashnik. Designing BIBTEX Styles, Febru-
ary 1988.

[57] Oren Patashnik. BIBTEXing, February 1988. Doc-
umentation for BibTEX 0.99b.

[58] Oren Patashnik. BibTEX yesterday, today, and to-
morrow. TUGboat, 24(1):25–30, 2003. Proceed-
ings of the 2003 Annual Meeting [of the TEX Users
Group].

[59] Fabrice Popineau. Affichez vos documents LATEX
sur le Web avec TEX4ht. Cahiers GUTen-
berg, (37–38):5–43, December 2000. URL
http://www.gutenberg.eu.org/pub/GUTenberg/

publicationsPDF/37-popineau.pdf.

[60] Luca Previtali, Brenno Lurati, and Erik Wilde.
BibTEXML: An XML representation of BibTEX.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 95

Tristan Miller

In Poster Proceedings of the Tenth International
World Wide Web Conference, pages 1090–1091,
2001. ISBN 962-85361-3-3. URL http://www10.

org/cdrom/posters/1090.pdf.

[61] Chris Putnam. Bibutils — Bibliography Conversion
Utilities. The Scripps Research Institute, February
2005. URL http://www.scripps.edu/~cdputnam/

software/bibutils/.

[62] Russell W. Quong. Ltoh: A Customizable LATEX to
HTML converter, April 2000. URL http://quong.

best.vwh.net/ltoh/.

[63] Dave Raggett. HTML 3.2 reference specification.
W3C recommendation, W3C, January 1997. URL
http://www.w3.org/TR/REC-html32.

[64] Dave Raggett, Arnaud Le Hors, and Ian Jacobs.
HTML 4.0 specification. W3C recommendation,
W3C, April 1999. URL http://www.w3.org/TR/

1998/REC-html40-19980424.

[65] Dave Raggett, Arnaud Le Hors, and Ian Jacobs.
HTML 4.01 specification. W3C recommendation,
W3C, December 1999. URL http://www.w3.org/

TR/1999/REC-html401-19991224.

[66] Ali Rahimi. BIBTEX to HTML converter,
July 2002. URL http://people.csail.mit.edu/

rahimi/bibtex/.

[67] Arnold Robbins. Effective awk programming.
O’Reilly, third edition, 2001. ISBN 0-596-00070-7.

[68] Hartmut Seichter. Simply BIBTEX, February
2005. URL http://www.technotecture.com/

?node=projects/simplybibtex/main.

[69] Dorai Sitaram. TEX2page, June 2005. URL http:

//www.ccs.neu.edu/home/dorai/tex2page/.

[70] Julian Smart. Manual for TEX2RTF 2.0: A
LATEX to RTF and HTML converter, November
1999. URL http://www.wxwindows.org/tex2rtf/

docs.htm.

[71] Kevin Smith. pyLATEX Developer’s Guide, Oc-
tober 2001. URL http://pylatex.sourceforge.

net/pylatex/.

[72] Kevin Smith. pyLATEX HTML Renderer, October
2001. URL http://pylatex.sourceforge.net/

HTML/.

[73] Kevin Smith. pyldriver User’s Guide, October
2001. URL http://pylatex.sourceforge.net/

pyldriver/.

[74] Diomidis Spinellis. bib2xhtml, July 2005.
URL http://www.spinellis.gr/sw/textproc/

bib2xhtml/.

[75] Sara Sprenkle. bibtex2html, January 2003.
URL http://www.cs.duke.edu/~sprenkle/

bibtex2html/README.

[76] Richard M. Stallman. Free software definition.
In Joshua Gay, editor, Free Software Free Soci-
ety: Selected Essays of Richard M. Stallman, chap-
ter 3, pages 41–44. GNU Press, Boston, first edition,
2002. ISBN 1-882114-98-1.

[77] Nicolas Tessaud. HEVEA: Traduction de LATEX.
Rapport de stage d’option scientifique, The
French National Institute for Research in Com-
puter Science and Computing, July 1999. URL
http://pauillac.inria.fr/~maranget/hevea/

papers/nicolas/.

[78] The Unicode Consortium. The Unicode Standard,
Version 4.0. Addison-Wesley, 2003. ISBN 0-321-
18578-1. Amended by Unicode 4.1.0 — URL http:

//www.unicode.org/versions/Unicode4.1.0/.

