
TUGboat, Volume 26 (2005), No. 1 7

Stacks in TEX

Pedro Quaresma

Abstract

There are several situations where we need to “for-
ward reference” something that it is not yet avail-
able. For example, when we say something like “as
we will see in chapter . . . ” and when we make a bib-
liographic citation. Those situations are well treated
in LATEX by the use of auxiliary files.

A different situation arises if we want to have
a LATEX environment where one or more commands
depend on the arguments given to other commands;
that is, the values of the arguments of one command
are taken from the arguments of another. We can
also use an auxiliary file as a way of communication
between commands but that implies that we have
to process the document twice (at least) in order to
complete the environment.

In this paper we describe an implementation of
stacks in TEX as a way to solve the problem just
described. One command puts the information in
the stack, the other command takes the information
from the stack, and with this approach we manage to
establish communication between commands while
processing the document only once.

1 Introduction

In 1990 I was a PhD student in Computer Science
and felt the need of a LATEX style file for producing
diagrams, namely those used in Category Theory [4],
e.g.

A B................................................................................................................. ............
f

So, I created a style file whose first version used
the LATEX picture environment as the graphical en-
gine, and in a later version switched to PICTEX be-
cause of its better capabilities. Since the first version
the two main goals of the DCpic [5] package were:

• to have a TEX-only format, in order to have
good portability properties;

• to have a simple notation, a notation close to
the graph notation where we describe a graph
as a set of nodes (objects), and a set of arrows
(morphisms) with each arrow having an initial
and a end node.

So DCpic implements an environment \begindc
...\enddc, with the command \obj(x,y){text} for
the nodes, and the command \mor(x1,y1)(x2,y2)
{text} for the arrows. The diagram pictured above
has the following specification:
\begindc

\obj(1,1){$A$}

\obj(3,1){$B$}

\mor(1,1)(3,1){$f$}

\enddc

The syntax is one of the simplest, if not the
simplest, among packages of this type [2], but it de-
viates from the graph notation because the arrows
specification is done in absolute terms and not in
relative terms, i.e., it does not state the initial and
end node of each arrow, but rather their positions.
Since version 2 we began to look for a specification
syntax that would allow the following specification
for the diagram:
\begindc

\obj(1,1){$A$}

\obj(3,1){$B$}

\mor{$A$}{$B$}{$f$}

\enddc

But this implies that the coordinates of objects
A and B must be passed to the \mor command. We
also want to pass the dimensions of the (box) objects
to be able to adjust the arrow length accordingly.

How to do this? I saw two possible solutions:
• the \obj command writes all the information

about its object in an auxiliary file, after which
\mor reads the information from that file.

• the \obj command writes all the information
about its object in an auxiliary structure kept
in memory, after which \mor reads the informa-
tion from that structure.
The first solution seemed to me too complicated

to the problem at hand; it is also inefficient because
for a large diagram we have to open and close the
auxiliary file too many times (or enforce a strict sep-
aration between objects and morphisms). Because
of this we chose the second approach and decided to
implement stacks.

Using stacks the solution is very simple: \obj
pushes the information onto the stack, and \mor
looks for it on the stack and whenever necessary
pops it from the stack.

2 Stacks

To implement stacks we need a structure in which
to place the elements and functions to operate on
the stack. Using the Maude [1, 3] syntax we have:
fmod STACK is

sorts Elem NeStack Stack .

subsorts Elem < NeStack < Stack .

op empty : -> Stack .

op push : Elem Stack -> NeStack .

op pop : NeStack -> Stack .

op top : NeStack -> Elem .

op isempty : Stack -> Bool .

var S : Stack .



8 TUGboat, Volume 26 (2005), No. 1

var E : Elem .

eq pop(push(E,S)) = S .

eq top(push(E,S)) = E .

eq isempty(empty) = true .

eq isempty(push(E,S)) = false .

endfm

That is, we have elements and stacks of ele-
ments; empty gives us the empty stack; push puts
an element on top of the stack; pop deletes the el-
ement on top of the stack; top sees (and does not
delete) the element on top of the stack; and isempty
returns whether the stack is empty or not.

2.1 Stacks in TEX

Not having a predefined type structure in TEX that
can support stacks, we decided to implement stacks
as a macro. We began by defining (initializing) it as
the empty stack, that is, a stack that contains only
a sentinel, the “end-of-stack” element.
\def\emptystack{:}

\let\stack=\emptystack

The elements of the stacks will be other TEX
elements, e.g., we can put \$x\$ on the stack. The
stack is now a structure that may contain almost
anything.

The implementation of the the functions is now
a matter of redefinition of the macro \stack.