[79] Petr Toman. Selathco 0.91 Documentation, 2000.
URL http://dione.zcu.cz/~toman40/selathco/.

[80] Jürgen Vollmer. LATEX2man — A Doc-
umentation Tool, October 2004. URL
http://www.ctan.org/tex-archive/support/

latex2man/latex2man.html.

[81] W3C HTML Working Group. XHTML 1.0:
The extensible hypertext markup language (sec-
ond edition). W3C recommendation, W3C, Au-
gust 2002. URL http://www.w3.org/TR/2002/

REC-xhtml1-20020801.

[82] Kiri Wagstaff. bib2html Documentation, July 2002.
URL http://www.litech.org/~wkiri/bib2html/

bib2html.html.

[83] Larry Wall, Tom Christiansen, and Jon Orwant.
Programming Perl. O’Reilly, third edition, July
2000. ISBN 0-596-00027-8.

[84] Thomas Widmann. Bibulus — a Perl/XML replace-
ment for BibTEX. TUGboat, 24(3):468–471, 2003.
Proceedings of EuroTEX 2003.

[85] Erik Wilde. Towards federated referatories.
In SINN03 eProceedings: Proceedings of the
Conference on Wordwide Coherent Workforce,
Satisfied Users, September 2003. URL http:

//physnet.physik.uni-oldenburg.de/projects/

SINN/sinn03/proceedings/wilde.html.

[86] Peter R. Wilson. LTX2X: A LATEX to X Auto-
tagger, January 1997. URL http://www.tug.org/

tex-archive/support/ltx2x/ltx2x.html.

96 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

Abstracts

Dynamic presentations using

TEXpower and PSTricks

David M. Allen, University of Kentucky

The nature of the full version of this presentation
requires that it be viewed on a screen rather than
paper, as dynamic features cannot be illustrated on
paper. An electronic version of the full paper is
available from the author’s web site: http://www.

ms.uky.edu/∼allen/.
A typical presentation consists of displaying a

sequence of slides (a metaphor for screens) in a pre-
determined order. This presentation is to demon-
strate methods for preparing dynamic presentations
in the following contexts:

1. Rather than showing a set of slides in pre-deter-
mined order, one may select the slides and their
order after the presentation starts. This would
likely be in response to questions from the au-
dience.

2. If the discussion gets deep, it may be useful to
visit a web site.

3. A math professor might want to show a multi-
line derivation one line at a time to focus atten-
tion to the current point of discussion.

4. An engineer might want to show a graphic de-
picting the assembling of a device one part at a
time.

The LATEX packages used in this endeavor and their
URL’s follow.

Items 1 and 2 are implemented using the hyper-
ref package, http://www.ctan.org/tex-archive/

macros/latex/contrib/hyperref/. Extensive fa-
cilities for navigation within a document, between
documents, and on the web are provided by hyper-
ref.

Items 3 and 4 are implemented using TEXpower,
http://texpower.sourceforge.net/. TEXpower
is a LATEX package providing incremental display
and special effects similar to those found in Mi-
crosoft PowerPoint.

Item 4 assumes there are graphics to be dis-
played, and my examples use graphics produced by
the PSTricks package, http://www.pstricks.de/.
PSTricks provides a user friendly front end to the
PostScript language. It is a generic TEX package
providing extensive computational graphics capabil-
ities.

Typesetting critical editions of poetry

with poemscol

John Burt, Brandeis University

poemscol provides macros for LATEX for setting col-
lections of poetry. It provides the structures re-
quired to produce a critical edition of the kind spec-
ified by the Modern Language Association’s Com-
mittee on Scholarly Editions, providing line number-
ing, endnote sections for textual variants (both sub-
stantives and accidentals), emendations, explana-
tory notes, and an index of titles and first lines. It
provides running headers of the form “Emendations
to pp. xx–yy” for the endnotes sections. It provides
structures for different kinds of poetic text. It auto-
matically marks every occasion where a stanza break
falls on a page break. Aids for preparing parallel-
text (as for instance editions with facing-page trans-
lations) editions are under development.

(Full papers on poemscol were published in TUGboat

22(4) and The PracTEX Journal 2005-3. Ed.)

Indexing, MakeIndex, and SAS

Ronald Fehd, CDC

LATEX provides the fancyvrb package which can be
very useful in preparing a document providing an
overview of a collection of computer programs. This
paper examines the theory of indexing and the LATEX
MakeIndex package. The author provides two SAS

programs which read all programs in a project di-
rectory and then write an index of intra- and inter-
program references.

MathML via TEX4ht and other tools

Eitan Gurari

The support provided by graphical browsers for the
HTML standard was a major ingredient in develop-
ing the Internet into a popular medium for archiv-
ing and distributing general content. Two recent ad-
vancements suggest a similar bright future for math-
ematical content expressed with the MathML stan-
dard. The Mozilla Firefox browser, released last
November, now offers native support for MathML.
Also, the MathPlayer version 2 plug-in for MS In-
ternet Explorer, which is easily installed and was
released a year ago, is now capable of serving gen-
eral MathML files.

This presentation will provide insight into how
TEX4ht produces MathML from LATEX sources, and
will consider issues involved in creating MathML

with TEX4ht and other tools.

TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference 97

Abstracts

LATEX and PitStop: An unusual but

powerful alliance

Mirko Janc, INFORMS

I will share some experiences in preparing art files for
inclusion in LATEX in the production cycle in our In-
stitute. We publish 11 scholarly journals in Opera-
tions Research using LATEX with a special font setup
(presented at the TUG 2003 conference in Hawaii).

Powerful LATEX math typesetting capabilities
coupled with PitStop, a commercial Acrobat plug-
in, enable easy relabeling of figures with most com-
plex math. Unlike other methods, exact position-
ing and scaling is a breeze. We also use this same
method for updating colored covers where color is-
sues are at stake, so the underlying PDF template
can be properly preserved.

Some other related “tricks” to get clean art
ready for proper inclusion in LATEX will also be dis-
cussed.

An introduction to XeTEX

Jonathan Kew

Professor Donald Knuth’s TEX is a typesetting sys-
tem with a wide user community, and a range of sup-
porting packages and enhancements is available for
many types of publishing work. However, it dates
back to the 1980s and is tightly wedded to 8-bit
character data and custom-encoded fonts, making it
difficult to configure TEX for many complex-script
languages.

This paper will introduce XeTEX, a system that
extends TEX with direct support for modern Open-
Type and AAT fonts and the Unicode character set.
This makes it possible to typeset almost any script
and language with the same power and flexibility as
TEX has traditionally offered in the 8-bit, simple-
script world of European languages. XeTEX (cur-
rently available on Mac OS X, but possibly on other
platforms in the future) integrates the TEX format-
ting engine with technologies from both the host op-
erating system (Apple Type Services, CoreGraphics,
QuickTime) and auxiliary libraries (ICU, TECkit),
to provide a simple yet powerful system for multi-
lingual and multiscript typesetting.

The most significant extensions which XeTEX
provides are its native support for the Unicode char-
acter set, replacing the myriad of 8-bit encodings
traditionally used in TEX with a single standard for
both input text encoding and font access; and an ex-
tended \font command that provides direct access
by name to all the fonts installed in the user’s com-

puter. It also provides a mechanism to access many
of the advanced layout features of modern fonts.

Additional features that will also be discussed
include built-in support for a wide variety of graphic
file formats, and an extended line-breaking mecha-
nism that supports Asian languages such as Chinese
or Thai that are written without word spaces.

Finally, we look briefly at some user-contrib-
uted packages that help integrate the features of
XeTEX with the established LATEX system. Will
Robertson’s fontspec.sty provides a simple, con-
sistent user interface in LATEX for loading both AAT

and OpenType fonts, and accessing virtually all of
the advanced features these fonts offer; Ross Moore’s
xunicode.sty is a package that allows legacy LATEX
documents to be typeset using native OS X fonts
without converting the input text entirely to Uni-
code, by supporting traditional TEX input conven-
tions for accents and other ‘special’ (i.e., non-ASCII)
characters.

(We expect to publish the full paper in the next issue of
TUGboat. Ed.)

Producing beautiful slides with LATEX:

An introduction to the HA-prosper package

Tristan Miller

In this paper, we present HA-prosper, a LATEX pack-
age for creating overhead slides. We describe the
features of the package and give examples of their
use. We also discuss what advantages there are to
producing slides with LATEX versus the presentation
software typically bundled with today’s office suites.

(The full paper on HA-prosper was published in The

PracTEX Journal 2005-2. Ed.)