The “push” function has one argument only,
the element to be pushed; the result is the stack
with that element on top of it.
\def\push#1{%

\edef\stack{#1.\stack}%

}

(The dot serves as an element separator.)
The “topstack” function has no arguments; the

result is the element that it is on the top of the stack.
We use an auxiliary function and the “expandafter”
command to control the expansion of the arguments.
\def\topaux#1.#2:{#1}

\def\topstack{\expandafter\topaux\stack}

The “pop” function also has no arguments; the
result is the stack without the top element. It is
very similar to \topstack.
\def\popaux#1.#2:{\def\stack{#2:}}

\def\pop{\expandafter\popaux\stack}

To implement the “isempty” predicate we need
to define the appropriate “if”. In DCpic we have
opted for two “ifs”, one to test if the stack is empty,
and the other to test if the stack is not empty.
\newif\ifisempty

\newif\ifnisempty

\def\isempty#1{%

\let\arg=#1\relax

\if:\arg\ \isemptytrue

\else \isemptyfalse\fi}

\def\nisempty#1{%

\let\arg=#1\relax

\if:\arg\ \nisemptyfalse

\else \nisemptytrue\fi}

As you can see, this is a one-stack-at-a-time im-
plementation; we begin by defining the object that
we call \stack and then all the operations are done
on that object. This does not mean that we can only
have one stack in the document. We can create other
stacks by saying, e.g., \let\secondstack=\stack
and later \let\stack=\secondstack, but all the
operations are still done with \stack.

2.2 Using Stacks

The Polish Notation To illustrate the use of
these stacks in TEX, let’s pretend to calculate arith-
metic expressions in Reverse Polish Notation (post-
fix notation). Our example will be this expression:

2 1 + 3 ×
Start by pushing all the elements into the stack:

\push{2}

\push{1}

\push{+}

\push{3}

\push{$\times$}

After this, the stack has this form:
Stack=×.3.+.1.2.:

Loop until the stack is empty We can con-
struct a cycle that will stop when the stack is empty:
\loop

Pop, \pop \quad Stack=\stack

\nisempty\stack

\ifnisempty

{\endgraf }

\repeat

Using the stack from the previous example:
Stack=×.3.+.1.2.:

Pop, Stack=3.+.1.2.:
Pop, Stack=+.1.2.:
Pop, Stack=1.2.:
Pop, Stack=2.:
Pop, Stack=:

Stacks in the DCpic package The use of stacks
allows a very simple notation for the specification of
our diagrams in LATEX. For example:



TUGboat, Volume 26 (2005), No. 1 9

\begindc{\undigraph}[15]

\obj(1,1){A}[\west]

\obj(3,5){B}

\obj(3,1){C}[\south]

\obj(5,3){D}[\east]

\mor{A}{B}{}

\mor{A}{C}{}

\mor{B}{D}{}

\mor{C}{D}{}

\enddc

gives

•A

•B

•
C

•D

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

.......................................................................

.......................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
....

But, if we realize that we misplaced “A” we can
correct that modifying the “A” coordinates only:

\begindc{\undigraph}[15]

\obj(1,3){A}[\west]

... the rest remains the same ...

\enddc

gives

•A

•B

•
C

•D...........
...........
...........
...........
...........
...........
...........
...........
...........
....

.......................................................................................................

.......................................................................................................

...........
...........
...........
...........
...........
...........
...........
...........
...........
....

We can put almost anything in the stack, for
example:

\begindc{\commdiag}[2]

\obj(1,1){$Z$}

\obj(1,36){$\overline{X}$}

\obj(36,36){$X$}

\obj(52,36){$Y$}

\mor{$Z$}{$\overline{X}$}{$\overline{h}$}%

[\atleft,\dasharrow]

\mor{$Z$}{$X$}{$h$}[\atright,\solidarrow]

\mor{$\overline{X}$}{$X$}{$e$}

\mor(36,37)(52,37)[8,8]{$f$}

\mor(36,35)(52,35)[8,8]{$g$}[\atright,%

\solidarrow]

\enddc

gives

Z

X X Y

........

.....

........

.....

........

.....

........

.....

........

.....

............

............

h

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.............
............

h

.......................................................................................................................................... ............
e ..................................................... ............

f
..................................................... ............

g

As you can see, the communication between
\obj and \mor does not follow a strict first-in-last-
out discipline; so what we do is to preserve the stack
before a pop operation and recover the value after-
wards. A list structure would be more appropriate
for DCpic, but the simplicity of the stack implemen-
tation justifies, in our view, a little loss of efficiency.

3 Conclusions

Using an auxiliary structure like the stack gives us
the possibility of organizing our TEX programs with
intercommunicating macros. The communication is
established using the global variable \stack.

We decided not to deal with the error situations
(e.g., a pop of the empty stack) in our implemen-
tation of stacks. The \mor command analyzes the
stack to see whether it is empty; if so, then it writes
an error message in the output and tries a naive
error recovery using some default values.

The use of stacks in DCpic allows us to have a
very simple notation for the graphs without a “vis-
ible” burden to the user. We are certain that this
approach will be useful in other situations.

References

[1] Manuel Clavel, Francisco Durán, Steven Eker,
Lincoln Patrick, Narciso Mart́ı-Oliet, Meseguer
José, and Carolyn Talcott. Maude Manual.
Computer Science Laboratory, SRI Interna-
tional, April 2005. Version 2.1.1.

[2] Gabriel Valiente Feruglio. Typesetting commu-
tative diagrams. TUGboat, 15(4):466–484, 1994.

[3] Joseph Goguen and Timothy Winkler. Intro-
ducing OBJ. Technical Report SRI-CSL-88-9,
SRI International, Computer Science Lab, Au-
gust 1988.

[4] Benjamin Pierce. Basic Category Theory for
Computer Scientists. Foundations of Comput-
ing. The MIT Press, London, England, 1998.

[5] Pedro Quaresma. DCpic, commutative diagrams
in a (LA)TEX document. In Proceedings of the
EuroTEX 2001 conference, Rolduc, The Nether-
lands, September 2001.