TEX font installation and usage

Steve Peter

This talk is designed to be a near-comprehensive
roadmap of installing and using fonts with TEX (ex-
cept for bitmapped fonts). We will start with the ba-
sics of TEX font handling (TFMs, etc.), along with
a discussion of the major font technologies (Post-
Script, TrueType, and OpenType) and TEX’s vir-
tual fonts. Then we move to NFSS and fontinst, fol-
lowed by TEXfont and ConTEXt typescripts. Time
permitting, we will configure an expert font, com-
plete with fi, fl, ff, ffi, and ffl ligatures, suitable for
professional typesetting.

(We expect to publish the full paper in a future issue of
TUGboat. Ed.)

98 TUGboat, Volume 26 (2005), No. 1 — Proceedings of the Practical TEX 2005 Conference

2005

Jun 6 –
Jul 29

Rare Book School, University of
Virginia, Charlottesville, Virginia.
Many one-week courses on topics
concerning typography, bookbinding,
calligraphy, printing, electronic texts,
and more. For information, visit
http://www.virginia.edu/oldbooks.

Jun 8 –
Nov 13

70 Years of Penguin Design: Exhibition,
Room 74, Twentieth Century Gallery,
Victoria & Albert Museum,
London, England.

Practical TEX 2005

Friday Center for Continuing Education,

Chapel Hill, North Carolina.

Jun 14 – 17 Workshops and presentations
on LATEX, TEX, ConTEXt, and
more. For information, visit
http://www.tug.org/practicaltex2005/.

Jun 15 – 18 ALLC/ACH-2005, Joint International
Conference of the Association for
Computers and the Humanities, and
Association for Literary and Linguistic
Computing, “The International
Conference on Humanities Computing
and Digital Scholarship”, University
of Victoria, British Columbia.
For information, visit
http://web.uvic.ca/hrd/achallc2005/

or the organization web site at
http://www.ach.org.

Jun 24 – 26 NTG 35th meeting,
Terschelling, Netherlands.
For information, visit http://

www.ntg.nl/bijeen/bijeen35.html.

Jul 14 – 17 SHARP Conference (Society for the
History of Authorship, Reading and
Publishing), “Navigating Texts and
Contexts”. Dalhousie University,
Halifax, Canada. For information,
visit http://sharpweb.org/ or
http://www.dal.ca/~sharp05/.

TUGboat, Volume 26 (2005), No. 1 99

Calendar

Jul 20 – 24 TypeCon2005, “Alphabet City”,
Parsons School of Design,
New York City. For information,
visit http://www.tdc.org/news/

2004typecon2005.html.

Jul 22 – 25 “The Changing Book: Traditions in
Design, Production and Preservation”,
University of Iowa Libraries,
Iowa City, Iowa. For information, visit
http://www.lib.uiowa.edu/book2005/.

Jul 31 –
Aug 4

SIGGRAPH 2005, Los Angeles,
California. For information, visit
http://www.siggraph.org/s2005/.

Aug 1 – 5 Extreme Markup Languages 2005,
Montréal, Québec. For information, visit
http://www.extrememarkup.com/extreme/.

TUG 2005

Wuhan, China.

Aug 23 – 25 The 26th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org/tug2005/.

Aug 26 – 28 Celebrating Johnson’s Dictionary
(1755–2005), Pembroke College,
Oxford, England. For information,
visit http://www.pmb.ox.ac.uk/

pembroke_college/johnson_index.

Sep 7 –
Oct 6

The Graven Image Press: lettercutting
and visual metaphor in the work of
Stan Greer. An exhibition at the
St. Bride Printing Library, London,
England. For information, visit http://

stbride.org/events_education/events.

Sep 7 – 9 28th Internationalization and Unicode
Conference, “Unicode 4.1 — Multilingual
Challenges and Solutions for 2006”,
Orlando, Florida. For information, visit
http://www.global-conference.com/iuc28/.

Sep 11 – 13 The Third International Conference on
the Book, “Access, Diversity and
Democracy, Oxford International Centre
for Publishing Studies, Oxford Brookes
University, Oxford, UK. For information,
visit http://book-conference.com/.

Status as of 15 August 2005

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

An updated version of this calendar is online at http://www.tug.org/calendar/.
Additional type-related events are listed in the Typophile calendar, at

http://www.icalx.com/html/typophile/month.php?cal=Typophile.

Sep 11 – 14 Seybold Seminars, Workflow
and Asset Management,
Chicago, Illinois. For information, visit
http://www.seybold365.com/2005/.

Sep 15 – 18 Association Typographique
Internationale (ATypI) annual
conference, “On the Edge”, Helsinki,
Finland. For information, visit
http://www.atypi.org/.

Sep 22 – 23 American Printing History Association
conference, “[r]Evolution in Print: New
Work in Printing History & Practice”,
Mills College, Oakland, California.
For information, visit http://www.

printinghistory.org/htm/conference/.

Sep 24 Seventh annual general meeting of the
Danish TEX Users Group, Århus,
Denmark. For information, visit
http://www.tug.dk/generalforsamling/

2005/.

Sep 29 – 30 DANTE, 33rd meeting,
Christian-Albrechts-Universität zu Kiel,
Germany. For information, visit
http://www.dante.de/events/.

Oct 1 – 2 Oak Knoll Fest XII, “The Private
Press and Leaf Books, a Noble
Tradition”, New Castle, Delaware.
For information, visit http://

www.oakknoll.com/fest/home.html.

Oct 9 DIY (Do It Yourself) Book Festival,
Los Angeles, California. For information,
visit http://www.diyconvention.com/.

Oct 10 – 12 Fourth Annual St. Bride Conference,
“Temporary Type”, London, England.
For information, visit http://

stbride.org/friends/conference.

Oct 20 Wells Book Arts Center, lecture
by Julie Chen, MacMillan Hall,
Wells College campus, Aurora,
New York. For information, visit
http://aurora.wells.edu/~wbac/

bookarts/events.html.

Oct 22 Meeting of GuIT (Gruppo utilizzatori
Italiani di TEX), Pisa, Italy.
For information, visit
http://www.guit.sssup.it/

GuITmeeting/2005/2005.en.ptp.

Oct 31 –
Nov 3

Seybold Seminars, Publishing
Workflow and Content Management,
New York. For information, visit
http://www.seybold365.com/2005/.

Nov 2 – 4 ACM Symposium on Document
Engineering, Bristol, UK.
For information, visit
http://www.documentengineering.org/.

100 TUGboat, Volume 26 (2005), No. 1

Nov 3 – 5 “Reaching the Margins: The Colonial
and Postcolonial Lives of the Book,
1765–2005”, The Open University
and the University of London,
London, England. For information, visit
http://www.sas.ac.uk/ies/Conferences/

Open_University.htm.

Nov 14 – 18 XML 2005 Conference, Atlanta,
Georgia. For information, visit
http://2005.xmlconference.org/.

Nov 29 –
Dec 2

Seybold Seminars, Content
Creation and Asset Management,
San Francisco. For information, visit
http://www.seybold365.com/2005/.

2006

Mar DANTE, 34th meeting,
Technische Universität Berlin,
Germany. For information, visit
http://www.dante.de/events/.

Mar 6 – 10 Rare Book School, University of
Virginia, Charlottesville, Virginia.
One-week courses on bibliography and
electronic texts. For information, visit
http://www.virginia.edu/oldbooks.

Apr 6 – 8 “Jobbing printing — the stuff of life”,
joint conference of the Printing
Historical Society and The Ephemera
Society, University of Reading, UK.
For information, visit http://www.

printinghistoricalsociety.org.uk/events/.

Jul 11 – 14 SHARP Conference (Society for the
History of Authorship, Reading and
Publishing), “Trading Books — Trading
Ideas”, The Hague & Leiden,
Netherlands. For information,
visit http://sharpweb.org/.
In conjunction with the 400th
anniversary of Rembrandt’s birth
in Leiden; for information, visit
http://www.rembrandt400.com/.

Jul 30 –
Aug 3

SIGGRAPH 2006, Boston,
Massachusetts. For information, visit
http://www.siggraph.org/s2006/.

Sep 29 – 30 American Printing History Association
conference, “The Atlantic World of Print
in the Age of Franklin”, Philadelphia,
Pennsylvania. For information, visit
http://www.printinghistory.org/htm/

conference/.

Oct 13 – 15 The Fourth International Conference
on the Book, Emerson College,
Boston. For information, visit
http://book-conference.com/.

NO MATTER IF

YOUR DOCUMENTS

ARE

�

smokin’

friendly
FORMAL

OR JUST A LITTLE

odd

2
6=

⌊

odd

2

⌋

THEY’RE SPECIAL

TO YOU

SO BRING THEM

TO US

siLmaRiL
consultants

⊲ LATEX typesetting

⊲ XML document systems

http://www.silmaril.ie/

Hea
lth

and Happines
s

Tax Benefits

Creativ
ity

Ente
rtainment

Building Equity

Helping Buyers and Sellers Succeed

Joe Hogg, Broker-Associate

Seniors Real Estate Specialist; Realtor

, Los Angeles, CA 90027

voice: (323) 842-9764

email: joe@joehogg.com

web: http://www.joehogg.com

Π Π

Carleton Production Centre

HUMANITIES TYPESETTING

Specialising in Linguistics
Since 1991

613-823-3630 • 15 Wiltshire Circle

Nepean, Ont., Canada • K2J 4K9

∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐∐

� � � � � � � � � � � �

����� ������

 Nature trusts us…

You can too!

Nature Physics is a new journal. Like others from Nature Publishing Group, it is set to

become the leader in its i eld.

And it’ll be typeset using TEX. And of course River Valley were chosen for the task.

Needless to say, the i nal PDF will come from XML with zero intervention.

See why NPG, IOP and Elsevier trust us with their toughest journals. Perhaps we can

breath new life into your journals.

www.river-valley.com

Math and Science
Equations 40% Faster!
MathType for Windows and Macintosh

MathType is the full-featured, professional version of the
Equation Editor in Microsoft Office. It has hundreds of
extras that you do not get with Equation Editor, and
installs special features into MicrosoftWord/PowerPoint,
that effectively creates an integrated math word proces-
sor, slide creator, and web page editor.

Get the job done faster!

Tests have proven that using MathType gets the same
job done 40% faster than using Equation Editor.

Download a fully-functional 30-day trial of MathType today!
www.dessci.com

MathType
™

The best thing for writing equations since chalk!™

MathType™ WebEQ™ MathPlayer™ MathFlow™

Design Science, Inc. 4028 Broadway, Long Beach, CA 90803, USA
www.dessci.com Telephone: 562-433-0685, Fax: 562-433-6969, Email: sales@dessci.com

MathType,“The best thing for writing equations since chalk!” and “How Science Communicates” are trademarks of Design Science.
All other company and product names are trademarks and/or registered trademarks of their respective owners.

The LATEX Companion has long been

the essential resource for anyone using

LATEX to create high-quality printed

documents. This completely updated

edition brings you all the latest informa-

tion about LATEX and the vast range of

add-on packages now available—over

200 are covered. Like its predecessor,

The LATEX Companion, Second Edition

is an indispensable reference for anyone

wishing to use LATEX productively.

For more information, visit:

www.awprofessional.com/

titles/0201362996

Frank Mittelbach and Michel Goossens

with Johannes Braams,

David Carlisle, and Chris Rowley

ISBN: 0-201-36299-6

Available at fine bookstores everywhere.

The LATEX
Companion

Second Edition

The LATEX
Companion

Second Edition

typesetting and editorial services

on-site training

Steve Peter
310 Hana Road

Edison, NJ 08817

Specializing in foreign language, linguistic, and technical typesetting using TEX, LaTEX,

and ConTEXt, I have typeset books for Oxford University Press, Routledge, and Kluwer,

and have helped numerous authors turn rough manuscripts, some with dozens of lan-

guages, into beautiful camera-ready copy.

With a background in linguistics and information technology, I have extensive ex-

perience in planning, editing, proofreading, and writing documentation, to offer you a

complete solution.

I am an award-winning teacher and offer training in all matters TEX for individuals,

groups, and corporations. Training is targeted to the specific needs of the client.

Phone: +1 732 287-5392

Email: speter@dandy.net

Do you need on-site training for LATEX?

Contact Cheryl Ponchin at

cponchin@comcast.net

Training will be customized for your company needs.

Any level, from Beginning to Advanced.

Institutional

Members

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia,
Roma, Italy

Center for Computing Science,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario Canada

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software,
Washington/New Mexico, USA

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Uppsala University,
Uppsala, Sweden

Vanderbilt University,
Nashville, Tennessee

Ogawa, Arthur

40453 Cherokee Oaks Drive
Three Rivers, CA 93271-9743

(209) 561-4585

Email: arthur ogawa@teleport.com

Bookbuilding services, including design, copyedit, art,

and composition; color is my speciality. Custom TEX
macros and LATEX2ε document classes and packages.

Instruction, support, and consultation for workgroups and

authors. Application development in LATEX, TEX, SGML,
PostScript, Java, and C++. Database and corporate

publishing. Extensive references.

Veytsman, Boris

2239 Double Eagle Ct.
Reston, VA 20191
(703) 860-0013
Email: boris@lk.net

I provide training, consulting, software design and
implementation for Unix, Perl, SQL, TEX, and LATEX. I
have authored several popular packages for LATEX and
latex2html. I have contributed to several web-based
projects for generating and typesetting reports.
For more information please visit my web page:
http://users.lk.net/~borisv.

TEX Consultants

The information here comes from the consultants
themselves. We do not include information we know to be
false, but we cannot check out any of the information; we
are transmitting it to you as it was given to us and do not
promise it is correct. Also, this is not an endorsement of
the people listed here. We provide this list to enable you to
contact service providers and decide for yourself whether to
hire one.

The TUG office mentions the consultants listed here to
people seeking TEX workers. If you’d like to be included, or
place a larger ad in TUGboat, please contact the office or
see our web pages:

TEX Users Group
1466 NW Naito Parkway, Suite 3141
Portland, OR 97208-2311, U.S.A.

Phone: +1 503 223-9994
Fax: +1 503 223-3960
Email: office@tug.org

Web: http://tug.org/consultants.html

http://tug.org/TUGboat/advertising.html

104 TUGboat, Volume 26 (2005), No. 1

TUGBOAT Volume 26, Number 1—Practical TEX 2005 Conference Proceedings 2005

TUGBOAT Volume 26 (2005), No. 1 / 2005
Practical TEX 2005 Conference Proceedings

Introductory

3 Barbara Beeton / Editorial comments
• typography and TUGboat news

5 Barbara Beeton / Hyphenation exception log
• update to missed and incorrect U.S. English hyphenations

3 Karl Berry / From the president
• TUG activities and information for 2005

52 Peter Flom / A LATEX fledgling struggles to take flight
• incentives and barriers to learning LATEX

31 Peter Flom and Tristan Miller / Impressions of PracTEX’05
• comments on the conference from attendees

66 Peter Flynn / LATEX on the Web
• review of LATEX interactions with the Web

59 Klaus Höppner / Strategies for including graphics in LATEX documents
• introduction to common graphics formats and tools

63 Joseph Hogg / Making a booklet
• notes on useful packages and processes for booklet production

68 Andrew Mertz and William Slough / Beamer by example
• producing slide presentations via a series of examples

56 Anita Schwartz / The art of LATEX problem solving
• summary of strategies and resources for debugging LATEX

Intermediate

74 Kaveh Bazargan / Batch Commander: A graphical user interface for TEX
• interactive parameter setting and instant feedback

81 David Ignat / Word to LATEX for a large, multi-author scientific paper
• conversion from Word and Perl manipulation of references

97 Abstracts (Allen, Burt, Fehd, Gurari, Janc, Kew, Peter)

Intermediate Plus

85 Tristan Miller / Biblet: A portable BIBTEX bibliography style for generating
highly customizable XHTML

• making Web pages from bibliographies in pure BibTEX
17 Tristan Miller / Using the RPM package manager for (LA)TEX packages

• using and building RPM packages for TEX

Advanced

33 Nelson Beebe / The design of TEX and METAFONT: A retrospective
• historical review of the TEX system software design and development

7 Pedro Quaresma / Stacks in TEX
• stacks, for package writers, and commutative diagrams

10 Denis Roegel / Kissing circles: A French romance in MetaPost
• MetaPost construction of the “Apollonian gasket” of tangent circles

Reports and notices

99 Calendar
104 Institutional members
29 Practical TEX 2005 conference information

Advertisements

101 Carleton Production Centre
102 Design Science, Inc.
101 Joe Hogg
102 The LATEX Companion, 2nd edition, by Frank Mittelbach et al.
103 MacKichan Software, Inc.
102 Personal TEX, Inc.
103 Steve Peter
102 Cheryl Ponchin Training
102 River Valley Technologies
101 Silmaril Consultants
104 TEX consulting and production services

TUGBOAT

Volume 26, Number 1 / 2005

Practical TEX 2005 Conference Proceedings

General Delivery 3 Karl Berry / From the president

3 Barbara Beeton / Editorial comments

Old TUGboat issues go electronic; CTAN anouncement archives;

Another LATEX manual — for word processor users;

Create your own alphabet; Type design exhibition “Letras Latinas”;

The cost of a bad proofreader;

Looking at the same text in different ways: CSS on the web;

Some comments on mathematical typesetting

5 Barbara Beeton / Hyphenation exception log

LATEX 7 Pedro Quaresma / Stacks in TEX

Graphics 10 Denis Roegel / Kissing circles: A French romance in MetaPost

Software & Tools 17 Tristan Miller / Using the RPM package manager for (LA)TEX packages

Practical TEX 2005 29 Conference program, delegates, and sponsors

31 Peter Flom and Tristan Miller / Impressions from PracTEX’05

Keynote 33 Nelson Beebe / The design of TEX and METAFONT: A retrospective

Talks 52 Peter Flom / A LATEX fledgling struggles to take flight

56 Anita Schwartz / The art of LATEX problem solving

59 Klaus Höppner / Strategies for including graphics in LATEX documents

63 Joseph Hogg / Making a booklet

66 Peter Flynn / LATEX on the Web

68 Andrew Mertz and William Slough / Beamer by example

74 Kaveh Bazargan / Batch Commander: A graphical user interface for TEX

81 David Ignat / Word to LATEX for a large, multi-author scientific paper

85 Tristan Miller / Biblet: A portable BIBTEX bibliography style for generating

highly customizable XHTML

97 Abstracts (Allen, Burt, Fehd, Gurari, Janc, Kew, Peter)

News 99 Calendar

TUG Business 104 Institutional members

Advertisements 104 TEX consulting and production services

101 Silmaril Consultants

101 Joe Hogg

101 Carleton Production Centre

102 Personal TEX, Inc.

102 River Valley Technologies

102 Design Science, Inc.

102 The LATEX Companion, 2nd edition, by Frank Mittelbach et al.

103 Steve Peter

103 Cheryl Ponchin Training

103 MacKichan Software, Inc.

TUGBOAT Volume 26 (2005), No. 1 / 2005
Practical TEX 2005 Conference Proceedings

Introductory

3 Barbara Beeton / Editorial comments
• typography and TUGboat news

5 Barbara Beeton / Hyphenation exception log
• update to missed and incorrect U.S. English hyphenations

3 Karl Berry / From the president
• TUG activities and information for 2005

52 Peter Flom / A LATEX fledgling struggles to take flight
• incentives and barriers to learning LATEX

31 Peter Flom and Tristan Miller / Impressions of PracTEX’05
• comments on the conference from attendees

66 Peter Flynn / LATEX on the Web
• review of LATEX interactions with the Web

59 Klaus Höppner / Strategies for including graphics in LATEX documents
• introduction to common graphics formats and tools

63 Joseph Hogg / Making a booklet
• notes on useful packages and processes for booklet production

68 Andrew Mertz and William Slough / Beamer by example
• producing slide presentations via a series of examples

56 Anita Schwartz / The art of LATEX problem solving
• summary of strategies and resources for debugging LATEX

Intermediate

74 Kaveh Bazargan / Batch Commander: A graphical user interface for TEX
• interactive parameter setting and instant feedback

81 David Ignat / Word to LATEX for a large, multi-author scientific paper
• conversion from Word and Perl manipulation of references

97 Abstracts (Allen, Burt, Fehd, Gurari, Janc, Kew, Peter)

Intermediate Plus

85 Tristan Miller / Biblet: A portable BIBTEX bibliography style for generating
highly customizable XHTML

• making Web pages from bibliographies in pure BibTEX
17 Tristan Miller / Using the RPM package manager for (LA)TEX packages

• using and building RPM packages for TEX

Advanced

33 Nelson Beebe / The design of TEX and METAFONT: A retrospective
• historical review of the TEX system software design and development

7 Pedro Quaresma / Stacks in TEX
• stacks, for package writers, and commutative diagrams

10 Denis Roegel / Kissing circles: A French romance in MetaPost
• MetaPost construction of the “Apollonian gasket” of tangent circles

Reports and notices

99 Calendar
104 Institutional members
29 Practical TEX 2005 conference information

Advertisements

101 Carleton Production Centre
102 Design Science, Inc.
101 Joe Hogg
102 The LATEX Companion, 2nd edition, by Frank Mittelbach et al.
103 MacKichan Software, Inc.
102 Personal TEX, Inc.
103 Steve Peter
102 Cheryl Ponchin Training
102 River Valley Technologies
101 Silmaril Consultants
104 TEX consulting and production services

